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Abstract. We describe the Dirichlet space of M -harmonic functions, i.e. func-
tions annihilated by the invariant Laplacian on the unit ball of the complex
n-space, as the limit of the analytic continuation (in the spirit of Rossi and
Vergne) of the corresponding weighted Bergman spaces. Characterizations in
terms of tangential derivatives are given, and the associated inner product is
shown to be Moebius invariant. The pluriharmonic and harmonic cases are
also briefly treated.

1. Introduction

Let Bn be the unit ball in the complex n-space Cn, n ≥ 1, and consider the
standard weighted Bergman spaces

As(Bn) := {f ∈ L2(Bn, dµs) : f is holomorphic on Bn}
of holomorphic functions on Bn square-integrable with respect to the measure

(1) dµs(z) :=
Γ(s + n + 1)
πnΓ(s + 1)

(1− |z|2)s dz, s > −1,

where dz denotes the Lebesgue volume on Cn. The restriction on s ensures that
these spaces are nontrivial, and the factor Γ(s+n+1)

πnΓ(s+1) makes dµs a probability mea-
sure, so that the function 1 (constant one) has unit norm. It is well known that As

is a reproducing kernel Hilbert space, with reproducing kernel

(2) Khol
s (x, y) = (1− 〈x, y〉)−s−n−1.

In terms of the Taylor coefficients, a holomorphic function f(z) =
∑

ν fνzν on Bn

belongs to As if and only if

(3) ‖f‖2s :=
∑

ν

|fν |2 ν!Γ(n + s + 1)
Γ(n + s + |ν|+ 1)

< +∞

and the sum then coincides with the squared norm in As. (Here the sum runs
over all multi-indices ν, and we are employing the usual multi-index notations.)
Alternatively, in terms of the homogeneous components fm(z) :=

∑
|ν|=m fνzν ,

(4) ‖f‖2s =
∞∑

m=0

Γ(n + s + 1)Γ(n + m)
Γ(n)Γ(n + s + m + 1)

‖fm‖2∂Bn =
∞∑

m=0

(n)m

(n + s + 1)m
‖fm‖2∂Bn ,
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where ‖f‖∂Bn denotes the norm in the space L2(∂Bn, dσ) with respect to the
normalized surface measure dσ on ∂Bn. Here (x)m := x(x + 1) . . . (x + m − 1)
denotes the usual Pochhammer symbol (rising factorial).

It is a remarkable fact — which prevails in the much more general context
of bounded symmetric domains, constituting the “analytic continuation” of the
principal series representations of certain semisimple Lie groups, cf. Rossi and
Vergne [VR] — that the weighted Bergman kernels Khol

s (x, y), s > −1, continue
to be positive definite kernels in the sense of Aronszajn [Ar] for all s ≥ −n − 1,
yielding thus an “analytic continuation” of the spaces As. (One calls the interval
[−n − 1,+∞) the Wallach set of Bn.) For s > −n − 1, the norm in As is still
given by (3) and (4). For s = −n−1, the kernel (2) becomes constant one, and the
corresponding reproducing kernel Hilbert space thus reduces just to the constants.
However, a much more interesting space arises as the “residue” of As at s = −n−1:
namely, the limit

(5) lim
s↘−n−1

Khol
s (x, y)− 1
s + n + 1

= log
1

1− 〈x, y〉 =: Khol
◦ (x, y)

is a positive definite kernel on Bn × Bn, and the associated reproducing kernel
Hilbert space — denoted A◦ — consists of all f holomorphic on Bn for which

(6)

‖f‖2◦ :=
∑
m

lim
s↘−n−1

(n)m

(n + s + 1)m
‖fm‖2∂Bn

=
∑
m

m
(n)m

m!
‖fm‖2∂Bn =

∑
ν

|ν| ν!
|ν|! |fν |2 < +∞,

and ‖f‖◦ gives the semi-norm on A◦. This space is nothing else but the familiar
Dirichlet space on Bn, see e.g. Chapter 6.4 in Zhu [Zh], where it is furthermore
shown that the space A◦ and the above semi-inner product are Moebius invariant,
in the sense that f ∈ A◦ =⇒ f ◦ φ ∈ A◦ and

〈f, g〉◦ = 〈f ◦ φ, g ◦ φ〉◦
for any biholomorphic self-map φ of Bn.

The goal of the present paper is to exhibit the M -harmonic analogue of the
construction above.

Recall that a function on Bn is called Moebius-harmonic (or invariantly har-
monic), or M -harmonic for short, if it is annihilated by the invariant Laplacian

(7) ∆̃ = 4(1− |z|2)
n∑

j,k=1

(δjk − zjzk)
∂2

∂zj∂zk
.

It is standard (see e.g. Rudin [Ru], Stoll [St], or Chapter 6 in Krantz [Kr]) that ∆̃
commutes with biholomorphic self-maps (Moebius maps) of the ball:

∆̃(f ◦ φ) = (∆̃f) ◦ φ, ∀f ∈ C2(Bn), φ ∈ Aut(Bn);

and, accordingly, f is M -harmonic if and only if f ◦ φ is, for any φ ∈ Aut(Bn).
The class of M -harmonic functions lies in a way on the crossroads between the
holomorphic and the harmonic functions: it resembles the latter in the sense that
it is preserved by complex conjugation, while resembling the former by reflecting
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the complex structure inherent in the invariance of the Laplacian ∆̃. One again
has the M -harmonic weighted Bergman spaces

Ms := {f ∈ L2(Bn, dµs) : f is M -harmonic on Bn}
which are nontrivial if and only if s > −1. The role of the Taylor coefficients or,
rather, homogeneous components from the holomorphic case is now played by the
decomposition into “bi-graded spherical harmonics”. Namely, under the action of
the group U(n) of unitary linear maps of Cn, the space L2(∂Bn, dσ) decomposes
into irreducible components

(8) L2(∂Bn, dσ) =
∞⊕

p,q=0

Hpq,

where Hpq is the space of restrictions to the sphere of harmonic polynomials on Cn

homogeneous of degree p in z and of degree q in z. Performing such a decompisition
on each sphere |z| ≡ const. leads to the analogous Peter-Weyl decomposition

Ms =
⊕
p,q

Hpq,

where the space Hpq of “solid harmonics”

Hpq = {f ∈ C(Bn) : f is M -harmonic on Bn and f |∂Bn ∈ Hpq},
and the norm of f =

∑
p,q fpq, fpq ∈ Hpq, is given by

(9) ‖f‖2s =
∞∑

p,q=0

Cpq(s)‖fpq‖2∂Bn ,

with the coefficients Cpq(s) — the counterparts of the (n)m

(n+s+1)m
from the holomor-

phic case — given by an explicit formula involving hypergeometric functions; see
Section 2 below for the details. Finally, the reproducing kernel of the space Ms,
s > −1, is given by

(10) Ks(z, w) =
∑
p,q

Kpq(z, w)
Cpq(s)

,

where Kpq(zw) is the reproducing kernel of Hpq (with the inner product inherited
from L2(∂Bn, dσ)), for which there is again an explicit formula. Now it has been
shown in Section 6.3 of [EY] that, exactly as in the holomorphic case, Ks(z, w)
extends to a holomorphic function of s on Re s > −n−1, continues to be a positive
definite kernel on Bn×Bn for all s ≥ −n−1 (and only for these s), and the norm in
the corresponding reproducing kernel Hilbert space — the “analytic continuation”
of Ms — for s > −n− 1 is still given by (9). (Thus the “M -harmonic Wallach set’
of Bn is again the interval [−n− 1,+∞).)

Motivated by the considerations for the holomorphic case, we are now interested
in the limit as s ↘ −n − 1. In contrast to the holomorphic case, this can now be
done in three ways.

(a) We simply take s = −n − 1 in (10). The kernel Ks(z, w) reduces to con-
stant one, and the corresponding reproducing kernel Hilbert space thus
again reduces just to the constants, with ‖1‖ = 1. This is the trivial case.
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(b) As in the holomorphic case, next we take

(11) lim
s↘−n−1

Ks(z, w)− 1
n + s + 1

= log
1

|1− 〈x, y〉|2 =: K◦(x, y).

This is a positive definite kernel, and the corresponding reproducing kernel
Hilbert space — denoted M◦ — consists precisely of the orthogonal sum
of the holomorphic Dirichlet space A◦ above and its complex conjugate A◦
(the constants being counted, of course, only once), with the (semi-)norm
given by

(12) ‖f + g‖2◦ := ‖f‖2◦ + ‖g‖2◦.
In some sense, one can perhaps view M◦ as the pluriharmonic Dirichlet
space.

(c) Finally, we can take

(13) lim
s↘−n−1

Ks(x, y)− 1− (n + s + 1)K◦(x, y)
(n + s + 1)2

=: K◦◦(x, y),

which is a positive-definite kernel on Bn × Bn, with the (semi-)norm in
the corresponding reproducing kernel Hilbert space — denoted M◦◦ —
given by

(14) ‖f‖2◦◦ :=
∑
p,q

lim
s↘−n−1

(n + s + 1)2Cpq(s)‖fpq‖2∂Bn

(hence, this time, all pluriharmonic functions get zero norm). This is,
by definition, the M -harmonic Dirichlet space.

The occurrence of case (c) arises from the fact that the coefficient functions
Cpq(s) now turn out to have a double pole at s = −n− 1 (in contrast to the single
pole of (n)m

(n+s+1)m
in the holomorphic situation). Again, this phenomenon is clearly

reminiscent of the “composition series” arising in the theory of analytic continua-
tion of holomorphic discrete series representations mentioned above, cf. Faraut and
Koranyi [FK]. Note also that the case (c) disappears completely when n = 1; thus
M◦◦ is relevant only for Bn with n ≥ 2.

Our first result is a direct formula for the semi-norm in M◦◦.

Corollary. (Corollary 5) In terms of the Peter-Weyl decomposition f =
∑

p,q fpq,
fpq ∈ Hpq,

‖f‖2◦◦ =
∑
p,q

(p)n(q)n

Γ(n)2
‖fpq‖2∂Bn .

By polarization, this of course implies also the corresponding formula

(15) 〈f, g〉◦◦ =
∑
p,q

(p)n(q)n

Γ(n)2
〈fpq, gpq〉∂Bn

for the semi-inner product in M◦◦.
Next we give a description of M◦◦ that does not involve the Peter-Weyl compo-

nents. It is easy to see that the averaging operator

Π0f(rζ) :=
∫

∂Bn

f(rη) dσ(η), 0 ≤ r < 1, ζ ∈ ∂Bn,
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(this can also be written as Π0f(z) =
∫

U(n)
f(kz) dk, where dk stands for the

normalized Haar measure on the compact group U(n)) is just the projection

f 7−→ f(0)1

of M -harmonic functions onto the subspace H00 of constants. Similarly, one can
give projections Π and Π onto the subspaces

⊕
p Hp0 and

⊕
q H0q of the holomor-

phic and anti-holomorphic functions, respectively (explicit formulas for Π and Π
will be given in Section 2 below). Hence, we also have

P := Π + Π−Π0,

the projection onto the subspace of pluriharmonic functions, and

Q := I − P,

the projection onto their orthogonal complement
⊕

p,q≥1 Hpq.
(All these projections are automatically orthogonal with respect to any U(n)-

invariant inner product, but make sense also in complete generality on the vector
space M of all M -harmonic functions on Bn.)

Consider now the tangential vector fields

Ljk := zj∂k − zk∂j , Ljk := zj∂k − zk∂j , 1 ≤ j, k ≤ n, j 6= k,

and denote by Lm, 1 ≤ m ≤ 2n(n−1), the collection of all these operators (in some
fixed order). Finally, for any function f on Bn and 0 < r < 1, let fr be the function
on ∂Bn defined by

fr(ζ) := f(rζ)

and denote
‖f‖2Hardy := sup

0<r<1
‖fr‖2∂Bn .

Theorem. (Theorem 9) If f is M -harmonic on Bn, n ≥ 2, then f ∈ M◦◦ if and
only if

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn(Qf)‖2Hardy < +∞,

and the square root of the left-hand side is a seminorm equivalent to ‖f‖◦◦.
As a consequence, we obtain the following complete analogues of the holomorphic

case.

Corollary. (Corollary 10) The space M◦◦ is Moebius invariant: f ∈M◦◦ implies
f ◦ φ ∈M◦◦ for any φ ∈ Aut(Bn).

Theorem. (Theorem 15) The semi-inner product (15) is Moebius invariant:

〈f, g〉◦◦ = 〈f ◦ φ, g ◦ φ〉◦◦ ∀f, g ∈M◦◦, ∀φ ∈ Aut(Bn).

The usual proof of the analogue of the last corollary for the holomorphic case
(cf. Zhu [Zh], Theorem 6.13) relies on the use of radial derivatives and their gener-
alizations; this approach unfortunately breaks down in the M -harmonic situation.
Similarly, the usual proof of the last theorem in the holomorphic case relies on
explicit computations involving Taylor coefficients (cf. Zhu [Zh], Theorem 6.15),
which becomes hopeless for M◦◦; we instead use an argument employing analytic
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continuation. In both cases, our approach here can be used to give a new descrip-
tion of the classical Dirichlet space on the ball and a new proof of the invariance of
the Dirichlet inner product in the holomorphic case.

Additionally, the methods just mentioned apply also to the pluriharmonic Dirich-
let space M◦, which seems to have received basically no attention at all in the liter-
ature. The second result below apparently has no counterpart in the M -harmonic
case.

Theorem. (Theorem 16) If f is pluriharmonic on Bn, n ≥ 2, then f ∈M◦ if and
only if

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljnf‖2Hardy < +∞

if and only if
2n(n−1)∑

j1,j2,...,jn+k+1=1

‖Lj1Lj2 . . .Ljn+k+1f‖2k < +∞,

for some (equivalently, any) nonnegative integer k.
Furthermore, the square root of the above quantities is a seminorm equivalent

to ‖f‖◦.
Here ‖ · ‖s denotes, more generally, the norm in L2(Bn, dµs), s > −1 (i.e. not

only on its holomorphic or M -harmonic subspaces).
Let

N :=
n∑

j=1

zj∂j + zj∂j

denote the radial derivative operator on Bn; note than N f is pluriharmonic when-
ever f is.

Theorem. (Theorem 17) If f is pluriharmonic on Bn, n ≥ 1, then f ∈M◦ if and
only if

‖Nmf‖22m−n−1 < +∞
for some (equivalently, any) integer m > n

2 . Furthermore, the square root of the
left-hand side is a seminorm equivalent to ‖f‖◦.

For f holomorphic the last two theorems, of course, give criteria for f to belong to
the ordinary Dirichlet space A◦ on Bn; the second one is then common knowledge,
and though the first of them must surely also be known to experts in the field,
the authors were unable to pinpoint a specific reference to the literature.

Finally, for the sake of completeness, we give details also for the context of
harmonic functions, where the corresponding harmonic Dirichlet space appears in
the literature under various names. Namely, consider this time the unit ball Bn

of Rn, n ≥ 2, and for any s > −1 let

Hs(Bn) := {f ∈ L2(Bn, dρs) : f is harmonic on Bn}
be the weighted harmonic Bergman space of all harmonic functions on Bn square-
integrable with respect to the measure

dρs(x) :=
Γ(n

2 + s + 1)
πn/2Γ(s + 1)

(1− |x|2)s dx,
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where dx denotes the Lebesgue volume on Rn. The restriction on s ensures that
these spaces are nontrivial, and the factor Γ( n

2 +s+1)

πn/2Γ(s+1)
makes dρs a probability mea-

sure, so that ‖1‖ = 1. For each p ≥ 0, denote by Hp the space of harmonic
polynomials on Rn homogeneous of degree p. Any harmonic function f on Bn then
admits a (unique) decomposition

(16) f =
∞∑

p=0

fp, fp ∈ Hp,

and the space Hs decomposes as

(17) Hs =
∞⊕

p=0

Hp,

with the norm given by

(18) ‖f‖2s =
∞∑

p=0

(n
2 )p

(n
2 + s + 1)p

‖fp‖∂Bn ,

where ‖ · ‖∂Bn denotes the norm in L2(∂Bn, dσ) with respect to the normalized
surface measure dσ on the unit sphere ∂Bn. The reproducing kernel of Hs is
given by

(19) Kharm
s (x, y) =

∑
p

(n
2 + s + 1)p

(n
2 )p

Zp(x, y),

where the zonal harmonic Zp(x, y) is the reproducing kernel of Hp (with respect to
the norm ‖ · ‖∂Bn). It follows that Kharm

s (x, y) extends as a holomorphic function
of s to the entire complex plane, and continues to be a positive definite kernel on
Bn×Bn for any s ≥ −n

2 −1 (and only for these s). For s > −n
2 −1, the norm in the

corresponding reproducing kernel Hilbert spaces (still denoted by Hs) is still given
by the formula (18). For s = −n

2 − 1, (19) again reduces just to constant one, and
the corresponding reproducing kernel Hilbert space thus reduces to the constants;
while the limit

lim
s↘−n

2−1

Kharm
s (x, y)− 1
s + n

2 + 1
=: Kharm

� (x, y)

is a positive definite kernel on Bn × Bn, corresponding to the reproducing kernel
Hilbert space with the (semi)norm given by

(20) ‖f‖2� :=
∑

p

lim
s↘−n

2−1
(s + n

2 + 1)
(n

2 )p

(n
2 + s + 1)p

‖fp‖∂Bn =
∑

p

p
(n

2 )p

p!
‖fp‖∂Bn .

This space — denoted H� — is the harmonic Dirichlet space on Bn.
Let Xjk, j, k = 1, . . . , n, j 6= k, denote the tangential vector fields

Xjk = xj∂k − xk∂j

on Rn, and denote by Xm, 1 ≤ m ≤ n(n− 1), the collection of all these operators
(in some fixed order).
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Theorem. (Theorem 19) If f is harmonic on Bn, n ≥ 2, then f ∈ H� if and
only if

n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjm
f‖22m−n

2−1 < +∞

for some (equivalently, any) integer m > n
4 . Furthermore, the square root of the

left-hand side is a seminorm equivalent to ‖f‖�.

This time there is no Moebius invariance, since the Moebius self-maps of Bn do
not preserve harmonicity for n > 2.

We review the necessary background material in Section 2, then present the
basic properties of the M -harmonic Dirichlet space M◦◦ in Section 3. Moebius
invariance is discussed in Section 4. The pluriharmonic Dirichlet space is treated
in Section 5, and the harmonic case in Section 6.

Throughout the paper, the notation

A ³ B

means that

cA ≤ B ≤ 1
c
A

for some 0 < c ≤ 1 independent of the variables in question. The symbols ∂
∂zj

and ∂
∂zj

, commonly abbreviated just to ∂j and ∂j , respectively, stand for the usual
Wirtinger operators on Cn; similarly on Rn, ∂k stands for ∂

∂xk
. For typesetting

reasons, the inner product 〈x, y〉 in Cn is sometimes also denoted by x · y. Finally,
Z,N,R and C denote the sets of all integers, all nonnegative integers, all real and
all complex numbers, respectively.

2. Notation and preliminaries

The stabilizer of the origin 0 ∈ Bn in Aut(Bn) is the group U(n) of all unitary
transformations of Cn; that is, of all linear operators U that preserve inner products:

〈Uz,Uw〉 = 〈z, w〉 ∀z, w ∈ Cn.

Each U ∈ U(n) maps the unit sphere ∂Bn onto itself, and the surface measure dσ
on ∂Bn is invariant under U . It follows that the composition with elements of U(n),

(21) TU : f 7→ f ◦ U−1,

is a unitary representation of U(n) on L2(∂Bn, dσ). We will need the decomposition
of this representation into irreducible subspaces. These turn out to be given by
bigraded spherical harmonics Hpq; the standard sources for this are Rudin [Ru,
Sections 12.1–12.2], or Krantz [Kr, Sections 6.6–6.8], with basic ingredients going
back to Folland [Fo].

Namely, for integers p, q ≥ 0, let Hpq be vector space of restrictions to ∂Bn of
harmonic polynomials f(z, z) on Cn which are homogeneous of degree p in z and
homogeneous of degree q in z. Then Hpq is invariant under the action (21) of U(n),
is U(n)-irreducible (i.e. has no proper U(n)-invariant subspace) and

(22) L2(∂Bn, dσ) =
∞⊕

p,q=0

Hpq.
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Furthermore, if T is a linear operator on L2(∂Bn, dσ) commuting with the ac-
tion (21) i.e. T (f ◦ U) = (Tf) ◦ U for all U ∈ U(n) and f ∈ L2(∂Bn, dσ)), then
T is diagonalized by the decomposition (21), i.e. T maps each Hpq into itself and
T |Hpq = cpqI|Hpq for some complex constants cpq, where I denotes the identity
operator.

Since each space Hpq is finite-dimensional, the evaluation functional f 7→ f(ζ)
at each ζ ∈ ∂Bn is automatically continuous on it; it follows that Hpq — with
the inner product inherited from L2(∂Bn, dσ) — has a reproducing kernel. This
reproducing kernel turns out to be given by Hpq(ζ · η), where for n ≥ 2

(23)
Hpq(z) =

(−1)q(n + p + q − 1)(n + p− 2)!
(n− 1)!q!(p− q)!

× zp−q
2F1

(−q, n + p− 1
p− q + 1

∣∣∣|z|2
)

for p ≥ q,

while Hpq(z) = Hqp(z) for p < q. For n = 1, the spaces Hpq reduce just to {0} if
pq 6= 0, while Hp0 = Czp, H0q = Czq and Hp0(z) = zp, H0q(z) = zq; note that the
formula (23) still works for n = 1 and pq = 0.

Denote

(24)
Spq(r) := rp+q

2F1

(
p, q

p + q + n

∣∣∣r2
)/

2F1

(
p, q

p + q + n

∣∣∣1
)

=
Γ(p + n)Γ(q + n)
Γ(n)Γ(p + q + n)

rp+q
2F1

( p, q
p + q + n

∣∣∣r2
)
.

Then for each f ∈ Hpq, the (unique) solution to the Dirichlet problem ∆̃u = 0
on Bn, u|∂Bn = f is given by

(25) u(rζ) = Spq(r)f(ζ), 0 ≤ r ≤ 1, ζ ∈ ∂Bn.

Many of the formulas above originate in [Fo].
For each p, q ≥ 0, let Hpq be the space of all functions on Bn of the form (25)

with f ∈ Hpq. In other words, while Hpq is the space of spherical harmonics on the
sphere ∂Bn, Hpq is the associated space of “solid” M -harmonic functions on Bn.
With the inner product inherited from L2(∂Bn, dσ), each Hpq is thus a finite-
dimensional Hilbert space of M -harmonic functions on Bn, unitarily isomorphic to
the space Hpq via the isomorphism (25), and with reproducing kernel

(26) Kpq(rζ,Rξ) := Spq(r)Spq(R)Hpq(ζ · ξ).
It was shown in Proposition 1 in [EY] that if H is any Hilbert space of M -

harmonic functions on Bn whose inner product is invariant under rotations (i.e. f ∈
H, U ∈ U(n) imply f ◦ U ∈ H and ‖f ◦ U‖H = ‖f‖H), then the following is true:

– for each p, q ≥ 0, H ∩Hpq is either {0} or all of Hpq;
– if Hpq ⊂ H, then

〈f, g〉H = cpq〈f, g〉∂Bn ∀f, g ∈ Hpq

with some constant cpq, 0 < cpq < +∞ (independent of f, g);
– the reproducing kernel of H is given by

(27) KH(x, y) =
∑

p,q:Hpq⊂H

Kpq(x, y)
cpq

,
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with the sum converging locally uniformly on Bn ×Bn, as well as in H as
a function of x for each fixed y, or vice versa.

One can also formally define cpq := +∞ if Hpq 6⊂ H; then H contains precisely
those Hpq for which cpq is finite, and in (27) the summation can be extended over
all p, q ≥ 0, with the usual convention that 1/∞ := 0.

One can also allow semi-Hilbert spaces, i.e. with semi-definite (semi-)norm in-
stead of norm; then the above still holds, except that cpq can be zero for some
p, q and (27) is the reproducing kernel not for H but only for the subspace H0 :=⊕{Hpq : cpq > 0}.

For the weighted M -harmonic Bergman spaces of all M -harmonic functions in
L2(Bn, (1 − |z|2)s dz), s > −1, an explicit formula for the cpq =: cpq(s) was given
in (69) in [EY]. Renormalizing so as to pass to our normalized measures from (1),
and our spaces Ms from the Introduction, it was shown in Section 6.3 of [EY] that
the corresponding constants Cpq(s) = cpq(s)/c00(s) are given by

(28) Cpq(s) =
1

Γ(n)

∫ 1

0

G(n)
pq (t) (1− t)n+s dt,

where Gpq is the function

Gpq(t) :=
Γ(n + p)2Γ(n + q)2

Γ(n)2Γ(n + p + q)2
tp+q+n−1

2F1

( p, q
n + p + q

∣∣∣t
)2

(see formula (98) there). Furthermore, it was shown there that G
(n)
pq is positive and

continuous on (0, 1), with a finite value at the origin and G
(n)
pq (t) = O(log 1

1−t ) as
t ↗ 1, from which it follows that (28) furnishes an analytic continuation of Cpq(s)
to Re s > −n− 1 and 0 < Cpq(s) < +∞ for s ∈ (−n− 1, +∞). The functions

Ks(z, w) =
∑
p,q

Kpq(z, w)
Cpq(s)

thus continue to be positive definite kernels on Bn × Bn in the sense of Aron-
szajn [Ar], and the norm in the associated reproducing kernel Hilbert spaces —
still denoted Ms — is given by

‖f‖2s =
∑
p,q

Cpq(s)‖fpq‖2∂Bn , s > −n− 1,

for an M -harmonic function f with Peter-Weyl decomposition f =
∑

p,q fpq, fpq ∈
Hpq.

We conclude this section by describing the projections onto the Peter-Weyl com-
ponents Hpq. From the reproducing property of Hqp(ζ · η) and (25), we have, for
any M -harmonic function f on Bn,

(29) fpq(rζ) =
∫

∂Bn

f(rη)Hpq(ζ · η) dσ(η) ∀ζ ∈ ∂Bn, ∀r ∈ (0, 1).

In particular, for p = q = 0,

(30) Π0f(rζ) =
∫

∂Bn

f(rη) dσ(η), 0 ≤ r < 1, ζ ∈ ∂Bn,

is the projection onto the constants H00.
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Proposition 1. For any f M -harmonic on Bn, the limit

(31) Πf(rζ) := lim
R↗1

∫

∂Bn

f(rη)
(1−R〈ζ, η〉)n

dσ(η)

exists, and Πf equals the projection of f onto the subspace A :=
⊕∞

P=0 Hp0 of
holomorphic functions on Bn.

Proof. Expanding (1−R〈ζ, η〉)−n by the binomial formula shows that the integral
equals

∫

∂Bn

f(rη)
∞∑

j=0

Rj (n)j

j!
〈ζ, η〉j dσ(η)

=
∫

∂Bn

f(rη)
∞∑

j=0

RjHj0(ζ · η) dσ(η) by (23)

=
∑

j

Rjfj0(rζ) by (29)

=
∑

j

fj0(Rrζ) = Πf(Rrζ),

the interchange of the summation and integration signs being justified by the locally
uniform convergence. Letting R ↗ 1, the claim follows. ¤

We remark that it is, of course, not possible to interchange the limit and the
integral in (31), since (1− 〈ζ, ·〉)−n is not integrable over ∂Bn, for any ζ ∈ ∂Bn.

Taking complex conjugates in (31), one gets also the projection Π onto the
subspace of anti-holomorphic functions, and the projection

P := Π + Π−Π0

onto the subspace P :=
⊕

pq=0 Hpq of pluriharmonic functions on Bn.
For later use, we denote by

Q := I − P

the projection onto the orthogonal complement
⊕

pq>0 Hpq (“the M -harmonic func-
tions with no pluriharmonic component”).

3. M-harmonic Dirichlet space

For an M -harmonic function f =
∑

p,q fpq, fpq ∈ Hpq, on Bn, we have by (21)
and (25)

(32) ‖f‖2s =
∑
p,q

Cpq(s)‖fpq‖2∂Bn

for any s > −1, with

Cpq(s) :=
Γ(n + s + 1)
πnΓ(s + 1)

∫ 1

0

Spq(r)2
2πn

Γ(n)
(1− r2)sr2n−1 dr

=
(s + 1)n

Γ(n)

∫ 1

0

Spq(
√

t)2tn−1 (1− t)s dt

=
(s + 1)n

Γ(n)

∫ 1

0

Gpq(t) (1− t)s dt,(33)
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where Gpq is the function

(34) Gpq(t) := tp+q+n−1 Γ(n + p)2Γ(n + q)2

Γ(n)2Γ(n + p + q)2 2F1

( p, q
n + p + q

∣∣∣t
)2

.

(See [EY] for the details.)
The content of the following lemma is standard; we include the short proof for

the sake of completeness.

Lemma 2. Let F (z) =
∑∞

k=0 Fkzk be a holomorphic function on the disc |z| < R,
R > 0. Then for any δ ∈ (0, R),

(a) the integral

I(s) :=
∫ 1

1−δ

F (1− t)(1− t)s dt, s > −1,

extends to a holomorphic function of s on the entire complex plane C, except
for possible simple poles at s = −j − 1, j = 0, 1, 2, . . . , with residues Fj;

(b) for m = 1, 2, . . . , the integral

Im(s) :=
∫ 1

1−δ

F (1− t)
(

log
1

1− t

)m

(1− t)s dt, s > −1,

extends to a holomorphic function of s on the entire complex plane C,
except for possible poles of multiplicity m+1 at s = −j− 1, j = 0, 1, 2, . . . ,
of strength m!Fj.

Proof. (a) From the Taylor expansion, we have for any N = 0, 1, 2, . . . ,

F (z) = F0 + F1z + · · ·+ FN−1z
N−1 + zNGN (z),

with GN holomorphic on |z| < R. By uniform convergence,

(35) I(s) =
N−1∑

j=0

Fj
δs+j+1

s + j + 1
+

∫ 1

1−δ

GN (1− t)(1− t)s+N dt.

The j-th summand in the sum is holomorphic on C except for a simple pole at
s = −j − 1 with residue Fj , while the integral is a holomorphic function on Re s >
−N − 1. As N was arbitrary, the claim follows.

(b) Differentiating (35) m times with respect to s yields

(36) Im(s) =
N−1∑

j=0

Fj
m!δs+j+1

(s + j + 1)m+1
+

∫ 1

1−δ

GN (1− t)
(

log
1

1− t

)m

(1− t)s+N dt,

and the claim again follows. ¤

Note from (33) that C00(s) ≡ 1 has no poles, while

(37) Cp0(s) = C0p(s) =
(n)p

(n + s + 1)p

has simple poles at s = −n− 1, . . . ,−n− p.

Proposition 3. Let pq > 0. Then Cpq(s) extends to a holomorphic function of s
on the entire C, except for double poles at s = −n− 1,−n− 2, . . . ,−2n and triple
poles at s = −2n−1−j, j = 0, 1, 2, . . . . The double pole at s = −n−1 has strength
(p)n(q)n/Γ(n)2.
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Proof. Since Gpq is continuous on the unit disc, the integral
∫ 1−δ

0

Gpq(t)(1− t)s dt

is a holomorphic function of s on the entire complex plane, for any 0 < δ < 1.
For the integral from 1− δ to 1, formula (12) in [BE, §2.10] tells us that

Γ(n + p)Γ(n + q)
Γ(n)Γ(n + p + q) 2F1

( p, q
n + p + q

∣∣∣t
)

= A0(1− t) + A1(1− t)(1− t)n log
1

1− t

for | arg(1− t)| < π, with

A0(z) :=
n−1∑

j=0

(p)j(q)j

(1− n)jj!
zj +

∞∑

j=0

(−1)nΓ(n + p + j)Γ(n + q + j)
j!(j + n)!Γ(n)Γ(p)Γ(q)

zn+jh′′j ,

A1(z) :=
∞∑

j=0

(−1)nΓ(n + p + j)Γ(n + q + j)
j!(j + n)!Γ(n)Γ(p)Γ(q)

zj

holomorphic on |z| < 1; here

h′′j := ψ(j + 1) + ψ(j + n + 1)− ψ(j + n + p)− ψ(j + n + q)

where ψ := Γ′/Γ is the digamma function. It follows that

Gpq(t) = B0(1− t) + B1(1− t)(1− t)n log
1

1− t
+ B2(t)(1− t)2n

(
log

1
1− t

)2

,

with

B0(z) = (1− z)p+q+n−1A0(z)2,

B1(z) = 2(1− z)p+q+n−1A0(z)A1(z), and

B2(z) = (1− z)p+q+n−1A1(z)2

holomorphic on |z| < 1. Applying the lemma, we see that
∫ 1

1−δ

Gpq(t)(1− t)s dt

extends to an entire function of s, except for possible simple poles at s = −1,−2, . . . ,−n,
possible double poles at s = −n − 1,−n − 2, . . . ,−2n and possible triple poles at
s = −2n− 1,−2n− 2, . . . . The strength of the double pole at s = −n− 1 is

(38) 1!A1(0) =
(−1)nΓ(n + p)Γ(n + q)

n!Γ(n)Γ(p)Γ(q)
=

(−1)n

n!Γ(n)
(p)n(q)n.

Finally, passing from
∫ 1

0
Gpq(t)(1 − t)s dt to Cpq(s), the factor (s+1)n

Γ(n) cancels the

simple poles at s = −1,−2, . . . ,−n, while (38) gets multiplied by (s+1)n

Γ(n)

∣∣∣
s=−n−1

=
(−1)nn!

Γ(n) . ¤

Remark 4. A variant of the last proof can be given by first integrating by parts
to get

(39) Cpq(s) =
1

Γ(n)

∫ 1

0

G(n)
pq (t)(1− t)n+s dt

for any s > −n−1 and p+q > 0; see Section 6.3 in [EY]. This has the advantage of
showing that Cpq(s) is positive for any s > −n−1, and also is a decreasing function
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of s on this interval. Since we are not interested in positivity or monotonicity at
the moment, it was simpler to apply Lemma 2 directly. ¤

Denoting the analytic continuation still by Cpq(s), we thus see that

C◦◦pq := lim
s↘−n−1

(s + n + 1)2Cpq(s)

exists for all p, q ≥ 0, and equals

(40) C◦◦pq =





0 if pq = 0
(p)n(q)n

Γ(n)2
if pq > 0.

We thus arrive at the following corollary.

Corollary 5. In terms of the Peter-Weyl decomposition f =
∑

p,q fpq, fpq ∈ Hpq,
of an M -harmonic function f on Bn,

‖f‖2◦◦ =
∑
p,q

(p)n(q)n

Γ(n)2
‖fpq‖2∂Bn .

Definition 6. We call the space of M -harmonic functions f =
∑

p,q fpq, fpq ∈ Hpq,
on Bn for which ‖f‖2◦◦ < +∞ the M -harmonic Dirichlet space, denoted M◦◦. ¤

We also denote by

M◦◦,0 := {f ∈M◦◦ : fpq = 0 if pq = 0}
the subspace of all functions in M◦◦ which have no pluriharmonic component
(i.e. Pf = 0). The quantity ‖f‖◦◦ is a seminorm on M◦◦ and a norm on M◦◦,0;
abusing the language, we will often speak just of a “norm”. Obviously, M◦◦ con-
tains all the spaces Hpq, p, q ≥ 0, and their span is dense in it.

Remark 7. The space M◦◦,0 has reproducing kernel

K◦◦(z, w) = Γ(n)2
∑

p,q≥1

Kpq(z, w)
(p)n(q)n

.

The authors do not know if this sum can be evaluated explicitly. ¤

4. Moebius invariance

The following facts likely are again quite standard, but we include the short proof
for completeness. Recall that for a function f on Bn and 0 < r < 1, fr denotes the
function on ∂Bn defined by fr(ζ) := f(rζ).

Lemma 8. Let f =
∑

p,q fpq, fpq ∈ Hpq, be an M -harmonic function on Bn. Then
the following three conditions are equivalent:

sup
0<r<1

‖fr‖2∂Bn < +∞;(41)

a finite lim
r↗1

‖fr‖2∂Bn exists;(42)
∑
p,q

‖fpq‖2∂Bn < +∞.(43)

The three quantities above are then equal, and the sum and the sequence∑
p,q

fpq(44)
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lim
r↗1

fr(45)

then converge to the same function — denoted f∗ — in L2(∂Bn, dσ); f∗ can thus
be interpreted as the “boundary value” of f .

We denote the quantity (41)–(43) by ‖f‖2Hardy, and call the space of all M -
harmonic f for which it is finite the M -harmonic Hardy space MHardy. We remark
that ‖f‖Hardy actually coincides with ‖f‖−1, and the reproducing kernel of MHardy

was computed explicitly in [EY].
Abusing the notation slightly, we will sometimes write just f |∂Bn , or even f ,

instead of f∗, and just ‖f‖∂Bn instead of ‖f∗‖∂Bn = ‖f‖Hardy.

Proof. From (21) and (25), we have

‖fr‖2∂Bn =
∑
pq

|Spq(r)|2‖fpq‖2∂Bn .

Since Spq(r) are nondecreasing (strictly increasing for pq > 0) functions of r ∈ (0, 1),
with Spq(1) = 1, it follows that the limit (42) coincides with the supremum (41);
and by the Lebesgue Monotone Convergence Theorem, they are both equal to (43).
This settles the first part. For the second, note that (43) means, by (21), that the
partial sums of the series (44) form a Cauchy sequence; since L2 is complete, they
must have a limit f∗, and ‖|f∗‖2∂Bn =

∑
p,q ‖fpq‖2∂Bn . By (21) and (25) once again,

‖fr − f∗‖2∂Bn =
∑
p,q

(1− Spq(r)2)‖fpq‖2∂Bn .

However, the right-hand side tends to zero again by the Lebesgue Monotone Con-
vergence Theorem, proving that fr → f∗. ¤

Recall that in the polar coordinates z = rζ on Cn (r > 0, ζ ∈ ∂Bn), the
Euclidean Laplacian ∆ is given by

∆ =
∂2

∂r2
+

2n− 1
r

∂

∂r
+

1
r2

∆sph,

where ∆sph is the spherical Laplacian, which involves only differentiations with
respect to the ζ variables. In particular, the value of ∆sphφ on a sphere |z| =const.
depends only on the values of the function φ on that sphere. Another operator with
this property is the complex normal derivative (or Reeb vector field)

R :=
n∑

j=1

(
zj

∂

∂zj
− zj

∂

∂zj

)
.

The operator ∆sph can be expressed explicitly as

∆sph = −R2 +
n∑

j,k=1

(LjkLjk + LjkLjk)

where Ljk, Ljk are the tangential vector fields

Ljk := zj
∂

∂zk
− zk

∂

∂zj
, Ljk := zj

∂

∂zk
− zk

∂

∂zj
.

Both ∆sph and R commute with the action of U(n), i.e. ∆sph(φ ◦U) = (∆sphφ) ◦U
for any U ∈ U(n), and similarly for R. (In fact, the algebra of all U(n)-invariant
linear differential operators on ∂Bn is generated by ∆sph and R, but we will not
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need this fact.) From the irreducibility of the multiplicity-free decomposition (22),
it follows by abstract theory that ∆sph and R map each Hpq (and Hpq) into itself
and actually reduce on it to a multiple of the identity. Evaluation on e.g. the
element ζp

1 ζ
q

2 ∈ Hpq (for n ≥ 2) shows that, explicitly,

(46)
∆sph|Hpq = −(p + q)(p + q + 2n− 2)I|Hpq,

R|Hpq = (p− q)I|Hpq

(which prevail also for n = 1 by the remarks on Hpq when n = 1 after (25); in that
case ∆sph = −R2). Let Lm, 1 ≤ m ≤ 2n(n − 1), denote the collection of all the
operators Ljk, Ljk, j, k = 1, . . . , n, j 6= k, in some (fixed) order.

Theorem 9. If f is M -harmonic on Bn, n ≥ 2, then f ∈M◦◦ if and only if

(47)
2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn
(Qf)‖2∂Bn < +∞,

and the square root of the left-hand side is a seminorm equivalent to ‖f‖◦◦.
Proof. Since −Ljk is the adjoint of Ljk in L2(∂Bn, dσ), we have for any g ∈
C2(∂Bn)
2n(n−1)∑

j=1

‖Ljg‖2∂Bn = −
n∑

j,k=1

〈(LjkLjk + LjkLjk)g, g〉∂Bn = 〈(−∆sph −R2)g, g〉∂Bn .

If g =
∑

p,q gpq, gpq ∈ Hpq, is the Peter-Weyl decomposition (21) of g, we thus have
by (46)

2n(n−1)∑

j=1

‖Ljg‖2∂Bn =
∑
p,q

[4pq + (2n− 2)(p + q)]‖gpq‖2∂Bn .

Iterating this formula, we obtain

(48)
2n(n−1)∑

j1,j2,...,jm=1

‖Lj1Lj2 . . .Ljmg‖2∂Bn =
∑
p,q

[4pq + (2n− 2)(p + q)]m‖gpq‖2∂Bn ,

for any m = 0, 1, 2, . . . . Now for p, q ≥ 1 and n ≥ 2 obviously

[4pq + (2n− 2)(p + q)]n ³ [4pq + (2n− 2)(p + q) + 1]n

³ (p + 1)n(q + 1)n

³ (p)n(q)n.

Abusing notation by denoting by the same letter Q also the orthogonal projection
in L2(∂Bn, dσ) onto

⊕
p,q≥1Hpq, we thus have

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn(Qg)‖2∂Bn ³
∞∑

p,q=1

(p)n(q)n

Γ(n)2
‖gpq‖2∂Bn .

Applying this to g = fr and using the last lemma, the assertion follows. ¤

We remark that, strictly speaking, in (47) we should write more correctly

(49) sup
0<r<1

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn(Qfr)‖2∂Bn < +∞,
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as Ljf need not be harmonic in general when f is; however, as (Ljf)r = Lj(fr)
(since Lj are tangential operators) and (Qf)r = Q(fr) (from (31)), the proof shows
that the last supremum actually coincides with ‖(−∆sph −R2)n/2f‖2Hardy, and the
function (−∆sph − R2)n/2f (defined in the sense of functional calculus for self-
adjoint operators) is M -harmonic by (46). We thus take the liberty to use the
shorthand indicated in the sentence before the proof of Lemma 8.

Yet another reformulation of the last theorem is as follows. Consider the weak-
maximal operator X acting from L2(∂Bn) into the Cartesian product of 2n2(n−1)
copies of L2(∂Bn) by

g 7−→ {Lj1 . . .Ljn
g}2n(n−1)

j1,...,jn=1;

that is, the domain of X consists of all g ∈ L2(∂Bn) for which all the Lj1 . . .Ljn
g

exist in the sense of distributions and belong to L2(∂Bn). (In other words, X = Y ∗

where Y is the restriction of the formal adjoint X† of X to
⊕2n2(n−1)

C∞(∂Bn).)
Then f ∈ M belongs to M◦◦ if and only if (Qf)∗ ∈ Dom(X), and ‖X(Qf)∗‖ is a
seminorm equivalent to ‖f‖◦◦.
Corollary 10. The space M◦◦ is Moebius invariant: f ∈M◦◦ implies f ◦φ ∈M◦◦
for any φ ∈ Aut(Bn).

Proof. Let φ ∈ Aut(Bn) and f ∈M◦◦. We need to show that the sum in (47) with
f ◦ φ in the place of f is finite. Note that

Q(f ◦ φ) = Q((Qf) ◦ φ) + Q((Pf) ◦ φ) = Q((Qf) ◦ φ),

since composition with φ preserves holomorphy and, hence, plurisubharmonicity.
Note further that, by (48), for any g ∈ L2(∂Bn, dσ),

2n(n−1)∑

j1,j2,...,jm=1

‖Lj1Lj2 . . .LjmQg‖2∂Bn =
∑

p,q≥1

[4pq + (2n− 2)(p + q)]m‖gpq‖2∂Bn

≤
∑

p,q≥0

[4pq + (2n− 2)(p + q)]m‖gpq‖2∂Bn =
2n(n−1)∑

j1,j2,...,jm=1

‖Lj1Lj2 . . .Ljmg‖2∂Bn ;

hence it is enough to show that, in fact, even the sum in (47) with (Qf) ◦ φ in the
place of Qf is finite.

Observe that the tangential vector-fields Lm, m = 1, . . . , 2n(n − 1), span (very
redundantly) the entire complex tangent space to ∂Bn. Thus for any differentiable
function g on ∂Bn,

∑
m ‖Lmg‖2∂Bn ³ ‖∇ctg‖2, the norm-square of the restriction

∇ctg of the tensor ∇g to the complex tangent space of ∂Bn in the sense of complex
geometry. Now for any vector field X on ∂Bn, one has X(g ◦φ) = dφ(X)g. Since φ
maps the sphere ∂Bn onto itself, the derived map dφ maps the real tangent space
of ∂Bn into itself. As φ is holomorphic, dφ is complex linear, hence dφ maps also
the complex tangent space (consisting of all vectors Y such that both Y and iY are
real tangent) of ∂Bn into itself. Finally, dφ|∂Bn is a smoothly varying map on the
compact manifold ∂Bn (hence, in particular, so is its Jacobian). Consequently,

‖∇ct(g ◦ φ)‖2∂Bn = ‖dφ(∇ct)g‖2∂Bn ≤ Cφ‖∇ctg‖2∂Bn

with some finite C (independent of g). Iterating this argument, it transpires that

‖∇n
ct(g ◦ φ)‖2∂Bn ≤ Cn

φ‖∇ctg‖2∂Bn .
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Passing from ∇n
ct back to the Lm, the last inequality reads

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn
(g ◦ φ)‖2∂Bn ≤ Cn

φ

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljn
g‖2∂Bn .

Taking g = Qf , the proof is complete. ¤

Remark 11. The authors suspect that, for any fixed s > −n− 1,

(50) Cpq(s) ³ [(p + 1)(q + 1)]−s−1

uniformly for all p, q ∈ N. If this is rue, then the proof of Theorem 9 shows that
the condition (47) is further equivalent to

2n(n−1)∑

j1,j2,...,jn+k+1=1

‖Lj1Lj2 . . .Ljn+k+1(Qf)‖2k < +∞

for some (equivalently, any) nonnegative integer k. See the proof of Theorem 16
below for the details. The authors showed in Theorem 11 in [EY] that (50) holds
when p, q tend to infinity with he ratio p/q fixed, but were unable to get a uniform
estimate. ¤

Remark 12. Another consequence of (50) would be an extension of the definition of
Ms from the original range s > −1, and our “analytic continuation” to s > −n−1,
to all real s. Namely, denoting

M#s := {f =
∑
p,q

fpq, fpq ∈ Hpq :
∑
p,q

‖fpq‖2∂Bn

(p + 1)s+1(q + 1)s+1
=: ‖f‖2#s < +∞}

we would then have

M#s = Ms for s > −n− 1, with equivalent norms,

by (50), and
QM#s = QM◦◦ for s = −n− 1,

with equivalent norms on M◦◦,0, by (40). Since evidently M#s ⊂ M#s′ continu-
ously for s < s′, it would also follow that

M◦◦,0 ⊂Ms ∀s > −n− 1,

which inclusion the current authors are unable to verify.
(We believe the lower bound in (50) can be obtained from the inequality

Γ(n + p)Γ(n + q)
Γ(n)Γ(n + p + q) 2F1

(
p, q

p + q + n

∣∣∣t
)
≥ tpq

31/4
,

which seems to be true but we have not been able to prove it. We also have no clue
how to get the upper bound in (50).) ¤

A priori, it is not evident that

‖f‖2◦◦ =
∑

P,q

‖fpq‖2∂Bn lim
s↘−n−1

(n + s + 1)2Cpq(s)

coincides with

lim
s↘−n−1

(n + s + 1)2
∑

P,q

Cpq(s)‖fpq‖2∂Bn = lim
s↘−n−1

(n + s + 1)2‖f‖2s
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— none of the standard conditions for interchanging the limit and the summation
seems to apply. However, by Fatou’s lemma, we at least always have

(51) ‖f‖2◦◦ ≤ lim inf
s↘−n−1

(n + s + 1)2‖f‖2s,

with equality, of course, when the sums above are finite (i.e. for f with only finitely
many nonzero Hpq-components). In other words, if we introduce the space
(52)
M′ := {f ∈M : f ∈Ms ∀s > −n− 1 and a finite lim

s↘−n−1
(n + s + 1)2‖f‖2s exists},

then plainly the last limit is a (semi-)norm on M′, the limit

〈f, g〉′ := lim
s↘−n−1

(n + s + 1)2〈f, g〉s

exists for any f, g ∈ M′ and makes M′ into a (semi-)inner product space, and by
the remarks above,

(53) M′ ⊂M◦◦ continuously

while the algebraic span of Hpq, p, q ≥ 0, is contained in M′ and the norms ‖ · ‖′
and ‖ · ‖◦◦ coincide on it. It follows that M◦◦ is just the completion of M′ with
respect to the above norm.

Remark 13. It follows from (39) in Remark 4 above that ‖f‖2s is actually a non-
increasing function of s > −n− 1, for any f ∈M. In particular, one has

Ms ⊂Ms′ if s′ > s > −n− 1. ¤

Remark 14. Up to the authors’ knowledge, it seems to be an interesting open
problem whether lims↘−n−1(n + s + 1)2‖f‖2s actually always exists for f ∈ M◦◦
and coincides with ‖f‖2◦◦ (that is, whether M′ = M◦◦). The analogous assertion
in the context of the ordinary holomorphic Dirichlet space holds: namely, by (4),

(n + s + 1)‖f‖2s = (n + s + 1)‖f0‖2∂Bn +
∑

j≥1

(n)j

(n + s + 2)j−1
‖fj‖2∂Bn ,

and as s ↘ −n − 1, the last sum tends to
∑

j≥1
(n)j

(j−1)!‖fj‖2∂Bn = ‖f‖2◦ by the
Lebesgue Monotone Convergence Theorem. ¤

Theorem 15. The inner product in M◦◦ is Moebius invariant:

(54) 〈f, g〉◦◦ = 〈f ◦ φ, g ◦ φ〉◦◦
for any f, g ∈M◦◦ and φ ∈ Aut(Bn).

Proof. Any φ ∈ Aut(Bn) can be written in the form φ = U ◦ φa ◦ V , where
U, V ∈ U(n) while φa denotes the geodesic symmetry (i.e. φa ◦ φa = id and φa

has only an isolated fixed-point) interchanging the origin 0 ∈ Bn with the point
(a, 0, 0, . . . , 0) ∈ Bn, 0 ≤ a < 1. Since both M◦◦ and its inner product 〈·, ·〉◦◦ are
U(n)-invariant (by their very construction), it is enough to prove the assertion for
φ = φa. Furthermore, since we know from Corollary 10 (or, rather, from its proof)
that the composition operator f 7→ f ◦φ is continuous on M◦◦, it is further enough
to prove the assertion for f, g in a dense subset of M◦◦. In particular, by linearity,
we may assume that f ∈ Hpq and g ∈ Hp′q′ for some p, q, p′, q′ ∈ N.
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We will show that under all these hypotheses, 〈f ◦ φa, g ◦ φa〉′ exists for all
0 ≤ a < 1 and does not depend on a. By the observations in the paragraph before
the theorem, this will complete the proof.

Fix 0 < ρ < 1. Recall that the measure

dτ(z) :=
dz

(1− |z|2)n+1

on Bn is invariant under φ, and also

1− |φa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az1|2 .

By the change of variable z 7→ φa(z), we thus have, for any s > −1,

〈f ◦ φa, g ◦ φa〉s =
(s + 1)n

πn

∫

Bn

(fg)(φa(z))(1− |z|2)s+n+1 dτ(z)

=
(s + 1)n

πn

∫

Bn

(fg)(z)(1− |φa(z)|2)s+n+1 dτ(z)

=
∫

Bn

(fg)(z)
( 1− a2

|1− az1|2
)n+s+1

dµs(z).

Passing to the polar coordinate z = rζ, with 0 ≤ r < 1 and ζ ∈ ∂Bn, we can
continue with

(55) =
(s + 1)n

πn

∫ 1

0

2πn

Γ(n)

∫

∂Bn

(fg)(rζ)
( 1− a2

|1− arζ1|2
)n+s+1

(1− r2)sr2n−1 dζ dr,

that is, using (25).

=
(s + 1)n

πn

∫ 1

0

G(a, r)(1− r2)sr2n−1 dr,

where G(a, r) :=
2πn

Γ(n)
Spq(r)Sp′q′(r)

∫

∂Bn

(fg)(ζ)
( 1− a2

|1− arζ1|2
)n+s+1

dζ.

Carrying out the ζ integration shows that G(a, r) is a holomorphic function of
|a| < ρ and |r| < 1/ρ. Invoking Lemma 2, it thus follows in the same way as in the
proof of Proposition 3 that 〈f ◦ φa, g ◦ φa〉s extends to a holomorphic function of
|a| < ρ and s ∈ C, except for at most double poles at s = −n− 1,−n− 2, . . . ,−2n
and at most triple poles at s = −2n − j − 1, j ∈ N. Consequently, the function
(s + n + 1)2〈f ◦φa, g ◦φa〉s extends to a holomorphic function of |a| < ρ and s ∈ C
except for poles as above, excluding s = −n − 1 where it assumes a finite value.
In particular (taking f = g), this means that f ◦ φa, g ◦ φa ∈M′ for all 0 ≤ a < ρ,
and the inner product 〈f ◦ φa, g ◦ φa〉′ is a smooth function of these a.

Finally, it is legitimate to differentiate under the integral sign in (55), yielding,
for s > −1,

(56)

∂

∂a
〈f ◦ φa, g ◦ φa〉s =

(s + 1)n

πn

∫ 1

0

2πn

Γ(n)

∫

∂Bn

(fg)(ζ)Spq(r)Sp′q′(r) ×

(n + s + 1)
( 1− a2

|1− arζ1|2
)n+s[ ∂

∂a

1− a2

|1− arζ1|2
]
(1− r2)sr2n−1 dζ dr.

Repeating the argument above, it transpires that for all 0 ≤ a < ρ,

(57)
∂

∂a
(n + s + 1)2〈f ◦ φa, g ◦ φa〉s = (n + s + 1)Fa(s),
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where Fa(s) is a holomorphic function of s except for at most triple poles at s =
−2n−1− j, j ∈ N, and at most double poles at s = −n−2, . . . ,−2n; in particular,
Fa(s) is holomorphic near s = −n − 1 and assumes a finite value there. Hence,
thanks to the factor n + s + 1 in (57),

∂

∂a
〈f ◦ φa, g ◦ φa〉′ = 0 for 0 ≤ a < ρ.

Since ρ was arbitrary, it follows that 〈f ◦ φa, g ◦ φa〉′ = 〈f ◦ φ0, g ◦ φ0〉′ = 〈f, g〉′ for
all 0 ≤ a < 1, completing the proof. ¤

5. The pluriharmonic Dirichlet space

For pq = 0, the coefficients Cp0(s) = C0p(s) have only a single pole at s = −n−1
(cf. (37)) for p 6= 0, with residue

C◦p0 := lim
s↘−n−1

(n + s + 1)Cp0(s) =
(n)p

Γ(p)
,

while C◦00 := lims↘−n−1(n + s + 1)C00(s) = 0. Accordingly, M◦ consists only of
pluriharmonic functions, with (semi-)norm

‖f‖2◦ :=
∞∑

p=1

p
(n)p

p!
(‖fp0‖2∂Bn + ‖f0p‖2∂Bn).

In other words,
M◦ = A◦ ⊕A◦

is just the orthogonal sum of the usual holomorphic Dirichlet space A◦ and its
complex conjugate.

The result below, parallel to Theorem 9 for the M -harmonic case, is likely folk
lore, but the authors are unaware of a specific reference.

Theorem 16. If f is pluriharmonic on Bn, n ≥ 2, then f ∈M◦ if and only if

(58)
2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljnf‖2Hardy < +∞

if and only if

(59)
2n(n−1)∑

j1,j2,...,jn+k+1=1

‖Lj1Lj2 . . .Ljn+k+1f‖2k < +∞,

for some (equivalently, any) nonnegative integer k.

Proof. As we have seen in (48) in the proof of Theorem 9, (58) equals, for f =∑
p,q fpq with fpq ∈ Hpq,

2n(n−1)∑

j1,j2,...,jn=1

‖Lj1Lj2 . . .Ljnf‖2∂Bn =
∑
p,q

[4pq + (2n− 2)(p + q)]n‖fpq‖2∂Bn .

Since f is now pluriharmonic, the right-hand side reduces just to
∞∑

p=1

[(2n− 2)p]n(‖fp0‖2∂Bn + ‖f0p‖2∂Bn).
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As n ≥ 2 by hypothesis, we have

[(2n− 2)p]n ³ pn ³ Γ(n + p)
Γ(n)Γ(p)

= C◦p0

for all p, and the first claim follows.
For the second claim, denote again, for any function f on Bn, fr(ζ) := f(rζ) for

0 < r < 1 and ζ ∈ ∂Bn. Using (48) for g = fr yields
2n(n−1)∑

j1,j2,...,jm=1

‖Lj1Lj2 . . .Ljm
fr‖2∂Bn =

∑
p,q

[4pq + (2n− 2)(p + q)]mSpq(r)2‖fpq‖2∂Bn ,

since (fr)pq(ζ) = Spq(r)fpq(ζ) by (25). As Lj , being tangential, do not act on the
r variable, we also have

Lj1Lj2 . . .Ljm
fr = (Lj1Lj2 . . .Ljm

f)r.

Hence for any s > −1,

‖Lj1Lj2 . . .Ljm
f‖2s =

(s + 1)n

πn

∫ 1

0

2πn

Γ(n)
‖(Lj1Lj2 . . .Ljm

f)r‖2∂Bn(1− r2)sr2n−1 dr

=
(s + 1)n

Γ(n)

∑
p,q

[4pq + (2n− 2)(p + q)]m‖fpq‖2∂Bn

∫ 1

0

Spq(
√

t)2tn−1(1− t)s dt

=
∑
p,q

[4pq + (2n− 2)(p + q)]m‖fpq‖2∂BnCpq(s).

Specializing now to the current pluriharmonic case pq = 0, we again have for all
p ≥ 1

[(2n− 2)p]mCp0(s) ³ pmCp0(s) ³ pm−s−1 ³ pm−n−s−1C◦p0.

Hence for s = k and m = n + k + 1, with any k = 0, 1, 2, . . . ,

[(2n− 2)p]n+k+1Cp0(k) ³ C◦p0 ∀p ∈ N

(for p = 0, both sides vanish), and the second claim follows. ¤

The following simple result seems to have no counterpart in the M -harmonic
case.

Theorem 17. If f is pluriharmonic on Bn, n ≥ 1, then f ∈M◦ if and only if

‖Nmf‖22m−n−1 < +∞
for some (equivalently, any) integer m > n

2 . Furthermore, the square root of the
left-hand side is a seminorm equivalent to ‖f‖◦.
Proof. By straightforward inspection,

N fp0 = pfp0, N f0p = pf0p ∀p ≥ 0.

Consequently,

‖Nmfpq‖2∂Bn = (p + q)2m‖fpq‖2∂Bn for pq = 0,

and, as in the preceding proof, for any pluriharmonic f ,

‖Nmf‖2s =
∑

p

p2mCp0(s)(‖fp0‖2∂Bn + ‖f0p‖2∂Bn)

³ p2m−s−n−1C◦p0(‖fp0‖2∂Bn + ‖f0p‖2∂Bn)
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³ ‖f‖2◦ if 2m = n + s + 1,

completing the proof. ¤

6. The harmonic Dirichlet space

The situation in the harmonic case is pretty similar as for the pluriharmonic
functions in the preceding section, so we will be brief. For all p ≥ 0, let Hp be the
space of harmonic polynomials on Rn, n ≥ 2, homogeneous of degree p, and let Hp

be the space of restrictions of elements of Hp to the unit sphere ∂Bn. We refer to
[ABR], especially Chapter 5, for the Peter-Weyl decomposition

(60) L2(∂Bn, dσ) =
∞⊕

p=0

Hp

under the action of the orthogonal group O(n) of rotations of Rn, and the associated
decomposition

(61) H =
⊕

p

Hp

of the space of all harmonic functions on the unit ball Bn of Rn into the direct sum
of the Hp: namely, any harmonic function f on Bn can be uniquely written as

(62) f =
∞∑

p=0

fp, fp ∈ Hp,

with the sum converging uniformly on compact subsets. Here dσ now stands for
the normalized surface measure on ∂Bn. The weighted harmonic Bergman space

Hs(Bn) := {f ∈ L2(Bn, dρs) : f is harmonic on Bn}
consists of all harmonic functions on Bn square-integrable with respect to the mea-
sure

(63) dρs(x) :=
Γ(n

2 + s + 1)
πn/2Γ(s + 1)

(1− |x|2)s dx, s > −1,

where dx denotes the Lebesgue volume on Rn. The restriction on s ensures that
these spaces are nontrivial, and the factor Γ( n

2 +s+1)

πn/2Γ(s+1)
makes dρs a probability mea-

sure, so that ‖1‖ = 1. For f as in (62), we have by the orthogonality in (60)

‖f‖2s =
Γ(n

2 + s + 1)
πn/2Γ(s + 1)

∫ 1

0

2πn/2

Γ(n
2 )

∫

∂Bn

|f(rζ)|2 dσ(ζ) (1− r2)srn−1 dr

=
Γ(n

2 + s + 1)
Γ(n

2 )Γ(s + 1)

∫ 1

0

∞∑
p=0

r2p‖fp‖2∂Bn(1− r2)s 2rn−1 dr

=
Γ(n

2 + s + 1)
Γ(n

2 )Γ(s + 1)

∑
p

‖fp‖2∂Bn

∫ 1

0

tp+ n
2−1(1− t)s dt

=
Γ(n

2 + s + 1)
Γ(n

2 )Γ(s + 1)

∑
p

Γ(p + n
2 )Γ(s + 1)

Γ(p + s + n
2 + 1)

‖fp‖2∂Bn

=
∑

p

(n
2 )p

(n
2 + s + 1)p

‖fp‖2∂Bn ,(64)
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and, accordingly, the reproducing kernel of Hs is given by

(65) Kharm
s (x, y) =

∑
p

(n
2 + s + 1)p

(n
2 )p

Zp(x, y),

where Zp(x, y), the reproducing kernel of Hp, is given by so-called zonal harmonics
(expressible explicitly in terms of Gegenbauer polynomials); see Chapter 8 in [ABR]
for the unweighted case, the weighted case being completely parallel.

The coefficients

(66) Charm
p (s) :=

(n
2 )p

(n
2 + s + 1)p

, p ∈ N,

extend to nonvanishing holomorphic functions of s on the entire C, except for simple
poles at s = −n

2 −1, . . . ,−n
2 −p; accordingly, Kharm

s (x, y) extends to a holomorphic
function of s ∈ C. Due to the orthogonality of the spaces Hp, the extended kernel
— still denoted Kharm

s — will remain positive definite as long as 1/Charm
p (s) ≥ 0

∀p ∈ N, hence, precisely for s ∈ [−n
2 − 1,+∞). The last interval is thus the

“harmonic Wallach set” of Bn. The norm in the corresponding reproducing kernel
Hilbert spaces — still denoted by Hs — is still given by (64) for s > −n

2 − 1. For
s = −n

2 − 1, (65) reduces to constant one, and the associated space thus consists
only of the constants, with ‖1‖ = 1. As the “residue” at s = −n

2 − 1, we get the
reproducing kernel

(67) Kharm
� (x, y) := lim

s↘−n
2−1

Kharm
s (x, y)− 1
s + n

2 + 1
.

The corresponding reproducing kernel Hilbert space H� consists of all harmonic
functions on Bn for which

(68) ‖f‖2� :=
∞∑

p=0

C�p ‖fp‖2∂Bn < +∞,

where

(69) C�p := lim
s↘−n

2−1
(s + n

2 + 1)Charm
p (s) = p

(n
2 )p

p!
.

This can be viewed as the harmonic Dirichlet space. It is easily seen to coincide with
the eponymous space studied by other authors, see e.g. [GKU] and the numerous
references therein. The characterization ofH� given in Theorem 19 below, however,
seems not to appear in the literature (up to the authors’ knowledge).

Remark 18. As in the holomorphic case, the limit lims↘−n
2−1 ‖f‖2s always exists for

any f ∈ H� and coincides with ‖f‖2�. The proof is the same as for the holomorphic
case. ¤

Finally, the following characterization of H� can be given along the same lines
as in the preceding sections. Recall our notation

Xjk = xj∂k − xk∂j , j, k = 1, . . . , n, j 6= k,

for the tangential vector fields on Rn, and Xm, m = 1, . . . , n(n−1), for the collection
of all the Xjk (in some fixed order). By a routine computation, one checks that

n∑

j,k=1

X2
jk = 2∆sph,
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where ∆sph is the spherical Laplacian on Rn: for x = rζ with r > 0 and ζ ∈ ∂Bn,

∆ =
∂2

∂r2
+

n− 1
r

∂

∂r
+

1
r2

∆sph.

The operator ∆sph commutes with the action of the orthogonal group O(n) of Rn,
hence it is automatically diagonalized by the Peter-Weyl decomposition (60): a sim-
ple computation reveals that

(70) ∆sph|Hp = −p(p + n− 2)I|Hp

where I stands for the identity operator.

Theorem 19. If f is harmonic on Bn, n ≥ 2, then f ∈ H� if and only if
n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjm
f‖22m−n

2−1 < +∞.

for some (equivalently, any) integer m > n
4 . Furthermore, the square roots of the

left-hand sides are seminorms equivalent to ‖f‖�.

Proof. Since the adjoint of Xjk in L2(∂Bn, dσ) is just −Xjk, we have for any
g ∈ L2(∂Bn, dσ)

n(n−1)∑

j=1

‖Xjg‖2∂Bn = −
n∑

j,k=1

〈X2
jkg, g〉∂Bn = −2〈∆sphg, g〉∂Bn ,

so for g =
∑

p gp, gp ∈ Hp, as in (60),

(71)
n(n−1)∑

j=1

‖Xjg‖2∂Bn =
∑

p

2p(p + n− 2)‖gp‖2∂Bn ,

by (70). Iterating this procedure, we get
n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjmg‖2∂Bn =
∑

p

[2p(p + n− 2)]m‖gp‖2∂Bn .

Applying this now to g(ζ) = f(rζ) where f is harmonic on Bn, we obtain
n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjmf(r·)‖2∂Bn =
∑

p

[2p(p + n− 2)]mr2p‖fp‖2∂Bn ,

and, as in (64), for any s > −1,
n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjmf‖2s

=
Γ(n

2 + s + 1)
πn/2Γ(s + 1)

∫ 1

0

2πn/2

Γ(n
2 )

n(n−1)∑

j1,...,jm=1

‖Xj1 . . .Xjmf(r·)‖2∂Bn (1− r2)srn−1 dr

=
Γ(n

2 + s + 1)
Γ(n

2 )Γ(s + 1)

∫ 1

0

∑
p

[2p(p + n− 2)]m‖fp‖2∂Bntp+ n
2−1(1− t)s dt

=
∑

p

[2p(p + n− 2)]m
(n

2 )p

(n
2 + s + 1)p

‖fp‖2∂Bn .
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Now for all p ≥ 1

[2p(p + n− 2)]m
(n

2 )p

(n
2 + s + 1)p

³ p2m−s−1 ³ p2m−s−1−n
2 C�p ,

whence

[2p(p + n− 2)]m
(n

2 )p

(n
2 + s + 1)p

³ C�p

if 2m = s + 1 + n
2 (for p = 0, both sides vanish). This completes the proof. ¤
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Czech Republic and Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
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