THE M-HARMONIC DIRICHLET SPACE ON THE BALL

MIROSLAV ENGLIS AND EL-HASSAN YOUSSFI

ABSTRACT. We describe the Dirichlet space of M-harmonic functions, i.e. func-
tions annihilated by the invariant Laplacian on the unit ball of the complex
n-space, as the limit of the analytic continuation (in the spirit of Rossi and
Vergne) of the corresponding weighted Bergman spaces. Characterizations in
terms of tangential derivatives are given, and the associated inner product is
shown to be Moebius invariant. The pluriharmonic and harmonic cases are
also briefly treated.

1. INTRODUCTION

Let B™ be the unit ball in the complex n-space C", n > 1, and consider the
standard weighted Bergman spaces

A,(B") := {f € L*(B",du,) : f is holomorphic on B"}
of holomorphic functions on B™ square-integrable with respect to the measure

W) d() = LD H L)

1—|z?)* —1
,n-n]_"(s_’_l) ( |Z| ) dZ, s> ’

where dz denotes the Lebesgue volume on C™. The restriction on s ensures that
these spaces are nontrivial, and the factor %
sure, so that the function 1 (constant one) has unit norm. It is well known that Aj

is a reproducing kernel Hilbert space, with reproducing kernel

(2) K ,y) = (1= ()"

In terms of the Taylor coefficients, a holomorphic function f(z) =)  f,2z” on B”
belongs to A if and only if

(3) I =D 1f PP

v

makes dpus a probability mea-

vIl(n+s+1)
(n+s+v/+1)

< +00

and the sum then coincides with the squared norm in A,. (Here the sum runs
over all multi-indices v, and we are employing the usual multi-index notations.)
Alternatively, in terms of the homogeneous components fy,,(z) := ZM:m fuz",
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where ||f||sg» denotes the norm in the space L?(0B",do) with respect to the

normalized surface measure do on OB™. Here (%), = z(z +1)...(x +m — 1)
denotes the usual Pochhammer symbol (rising factorial).
It is a remarkable fact — which prevails in the much more general context

of bounded symmetric domains, constituting the “analytic continuation” of the
principal series representations of certain semisimple Lie groups, cf. Rossi and
Vergne [VR] — that the weighted Bergman kernels K"!(z,y), s > —1, continue
to be positive definite kernels in the sense of Aronszajn [Ar] for all s > —n — 1,
yielding thus an “analytic continuation” of the spaces A;. (One calls the interval
[-n — 1,400) the Wallach set of B™.) For s > —n — 1, the norm in A; is still
given by (3) and (4). For s = —n — 1, the kernel (2) becomes constant one, and the
corresponding reproducing kernel Hilbert space thus reduces just to the constants.
However, a much more interesting space arises as the “residue” of A at s = —n—1:
namely, the limit

KhOI(I y) -1
5 li s ) — = Khol
(5) one1 stntl 1—{(z,y) > (#y)

is a positive definite kernel on B™ x B", and the associated reproducing kernel
Hilbert space — denoted A, — consists of all f holomorphic on B™ for which

2 =3 Jim B

(n)m !
= me\\fmufmn => |V|W|fu\2 < +00,

m

(6)

and ||f|lo gives the semi-norm on A,. This space is nothing else but the familiar
Dirichlet space on B™, see e.g. Chapter 6.4 in Zhu [Zh], where it is furthermore
shown that the space A, and the above semi-inner product are Moebius invariant,
in the sense that f € A, = fo¢ € A, and

(f:9)o = (fod,g0¢)o

for any biholomorphic self-map ¢ of B".

The goal of the present paper is to exhibit the M-harmonic analogue of the
construction above.

Recall that a function on B™ is called Moebius-harmonic (or invariantly har-
monic), or M-harmonic for short, if it is annihilated by the invariant Laplacian

~ n 52
(7) A =4(1— |z Z — 2;Zk) 95,05

7,k=1

It is standard (see e.g. Rudin [Ru], Stoll [St], or Chapter 6 in Krantz [Kr]) that A
commutes with biholomorphic self-maps (Moebius maps) of the ball:

A(fog)=(Af)og,  YfeC*B"),¢e Aut(B");

and, accordingly, f is M-harmonic if and only if f o ¢ is, for any ¢ € Aut(B").
The class of M-harmonic functions lies in a way on the crossroads between the
holomorphic and the harmonic functions: it resembles the latter in the sense that
it is preserved by complex conjugation, while resembling the former by reflecting
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the complex structure inherent in the invariance of the Laplacian A. One again
has the M -harmonic weighted Bergman spaces

M, = {f € L>(B",du,) : f is M-harmonic on B"}

which are nontrivial if and only if s > —1. The role of the Taylor coefficients or,
rather, homogeneous components from the holomorphic case is now played by the
decomposition into “bi-graded spherical harmonics”. Namely, under the action of
the group U(n) of unitary linear maps of C", the space L?(0B",do) decomposes
into irreducible components
o0

(8) L*(0B",do) = P H™,

P,q=0
where HP? is the space of restrictions to the sphere of harmonic polynomials on C™
homogeneous of degree p in z and of degree ¢ in Z. Performing such a decompisition
on each sphere |z| = const. leads to the analogous Peter-Weyl decomposition

M, = @Hpq’
D.q

where the space HP? of “solid harmonics”
H?? = {f € C(B"): fis M-harmonic on B" and f|sg~ € HP?},
and the norm of f =3 fog, fpg € HPY, is given by

(9) 12 =D Cog()lfnallZme,

p,q=0

with the coefficients Cpq(s) — the counterparts of the %

phic case — given by an explicit formula involving hypergeometric functions; see
Section 2 below for the details. Finally, the reproducing kernel of the space M,
s > —1, is given by

from the holomor-

Kpg(2,w)
Cpq(s) ,

where K,q(zw) is the reproducing kernel of HP? (with the inner product inherited
from L?(0B",do)), for which there is again an explicit formula. Now it has been
shown in Section 6.3 of [EY] that, exactly as in the holomorphic case, K(z, w)
extends to a holomorphic function of s on Re s > —n — 1, continues to be a positive
definite kernel on B" x B" for all s > —n—1 (and only for these s), and the norm in
the corresponding reproducing kernel Hilbert space — the “analytic continuation”
of My — for s > —n — 1 is still given by (9). (Thus the “M-harmonic Wallach set’
of B™ is again the interval [-n — 1, 400).)

Motivated by the considerations for the holomorphic case, we are now interested
in the limit as s \, —n — 1. In contrast to the holomorphic case, this can now be
done in three ways.

(10) Ky(zw) =

p,q

(a) We simply take s = —n — 1 in (10). The kernel K,(z,w) reduces to con-
stant one, and the corresponding reproducing kernel Hilbert space thus
again reduces just to the constants, with ||1|] = 1. This is the trivial case.
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(b) As in the holomorphic case, next we take
Ks(z,w) —1
im —

s\\—n—1 n+s+1

(11) =: Ko(z,y).

1 1

= Og —_—
|1 - <1'7 y> |2

This is a positive definite kernel, and the corresponding reproducing kernel

Hilbert space — denoted M, — consists precisely of the orthogonal sum

of the holomorphic Dirichlet space A, above and its complex conjugate A,

(the constants being counted, of course, only once), with the (semi-)norm

given by

(12) I1f+3l2 = IF1Z + llgll3-
In some sense, one can perhaps view M, as the pluriharmonic Dirichlet
space.

(c¢) Finally, we can take

Ki(z,y) —1—(n+s+1)Ko(z,y)

13 li : =: Koo(,¥),
(13) AN (n+s+1)2 (@.y)
which is a positive-definite kernel on B™ x B", with the (semi-)norm in
the corresponding reproducing kernel Hilbert space — denoted M., —
given by
(14) ||f||§o = Zs\h_rg_l(n +s+ 1)2Cpq(5)‘|qu”%B"
pq

(hence, this time, all pluriharmonic functions get zero norm). This is,
by definition, the M -harmonic Dirichlet space.

The occurrence of case (c¢) arises from the fact that the coefficient functions

Cpq(s) now turn out to have a double pole at s = —n — 1 (in contrast to the single

(n)m
pole of qETEsy-

reminiscent of the “composition series” arising in the theory of analytic continua-
tion of holomorphic discrete series representations mentioned above, cf. Faraut and
Koranyi [FK]. Note also that the case (c) disappears completely when n = 1; thus
Mo is relevant only for B™ with n > 2.

Our first result is a direct formula for the semi-norm in Mgo.

in the holomorphic situation). Again, this phenomenon is clearly

Corollary. (Corollary 5) In terms of the Peter-Weyl decomposition f = Zp,q fras
qu E Hpq}
2 _ (P)n(@)n 2
||fHoo - Z W”qu”BB"‘

p,q

By polarization, this of course implies also the corresponding formula

(15) (Fog)ee = 30 D o

p.q
for the semi-inner product in M.

Next we give a description of M, that does not involve the Peter-Weyl compo-
nents. It is easy to see that the averaging operator

o f(r¢) = e frn)do(n),  0<r<1,(€dB”,
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(this can also be written as Ipf(z) = fU(n) f(kz)dk, where dk stands for the
normalized Haar measure on the compact group U(n)) is just the projection

fr— f(0)1
of M-harmonic functions onto the subspace H? of constants. Similarly, one can
give projections I and IT onto the subspaces @, H? and @, H" of the holomor-

phic and anti-holomorphic functions, respectively (explicit formulas for IT and IT
will be given in Section 2 below). Hence, we also have

P =T1+1I -1,
the projection onto the subspace of pluriharmonic functions, and
Q:=1—-P,

the projection onto their orthogonal complement @;;7 >1 H

(All these projections are automatically orthogonal with respect to any U(n)-
invariant inner product, but make sense also in complete generality on the vector
space M of all M-harmonic functions on B™.)

Consider now the tangential vector fields

L, = Ejak —Ekaj fjk = ngk — Zk5j7 1<j,k<n, j#k,

and denote by L,,, 1 <m < 2n(n—1), the collection of all these operators (in some
fixed order). Finally, for any function f on B™ and 0 < r < 1, let f, be the function
on 0B" defined by

fr(€) = f(r¢)
and denote

Hf”%{ardy ‘= Sup ||f7"||c%B"'
0<r<1

Theorem. (Theorem 9) If f is M-harmonic on B™, n > 2, then f € Moo if and
only if
2n(n—1)
> Ls o £ (Q) fraray < +00,
J1,J2se s dn=1
and the square root of the left-hand side is a seminorm equivalent to || f|oo-

As a consequence, we obtain the following complete analogues of the holomorphic
case.

Corollary. (Corollary 10) The space Moo is Moebius invariant: f € Moo implies
fo¢p e Moy for any ¢ € Aut(B™).

Theorem. (Theorem 15) The semi-inner product (15) is Moebius invariant:
(f,9)o0 = (fo g0 Bos  Vf g€ Moo, Vo € Aut(B™).

The usual proof of the analogue of the last corollary for the holomorphic case
(cf. Zhu [Zh], Theorem 6.13) relies on the use of radial derivatives and their gener-
alizations; this approach unfortunately breaks down in the M-harmonic situation.
Similarly, the usual proof of the last theorem in the holomorphic case relies on
explicit computations involving Taylor coefficients (cf. Zhu [Zh], Theorem 6.15),
which becomes hopeless for M,.; we instead use an argument employing analytic
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continuation. In both cases, our approach here can be used to give a new descrip-
tion of the classical Dirichlet space on the ball and a new proof of the invariance of
the Dirichlet inner product in the holomorphic case.

Additionally, the methods just mentioned apply also to the pluriharmonic Dirich-
let space M., which seems to have received basically no attention at all in the liter-
ature. The second result below apparently has no counterpart in the M-harmonic
case.

Theorem. (Theorem 16) If f is pluriharmonic on B™, n > 2, then f € M, if and
only if
2n(n—1)
2
Z H‘leﬁjz c 'EjanHardy < 400
J1,J2seJn=1
if and only if
2n(n—1)
2
Z H‘le‘cjz ""Cjn+k+1f||k < +o0,
J15d2se s Jn+k41=1
for some (equivalently, any) nonnegative integer k.
Furthermore, the square root of the above quantities is a seminorm equivalent

to || flo-

Here || - ||s denotes, more generally, the norm in L?(B",dus), s > —1 (i.e. not
only on its holomorphic or M-harmonic subspaces).
Let

n
N = szaj +2j5j
j=1
denote the radial derivative operator on B"; note than A f is pluriharmonic when-
ever f is.

Theorem. (Theorem 17) If f is pluriharmonic on B™, n > 1, then f € M, if and
only if

||Nme%m—n—l < +o0o
for some (equivalently, any) integer m > 5. Furthermore, the square root of the
left-hand side is a seminorm equivalent to || f||o-

For f holomorphic the last two theorems, of course, give criteria for f to belong to
the ordinary Dirichlet space A, on B"; the second one is then common knowledge,
and though the first of them must surely also be known to experts in the field,
the authors were unable to pinpoint a specific reference to the literature.

Finally, for the sake of completeness, we give details also for the context of
harmonic functions, where the corresponding harmonic Dirichlet space appears in
the literature under various names. Namely, consider this time the unit ball B™
of R™, n > 2 and for any s > —1 let

Ho(B™) := {f € L*(B™,dp,) : f is harmonic on B"}

be the weighted harmonic Bergman space of all harmonic functions on B™ square-
integrable with respect to the measure

I'(5+s+1)

2 7 = 2 sd
,n—n/2]_"(s+1)( |‘T| ) €,

dps(zx) :==
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where dx denotes the Lebesgue volume on R™. The restriction on s ensures that
T(%+s+1)
Tr"/zr"l—‘(s+1)
sure, so that ||1|| = 1. For each p > 0, denote by HP the space of harmonic
polynomials on R™ homogeneous of degree p. Any harmonic function f on B™ then

admits a (unique) decomposition

these spaces are nontrivial, and the factor makes dps a probability mea-

(16) F=Yfor  fpel,
p=0
and the space H, decomposes as
o0
(17) H. =P,
=0

with the norm given by

2 N~ (B
(18) IFII5 *%M”fp“@l?m

where || - |[gpn denotes the norm in L?(0B™,do) with respect to the normalized
surface measure do on the unit sphere dB™. The reproducing kernel of H, is
given by

(19) Kb ) = 3 “()*”Z(w ),

where the zonal harmonic Z,(x,y) is the reproducing kernel of H? (with respect to
the norm || - |[gp=). It follows that K'®™(z y) extends as a holomorphic function
of s to the entire complex plane, and continues to be a positive definite kernel on
B™ x B™ for any s > —% —1 (and only for these s). For s > —% —1, the norm in the
corresponding reproducing kernel Hilbert spaces (still denoted by Hy) is still given
by the formula (18). For s = —% — 1, (19) again reduces just to constant one, and
the corresponding reproducing kernel Hilbert space thus reduces to the constants;

while the limit

Kharm 1
T )k Sy e NERYR)
s\—%3-1  s+5+1

is a positive definite kernel on B™ x B", corresponding to the reproducing kernel
Hilbert space with the (semi)norm given by

(5)p
(3+s+1),

| fplloBr = llopn.

(20) [IfllB =) lim (s+5+1)
P SNTET
This space — denoted Hp — is the harmonic Dirichlet space on B™.
Let Xi, j,k=1,...,n, j # k, denote the tangential vector fields
Xjk = xjﬁk — xkaj

on R™, and denote by X,,, 1 < m < n(n — 1), the collection of all these operators
(in some fixed order).
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Theorem. (Theorem 19) If f is harmonic on B", n > 2, then f € Hp if and
only if
n(n—1)
Do X X LBy < o0
JiseesJm=1
for some (equivalently, any) integer m > 4. Furthermore, the square root of the
left-hand side is a seminorm equivalent to || f||o.

This time there is no Moebius invariance, since the Moebius self-maps of B™ do
not preserve harmonicity for n > 2.

We review the necessary background material in Section 2, then present the
basic properties of the M-harmonic Dirichlet space M., in Section 3. Moebius
invariance is discussed in Section 4. The pluriharmonic Dirichlet space is treated
in Section 5, and the harmonic case in Section 6.

Throughout the paper, the notation

AxB
means that
1
cA<B<-A
c
for some 0 < ¢ < 1 independent of the variables in question. The symbols %
_ J
and %, commonly abbreviated just to 9; and 0;, respectively, stand for the usual
J

Wirtinger operators on C"; similarly on R™, 0 stands for a%k. For typesetting
reasons, the inner product (z,y) in C™ is sometimes also denoted by z - y. Finally,
Z,N,R and C denote the sets of all integers, all nonnegative integers, all real and

all complex numbers, respectively.

2. NOTATION AND PRELIMINARIES

The stabilizer of the origin 0 € B™ in Aut(B") is the group U(n) of all unitary
transformations of C™; that is, of all linear operators U that preserve inner products:

Uz, Uw) = (z,w) Vz,w e C".

Each U € U(n) maps the unit sphere 9B"™ onto itself, and the surface measure do
on OB is invariant under U. It follows that the composition with elements of U(n),

(21) Ty : f— foU1,

is a unitary representation of U(n) on L?(0B",do). We will need the decomposition
of this representation into irreducible subspaces. These turn out to be given by
bigraded spherical harmonics HPY; the standard sources for this are Rudin [Ru,
Sections 12.1-12.2], or Krantz [Kr, Sections 6.6-6.8], with basic ingredients going
back to Folland [Fo].

Namely, for integers p,q > 0, let HP? be vector space of restrictions to dB"™ of
harmonic polynomials f(z,Z) on C™ which are homogeneous of degree p in z and
homogeneous of degree ¢ in Z. Then HP? is invariant under the action (21) of U(n),
is U(n)-irreducible (i.e. has no proper U(n)-invariant subspace) and

(22) L*(0B",do) = é}o} HPA.

p,q=0
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Furthermore, if 7' is a linear operator on L?(0B", do) commuting with the ac-
tion (21) i.e. T(foU) = (Tf)o U for all U € U(n) and f € L?(6B",do)), then
T is diagonalized by the decomposition (21), i.e. T maps each HP? into itself and
T|HP? = cpI|HP? for some complex constants c,,, where I denotes the identity
operator.

Since each space HP? is finite-dimensional, the evaluation functional f +— f({)
at each ¢ € OB™ is automatically continuous on it; it follows that HPY — with
the inner product inherited from L?(0B",do) — has a reproducing kernel. This
reproducing kernel turns out to be given by HP4(¢ - 7), where for n > 2

(-D¥n+p+qg—1)(n+p—2)!

(n—1)lq!(p — q)!

p—a_p (TSN D= 1‘ 2)

X z 2F1< P gt1 2| for p > ¢,
while HP9(z) = H9(Z) for p < q. For n = 1, the spaces HP? reduce just to {0} if
pq # 0, while HP? = C2P, H% = Cz? and H?"(z) = 2P, H(z) = z4; note that the
formula (23) still works for n =1 and pg = 0.

Denote

HP(z) =
(23)

Pq = P+QF( p,q ‘ 2)/F( p,q ’1)
57 (r) e p+q+nT 21 p+g+n

_Plo+n)llg+n) iy F1( p.q ’T2)
I'(n)(p+q+mn) p+aq+nl J

(24)

Then for each f € HP?, the (unique) solution to the Dirichlet problem Au =0
on B" ulggn = [ is given by

(25) u(r¢) = S*(r)f(¢),  0<r<1, (cdB"

Many of the formulas above originate in [Fo.

For each p,q > 0, let HPY be the space of all functions on B™ of the form (25)
with f € HP?. In other words, while HP? is the space of spherical harmonics on the
sphere 0B™, HP? is the associated space of “solid” M-harmonic functions on B".
With the inner product inherited from L2?(0B",do), each HP? is thus a finite-
dimensional Hilbert space of M-harmonic functions on B™, unitarily isomorphic to
the space HP? via the isomorphism (25), and with reproducing kernel

(26) KP(r¢, R¢) »= SP(r)SP(R)H™(C - €).

It was shown in Proposition 1 in [EY] that if H is any Hilbert space of M-
harmonic functions on B” whose inner product is invariant under rotations (i.e. f €
H,U eU(n)imply foU € H and ||[foU|lg = ||f|lz), then the following is true:

— for each p,q > 0, H N HP? is either {0} or all of H?Y;
— if HPY C H, then

<f7 g>H = cpq<f7 g>8Bn Vf,g € HP?

with some constant ¢y, 0 < ¢ < 00 (independent of f, g);
— the reproducing kernel of H is given by

(27) Ku(ey) = Y Kwloy)

c
p,q¢:HPICH pa
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with the sum converging locally uniformly on B™ x B", as well as in H as
a function of x for each fixed y, or vice versa.

One can also formally define c¢,q := 400 if HP? ¢ H; then H contains precisely
those HP? for which ¢4 is finite, and in (27) the summation can be extended over
all p,q > 0, with the usual convention that 1/00 := 0.

One can also allow semi-Hilbert spaces, i.e. with semi-definite (semi-)norm in-
stead of norm; then the above still holds, except that c,, can be zero for some
p,q and (27) is the reproducing kernel not for H but only for the subspace Hy :=
Gb{Hr?: ¢,, > 0}.

For the weighted M-harmonic Bergman spaces of all M-harmonic functions in
L3(B™, (1 — |2]?)*dz), s > —1, an explicit formula for the c,, =: cpq(s) was given
in (69) in [EY]. Renormalizing so as to pass to our normalized measures from (1),
and our spaces M from the Introduction, it was shown in Section 6.3 of [EY] that
the corresponding constants Cpq(s) = cpq(s)/coo(s) are given by

(28) Cpq<5> = ﬁ /01 G;()Z) (t) (1— t)n+s dt,

where G4 is the function

R F(n+p)2r<n+q)2 p+qg+n—1 D, q 2
Cra(t) = ['(n)2I'(n +p+q)2t 2f (n +p+q’t)

(see formula (98) there). Furthermore, it was shown there that G;(,Z) is positive and

continuous on (0,1), with a finite value at the origin and G4 (t) = O(log ) as
t /1, from which it follows that (28) furnishes an analytic continuation of Cpy(s)
to Res > —n—1 and 0 < Cpy(s) < +o0 for s € (—n — 1, +00). The functions

Kpg(2, w)
Cpq(s)
thus continue to be positive definite kernels on B™ x B™ in the sense of Aron-

szajn [Ar], and the norm in the associated reproducing kernel Hilbert spaces —
still denoted M, — is given by

712 =D Coa)fpall3pns s> -—n—1,
p.q

Kq(z,w) =

p,q

for an M-harmonic function f with Peter-Weyl decomposition f = Z% q frg> foq €
HPe,

We conclude this section by describing the projections onto the Peter-Weyl com-
ponents HP?. From the reproducing property of H%({ -7) and (25), we have, for
any M-harmonic function f on B",

@) hrO= [ fenEUC Do) 0BV e 0.1)
In particular, for p = ¢ =0,
(30) o f(r¢) = frn)do(n),  0<r<1, ¢€0B",

oB™

is the projection onto the constants H.
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Proposition 1. For any f M-harmonic on B"™, the limit

(31) 1170 = i [T dot

exists, and ILf equals the projection of f onto the subspace A = @p_,H? of
holomorphic functions on B™.

Proof. Expanding (1 — R(¢,n))”™ by the binomial formula shows that the integral
equals

)Y 1B dot)
7=0 ’

o0

= [ frm))_RH(C-m)do(n) by (23)

aBn =

= Z RIfjo(r¢) by (29)

oB™

= Z fio(Rr¢) = I1f(Rr(),

the interchange of the summation and integration signs being justified by the locally
uniform convergence. Letting R /1, the claim follows. (]

We remark that it is, of course, not possible to interchange the limit and the
integral in (31), since (1 — (¢,-))™™ is not integrable over 9B", for any ¢ € 0B™.

Taking complex conjugates in (31), one gets also the projection II onto the
subspace of anti-holomorphic functions, and the projection

P:=T+1 -1,

onto the subspace P := ®pq:O HP?? of pluriharmonic functions on B”.
For later use, we denote by
Q=1-P
the projection onto the orthogonal complement @pq>0 HP4 (“the M-harmonic func-
tions with no pluriharmonic component”).

3. M-HARMONIC DIRICHLET SPACE

For an M-harmonic function f =3"  fpq, fog € HP?, on B", we have by (21)
and (25)

(32) 1F12 = Zcpq(s)“fm”%Bn

p,q

for any s > —1, with

n-+s 1 T
Cpy(s) = m/o Spq(r)2r2(n) (1= r2)*r2n=1 gr

_@ ' Pq 2n—1 (1 _ 4\
= /OS (V)2 (1 —t)* dt

s 1
(33) =Sl [ G -0
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where G4 is the function

 P(n+p)°T(n+q)? pq ?
4 t) i= ¢pratn—l F ’ ’t :
(34) Gpq(t) F(n)21"(n+p+q)22 1(n+p+q )

(See [EY] for the details.)
The content of the following lemma is standard; we include the short proof for
the sake of completeness.

Lemma 2. Let F(z) =Y ;- Fix2" be a holomorphic function on the disc |z| < R,
R > 0. Then for any ¢ € (0, R),
(a) the integral
1
I(s):= F(1—1¢)(1—1t)%dt, s> —1,
1-5
extends to a holomorphic function of s on the entire complex plane C, except
for possible simple poles at s = —j —1, 7 =0,1,2,..., with residues Fy;
(b) form=1,2,..., the integral

Im(s) = /11_6F(1—t)(10g11t)m(l—t)sdt, s> —1,

extends to a holomorphic function of s on the entire complexr plane C,
except for possible poles of multiplicity m+1 ats=—j5—1,7=0,1,2,...,
of strength m!Fj.

Proof. (a) From the Taylor expansion, we have for any N =0,1,2,...
F(z)=Fo+ Fiz+ -+ Fy_ 12V 4+ 20N (2),

with G holomorphic on |z| < R. By uniform convergence,

3

N-1 get+i+l 1 N
Z(s) = Fi— 1—-t)(1—¢)°"" dt.
(35) )= X B+, G000

The j-th summand in the sum is holomorphic on C except for a simple pole at
s = —j — 1 with residue F}, while the integral is a holomorphic function on Re s >
—N — 1. As N was arbitrary, the claim follows.

(b) Differentiating (35) m times with respect to s yields

N—-1

36) 7 py a1 —0(log—2) "1 = Y g

n(s) = L LR ft( ) — 1)tV dt,
( ) (S) = J (S +5+ 1)7n+1 + /175 N( ) 0g 1—¢ ( )
and the claim again follows. O

Note from (33) that Cgo(s) = 1 has no poles, while

(37) Con(s) = Copls) = T o

has simple poles at s=—-n—1,...,—n —p.

Proposition 3. Let pg > 0. Then Cpq(s) extends to a holomorphic function of s
on the entire C, except for double poles at s = —n—1,—n —2,...,—2n and triple
poles at s = —2n—1—3, j =0,1,2,.... The double pole at s = —n—1 has strength

(P)n()n/T(n)?.
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Proof. Since Gy is continuous on the unit disc, the integral

T G-t ar

is a holomorphic function of s on the entire complex plane, for any 0 < § < 1.
For the integral from 1 — ¢ to 1, formula (12) in [BE, §2.10] tells us that

['(n+p)l'(n+q) 2F1( P, q
LC(n)L(n+p+q)°~ \n+tp+gq

for |arg(1 —¢)| < m, with

[£) = Ao(1 — 1) + Ar(1 — £)(1 )" log - !

o n—1 sz o0 (_1)nI‘(n+p+j)I‘(n+q+j)zn+j "
Ml =2 (1 =mn);j! +z::0 3'(j +n)'C(n)L(p)T'(q) g

j
o~ (“)"T(n+p+)T(n+q+7)
Ai(z) = — 2
1) =2 3G +n)'T ()L (p)T(q)
holomorphic on |z| < 1; here
R =G +1) + (G +n+1) =G +n+p) -G +n+q)
where ¢ :=T"/T is the digamma function. It follows that

£ 01— 0" (1og )

=0

Gpqt) = Bo(1 — ) + Bi(1 — t)(1 — t)" log

1-1¢
with
By(2) = (1 — 2)PT7 1 Ag(2)?,
Bi(z) = 2(1 — 2)PT0 " Ay (2) A1 (2), and
By(z) = (1= 2P 4n-1 4, (2)?

holomorphic on |z| < 1. Applying the lemma, we see that
1
Gt (1 — 1) dt
1-46
extends to an entire function of s, except for possible simple polesat s = —1,-2,...,
possible double poles at s = —n — 1,—n — 2,..., —2n and possible triple poles at
s=-2n—1,—2n—2,.... The strength of the double pole at s = —n — 1 is

(D" +pln+q _ (=1)"

38 114,(0) = - (@)

Finally, passing from fol Gpq(t)(1 — t)® dt to Cpy(s), the factor (Slf(i)) cancels the

simple poles at s = —1,—2,..., —n, while (38) gets multiplied by % =

(—1)"n! T
L'(n)

Remark 4. A variant of the last proof can be given by first integrating by parts
to get

(39) Couls) = ﬁ /0 G (1) (1 — £+ dt

for any s > —n—1 and p+¢q > 0; see Section 6.3 in [EY]. This has the advantage of
showing that Cp,(s) is positive for any s > —n—1, and also is a decreasing function

—n

)
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of s on this interval. Since we are not interested in positivity or monotonicity at
the moment, it was simpler to apply Lemma 2 directly. O

Denoting the analytic continuation still by C)p,(s), we thus see that
oo : 2
Cpq = 5\1171271(8 +n+1)°Cpq(s)
exists for all p, ¢ > 0, and equals

0 if pg=20
(40) Cpa = @)n(@)n
[(n)?

We thus arrive at the following corollary.

if pg > 0.

Corollary 5. In terms of the Peter-Weyl decomposition f = Zp’q frqs fpg € HPY,
of an M -harmonic function f on B™,

1, =3 @y e

2
-~ T'(n)
Definition 6. We call the space of M-harmonic functions f = Zp,q fpqs fpqg € HPY,
on B" for which || f||?, < +oc the M-harmonic Dirichlet space, denoted Myo. [
We also denote by
Moo,O = {f S MOO : qu =0if prq = O}

the subspace of all functions in M, which have no pluriharmonic component
(i.e. Pf = 0). The quantity ||f|lco is a seminorm on Mo, and a norm on Moo o;
abusing the language, we will often speak just of a “norm”. Obviously, M, con-
tains all the spaces HP?, p,q > 0, and their span is dense in it.

Remark 7. The space Moo, has reproducing kernel

K, (z,w)
K*°(z,w) =T(n)* Y  —PE=
P,q=>1 (p)n(q)n
The authors do not know if this sum can be evaluated explicitly. ([

4. MOEBIUS INVARIANCE

The following facts likely are again quite standard, but we include the short proof
for completeness. Recall that for a function f on B" and 0 < r < 1, f, denotes the
function on OB™ defined by f,.(¢) := f(r().

Lemma 8. Let f =3 fpq: fog € HP?, be an M-harmonic function on B™. Then
the following three conditions are equivalent:

(41) sup || frll3sn < +oo;
0<r<1
(42) a finite h/rri | frllZgn exists;
(43) Z ||qu||(%B" < too.
P,

The three quantities above are then equal, and the sum and the sequence

(44) > foq
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(45) lim f,
then converge to the same function — denoted f* — in L2(0B",do); f* can thus

be interpreted as the “boundary value” of f.

We denote the quantity (41)—(43) by ||f||faray, and call the space of all M-
harmonic f for which it is finite the M-harmonic Hardy space Muaray. We remark
that || f||#ardy actually coincides with || f||-1, and the reproducing kernel of Miaray
was computed explicitly in [EY].

Abusing the notation slightly, we will sometimes write just f|sgn», or even f,
instead of f*, and just || f||sm~ instead of || f*|oB» = || f|Hardy-

Proof. From (21) and (25), we have
£ 138 = D 15P2(r) P fuallZme
pa

Since SP4(r) are nondecreasing (strictly increasing for pg > 0) functions of r € (0, 1),
with SP4(1) = 1, it follows that the limit (42) coincides with the supremum (41);
and by the Lebesgue Monotone Convergence Theorem, they are both equal to (43).
This settles the first part. For the second, note that (43) means, by (21), that the
partial sums of the series (44) form a Cauchy sequence; since L? is complete, they
must have a limit f*, and [[|f*[|I3g. = 20, , | fpall3~- By (21) and (25) once again,

1 = Eme = Y (1= SP(r)) fyqllpr-
P.q
However, the right-hand side tends to zero again by the Lebesgue Monotone Con-
vergence Theorem, proving that f,. — f*. O

Recall that in the polar coordinates z = r{ on C™ (r > 0, ( € dB"), the
Euclidean Laplacian A is given by
92 2n-10 1
a2 T ar Tt
where Agpn is the spherical Laplacian, which involves only differentiations with
respect to the ¢ variables. In particular, the value of Agpn¢ on a sphere |z| =const.
depends only on the values of the function ¢ on that sphere. Another operator with
this property is the complex normal derivative (or Reeb vector field)

- o _ 0
R ::Jz::l (zja—zj —zja—zj)

The operator Agpn can be expressed explicitly as

A —

Asph = *Rz + Z (ijfjk Jrfjijk)
j.k=1

where Lji, Lj;, are the tangential vector fields
0 0 — 0 0
Ly =Zj— — Zp— Ly :=zj— — 2 —.
gk % 0z “k 8zj ’ gk % 0zy, Ek afj
Both Agpn and R commute with the action of U(n), i.e. Agpn(¢poU) = (Agpn¢) o U

for any U € U(n), and similarly for R. (In fact, the algebra of all U(n)-invariant
linear differential operators on OB" is generated by Agpn and R, but we will not
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need this fact.) From the irreducibility of the multiplicity-free decomposition (22),
it follows by abstract theory that Agpn and R map each HP? (and HP?) into itself
and actually reduce on it to a multiple of the identity. Evaluation on e.g. the
element ¢PCh € HP4 (for n > 2) shows that, explicitly,

AgpnHP = —(p + q)(p + q + 2n — 2)I|HP,
RIHP! = (p — q)I|H™

(which prevail also for n = 1 by the remarks on H?P? when n = 1 after (25); in that
case Agpp = —R?). Let L, 1 < m < 2n(n — 1), denote the collection of all the

operators L, Lk, j,k=1,...,n, j # k, in some (fixed) order.

(46)

Theorem 9. If f is M-harmonic on B™, n > 2, then f € Moo if and only if
2n(n—1)
(47) > NLiLy - L£5,(Qf)3pn < 400,
J1,J2,-in=1
and the square root of the left-hand side is a seminorm equivalent to || f||oo-
Proof. Since —Ljj is the adjoint of L, in L*(OB",do), we have for any g €
C?(0B")

2n(n—1) n
> 1L59l3en == > ((LikLjk + LinLix)g, 9)omn = ((—Aspn — R*)g, g)omn-
j=1 3. k=1

Ifg= Zp ¢ Ipa> 9pq € HP?, is the Peter-Weyl decomposition (21) of g, we thus have
by (46)

2n(n—1)
> LgllEee = [4pg + (20— 2)(p + )]l gpg|3pn-
Jj=1 P,q

Iterating this formula, we obtain

2n(n—1)
(48) Y L L lEee = D [4pa+ (20 = 2)(0 + Q)] 1 9pall3mn
J1:d2,--Jm=1 p,q
for any m =0,1,2,.... Now for p,q > 1 and n > 2 obviously

[Apg + (2n —2)(p + @)]" < [4pg + (2n - 2)(p + ¢q) + 1]"
=p+1D"(¢+1)"
= (P)n(@)n-

Abusing notation by denoting by the same letter @ also the orthogonal projection
in L?(0B",do) onto P HP?, we thus have

p,q=>1
2n(n—1) 0o
(P)n(@)n
Z 1L, Ljs -~~£jn(Q9)||an = Z WHQPQH%B”'
J1sJ2sejn=1 p,q=1
Applying this to g = f, and using the last lemma, the assertion follows. O

We remark that, strictly speaking, in (47) we should write more correctly

2n(n—1)

(49) Oiu1<)1 Z H‘le ‘Cjz s ‘Cjn(er)”c%Bn < +0o0,
TS d1g2sdn=1
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as L;f need not be harmonic in general when f is; however, as (L, f), = L;(f)
(since L; are tangential operators) and (Qf), = Q(f;) (from (31)), the proof shows
that the last supremum actually coincides with ||(—Agpn — RQ)"/2fH%Iardy, and the
function (—Agpn — R?)™2f (defined in the sense of functional calculus for self-
adjoint operators) is M-harmonic by (46). We thus take the liberty to use the
shorthand indicated in the sentence before the proof of Lemma 8.

Yet another reformulation of the last theorem is as follows. Consider the weak-
maximal operator X acting from L?(9B") into the Cartesian product of 2n?(n —1)
copies of L?(0B") by

g—A{L, .. .Ejng}zn(n_l)

Jireendn=10
that is, the domain of X consists of all g € L?(9B™) for which all the £;, ... L g
exist in the sense of distributions and belong to L?(0B"). (In other words, X = Y*
2
where Y is the restriction of the formal adjoint X' of X to @*" "~1 c>=(9B").)
Then f € M belongs to M., if and only if (Qf)* € Dom(X), and || X(Qf)*| is a

seminorm equivalent to || f|oo-

Corollary 10. The space Moo is Moebius invariant: f € Moo implies fop € Mo,
for any ¢ € Aut(B™).

Proof. Let ¢ € Aut(B™) and f € Moo. We need to show that the sum in (47) with
f o ¢ in the place of f is finite. Note that
Q(f o) =Q((Qf) 0 d) + QUPf) o) = QUQS) © ¢),

since composition with ¢ preserves holomorphy and, hence, plurisubharmonicity.
Note further that, by (48), for any g € L?(0B",do),

2n(n—1)
> L Ly £, Q038 = D 4pa+ (20 —2)(p + )" | 9pall3en
J1:J250-Jm=1 p,q=>1
2n(n—1)
<Y Wpa+ =2+ gpallzee = Y, 1LiLi - L 9ll3me
P,q>0 J15J25eJm=1

hence it is enough to show that, in fact, even the sum in (47) with (Qf) o ¢ in the
place of Qf is finite.

Observe that the tangential vector-fields £,,, m = 1,...,2n(n — 1), span (very
redundantly) the entire complex tangent space to B™. Thus for any differentiable
function g on dB™, > || Lmgll3g- = [|Vetg|?, the norm-square of the restriction
Vg of the tensor Vg to the complex tangent space of 9B™ in the sense of complex
geometry. Now for any vector field X on 0B"™, one has X (go¢) = d¢(X)g. Since ¢
maps the sphere 0B onto itself, the derived map d¢ maps the real tangent space
of B™ into itself. As ¢ is holomorphic, d¢ is complex linear, hence d¢ maps also
the complex tangent space (consisting of all vectors Y such that both Y and Y are
real tangent) of B™ into itself. Finally, d$|0B" is a smoothly varying map on the
compact manifold 9B™ (hence, in particular, so is its Jacobian). Consequently,

[Vei(go ¢)”?)B” = Hd¢(Vct)gHan < Cd)”Vctch%B"

with some finite C' (independent of g). Iterating this argument, it transpires that

IVe(g 0 d)lZBn < CollVergldmn-
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Passing from V7, back to the £,,, the last inequality reads

2n(n—1) 2n(n—1)
S Ly L (god)Eee <CF > L Ly, L5,9] 380
J1d2s-in=1 J1,J25 s Jn=1
Taking g = @ f, the proof is complete. U

Remark 11. The authors suspect that, for any fixed s > —n — 1,
(50) Cpg(s) = [(p+1)(g+ 1))
uniformly for all p,q € N. If this is rue, then the proof of Theorem 9 shows that
the condition (47) is further equivalent to
2n(n—1)
Yoo Ly L QR < o0
J15J25 s Intk+1=1

for some (equivalently, any) nonnegative integer k. See the proof of Theorem 16
below for the details. The authors showed in Theorem 11 in [EY] that (50) holds
when p, ¢ tend to infinity with he ratio p/q fixed, but were unable to get a uniform
estimate. (I

Remark 12. Another consequence of (50) would be an extension of the definition of
M from the original range s > —1, and our “analytic continuation” to s > —n —1,
to all real s. Namely, denoting

fpall3Bn
M i= (=3 s S €10 3 o Mtlime e 2, < o)
p,q p.q b 1

we would then have
Mys =M, for s > —n — 1, with equivalent norms,
by (50), and
QMys = QMoo for s=-n—1,

with equivalent norms on Moo, by (40). Since evidently My, C My continu-
ously for s < &', it would also follow that

Moo C M Vs > —n—1,

which inclusion the current authors are unable to verify.
(We believe the lower bound in (50) can be obtained from the inequality

T(n+p)T(n+ , tpa
(n + p)T( Q)zFl( p.q ‘t)z .
Fn)T(n+p+q)” \p+ag+n 31/

which seems to be true but we have not been able to prove it. We also have no clue
how to get the upper bound in (50).) O

A priori, it is not evident that
I1F112 = Z | fall3m S\hfgil(n + 5+ 1)2Cpy(s)
Pq

coincides with

S\hjﬁl,l(n +s+1)? Zcpq(s)”qu”%B" = S\hjﬁlil(n +s+ 12 fI3
Pq
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— none of the standard conditions for interchanging the limit and the summation
seems to apply. However, by Fatou’s lemma, we at least always have

(51) 712 < limint (n+s+ D22,

with equality, of course, when the sums above are finite (i.e. for f with only finitely

many nonzero HP?-components). In other words, if we introduce the space

(52)

M :={feM:feM;Vs>-—n—1and a finite \lim 1(rH—s—i-l)2||f||§ exists},
S —n—

then plainly the last limit is a (semi-)norm on M’, the limit
(f.9)" = lim (n+s+1)*(f g)s
sN\—n—1

exists for any f,g € M’ and makes M’ into a (semi-)inner product space, and by
the remarks above,

(53) M’ C Mo, continuously

while the algebraic span of HP?, p, g > 0, is contained in M’ and the norms || - ||’
and | - [|oo coincide on it. It follows that Mo, is just the completion of M’ with
respect to the above norm.

Remark 13. Tt follows from (39) in Remark 4 above that ||f]|? is actually a non-
increasing function of s > —n — 1, for any f € M. In particular, one has

M;C My ifd>s>-n—-1. O

Remark 14. Up to the authors’ knowledge, it seems to be an interesting open
problem whether limg —,—1(n + s + 1)?|| f||? actually always exists for f € Mo
and coincides with || f]|2, (that is, whether M’ = M,,). The analogous assertion
in the context of the ordinary holomorphic Dirichlet space holds: namely, by (4),

1 2 _ 1 2 (n); 112,
(n+s+ DI = (0 + 5+ D) follm +;(n+s+z)j_ll\fgllmg,

and as s \, —n — 1, the last sum tends to ijl %H]}H%En = ||f]I?> by the

Lebesgue Monotone Convergence Theorem. ]

Theorem 15. The inner product in Moo is Moebius invariant:

(54) <f, g>00 = <f © ¢7g ° ¢>OO
for any f,g € Moo and ¢ € Aut(B™).

Proof. Any ¢ € Aut(B™) can be written in the form ¢ = U o ¢, o V, where
U,V € U(n) while ¢, denotes the geodesic symmetry (i.e. ¢4 0 ¢, = id and ¢,
has only an isolated fixed-point) interchanging the origin 0 € B™ with the point
(a,0,0,...,0) € B", 0 < a < 1. Since both My, and its inner product (-, ), are
U(n)-invariant (by their very construction), it is enough to prove the assertion for
¢ = ¢o. Furthermore, since we know from Corollary 10 (or, rather, from its proof)
that the composition operator f — fo¢ is continuous on M., it is further enough
to prove the assertion for f, g in a dense subset of My,. In particular, by linearity,
we may assume that f € HP? and g € H?'? for some p,q,p’,¢ € N.
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We will show that under all these hypotheses, (f o ¢,,g 0 ¢,)" exists for all
0 < a < 1 and does not depend on a. By the observations in the paragraph before
the theorem, this will complete the proof.
Fix 0 < p < 1. Recall that the measure
dz
d =
= T

on B" is invariant under ¢, and also

_(—laP)a—|eP)

1_|¢a(z)|2 11— az|?
By the change of variable z — ¢,(z), we thus have, for any s > —1,
1 n —
(Fob0rg0a)s = S [ (15)(0u(2)(1 = )" dr(z)
=B [ (f5)(a)0 — [ou(a) P+ ()

- [ e () e

Passing to the polar coordinate z = r(, with 0 < r < 1 and { € dB", we can
continue with

S 1 " 7(12 n+s
o) = O [ a0 () 0

T I'(n) ar(y|?

that is, using (25).

Dy
= s—|— / G(a,r) r2)sr?ntdr,

where Gla.) = o571 (1) [ (90 as)
" T(n) oBn [1—arGif?
Carrying out the ( integration shows that G(a,r) is a holomorphic function of
la| < p and |r| < 1/p. Invoking Lemma 2, it thus follows in the same way as in the
proof of Proposition 3 that (f o ¢4, g 0 ¢4)s extends to a holomorphic function of
la| < p and s € C, except for at most double poles at s = —n—1,-n—2,...,—2n
and at most triple poles at s = —2n — j — 1, 7 € N. Consequently, the function
(s+n+1)2(f o ¢a,goda)s extends to a holomorphlc function of |a| < p and s € C
except for poles as above, excluding s = —n — 1 where it assumes a finite value.
In particular (taking f = g), this means that f o ¢q,g0 ¢, € M’ for all 0 < a < p,
and the inner product (f o @, g o ¢,) is a smooth function of these a.
Finally, it is legitimate to differentiate under the integral sign in (55), yielding,
for s > —1,

é ° ° - (S+ 1)n el q Pq p’q’
(56) da <f bas 9 ¢a>s - an A F(n) /E)Bn(fg)(C)S (T)S (7“) %
1—a? ntsr 9 1 — g2 o
(n+s+1)(m) [%m}(l_rz) 201 4 .

Repeating the argument above, it transpires that for all 0 < a < p,

0 (n+5s+1)%(foda,goda)s = (n+ s+ 1)F,(s),

(57) %a
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where F,(s) is a holomorphic function of s except for at most triple poles at s =
—2n—1—7, 7 € N, and at most double poles at s = —n—2,..., —2n; in particular,
F,(s) is holomorphic near s = —n — 1 and assumes a finite value there. Hence,
thanks to the factor n + s+ 1 in (57),

2<f°¢a,90925a>':0 for 0 < a < p.

da
Since p was arbitrary, it follows that (f o ¢a,g90 ¢a) = (f 0 o, g0 do) = (f,g)’ for
all 0 < a < 1, completing the proof. (I

5. THE PLURIHARMONIC DIRICHLET SPACE

For pg = 0, the coefficients Cpo(s) = Cyp(s) have only a single pole at s = —n—1
(cf. (37)) for p # 0, with residue

foi= m(n-+5+ DCle) = £

while Cgy := lims\ —pn—1(n + s+ 1)Cpo(s) = 0. Accordingly, M, consists only of
pluriharmonic functions, with (semi-)norm

112 = S0l + opl3e)
p=1 '

In other words,
Mo = Ao &® A70
is just the orthogonal sum of the usual holomorphic Dirichlet space A, and its
complex conjugate.
The result below, parallel to Theorem 9 for the M-harmonic case, is likely folk

lore, but the authors are unaware of a specific reference.
Theorem 16. If f is pluriharmonic on B™, n > 2, then f € M, if and only if

2n(n—1)
(58) > NLi Ly Ly flfraray < 400

J1,J25Jn=1

if and only if

2n(n—1)
(59) Z H‘ercjz s £.jn+k+1f||i < +o0,

J15J2se s Jn+k+1=1

for some (equivalently, any) nonnegative integer k.

Proof. As we have seen in (48) in the proof of Theorem 9, (58) equals, for f =
0 foq With frg € HPY,
2n(n—1)
S 1L L f e = S Hpa+ (20— 20+ )" fpall2pe
J1,J25Jn=1 P:q

Since f is now pluriharmonic, the right-hand side reduces just to

o0

> ln = 2" (1 foll3Bn + [l fopll3en)-

p=1
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As n > 2 by hypothesis, we have

[(2n —2)p]" < p"

¢

TmC(p) ~ *°
for all p, and the first claim follows.

For the second claim, denote again, for any function f on B", f,.({) := f(r() for
0<r<1and (e dB" Using (48) for g = f, yields

2n(n—1)

Yo LnLy Ly frlBee =D 4pa + (20 = 2)(p + @)™ SP(r)? | fpalI3p s

J1:J25Jm=1 P,q
since (fr)pqg(¢) = SPUr) fpe({) by (25). As L;, being tangential, do not act on the
r variable, we also have

Lji Ly L fr = (L5 Ljy oo Lj e

Hence for any s > —1,

1 n ! 27Tn B
16 L, L5, 12 = 1 ;:n ) /0 Sy G+ L D)rllBan (1 = 727"t dr
S 1 n 1 ~
= (lj(n)) ;[4]74 +(2n = 2)(P + O™ || foqll 2B~ /0 SPA(VE2H (1 — )° dt
=S lpa+ 20— 20 + Q)| fpa |38 Cra(s).

Specializing now to the current pluriharmonic case pg = 0, we again have for all
p=1
[(2n — 2)p]"Cpo(s) < p™Chro(s) = pmsTh < pmon—s—l b0
Hence for s =k and m =n+k+ 1, with any £k =0,1,2,...,
[(2n — 2)p}"+’“+10p0(k) = Cpo VpeN
(for p = 0, both sides vanish), and the second claim follows. O

The following simple result seems to have no counterpart in the M-harmonic
case.

Theorem 17. If f is pluriharmonic on B™, n > 1, then f € M, if and only if
||Nme§m—n—l < +o0o

or some (equivalently, any) integer m > Z. Furthermore, the square root of the
2
left-hand side is a seminorm equivalent to || f|lo-

Proof. By straightforward inspection,
prO:ppra NfOp:pf()p Vp > 0.

Consequently,
IN™ fogllBme = (0 + @)*" | foallZpn  for pg =0,

and, as in the preceding proof, for any pluriharmonic f,

IV FI1Z =D p*" Coo(8) (L fpoll s + Il fopll3m)
p

= p?" O (1 fpoll 3 + Il fopllZpn)
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= |IfI? if2m=n+s+1,
completing the proof. (I

6. THE HARMONIC DIRICHLET SPACE

The situation in the harmonic case is pretty similar as for the pluriharmonic
functions in the preceding section, so we will be brief. For all p > 0, let H? be the
space of harmonic polynomials on R™, n > 2, homogeneous of degree p, and let HP
be the space of restrictions of elements of HP to the unit sphere 0B™. We refer to
[ABR], especially Chapter 5, for the Peter-Weyl decomposition

(60) 2(9B", do) @Hp

under the action of the orthogonal group O(n) of rotations of R™, and the associated
decomposition

(61) H=En"

of the space of all harmonic functions on the unit ball B™ of R™ into the direct sum
of the HP: namely, any harmonic function f on B™ can be uniquely written as

(62) f=> tfn  feH?
p=0

with the sum converging uniformly on compact subsets. Here do now stands for
the normalized surface measure on 0B™. The weighted harmonic Bergman space

Ho(B™) := {f € L*(B™,dp,) : f is harmonic on B"}
consists of all harmonic functions on B™ square-integrable with respect to the mea-
sure
N(2+s+1)
63 dps(z) i= —2——~
(63) po(@) = BTy

where dx denotes the Lebesgue volume on R™. The restriction on s ensures that
these spaces are nontrivial, and the factor 3%(5;11))

sure, so that ||1|| = 1. For f as in (62), we have by the orthogonality in (60)

2 ( +5+1) 127rn/2 r 2 o —7"2 S?"n_l r
1712 = WZF(HD |3 i | U0 asto) 1=ty

+8+1) s n—
- [ ZTQPprHaBn(l—T 2

(1— |z|*)* da, s> —1,

makes dps a probability mea-

r( T(s+ 1)
= T 1) Sl [ 070
ey
O =X g e
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and, accordingly, the reproducing kernel of H; is given by
T,
where Z,(z,y), the reproducing kernel of H?, is given by so-called zonal harmonics
(expressible explicitly in terms of Gegenbauer polynomials); see Chapter 8 in [ABR]
for the unweighted case, the weighted case being completely parallel.
The coefficients
(5)p

(5+s+1)
extend to nonvanishing holomorphic functions of s on the entire C, except for simple

poles at s = =5 —1,..., =% —p; accordingly, Kharm(z 4)) extends to a holomorphic

function of s € C. Due to the orthogonality of the spaces HP, the extended kernel
— still denoted K™ — will remain positive definite as long as 1/C24™(s) > 0

Vp € N, hence, precisely for s € [-§ — 1,+00). The last interval is thus the

“harmonic Wallach set” of B™. The norm in the corresponding reproducing kernel
Hilbert spaces — still denoted by H, — is still given by (64) for s > —% — 1. For

s = —5 — 1, (65) reduces to constant one, and the associated space thus consists

only of the constants, with ||1|| = 1. As the “residue” at s = —% — 1, we get the
reproducing kernel

(66) Cpom(s) o= p €N,

Kharm -1
i Ks (fvy) .
5\7%71 s + b + 1
The corresponding reproducing kernel Hilbert space Hp consists of all harmonic
functions on B"™ for which

(67) KRarm (g ) =

(68) 113 = S CTf I3 5 < +oo,
p=0
where
O._ : n harm _ (%)P
(69) Cy = 5\111%171(8 + 5+ l)Cp (s)=p o

This can be viewed as the harmonic Dirichlet space. It is easily seen to coincide with
the eponymous space studied by other authors, see e.g. [GKU] and the numerous
references therein. The characterization of Hg given in Theorem 19 below, however,
seems not to appear in the literature (up to the authors’ knowledge).

Remark 18. As in the holomorphic case, the limit lims\ 2 1 || f||2 always exists for
any f € Hp and coincides with || f||4. The proof is the same as for the holomorphic
case. g

Finally, the following characterization of H can be given along the same lines
as in the preceding sections. Recall our notation
Xjkzwjak—xkaj, hk=1,....n, j#k,
for the tangential vector fields on R"™, and &,,,, m = 1,...,n(n—1), for the collection
of all the X1, (in some fixed order). By a routine computation, one checks that

> X3 =200,

k=1
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where Ay, is the spherical Laplacian on R": for = r{ with » > 0 and ¢ € 0B",

A 0? L n—10 L 1
-~ Or2 v or | 2P
The operator Agp, commutes with the action of the orthogonal group O(n) of R,
hence it is automatically diagonalized by the Peter-Weyl decomposition (60): a sim-
ple computation reveals that
(70) Agpn|H” = —p(p +n — 2)I|H?
where I stands for the identity operator.

Theorem 19. If f is harmonic on B™, n > 2, then f € Hn if and only if
n(n—1)

Z ||Xj1 . f||2m —1 < —+oo0.

for some (equivalently, any) integer m > 4. Furthermore, the square roots of the
left-hand sides are seminorms equivalent to || f|o.

Proof. Since the adjoint of Xj; in L*(0B",do) is just —Xji, we have for any
g € L*(0B",do)

n(n—1) n
> AXiglien = = Y (Xig, 9osn = —2(Agpng, 9)osn,
Jj=1 j,k=1

so for g =3 gp, 9p € H?, as in (60),

n(n—1)
(71) > 1XglEee = 2p(p+ 1 —2)|gpll3pm
j=1 P

by (70). Iterating this procedure, we get

n(n—1)
Yo X X glEee =D 200+ 1 = 2] [lgp 35
Jiseenjm=1 P

Applying this now to g(¢) = f(r¢) where f is harmonic on B™, we obtain
n(n—1)
Yo X X fEEEe = Y20+ 1= 2" fl[3 e,
J1yesJm=1 P

and, as in (64), for any s > —1,

n(n—1)
S, X 2
J1seesdm=1
- +SH/ s 1) 1, .. X, f(r)|Zpn (L—r?)*r""1d
_7Tn/2FS+1 o F Jm_l TR r 9B™ T T T
4s+1) [ m . s
- / 2p(p + 1 — 2)™ | £ |2t E 7L (1 — 1)
5 5+1 0

(5)p
zp: 2p(p +n —2)]" m”fp”%B”'
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Now for all p > 1

n
(E)p - 2m—s—1 _ ,2m—s—1—2 ~[
QC’p7

Wip+n—2)n——2 o =
2p(p )] Zts+1), P p

whence
20(p+ - oD
(3+s+1)p P
if 2m = s+ 1+ § (for p = 0, both sides vanish). This completes the proof. O
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