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A SURVEY OF THE PRESENT STATE OF THE SUBJECT

The subject of this thesis are Toeplitz operators on Bergman-type spaces!, an area which has received
some attention during the last decade. These operators arise mainly in two areas of mathematics: in
connection with quantum mechanics (the quantization procedures on symmetric spaces, cf. [5], [6]) and
in the theory of subnormal operators (the basic model for a subnormal operator is the Bergman shift;
see [9], [23]). Whereas the theory of these operators on the Hardy space H? is by now well understood
and has become classical (cf. e.g. [22] and the bibliography given therein), its area measure counterparts
are far less tractable, and the results are sparser and often markedly different (see, for instance, [2] or
[6]). It is natural to ask if this is not because the class of Toeplitz operators on a Bergman-type space is,
in some sense, larger than on H2. The classical Toeplitz operators are characterized by the intertwining
relation S*T'S = T (see f.i. [24]), and so form a w*-closed subset of B(H?) of infinite codimension. In my
paper [16], I have shown that such a characterization is impossible on A%(D). In [17], it turned out that
Toeplitz operators on A%2(D) are, in fact, dense in B(A2(D)) in the strong operator topology, which gives
an affirmative answer to the conjecture above. Further progress has been attempted by Gautrin [13], who
proved even norm-density; unfortunately, his proof contained an error, and so the problem of norm-density of
Toeplitz operators remained open. So did also the similar problem whether the C'*-algebra generated by them
contains all bounded operators (and if not, what is it?). The corresponding C*-algebra on the Hardy space
is closely related to the theory of Toeplitz (or symbol) calculus (cf. [22], Appendix 4), the study of which has
contributed to the development of powerful techniques of operator theory (dilation theory, commutant lifting
theorem). In case the corresponding C*-algebra on the Bergman space contained all bounded operators, an
analogue of such a calculus could be of exceptional interest. Some attempts in this direction have been made
e.g. by McDonald and Sundberg (for symbols in a certain C*-subalgebra of L>°(D); see [2] and the references
therein). A closely related question of compactness of Hankel operators on Bergman-type spaces has been
intensively studied by various authors — Axler et al. [3], Zhu, Stroethoff, Zheng, Berger and Coburn (see
[6], [27]); these issues, however, are not discussed in this thesis.

THE OBJECTIVE AND METHODS OF THIS THESIS

The objective of this thesis is a solution to some of the problems mentioned above. It is proved that the
norm closure of the set of all Toeplitz operators on a Bergman-type space contains all compact operators
(Chapter 2); it does not, however, contain all bounded ones, and neither does even the C*-algebra generated
by this set (Chapter 3). An unexpected fact is that these C*-algebras are always contained in certain C*-
algebra A which does not depend on the underlying space (see Chapter 3 for a more precise statement). An
attempt to construct a Toeplitz calculus on Bergman-type spaces, alluded to above, can be found in Chapter
4; it seems that the role of the Nagy-Foias dilation could be played by certain ”dilating” to the Calkin
algebra. The Berezin transform, which plays an important role in the questions concerning compactness of
Toeplitz operators (cf. [6], [2], [27]) seems to be important also from the viewpoint of the theory developed
in Chapter 4; therefore the last Chapter 5 is devoted to its more detailed study.

Most methods are functional-analytic, or belong to operator theory and complex function theory. Rudi-
ments of interpolation theory, potential theory and Riemannian geometry are needed in Chapter 5; algebraic
topology (cohomotopy groups) appears in Remark 3.26.

RESULTS OF THE THESIS

Chapter 1 contains some preparatory material; most results are more or less known, although frequently
their proofs cannot be found in the literature ("folk theorems”), so they are assembled here. The items 1.12,
1.15, and 1.18 are mine, and so are all presented proofs.

1See the end of Chapter 1 for terminology and notation.
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In Chapter 2, density of Toeplitz operators on Bergman-type spaces is considered. It is proved that
they are SOT-dense in the set of all bounded operators and that their norm closure contains all compact
operators. A slightly simplified version of my results from [16] is reproduced here, together with a new proof
and a generalization to arbitrary domains Q Cc C¥.

In Chapter 3, it is proved that the C'*-algebra generated by the Toeplitz operators does not contain all
bounded linear operators. An unexpected fact is that this algebra is always contained in a certain C*-algebra
which is the same (more precisely: spatially C*-isomorphic) for A2(D), A2(C), H?, A%(Q) for a wide class
of domains Q2 C C, and only slightly different for A%(C¥) (the difference seems to be of topological nature
and related to the dimension, cf. Remark 3.26). A related class of spaces H?(p) is also discussed.

In Chapter 4, an attempt is made to construct an analogue of the classical Toeplitz (or symbol) calculus
on Bergman-type spaces (see the beginning of the chapter for a more explicit discussion). The problem is
rather difficult, and only a partial solution is presented. Lemma 4.1 follows from the results of [3] or [23];
a very short and elegant proof is presented here, based on our Theorem 2.4. In 4.3 — 4.6, the techniques
due to Calkin [10] are developed; 4.12 mentions some classical results, while 4.16 was inspired by Douglas
([12], 7.47 ff.). The proof of Lemma 4.19 is reproduced here from [6] (slightly simplified) for the purpose of
subsequent discussion.

Some of the results from Chapters 1 and 4, as well as results of other authors ([5], [6], some preprints of
Zhu, Stroethoff, Zheng, etc.) from adjacent areas, indicate that a fundamental role in the theory is played by
the Berezin transform B; for this reason, the last chapter is devoted to its study. The operator B is shown
to be bounded on various LP spaces and to be related to the Laplace or the Laplace-Beltrami operator,
respectively. For some classes of functions f, conditions for f to be invariant under B are given, and the
iterates B™ f are shown to converge. The items 5.1 — 5.4 and 5.16 are more or less known (”folk theorems”),
and so is perhaps 5.29; 5.18 and 5.28 are classical; 5.12 is a generalization of the Schur test, and 5.25 may
be compared with a theorem in [19] (see Remark 5.26).

Unless stated otherwise, all the results to follow belong to the present author. Proofs are usually supplied
for the ”folk theorems” mentioned above. When other authors’ results are needed, the references are always
given in the text and, except for 4.3 — 4.6 and 4.19, the proofs are not reproduced.

ADDENDUM

After finishing this thesis, the author has received a preprint of Berger and Coburn [BC], and also a new
article of Zhu [Z] has appeared. In [BC], our Theorem 2.4 is proved for the special case = CV (Theorem
9); the proof makes heavy use of the machinery developed by Berezin, but probably could be reduced to the
method employed in our ”first proof” of Theorem 2.4. On page 38, they conjecture that ”The C*-algebra
generated by all {7, : g bounded } is evidently very large. Despite Theorem 16, this algebra could contain all
bounded operators.” A negative answer to this conjecture is provided by our results in Chapter 3 (Theorem
3.27). In [Z], 5.6 and 5.7 appear, and 5.14 is reported to have been proved in the special case p = 2.

[BC] C.A. Berger, L.A. Coburn: Berezin-Toeplitz estimates. Preprint, 7 October 1990.

[Z] K.H.Zhu: On certain unitary operators and composition operators. Proc. Symp. Pure Math. 51,
371 — 385. Providence, 1990.



Chapter 1. INTRODUCTION

The purpose of this chapter is to set up notation and to introduce some basic definitions. The style is
brief; some proofs are omitted and can be found e.g. in [2] or [6]. The symbol C will allways denote the
complex plane, D = {z € C: |z| < 1} the open unit disc, T its boundary, the unit circle; Z is the set of all
integers, and N the set of all nonnegative ones.

Convention: By a domain in C we mean an open, connected, nonempty and proper subset  of
CV (written: Q € CV), for some integer N > 1. Thus, C¥ itself is not considered to be a domain. We shall
write Q C CV to express that € is either a domain in C" in the above sense, or Q = CV.

The symbol dz denotes the Lebesgue measure in CV, for all N > 1, while LP((, dp) stands for the usual
Lebesgue space on 2 with respect to a measure p; if p is omitted, the Lebesgue measure is understood.

If Qis a domain in CY and 1 < p < 00, we may define

AP(Q)) .= {f € LP(Q,dz) : f is analytic on Q}.

This is a closed subspace of LP(Q,dz). For p = co, A>®(Q)) = H*(Q), the space of all bounded analytic
functions on Q. For p = 2, A%(Q) becomes a Hilbert space (with the inner product from L?). The spaces
A%(Q) will be termed Bergman spaces ; the space A%(D), which is of particular interest, will be referred to as
the Bergman space. The latter will usually be considered as a subspace not of L?(D, dz), but of L*(D,dv),
with the norm and scalar product modified accordingly; here

dv(z) = 1 dz
™

[ee]
is a multiple of the Lebesgue measure chosen so that D had measure 1. If f = Y f,,2" is holomorpic? on
n=0

D, a simple calculation shows that

. [l
[ 1r@P ane Zn+1

Consequently, f € A?(D) if and only if the last expression is finite. The scalar product of f and g = Y gn2",
n=0

f,g € A%(D), is given by

f’!L%
e =3 2T
The set

(1) {Vn+12"}nen

is an orthonormal basis for A%(D). The polynomials are dense in A?(D).

(Observe that the last sentence, in general, need not be valid for A%(Q). If we take O = D\ (0,1),
then the closure of the polynomials in A%(Q) is precisely A2(D) C A?(Q). The Riemann mapping function
® : QO — D belongs to A2(Q) — even to A*(£) — but not to A%2(D).)

The space A%(D) is a reproducing kernel space in the sense of Aronszajn [1]. Denote P, the orthogonal
projection of L?(Q) onto A?(12).

Proposition 1.1.  For each A € Q C C¥ the linear functional f — f()\) on A%(Q) is bounded;
consequently, f(\) = (f,gx) > for some g\ € A%2(Q). Further,

1
||9A|| < W’

23 synonym for analytic throughout this paper



where yn is the (Lebesgue) volume of the unit ball of CV and R = dist(\,CN \ Q).
Proof. Let R be the distance of A to CV¥ \  and

) {o if [ -\ > R,
z) = ‘
A (ywR2V) 1 if |z—Al <R.

Then

. ‘ 1 2 1
Fr(2)]?dz = ywR*N = <
/Q| \2)|7dz =N AN RN AN RN +o0,

so F)\ € L?(Q). Hence, for arbitrary f € A%(),

1
(fs Py EX)a2) = (f, F))12() = NN /Z \en f(z) dz,

which equals f(A) by the mean value theorem; hence, we may take gy = P, Fy. Finally,

1

2 2 _
lox15 < IFAI3 =

O

For 2 = D, the reproducing kernel may be written down explicitly — namely,

gA(z) W—Zﬂﬁ—

n=0

Let 2 be a domain in CY and ¢ € L*°(). We define the multiplication operator My : L*(Q) — L*(Q),
the Toeplitz operator Ty : A%(2) — A%(Q) and the Hankel operator Hy : A%(Q) — L?(2) & A?(Q) with
symbol ¢, respectively, by the formulas

Myf=9of,  Tof =P Msf,  Hof = =P )Myf.

These operators are clearly bounded, their norms not exceeding ||¢|leo. If ¢ € A®(Q), Hy is zero, while
Ty = My A%(Q2). The mappings ¢ — My, ¢ — Ty, ¢ — H, are linear. The formulas below are well-known
in the theory of Toeplitz and Hankel operators on the Hardy space H?; they remain in force in the present
setting.

Proposition 1.2. For arbitrary f,g € L>(),
[Ty, Tg) :=Tyg = TsTy = H?Hya

[Ty, T] = TyT, = T, Ty = HyH; — H:H,.

In particular,
Tyy =TTy, TgTy = Tgy

when f € L™®(Q) and g € H>*(Q).

Proof.
Ty —T§Ty =Py fg— Py fPrg=PLf(I - Py)g= H%Hg;

[Ty, Ty] = [Ty, Ty) — [Ty, Ty);

and Hy =0if g € H>*(Q). O
The following proposition will prove handy when calculating some specific Toeplitz operators on A%(D).
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Proposition 1.3. Suppose f € L*°(D) is a radial function (i.e. f(z) depends only on |z| ). Then Ty
is a diagonal operator with respect to the basis (1) with weights

cn(F) := 1/01 F(t).(n + 1)t" dt,

where F(t) := f(t'/?), t € (0,1).

Proof. Passing to the polar coordinates, we have

2m
(Tpz", 2™ / f(z)2"zmdv(z / / flr)yr™tme (n=m)it ge o dr.
PYa

If n # m, this is zero; if n = m, it equals

1 1
/ F(r®)r* 2rdr = / F(t).t" dt,
0 0

and the assertion follows immediately. [
The next proposition gives some feeling that the situation for A?(D) is different from that for H? —
there are no nonzero compact Toeplitz operators on H2.

Proposition 1.4.  Assume that ¢ € L>(Q) and that the support supp ¢ is a compact subset of (.
Then M, A%(D) is a compact operator; consequently, the operators Ty and Hy are also compact.

Proof. Suppose supp ¢ = K is a compact subset of {2, and set R = dist(K,C™ \ Q) > 0. Assume that
fn € A%2(Q) is a sequence weakly converging to 0. Such sequence must be bounded - say, | f|l < C Vn.
Then

C
‘fn()‘)‘ < anH?Hg)\HZ < \/ﬁ VA e K,
Cl9llo

/,YNRQN

Also, f,~50implies f,,(A\) = (fn,gr) — 0 VA € Q. Thus, we may apply the Lebesgue dominated convergence
theorem to conclude that

whence

|p(N) fa (M) < VA € Q.

l6fall2 = /Q GO fu(V)P dA = /K 6OV (VI dA — 0

as n — oo. Hence My[A?(Q) maps weakly convergent sequences into norm convergent ones, and so must be
compact. [

Define

V(D) :={f e L>*D): elszsl}i{n f(z) =0}.

Corollary 1.5. If ¢ € V(D), then My[A?(D), Ty and Hy are compact operators.

Proof. There exist ¢,, € V(D) such that supp ¢,, are compact subsets of D and ¢,,=¢. Consequently,
Mgy, — Mgy in norm; since My, are all compact, so must be My, and hence also Ty and Hy. U

If we take ¢ € L™(f2), ¢ > 0 whose support is a compact subset of Q, then (T,1,1) fQ z)dz >0
and so Ty # 0; hence, indeed, Ty is nonzero compact Toeplitz operator.

For Q = CV, the space AQ(CN ), defined as above, would consist only of constant zero; hence, we adopt
a different definition in this case. For z,y € CV, write

Ty := ZTnyn and x| := (Tx)'/2.



(Thus, |z — y| is the usual Euclidean distance between x and y.) The Gaussian measure on CV is, by
definition,

du(z) = (277)_Ne_|2|2/2 dz.

Denote LP(CY, du) the usual Lebesgue spaces; L>°(C™,du) shall be occassionally abbreviated to
L>(CN), since they happen to coincide. Set, for 1 < p < oo,

AP(CN) .= {f € LP(CY ,dp) : f is an entire function on CV}.

Again, this is a closed subspace of LP(CY, du). A*(CYN) = H>(C¥), which contains only constant zero.
For p = 2, A%2(C") is a Hilbert space, called the Fock or Segal-Bargmann space. Many results valid for
A%(D) carry over to the Fock space setting. For a multiindex n = (ny,ns,...,ny) € N¥, the following
abbreviations will be employed:

Un = Anyng,...;nN s
n __ . ni_ns ny N
2" =227 2 (for z € C7),

n!=niIng!. .. nyl, Q" = gmtnat..Any

If f is an entire function, f(z) = > f,z", then
neNN

L @R ) = 3 mnig

neNN
Consequently, f € A?(CY) if and only if the last expression is finite. The inner product of f and g =

> gnz™, f.g € A%2(CN), is given by
neNN

(f,9)azcvy = D 12" fuT.

neNN

The set

(2) {(n12") 12 2"} penew

is an orthonormal basis of A?(C%). The polynomials are dense in A%(C"). Once again, A?(C%) is a
reproducing kernel space; the reproducing kernel at A € CV is given by

9 (2) = 72,

and [galla = e*/4. For ¢ € L°(CN,dp) = L>=(CY), the operators My, Ty and H, may be defined in the
same way as for A%(Q); of course, P, will be the orthogonal projection of L?(C¥, du) onto A%(C¥) this
time. These operators are bounded, their norms not exceeding ||¢||s. The maps

are linear. The following propositions are analogies of Propositions 1.2 — 1.5; their proofs are similar, and
therefore omitted.

Proposition 1.6. For arbitrary f,g € L>=(CV),
[Ty, Tg) :=Tyg — TsTy = H?Hg’
[Tf, Tg] = Tng - Tng = H;Hf - H%Hg.
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In particular,
Tyg =TiTy,  TgTy = Tgy

when f € L>®(CV) and g € H*(CV).

Proposition 1.7. Suppose f € L>°(CY) is a radial function (i.e. f(z) depends only on |z1|, |2, .., |zn|).
Then Ty is a diagonal operator with respect to the basis (2) with weights

%) S oo tnef(t1+t2+m+tN)
cn(F) = .. F(t) dt,
0 0 0 n!

where F(t) := f(v/2t1,/2ts,...,V/2ty), t € (0, +00) .

Proposition 1.8. Assume that ¢ € L>°(C") and supp ¢ is compact. Then M,[A?(CN), T,, and H,
are compact operators.

Corollary 1.9. If ¢ € V(CY), where

V(CYN) :={f € L®(C") : ess lim f(z) = 0},

|z|=+o0

then My A%(C™N), Ty and Hy are compact operators.

The Corollaries 1.5 and 1.9 cannot be inverted — there exist functions ¢ € L>*(D) \ V(D) and ¢ €
L>(CN)\ V(CY), respectively, such that T, are compact operators. Furthermore, Toeplitz operators both
on A%(D) and A%(C") may be well-defined and bounded also for some ¢ ¢ L>. It seems that boundedness or
compactness of Ty is not determined by the boundedness of ¢ or its vanishing near the boundary, respectively,
but rather by these properties of the image (Z of ¢ under certain smoothing transformations. For the Fock
space, this result is due to Berger and Coburn [6]. If ¢ € L2(CY,du) and A € CV, define k) := gx/l|gxll,
and

B(N) = (dhr, ky) = / b(z) e FHE I dp(z) =
CN

. " 7‘)\72|2/2 dZ

= o e 2m)N

¢ is called the Berezin transform of ¢; the definition may be extended to ¢ € L'(C¥,du) in an obvious way.

Theorem 1.10. Let ¢ € L?(CV, dy).
(i) If Ty is bounded, ¢ € L>°(CN); if it is compact, ¢ € V(CV).
(i5) Myl A2(CN) is bounded iff (|¢|?) € L>=(CY), and compact iff (|¢|>) € V(CY).
(iii) If ¢ > 0, then Ty is bounded iff € L>°(CY), and compact iff p € V(CY).
For the Bergman space A%(D), the best reference seems to be Axler [2]. The Mobius transformation wy
corresponding to A € D is, by definition, the function

z - wy(z) 1= ———,

which maps D bijectively onto itself. The function

d(z,y) := |wz(y)]

is called the pseudo-hyperbolic metric; it is, indeed, a metric on D. Denote Dy (A, R) the disc with center A
and radius R with respect to this metric. If ¢ € L*(D,dv), denote

b = 71 i vix
TN = B 1/2) /D,Mm) #le) dv (@),
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the mean value of ¢ on Dp (A, 1/2).

Theorem 1.11. Let ¢ € L*(D,dv).
(a) Myl A%(D) is bounded iff (|¢|?)> € L>(D), and compact iff (|¢|?)” € V(D).
(b) If ¢ >0, Ty is bounded iff ¢° € L=(D), and compact iff > € V(D).
The number 1/2 may be replaced by arbitrary R € (0, 1).
The Berezin transform may be defined on D, too. For ¢ € L?>(D,dv) and X € D, set ky := g /||ga]| and

(1 - AP

[T dv(z).

3N = (0ky, ) = /qs

Using the last theorem, it is possible to prove a complete analogue of Theorem 1.10.

Theorem 1.12. Let ¢ € L*(D).
(i) If Ty is bounded, ¢ € L>°(D); if it is compact, ¢ € V(D).
(ii) My A%(D) is bounded iff (|¢|?)"€ L>°(D), and compact iff (|¢|*>) € V(D).
(iit) If > 0, then Ty is bounded iff ¢ € L>°(D), and compact iff ¢ € V(D).
Lemma 1.13. When |\ — 1, kx—0.
Proof. Since ||ky|]| =1 VA € D and the polynomials are dense in A%2(D), it is enough to check that
(p,kx) — 0 as |A\| — 1 when p is a polynomial; but that’s immediate, because

(2" k) =1 =M E ) =0 =M. A" =0  asn— 4oo.

Remark 1.14. The last lemma remains in force for A2(C¥), too; the proof is similar. [

Lemma 1.15. For each R € (0,1), there is C = C(R) > 0 such that

1_|>\|) Viz 072 zZ vz
IR 1—mwd()2uwuxR»[;mm“)d()

for every nonnegative function ¢ on D.
Proof. It suffices to find C' > 0 so that
1 2)2 2
G-pp2 . C

T S vmo ) S

This is equivalent to
L, L-RPP
I1—Xz[2 = 7 R(1—|)]?)?

Vz € D}L()\, R).

But, if z € Dp(\, R),

- 1 1 Py 1 — A2
|1—/\z:)\|’_z </\|‘_|| R| R\
A A

1—|)\|R‘ 1R

hence it is enough to manage that

1-R\\? 1 — R2|\]?
o N0 > 0-7.;
L=[AZ /) = R —[AP)?

and a short computation reveals that C = R(1 — R)/(1+ R) will do. O

Proof. (of Theorem 1.12) (i) If T is bounded,
BN = [(Skx, k)| = [Tpkn, k)| < 1Tl kall> = I Ts-
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If T} is compact, | Tska|| — 0 as [A| — 1 owing to Lemma 1.13; hence ¢(\) = (Tykx, ka) — 0 as [A| — 1.
(ii) M, A%(D) is bounded or compact, respectively, if and only if

(M [A%(D))" (My] A*(D)) = Tjyp2

is; hence, (ii) reduces to (iii).

(iii) The ”only if” part is contained in (i). To prove the ”if” part, suppose that ¢ > 0 and % € L>*(D);
then, owing to Lemma 1.15, ¢* € L>(D), and so T, is bounded by Theorem 1.11(b). The statement
concerning compactness may be proved in a similar manner. [

It is actually possible to go a little further and define the Berezin transform for linear operators on
A%(CN) or A%(D) by the formula

T()‘) = (Tkx, kx); kyx = H%H’ AeCVorD.

The operator T need not be bounded, and it suffices if its domain of definition contains all ky, A € CV or D.

Proposition 1.16. (i) If T is bounded, T € L™ and ||T||D<j <\T|l. If T is compact, T € V.
(ii) If T =T, is a Toeplitz operator, ¢ € L?, then T¢ = ¢

(iii) If T is diagonal with respect to the basis (1) or (2), respectively, then T is radial.
Here L is either L>°(D) or L>*(C), and similarly for L? and V.

Proof. (i) [T(\)| < ||T|.||kll> = |IT|l; if T is compact, Tkxy — 0 as |A| /1 owing to Lemma 1.13,
and so T(\) — 0 as || /1. The proof for the Fock space is similar (cf. Remark 1.14).

(ii) Immediate.

(iii) We will deal with A%(D) only, the proof of the other case being similar. Suppose 7' is diagonal with
weights c,,. Then

Tgr =3 (n+ DN 'en2”,
n=0
whence -
TN = (1= A2 (n+1eal AP,
n=0

and that’s a radial function. O

Corollary 1.17. If ¢ € L*(CN) or L2(D) is radial, then so is ¢.
Proof. Combine Propositions 1.3 and 1.7 with Proposition 1.16(iii). O

Remark 1.18. The item (i) of the last proposition bears certain resemblance to the same items of
Theorems 1.10 and 1.12. Tt should be noted, however, that this analogy fails for (iii): there exist unbounded
positive operators T such that T e L*°, and non-compact positive operators T such that T € V. For
completeness, we present below an example of the latter (on A?(D)).

Example 1.19. Let A be the operator on A?(D) sending 2" into ¢, 2" (n € N), where

1 ifn=28—-1k=1,2,...,
Cn = .
0 otherwise.

Then A is a bounded positive noncompact linear operator; we are going to show that A€ V(D). From the
proof of Proposition 1.16, we see that

AN = (1 - [AP)? Z2k|x|2<2 D = R(1-R)>Y_2FR*,
k=1



where, for brevity, R = |A\?|. The function 2 — 2*R?" is increasing on the interval (0,2 ) and decreasing on

(zRr,+00), where g is given by 278 = —ﬁ. Let kg be the least integer greater or equal to xg. Then
oS . kr . o0 . kr 00 B RZJ. oo
2k’R2 — 2kRZ 2k:R2 < 2k‘ / 2.’I:RZJ' d — 2k’R+1 —
> DR+ Y < 2+ v + |
k=1 k=1 k=kgr+1 k=1 TR TR
_ ghntl 1/e < 1 1/e < 5 '
—InRIn2 - —InR —In2lnR~ —InR
Consequently,
5

0< A(\) < R(1— R)?

=0(1— 1
LR O(1 — R) as R /1,

which proves that A € V(D). O

Notation. If H is a Hilbert space, B(H) stands for the C*-algebra of all bounded linear operators on
H (with the operator norm ||-||), Comp(H) for the space of all compact operators from B(H); Comp(H) will be
abbreviated Comp when it’s clear what H is. The norm is denoted || - || on all spaces; || - ||, is sometimes used
for the norm in LP or AP. Where ambiguity might arise, the space where the norm is taken is given as an
index, e.g. ||f|lz2(p,dv)- Similar conventions will be observed for scalar products (., .). SOT and WOT are
abbreviations for the strong and weak operator topologies on B(H), respectively. If M is a subset of B(H),
clos M denotes the closure of M in the operator norm topology. When discussing B(A%(D)) or B(A%(CY)),
diag(c,) means the diagonal operator with weights ¢,, with respect to the basis (1) or (2), respectively. The
symbol = is employed to denote uniform convergence; — means weak convergence in a Banach space. A
bar over a subset of CV denotes the closure; a bar over a number, a function, etc., the complex conjugate.
For other symbols, not mentioned in this Introduction, consult the List of Notation.

By a Bergman-type space, we mean either a Bergman space A2(Q2), Q C C¥, or the Fock space A2(CY).
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Chapter 2. DENSITY OF TOEPLITZ OPERATORS
Let T, be a Toeplitz operator on the Hardy space H?2. It is easily seen that
T;TyT, =Ty for any ¢ € L>(T).

According to a classical result, the converse also holds: if some operator T : H?> — H? satisfies T)TT, = T,
then T = Ty for some ¢ € L°°(T). This result serves as a starting point for the theory of symbols of
operators (cf. [24]). Tt shows that, loosely speaking, there are only few Toeplitz operators on H?.

In my paper [15], I have shown that Toeplitz operators on A%(D) don’t admit the characterization as
above. More precisely, if AT,B =T, for all $ € L>(D), then A = cI, B = ¢ 'I for some (nonzero) complex
number c. The proof works also for A2(Q) and A%(CY).

A natural question to ask is if this is not because there are, loosely speaking, more operators which are
Toeplitz than in the classical (i.e. H?) case. To put it precisely, we can ask if following statements are true:

(1°) the Toeplitz operators are dense (in some topology) in B(A2%(D));

(2°) every finite dimensional operator is Toeplitz;

(3°) for any linearly independent elements f, g € A?(D), there exists ¢ € L>(D) such that T, f = g.
Clearly (2°) implies (1°) in the strong operator topology, and either (1°) or (3°) implies the impossibility of
the above-mentioned characterization ATy B = Ty.

The statement (2°) is easily seen not to be true. For example, there is no ¢ € L*(D) such that
Ty = (.,1)1. This fact is an easy consequence of the Miintz-Szdsz theorem for L? spaces (see, for instance,
[14]). In fact, this theorem yields a much stronger result: if T, = (., f)g for some ¢ € L*>°(D) and

fr9e A2(D), f(2) =225 faz" , 9(2) = 325 gnz"™ , then

Z%<+oo and Z%<+oo.

fn=0 gn=0

(Loosely speaking, only few Taylor coeflicients of f and g can be zero.) It’s a conjecture of author’s that in
fact there are no finite-dimensional Toeplitz operators in B(A?(D)) at all.

(3°) is readily seen to be false, too. It suffices to take f = 1: if there were, for every g € A?(D), some
¢ € L=(D) such that g = T,1(= P, ¢), then the mapping (here (A2(D))¢ stands for the dual space of
A?(D))

A: L=(D) — (A2(D)?, ¢+ (,Pid) =(.,9)12D)

would be onto. Let B be the operator of inclusion of A%(D) into L!(D):
B:A*D) — L'(D), ¢+

This is a continuous operator (by the Schwarz inequality) and has A as its adjoint, B = A. By the
Hausdorff normal solvability theorem (cf. [26], chapter VII, §5), Ran A is closed if, and only if, Ran B is
closed. Because B is injective, Ran B is closed if and only if B is bounded below (just use the open mapping
theorem). But the norm of z™ in L!(D) is

! 2
/ |z”|dz:/ r".2rdr = ,
D 0 n+2

whereas the norm of 2" in A?(D) is

1/2
2> = (/ lz”ﬁdZ) = (n+1)72
D

Consequently, B is not bounded below, so Ran A is not closed, and A cannot be surjective. (The last part
of the argument can be avoided by evoking directly the fact that the closure of A%2(D) in L'(D) is A'(D),
the space of all integrable analytic functions on D. Our method is more elementary. )
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All the same, there is a weakened version of (3°) that does hold and which, moreover, implies that (1°)
holds in SOT.

Theorem 2.1. Let®? Q C CN, T € B(A%(Q)), F;,G; € A%(Q) (i = 1,2,...,N). Then there exists
¢ € L>(Q) such that
(TpF;,Gi) = (TF;,G;) , 1=1,2,...,N.

Proof. We shall prove the theorem for the case Q # C; the proof for the Fock space is perfectly
similar. Let fi, fo,..., fn, TeSP. g1,92,-.-,9m be a basis of the (finite-dimensional) subspace of A2(Q2)
generated by Fi,..., Fy, resp. G1,...,Gy. Clearly it’s sufficient to find ¢ € L>°(Q) such that

(Tofirg5) = (Tfi,g;) forall i=1,....nandj=1,...,m.

Consider the operator R : L>(Q)) — C™*™, defined by the formula
(Ro)y = [ 68 E = (Tofiea,)

Suppose some u € C™*™ is orthogonal to the range of R, i.e.

Z Z(R(ﬁ)”ﬂ” =0 for all ¢ € LOO(Q)
i=1 j=1
This means that
(3) /Qqs(z). SO wiifi(2)gi(2)dz =0 forall ¢e L®(Q),
. i=1 j=1

which implies

4) SN i(2)05(2) = 0

i=1 j=1

dz-almost everywhere in €2; since the left-hand side is obviously continuous on €2, this equality holds, in fact,
on the whole of Q. Thus, the function

n m

F(z,y) = Z Zﬂmﬂ(az)m,

i=1 j=1

which is analytic in  x Q, equals zero whenever z = 3. By a well-known uniqueness theorem, this implies
that F' is identically zero on Q x . Because the functions f;, ¢ = 1,2,...,n, are linearly independent, we
have

Zuijgj(@)zo forallyeQ, i=1,2,...,n;

j=1
but g;, j = 1,2,...,m, are also linearly independent, and so u;; = 0 for all 4, j, i.e. v =0. This means that
the range of R is all of C™"*™, which immediately yields the desired conclusion. [

Corollary 2.2. The set T = {Ty : ¢ € L=°(Q)} is dense in B(A%(Q)) in SOT (the strong operator
topology). The assertion holds also for @ = CV.

3Remember that, according to the convention from the Introduction, this means that either  is a domain
in CV, or that Q = CV.
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Proof. In view of the preceding theorem, it is certainly dense in WOT (the weak operator topology);
and because 7 is a subspace, i.e. a convex set, its WOT- and SOT- closures coincide. O

Note that the crucial step in the proof of Theorem 2.1 was the implication (3)=-(4). Thus, the theorem
remains in force if we have (3) only for ¢ € D(2) (the set of all infinitely differentiable functions on £ whose
support is a compact subset of Q) — any w*-dense subset of L () will do. Consequently, the following
theorem holds.

Theorem 2.3. Let Q C CN. Then the set T, = {T,, : ¢ € D(Q)} is SOT-dense in B(A*(Q)).

A natural question arises at this point — namely, whether the Toeplitz operators are not actually norm-
dense in B(A%(2)). We shall see later that this is not the case — even the C*-algebra generated by them
is smaller than B(A%(2)). It is true, however, that the norm closure of the Toeplitz operators contains all
compact operators.

Theorem 2.4. Suppose @ C CN. Let T, = {Ty : ¢ € D(Q)}. Then closT; = Comp(A%(Q2)).
Since T, € Comp for ¢ € D(Q) in view of Propositions 1.4 and 1.8, the inclusion clos 7; C Comp(A%(£2))
is obvious; it remains to show that
Comp(A?(Q)) C clos T;.

We are going to present two proofs. The first is shorter and works for arbitrary Q € C"; however, it is not
constructive. The second applies only for D or C¥, involves much computation, but exhibits explicitely how
to manage the approximation.

Proof. FIRST (SHORT) PROOF. We begin by a simple lemma.
Lemma 2.5. Let Q C CN. Then the reproducing kernels gx, A € Q, span A%(Q).

Proof. Suppose f € A%(Q) is orthogonal to all gx, A € Q. Then f(\) = (f,g\) =0V € Q,ie. f=0.
([l

Recall that the dual of Comp(H), where H is a separable Hilbert space, may be identified with Trace(H),
the space of all trace class operators on H equipped with the trace norm || - ||1; the pairing is given by
(K,T) — Tr(KT) = Tr(TK), Tr being the trace.

Suppose that Q@ € CV and that clos 7; is a proper subset of Comp(A42(Q2)). By the Hahn-Banach theorem,
there exists T' € Trace(A%(f2)), T' # 0, such that

TH(TT,) =0 V¢ € D(Q).

Let A, B be two Hilbert-Schmidt operators such that 7' = AB*, {e,}>°, an orthonormal basis for A%(Q2),

o0

fn = Aen, gn = Be,,. Then Tr(TT,) = Tr(B*TyA) = > (B*T,Aen, e,), and so the last condition may be
n=0
rewritten as .
Y (Tofugn) =0 Vo eDQ),
n=0

or

> [ oNLWmM M) =0 voeD®
n=0 Q

(if © = C¥, replace dv by du). Because ¢ has compact support, >_ || f»||> < 400 and > ||gn|?> < 400, we
may interchange the integration and summation signs, which yields

| SNFOR ) (or du) =0 v e D),
where -
F(z,y) = fa(@)gn () = Te(TGay),
n=0
Gay = (92107
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It follows that F(\,\) = 0 for almost all A € €; in other words, the function F(z,y), analytic on Q x €,
vanishes when x = 7. Appealing to the aforementioned uniqueness principle, F' = 0 everywhere on {2 x 2,
ie. Tr(TGyy) =0 Va,y € Q. In view of the last lemma, Tr(TK) = 0 for all rank one operators K; by
linearity and continuity, Tr(T'K) = 0 for all compact K, whence T' = 0 — a contradiction. The proof is
complete. [

The other proof is a slightly simplified version of the author’s original one from [16]. It is based on two
lemmas. We state and prove them first for A%(D); the (slightly easier) case of A?(C") will be discussed
afterwards.

For m,n € N and a € D, let T{,, ,,.) be the operator on A%(D) given by

f—{f9m.a)9n.a,

where a € D, m and n are non-negative integers, and g, o € A?(D) is given by the formula

_(m4 D)™
gm,a(x) = W

One has
(s gma) = "™ (a),

the m-th derivative of f € A%2(D) at a € D; thus,
(Timma) f,9) = F0 (@)g™) (a)

for arbitrary f,g € A%(D).

Lemma 2.6. Let M, N be non-negative integers, a € D, and denote

TaNa+t) = TuNa ,L.T(M,N,a-&-it) = T(Mm,N,a)

R -
(M,N,a,t) o o

Then Ry N,a,t) tends to T(pri1,N,q) (in norm) as the real number t tends to zero:

lim HR(M,N,a,t) — T(M+1,N,a)” =0.

R3t—0
Similarly,

R, HREM,N,a-,t) —TrN+1,0) =0,
where

R _ TuNa+ty — TN, n T, Natity — T(M,N,a)
(M,N,a,t) = 2% ¢ 2 .

(Here i stands for v/—1.)
Proof. Let F, G € A%(D) and denote, for a while, f = F(™) and g = G™). Then

((Rv,N,a) — Tivs1,v,0)) FLG) =

flat+t)gla+1t) — fla)g(a)  flatit)g(a+it) - f(a)g(a) -

(5) - - ~i - - F@g(a).
Let
(6) f@) = falz—a)", g@)=> gn(z—a)
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be the Taylor expansion of f, resp. ¢ at a. These series are locally uniformly convergent in the disc
|z —a] < 1—a. Consequently, for |t| < 1 — |a| the right-hand side of (5) equals to

% S fmt™Gat" 72% S (i) G (=) | = f1T0 -

m,n>0 m,n>0

(m,n)#(0,0) (m,n)#(0,0)

Rearranging all terms into one series, the terms corresponding to (m,n) = (1,0) and (0, 1) cancel, and we
get

1 — ym+n— m—n
) Y Fagatn ),
m,n>0
m+n>2

Let F,, resp. G, be the coefficients of the Taylor expansion of the function F, resp. G at a. Because
f=FM) we have

1 M +m)!

1 m m (
fm = mf( )(a) = EF(]V” J(a) = o Frynm,
and similarly for g,. It follows that (7) is equal to
(8) 5 Z ml Fm+M‘ iy Gn+Nt + 1.(1—2 +1).
m,n>0
m+n>2

We are going to estimate the absolute value of the last expression in terms of ||F'||2 and ||G]|2. One has

IFI3 = /D FG)Pdz > / IF(2)|? dz =

|z—a]<1—]a|
1—|a| p2m o ) oy
= / / E Fij’l“j+k€(]_k)lt.* dt dr 5
0 0 k>0 T
J)R=Z

(we have passed to polar coordinates). Since the Taylor series
(oo}
F(z) = ZF,L.(Z —a)"
0

is locally uniformly convergent on the disc |z—a| < 1—|al, we can interchange the integration and summation
signs and get

o rl-la| p2x o,
IF|l3 > Z / FjFritkel=Rit — g gt =
0 0 T

J,k=0
- (1 — [a])*++2 2
= .
(9) > poq [kl
k=0
Similar argument holds for G. Denote, for a while,
(1 —Jal)**" (1 —Jap™!
= )i [Fl, B k1) |Gl

According to (9), a and 3 belong to [ and
ledl < [[Fllz, 18]z < G2 -
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Returning to our previous calculations, we see that the absolute value of (8) is not greater then

(N +n)!

1 (M +m)! _

=, | Fppul - Gnan| .t 1 2=

2 mzn;O ml et nt (G

mJyrnEZ
B (M 4+ m)! (M +m+ 1)1/2¢m=3 (N +n)! (N +n+1)1/2¢m—3
=L (1 Japyprmsr Sy (1= Jap) Mot PR
m,n>0 ’ N
m+n_22

Break this sum into three parts, namely,

Z —1—2—0—2::01—!—02—!—03.

m,n>1 m=0 m>2
n>2 n—=0

Let’s first consider o1. Obviously

(M +m)! (M+m+1)3tm=3
U1=<Z( ) ( ) QM4m | X

— m! (1 — |a])M+m+1
(N 4n)! (N+n+1)2t" 3
" ’ <Z N
According to the Cauchy-Schwarz inequality, the first factor on the right-hand side is less than or equal to
(M m)? (Mt mt1)emt\
(11) a2 - (Z D (1 = [a] 2MA2mA2 ) =
m=1

(m+ P (L= [a?ems

latlls . t1/%¢, (M, a,t)

1/2
(M 4+m+ D2 (M+m+2).2m
:||a||2.<t.z( )= { ) ) -

m=0

(M + 1) (M +2)
(1 = |a)273
A similar estimate holds for the second factor in (10). Putting the two estimates together, we see that

where ¢; (M, a,t) tends to a finite limit as t? — 0+, i.e. ast — 0.

or < |lallz - [|B]l2 -t ca(M, N, a,t)
(12) <||Fll2-lIGllz -t.c2(M, N, a,t),
where

cs(M,N,a,t) = c;(M,a,t)c1 (N, a,t)

tends to a finite limit as ¢t — 0.
Now let’s turn our attention to oo. We have

02

M!(M +1)'/? Z(N+n)! (N+n+D'2
S W= [apht el | a1 Ja]) VT A" BNn

n=2

Using Cauchy-Schwarz inequality shows that the bracketed term is not greater then

n=2

0o 1/2
N 12 N 1
(13) ||ﬁ|2.<§ R -(1(_|j)§N++23+2-t2“) = (18]l tes (N, a.1)

16



where c3(V, a,t) tends to a finite limit as t — 0. Consequently,

09 § C4(M, N,a,t) . HO[”z . Hﬂ”z .t S

< cy(M,N,a,t).|Fll2. |Gz t,
with ¢s(M, N, a,t) tending to a finite limit as ¢ — 0.
Similar estimate, of course, can be obtained for o3. Summing up,we see that
(RN — Tvrg1,n,0) F GY < es(M, Ny a,t) . ||Fll2 - [|Gl2
for all F, G € A%2(D), where c5(M, N, a,t) tends to a finite limit as ¢t — 0. Consequently,
HR(M,N,a,t) - T(MJrl,N,a) H < C5(M7 Na a, t) .

agd the first part of the lemma follows. The assertion concerning RE M,Nat) Cal be proved in the same way.

We need one more lemma, the proof of which is (fortunately) a little shorter. Remember the symbol
”clos” denotes the closure in the norm topology of B(A2(D)).

Lemma 2.7. Denote Ty = {Ty: ¢ € D(D)}. Then

T(0,0,a) € closTy for every a € D.

1—|a]
2

0 if |z—al>d+ 62
672 if |z—a| <46

Proof. For each § in the interval (0, ), pick a function fs € D(D) such that

fs(2) :{

and
0§f5(2)§572 if 5<\zfa|<5+52.

Let f, g € a®. Then

(T, — Tio0.m)fr9) = / f5(2)1(2)9(2) dz — f(a)g(@) =

D

|5 [ tei@e-swi@| v [ e =
|z—a|<s 0<|z—al<5+62
(14) =p1tp2-
Let f,, resp. g, be the coeflicients of the Taylor expansion of f, resp. g at a:

F@) =) fa-l@—a)", g(z)=) gu.(z—a)".
0 0

Substituting these formulas into the expression for p; gives

1 = T m
p=5 [ X hG-0" g, G a7 e fug, =
|z—al<s "0
1 4 2w 0 . r
= 7/ / D FaGr et —dtdr — fogy =
g 0 0 m,n=0 T

1 e _ 62n+2 _
= §7~an9/”-”7+1 — fogo =
n=0

0 _ §52n
= nz::l InGy - nt+1l
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Denote, for a little while,

1_| n+1
an:((n_i_all))m|fn|a Bn =

(1~ Ja))™*"

W‘gn‘

In course of the proof of Lemma 2.6, we have seen that o and 3 belong to I? and

el < (1 fll2s 11812 < llgll2-

Now
o _ 52’” > 5271
n;|fngn|'n+1 —;anﬂn-W—
52 0 5 2(77.71) 52 [e'e)
n=1 n=1
5?2 52
S A=Japt" lallz- 18]z < A—Jap* 1£1l2 - llgll2
which implies that
5
(15) lp1| < m”f“?”gnz

As for ps, we have

< s ()0 / dz <

0<|z—al|<6+462
0<|z—a|<5+02

1
<. s [f@e)] 6+
0<|z—a|<6+62

Because

1) = 1(F 9] < 1 Fll2- Ngzllz = N1 flla- [g: ()2 = 1_f|||z22

(and similarly for g), the supremum does not exceed

[1£1l2-1lgll>
[1—(la] +0+6%)2]

Summing up, we have
(16) 2| <01 Fl2- llgll2- cs(a, 6),
where

0+2
(1= (la] + 0 +52)%

cg(a,d) =

tends to a finite limit as § — 0+.
Putting together (14),(15) and (16) yields

H Tf& - T(O,O,a) || < C7(a7 5) .0,
where ¢;(a,d) tends to a finite limit as § — 0+. The lemma follows immediately. [

18



Proof. SECOND (CONSTRUCTIVE) PROOF (of Theorem 2.4). Note that the mapping ¢ — Ty is linear,
so 7 and clos7; are linear subsets (i.e. subspaces) of B(A?(D)). In view of Lemma 2.7, T(g,0,q) € closTq
for each a € D. By linearity, R 0,4, and R20707a7t) € clos7; whenever a € D and |t| < 1 — |a; by Lemma
2.6, this implies T(y ¢ q) and T{g,1,q) € clos 7. Proceeding by induction, we conclude that T, ) € clos 7y
for every @ € D and m,n = 0,1,2,.... Taking a = 0 shows that, in particular, (.,z™)z" € closT;.
By linearity, (.,p)q € clos7; whenever p,q are polynomials. Because polynomials are dense in A%(D),
necessarily (., f)g € clos7; for all f, g € A%2(D), i.e. all one-dimensional operators are in clos 7;. Using the
linearity of clos7; for the third time shows that all finite rank operators belong to clos 77; since these are
dense in Comp(A?(D)), Theorem 2.4 follows. [

Remark 2.8. For the Fock space A?2(C¥) in place of A%(D), the proof comes through essentially
without alterations. The Taylor series (6) are convergent for all x € C, and so the formulas obtained from
them are valid for all ¢t € C (instead of || < 1 —|a|). For the same reason, (9) becomes

oo
IFII3 = ni2r | Ful,
n=0
and so || F||2 = ||a||2 this time, where « € [2,
a = (k12%)' 2|y,
and similarly for G. Formula (11) becomes

oo . ‘ 1/2
(M + m)"? g2m—1
”O‘H? § 12 : | oM+m =
m! (M +m)!.2

m=1

- 1/2
(Mtm+1)!
= ||04H2 <t Z (m+ 1)|2 .2M+7n+1t =

m=0

= ||FHZ 'tl/ch(M7 t)a
where c; (M, t) tends to a finite limit as t> — 0+, i.e. as t — 0; the estimate (12) for oy
o1 < |[Fl2.[|Glla-tea (M, N, t)

follows. Similarly, (13) becomes

1/2
= (N +n)! 2n—2
18] (Z (ot 2N+> — [[Gla-tes (N, )

n!?
n=2
with 12
oo «
N+4+n+2)! ¢
CS(N, t) = (Z) (n+ 2)!2 2N+n

tending to a finite limit as ¢ — 0, and so
oy < cy(M,N,t).||F|2.||G]l2-t

with ¢s(M, N, t) tending to a finite limit as ¢t — 0.
In the proof of Lemma 2.7, the functions f5 € D(C) must be chosen so that

fs(z) =0 if |z —a| > &+ 6%,
fs(2) = 2672 if |z —a| <4,
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and 0 < fs5(2) < 2/° otherwise; here 0 < § < 1. Proceed till you define p; and ps as in (14); then pass to
polar coordinates to obtain

2 (01 [ I o
pl:?‘l/ 27/ Zangmr”+me(" mite=" 2 dtr dr — fogo =
0 0

n=0 m=0

1 & 52/2
== Z 2”+1fn%/ t"e~tdt — fo7o.
n=0 0

2 /e
For n > 1, the function t"e~" increases on the interval (0,n) D (0,d); consequently, f05 Pine=tqt <
((52/2)n+1€—52/27 and

lp1] <

2 762200 ntlp — 2\
576 / 22 fngn E

n=1

e s o
= |f090|'0 <2> + 2e ’ /2' Z |fngn|52 .

n=1

2 52 _
(Tzfogio(l —e? /2) — fogo| +

Employing the «, 3 € [? again, the last expression is seen to be bounded by
¢6(6).6%.[|F[l2-| G2,

with cg(d) tending to a finite limit as § — O+.
As for py, we have, again,

i< s 1B / dz <
0<|z—a|<5+62
6<|z—a|<5+62

. 63(§+2) 6_62/2 <

2
<= sup |f(2)g(2)] >
0<|z—al|<d+62

<5(5 +2)e /2 sup [f(2)g(2)l,
§<|z—a|<6+62

212 /.
sup [ f(2)g(2)] < [|F |2 G l2-eF)" 2,
0<|z—a|<5+82

3 5 b
[p2] < 8(6 + 2).[|Fll2.[|Gll2.€” C+2/2 = 6. F||2.| G|2-c6(8),
where ¢(6) — 3 as 6 — 0+. Thus,

lp1 + p2| < || F|2.[|Gl2-6.c7(0),

where ¢7(6) — 3 as 6 — 0+, and Lemma 2.7 follows as before. This shows that the second proof of Theorem
2.4 works also for the Fock space A2(CY). O

Remark 2.9. Because Comp(A42(f2)) is SOT-dense in B(A2(£2)) and norm convergence implies SOT-
convergence, Theorem 2.4 yields another proof of Theorem 2.3. [

For ( = D, there is a natural intermediate function space between D(D) and L> (D) — namely, C(D),
the functions continuous on the closed unit disc D. The norm closure of the set 7o = {Ty : ¢ € C(D)} was
described in my paper [16], using the techniques of Olin and Thomson and of Bunce.

Theorem 2.10. clos7Ts is a C*-algebra and coincides with To + Comp(A%(D)).

Corollary 2.11. For every T € clos Ty, 0.(T) is connected. In particular, clos Ty # B(A%(D)).
We omit the proofs, which can be found in [16]. Using our Theorem 2.4, they can also be deduced from
results of Axler, Conway and McDonald [3].
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Chapter 3. TOEPLITZ ALGEBRAS

As we have already mentioned, the results of the previous chapter prompt to ask whether the Toeplitz
operators (e.g. on A%(D)) are not actually norm-dense in the space of all linear operators; or if, at least, the
C*-algebra generated by them is not all of B(A?(D)). In this chapter, we are going to prove that this is not
the case: all Toeplitz operators on the Bergman space A%(D) are contained in a certain C*-algebra which
is a proper subalgebra of B(A2?(D)). The same result holds also for the classical Hardy space H?, the Fock
space A%(C), Bergman spaces A?(f2) for a wide class of domains 2 C C and for spaces H?(p) (to be defined
later in this chapter). Moreover, the corresponding algebras can be chosen to be, loosely speaking, the same
(more precisely: spatially isomorphic to each other) in all these cases. Let us start with A%2(D), where the
proof is most transparent.

Define

A(T.) :== {T € B(A*(D)) : T — T;TT, € Comp}.

There is an alternative definition of A(T):
Proposition 3.1. A(T,) = {T € B(A?(D)) : [T, T.] € Comp}.

Proof. The operators

1
[—T*T, = diag(1 — ZL) = diag(

+ 2 n+2

and

n 1
I-T, T =diag(l — ——) = diag(——
! = diag(l— —) = diag(——)

are compact; consequently,
T-T:TT, € Comp = T, (T —-T;TT,)=(T., T —TT.)+ (I —-T.T;)TT, € Comp <
<~ T.,T —TT, € Comp,
and, on the other hand,
T.T—TT, € Comp = T;T. T -T;TT, =(T-T;TT,) — (I —T;T,)T € Comp <—

< T —-T;TT, € Comp.
(]
The following theorem shows that A(T;) is the algebra appealed to above.

Theorem 3.2. (i) A(T,) is a C*-algebra.
(it) Vo € L>=(D): Ty € A(T,).

Proof. (i) It’s clear that A(T%) is a linear and selfadjoint set, which is moreover closed in the norm
topology; so the only thing that remains to be checked is that it is closed under multiplication. But

[AB,T.] = A(BT, — T.B) + (AT, — T,A)B = A[B,T.] + [A, T.] B,

which is compact if [4,T.] and [B,T.] are.
(ii) If ¢ € L>°(D), then

But (1 — |2]?)¢(2) € V(D) and so the last operator is compact by Corollary 1.5. [
Corollary 3.3. The C*-algebra generated by {Ty : ¢ € L>(D)} is strictly smaller than B(A*(D)).

21



Proof. In view of the preceding Theorem, it suffices to find an operator not in A(7}); one of them is
J = diag(—1)",

since
n+1

n+2

J=T7JT, = diag((—1)" (=)™t

certainly is not compact. [

Theorem 3.2 carries over trivially to the classical Hardy space H?. Indeed, when T}, is a Toeplitz
operator on H?, then
Ty = S*TyS,

where S = T, is the usual (forward) shift operator on H2. Thus, if we define
A(S) :={T € B(H?) : T — S*T'S € Comp(H?)},

then the following assertions are immediate.

Proposition 3.4. A(S) = {T € B(H?) : [T, S] € Comp(H?)}.

Theorem 3.5. (i) A(S) is a C*-subalgebra of B(H?).

(ii) T, € A(S) for every Toeplitz operator Ty on H>.

Corollary 3.6. The C*-algebra generated by the Toeplitz operators in B(H?) is strictly smaller than
B(H?).

The proofs are similar to those for 3.1 — 3.3, and actually a lot simpler. In the Corollary, the same
operator J (this time, of course, diagonality is understood with respect to the standard orthonormal basis

{2"}5°, of H?) works. The algebras A(7T,) and A(S) are, in fact, isomorphic; moreover, the isomorphism
A(T,) — A(S) may be chosen to be spatial, i.e. of the form

T — W*TW,

where W is a fixed unitary operator from H? onto A%(D). To see this, let W be the operator mapping the
standard basis {2"},en of H? onto the basis {v/n + 12" },en od A2(D),

W Z_%fnz” - Z;)fm/n T2,

Then

Te A(T,) < [T,T,] € Comp <= W*'TT,W —W*T,TW € Comp <=
= (WTW)W*T,W) - (W*T,W)(W*TW) € Comp <=
— (W'TW)S — S(W*TW) € Comp < W*TW € A(S);

here T, is the Toeplitz operator on A?(D), not on H2, and the last-but-one equivalence is due to the fact

that

1
W*T,W — § = S.diag( %2 — 1)

is a compact operator?.
In general, we may define

AM) :={T € B(H) : [M,T] € Comp(H)}

4Here, once more, the diagonality is understood with respect to the standard basis of H?.
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for arbitrary operator M on a Hilbert space H. The following theorem generalizes the considerations of the
previous paragraph.

Theorem 3.7. (i) A(M) = A(M + K) for arbitrary compact operator K.
(ii) Suppose that c.(M) = T and ind M = —1 (the Fredholm indezx). Then there exists a unilary
operator W : H?> — H such that the transformation

T— W*TW

is a C*-algebra isomorphism of A(M) onto A(S). In particular, A(M) is a proper C*-subalgebra
of B(H).

Proof. (i) is immediate (actually, it has already been used in the end of the last-but-one paragraph).

(ii) According to the Brown-Douglas-Fillmore theory [8], an operator M satisfying these conditions is
unitarily equivalent to S modulo the compacts, i.e. there exists a unitary operator W : H> — H and a
compact operator K € Comp(H) such that

WSW*=M + K.

Owing to part (i), A(M) = A(WSW*), and rehearsing the argumentation of the last-but-one paragraph
leads to the desired conclusion. [

Now we are in a position to prove the analogue of Theorem 3.2 for general Bergman spaces A?((Q).
In case the domain 2 is bounded, a short proof may be given based on the results of Axler, Conway &
McDonald [3] or of Olin & Thomson [23]°. We shall present it first, and then, in case the domain (2 is simply
connected, employ an idea of Axler to obtain a more elementary proof which uses only methods of complex
function theory.

We begin by recalling the pertinent results of Axler et al. [3]. Assume that Q is bounded. A point
x € 01 is called removable if there exists a neighbourhood V' of z such that every function f € A%() can be
analytically continued to V. (For instance, every isolated point of 0 is removable, by a variant of Riemann’s
removable singularity theorem.) The collection of all removable boundary points is called 9,.Q, the removable
boundary of Q; 0.0 := N\ 9,Q is the essential boundary . Tt is proved in [3] that Q U 0,0 is an open set
and that 9,0 has zero Lebesgue measure; consequently, L*(Q) = L?(Q U 9,Q) and A%(Q) = A2(Q U 9,Q).
This makes it possible to replace, without loss of generality, Q by Q U 9,9, i.e. to assume that 0,2 = (,
00 = 0.0 In that case, the following two assertions hold.

Proposition 3.8. (cf. [3], Prop. 8) IfS f € C(Q), then Hy € Comp(A2(12)).

Proposition 3.9. ([3], Corol. 10) If f € C(Q), then o.(Ty) = f(09).
Now we are ready to prove our main theorem.

Theorem 3.10.  Assume that Q is a bounded domain in C. Then there exists a unitary operator

W : H? — A%(Q) such that the transformation
T— W*TW,  B(A*(Q)) — B(H?),

sends every Toeplitz operator Ty, ¢ € L>(Q), on A%(2) to an element of A(S). In particular, the C*-algebra
generated by the Toeplitz operators on A%(SY) is a proper subalgebra of B(A?(2)).

Proof.  Without loss of generality we may assume D C Q. Let & € L>(2) be the function z/|z|
adjusted in a small neighbourhood of 0 so as to be continuous on €2; for instance, take
elt ifr>1,

rett ifr <1.

B(re') = {

®The main idea, however, goes back to Bunce[9). B
6C(Q) is the space of functions continuous on the closure 2 of .
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Because ® € C(Q2), the Hankel operators Hg and Hz are compact by Proposition 3.8 and, consequently, so
must be the operator (cf. Proposition 1.2)

[Ty, Ta] = HEH, — H:Hg

for arbitrary ¢ € L*°(9); thus, Ty € A(T3). In view of Proposition 3.9, 0.(T3) = ®(0?) = T. If we prove
that ind T = —1, we can apply Theorem 3.7 and the desired conclusion will follow.
For 0 < 0 <1, define
rfeit  forr>1,

Dy(re) = { it

re for r < 1.

Then &y € L>(R), and so the operators Ty, are defined. Moreover, for arbitrary 6, 65 € (0,1),

| Ta,, = Toy, || < |6, — o, llc = sup  |r" —r%[ < e[ — 6y,
1<r<diam®

where diam € is the diameter of 2 and

c= sup |rflnr|
1<r<diam®
0<6<1

does not depend on 6. This shows that the mapping 6 — T, is continuous. Besides, 0.(Ts,) = ®9(0.02) # 0,
i.e. all Ty, are Fredholm and so their index is defined. Since ”ind” is a continuous integer-valued function,
it must be constant along the path 6 — T3,, whence ind 7T, =indTs, , or

indTe =ind T,.

But ker T, = {0}, while RanT, consists of all functions from A2?(Q) that vanish at 0. Consequently, ind T, =
—1, and the proof is complete. [

If Q C C is simply connected, it turns out that the condition that 2 be bounded may be weakened —
namely, it suffices that € have finite Lebesgue measure. (If the latter condition is not met, the spaces A2(Q)
become too small — they won’t even contain nonzero constant functions.) It is also not necessary to appeal
to the results quoted above if one is willing to do a little computing. So suppose QgC is simply connected
and let @ : ) — D be the Riemann mapping function.

Lemma 3.11. 0.(Tp) =T and indTp = —1.

Proof. For arbitrary = € D, the operator T3_, is injective and its range clearly consists exactly of
functions vanishing at ®~1(x) (since ®(z) — z, loosely speaking, behaves like z — ®~!(z) in a sufficiently
small neighbourhood of ®~!(z)). Hence, ind Tg_, = —1 for x € D. On the other hand, ||Ts] < [|®]/c =1
and so ind Tg_,, = 0 if || > 1. Since

r—indTe_,

is a continuous function on C\ o.(Tg), necessarily o.(Tp) = T. O

Lemma 3.12. Assume T is a Fredholm operator, indT < 0, and I — T*T € Comp. Then also
I —TT* € Comp and T is essentially normal.

Proof. (Cf. [8], proof of Theorem 3.1.) By assumption, I — T*T € Comp, and on multiplying by
the inverse of I + (T*T)'/2, we find that I — (T*T)'/? € Comp. If T = W(T*T)'/? is the polar decompo-
sition, it follows that 7" is a compact perturbation of the partial isometry W. Since ind W = indT < 0,
dimker W < codim Ran W, there exists a partial isometry L with initial space ker W and final space con-
tained in (Ran W)™, and therefore 7T is a compact perturbation of the isometry V =W + L. Now I — VV*
is the projection onto (Ran V)*, which is a subspace of dimension —ind V' = —ind T’ < +o0; hence, I — VV*
is a finite rank operator. Because T is a compact perturbation of V, I — TT™* must be a compact operator.
O
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Theorem 3.14. Assume Q C C is a simply connected domain (of finite Lebesgue measure) and let
® : Q — D be the Riemann mapping function. Then Ty € A(Tg) Vf € L>(Q) and there exists a unitary
operator W : H? — A%(Q) such that the transformation T — W*TW establishes a C*-isomorphism of
A(Tg) onto A(S). In particular, the C*-algebra generated by the Toeplitz operators Ty, f € L>*(Q), is a
proper subalgebra of B(A%(Q)).

Proof. Let f € L>(Q). We have
Tf — T£Tqu> = Tf—$f<1> = T(1,|q>‘2)f.

For arbitrary § > 0, the set
{ye:|o(y) <1-0d}

is a compact subset of Q. Consequently, (1 — |®|?)f € V(Q), and Proposition 1.4 implies that
(17) T — T&;TfT@ € Comp vVfe LOO(Q)

Taking f = 1, we see that I — T§Ty must be compact, and an application of Lemma 3.11 and Lemma
3.12 shows that I —TgT; is compact as well. Multiplying (17) by Tg from the left yields (cf. the proof of
Proposition 3.1)

TeTy —TyTe € Comp,

i.e. Ty € A(T3). It remains only to make use of Lemma 3.11, Lemma 3.12 and Theorem 3.7. O

The Theorems 3.2, 3.5, 3.10 & 3.14 imply that the same situation is encountered for A%(D), H? and
A%() for Q bounded (not necessarily simply connected) or for 2 simply connected and of finite measure.
Prior to investigating what happens for the Fock space, we briefly discuss another class of spaces which also
seem to join here.

Let p be a positive Borel measure on (0, 1). Set

ap, = / t" dp(t)
(0,1)

and define H2(p) to be the space of all functions f(z) = > f,2" analytic on D for which

n=0

oo 1/2
£l = (Z an|fn|2> < +oo.
n=0

Example: When dp(r) = dr (the Lebesgue measure on (0, 1)), H?(p) is our old friend A?(D).
The following propositions summarize basic properties of these spaces.

Proposition 3.18. (i) H%(p) is a Hilbert space with scalar product
<f> g)p = Zanfn%a where f(Z) = Z fnzn7 g(Z) = Zgnzn~
n=0 n=0 n=0

The set {2"/\/an }neN is an orthonormal basis for H?(p).
(ii) If p({1}) =0 (i.e. p has no mass at 1), then

2m ) dt
f 2:/ / frl/Qe’t 27dp7°
Iz = [ [ e S an

for any function f analytic on D. If p({1}) > 0, the last formula still holds if we agree to set

2m ) dt 27 ) dt
[urenr s = s [ lseenp 5
0 0 m

2m 0<r<1
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Proof. (i) is immediate; in fact, the mapping defined by f — {\/an fn }nen is an isometric isomorphism
of H?(p) onto I?(N).
(ii) Pass to the polar coordinates and compute to get

/0 R)/ (/2" |2 Z </ T dPU')) L fl?

Letting R " 1 gives the desired formula. (Interchanges of integration and summation signs can be justified

o0
by the uniform convergence of > f,z" on compact subsets of D, and by the Lebesgue monotone convergence
n=0
theorem.) O

Proposition 3.19.  The evaluation functionals f — f(\), A\ € D, on H?(p) are continuous for all
A € D if and only if 1 € supp p.

o0 (oo} Xn
Proof. Since f(A) = Y fud" = > anfn (), the evaluation functional at A € D is continuous on
n=0

n=0 mn

H?(p) iff the function

0o | |2n n

belongs to H?(p). Because [|gAl|2 = > , this happens iff the radius of convergence of the series E —
n=0 On n=0 On

is at least one, i.e. iff
lim sup |an|1/” > 1.

1/n
The expression ai/n = (f<0 1 " d,o(t)) is the norm of the function ¢ — t in the Lebesgue space

L™({(0,1),dp). For p finite (which is our case) this is well-known to tend to the norm in L°°((0,1),dp),
i.e. to ess supt = sup{t:t € suppp}. Thisis > 1 if and only if 1 € supp p. O

In order to define Toeplitz operators on H?2(p), we need it to be a subspace of "some L2”. At that
moment, technical difficulties arise when p has positive mass at 1, i.e. when p({1}) > 0; so let us agree to
exclude this case. Also, replacing p by cp for some number ¢ > 0 leads to isomorphic spaces H?(p) and
H?(cp); so there is no harm in assuming p((0,1)) = 1. Thus we are lead to the condition

(20) p({l}) =0, /)(<0; ]->) =1, 1 € suppp,

whose validity shall be assumed from now on. Proposition 3.18(ii) then implies that H?(p) is a closed
subspace of the Hilbert space

():{fonD /01>/ (rt/? Lt|2§7trdp(r)}<+oo

(with the obvious inner product). Let Py be the orthogonal projection of L%(p) onto H?(p) and define
Toeplitz operator Ty : H?(p) — H?(p) by

T,f = Piof,  feHp),
where ¢ € L™ (p) := L (D, dtdp(r)). The formulas from Proposition 1.2
TyTy = Tog, TgTy=Tg4,  for ¢ € L>(p),g € H*(D) C L™(p),
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are readily seen to remain in force, as well as Corollary 1.5. (The proofs carry over without change.)
Consequently,

(21) Ty TAT,T. = Ty poprys € Comp(H?(p)).
The following proposition implies that this is equivalent to Ty € A(T.) and that A(T.) is, once again,
C*-isomorphic to A(S).

Proposition 3.20. Assume that the condition (20) is fulfilled. Let Z be the (forward) shift operator
on H?(p) with respect to the orthonormal basis {2™/\/ay }nen. Then T, is a compact perturbation of Z.

Proof. Denote, for a little while, e, = 2"/\/an, so that Ze, = en11 (n € N). By definition,
a a
T,z" = 2" je. T,e" = Intl eny1 and Z — T, = Z.diag <1 — /”H). Hence it suffices to show that
a G,

n
Qa,
n+1 N 1

an

Clearly an4+1 < a, and, by Holder’s inequality, a}/n < ai,{m if m > n. Taking m =n + 1 gives

n41

anp™ < Ap41 < Qn,

or

a
a" < <L
n

In course of the proof of Proposition 3.19, the left-hand side was observed to tend to sup(suppu) = 1 as
n — o0o. The proposition follows. [

Corollary 3.21. Assume that (20) is fulfilled. Then Ty € A(T,) V¢ € L*=(p), and A(T,) = A(Z) is
spatially isomorphic to A(S).

Proof. Premultiplying (21) by 7, shows that
T.Ty —TT;ToT, = [T,,Ty] + (I = T.T,)TT,

is compact; owing to the last proposition, I — T.T; € Comp, and so also [T,Ty] € Comp, i.e. Ty € A(T%).
By Theorem 3.7(i), A(T.) = A(Z). Finally, if we define W : H?> — H?(p) by 2" € H* — 2"/\/a, € H*(p),
then Z = WSW™*, and so the transformation T' € A(Z) — W*TW € A(S) is a C*-algebra isomorphism of
A(Z) onto A(S). O

Corollary 3.22. Assume that (20) is fulfilled. Then the C*-algebra generated by Ty, ¢ € L>(p), is a
proper subalgebra of B(H?(p)).

Remark 3.23. We conclude our brief excursion into H?(p) spaces by a simple example. Take p to be
the Lebesgue measure on (0,1). Then

1
Qp = ——, TLGN,
n+1

H?(p) is but our old friend A%(D), and the last Corollary reduces to Theorem 3.2. [
Now let us turn our attention to the Fock space A?(C). Recall that it has an orthonormal basis {e,, }°° ,
en(z) = (n!2”)71/2 z".
Denote Z the forward shift operator with respect to this basis, and let

O(z) = ‘27' = elar8 7,
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Theorem 3.24. (i) The operator Ty is a compact perturbation of Z. Consequently, A(Ts) = A(Z).

(ii) Ty € A(Tg), i.e. TyTe — TeTy € Comp, for every f € L(C).

(iii) There exists a unitary operator W : H*> — A%(C) such that the transformation T — W*TW is a
C*-isomorphism of A(Z) onto A(S).

In particular, the C*-algebra generated by all Ty, f € L>°(C), is a proper subset of B(A?(C)).

Proof. (i) Compute:

“+ o0 27T ) dt .
(Tpz",2™) = / L gngm du(z) = / / prme(n=mtl)it T2 o=r* /2, g,
c Iz 0 0 2m

This is zero unless m = n + 1, and in that case it equals
+oo 2 1 2 2 Foo 1 1 t 1 3
/ r2tle=m" 20 gy :/ 2"t s tae Tt dt = 2" TR (n + 5),
0 0

where I is Euler’s gamma-function. Thus

0 ifm#n+1
(n127)=1/2 (ml2m)=1/2 2730 (n + 2) if m=n+1.

(Toen, em) = {

Consequently, Tge, = cpeny1, where

o - F(n—i—%)
" T(n+1)Y2T(n+2)1/2°

It follows that
Z —Te = 7 .diag(l — cp),

and in order to verify our claim it suffices to show that ¢, — 1 as n — +00. According to Stirling’s formula,
C(z+1) ~V2rm 2 e

where ”~” means that the ratio of the right-hand to the left-hand side approaches 1 as x — 400. Substituting
this into the expression for ¢, produces

+ 4t ey Vo
N2m . (n+1)5tie 5 2.92n

(

.€

3

Cp ~

ENE
w3

nzt
The terms containing 7 cancel, as well as those containing e, and what remains is the product of

n/: ntl
()

" 1 R+ D)1/

which tend to e/, e='/* and 1, respectively. So, indeed, ¢, — 1 and the assertion follows.
(i) Recall the formulas (cf. Proposition 1.6)

(22) Trg —T5Ty = H%Hgv TTy =TTy = Hg*Hf - H?qu
which hold for arbitrary f,g € L°°(C). Owing to the second one,
TiTe — TeTy = HgHy — H%Hq>

will be compact for arbitrary f € L*°(C) if Hg, Hz € Comp. The latter is equivalent to HgHg, H%Ha €
Comp, respectively, and the first formula in (22) shows that this in turn is equivalent to

I-T3Ts and I —TeTy € Comp,
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respectively. Owing to part (i), the last two operators are compact perturbations of I — Z*Z = 0 and
I—Z7Z* = (., eg)eqp, respectively, and the result follows.
(iii) Define W : H? — A?(C) by mapping the standard basis of H? onto the basis {e, }nen of A%(C),

W: 2" H* — A%(C).

z
€
Vnl2m

This operator is unitary and the transformation 7" — W*TW maps Z to S; hence, as before, it induces a
C*-isomorphism of A(Z) = A(Tp) onto A(S). The proof is complete. O

A variant of this result may also be obtained for A2(C"), N > 2; however, things come off a little
different this time — the corresponding C*-algebra is no longer spatially isomorphic to A(S). All the same,
it is still a proper subset of B(A?(C™)).

We shall need some results of Berger and Coburn [6]. Define

ESV :={®c L>®(CN): lim esssup lo—w|<1|®(2) — ®(w)| = 0}

|z]—+o0

and
BCESV :={® ¢ ESV : & is continuous on C}.

Here, as usual,

N 1/2
ja] = (Z |) for & = (21,2, ..,an) € CV.

n=1
Further, let S := {x € CV : |z| = 1} be the unit sphere in CV.

Proposition 3.25. Let G:S — C be a continuous function on S. Define

(23) o (rz) = {fc(;?i) ZZ: i 1 2€8,0< 1< 400,

Then

(i) ® € BCESV, and

(i) the Hankel operators Hy, Hg are compact.
Assume further that

(24) G(S) =T.

Then also
(iii) oe(Te) =T and
(iv) indTe =0 if N > 2, and ind Ty is minus the winding number of the function G : T — T (with
respect to the origin) when N = 1.

Proof. (i) ® is continuous and bounded since G is, and ® € ESV in view of [6], Theorem 3(i).
(ii) Theorem 11 of [6] says that Hg and Hg are compact for arbitrary ® € ESV.
(iii) & (iv) Immediate consequences of [6], Theorem 19. O

Remark 3.26. It is possible to prove part (iv) in another way, using the idea from the end of the
proof of Theorem 3.10. Suppose that 6 — Gy, 0 € (0,1), Gy € C(S), is a homotopy between Go and Gy;
construct functions ®¢ according to (23) and consider the Toeplitz operators Tg,. It can be shown that Ts,
are Fredholm operators V8 € (0,1), and, consequently, ind Tp, = ind Te,. If N > 2, the homotopy group
(S, T) = man—1(T) is trivial; hence there is a homotopy connecting Go = G to Gy = 1. Tt follows that

indTe =ind7T7; =ind I = 0.
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If N =1, n(T, T) = m(T) is isomorphic to Z; an isomorphism is given by G — wind G. It follows that
there is a homotopy connecting Go = G to Gy, Gy (') = €*, k = wind G, and

iIlqup == inqu>1 = —k.

Thus the occurence of two cases — N = 1 versus N > 2 — in the part (iv) is of topological nature, being
related to (non)vanishing of the homotopy groups 7, (T). O

Theorem 3.27.  Assume that the functions G : S — C and ® : CN — C satisfy the conditions
(23),(24) and that N > 2. Then

(a) Tt € A(Tp) for all f € L=(CN).

(b) There exists a unitary operator W : L>(T) — A%(CYN) such that the transformation T — W*TW
is a C*-isomorphism of A(Tg) onto A(U), where U is the bilateral (forward) shift operator (the
maultiplication by z) on the Lebesque space L?(T). In particular, A(Ty) is a C*-algebra.

(¢) The operator J : L*(T) — L*(T), Jf(2) := f(—2), does not belong to A(U). Consequently, A(Ts)
is a proper C*-subalgebra of B(A%(CY)).

Proof. (a) For arbitrary f € L>(CY),
TiTe —TeTy = H%Hf — H;Hq) (cf. Proposition 1.6),

and the operators Hg, Hg are compact by Theorem 3.24(ii).
(b) According to Theorem 3.24(iii) & (iv), 0¢(T9p) = T = 0.(U) and ind Ty = 0 = ind U. Hence, by the
Brown-Douglas-Fillmore theory [8], there exists a unitary operator W : L?(T) — A%(CY) such that

W*TeW = U + K,

where K € Comp. The result follows in the same way as in the proof of Theorem 3.7, with S replaced by U.
(c) With respect to the standart orthonormal basis {e,, }nez, €n(2) = 2", z € T, of L?(T), the operators
J and U are given by
Ue, =eni1, Jen, = (—=1)"e, (neZ).

It follows that UJ — JU = 2U J; but the operator UJ is unitary, and so certainly not compact. O

Remark 3.28.  To be precise, we ought to check that there exist functions G and & satisfying the
conditions (23) and (24). As an example, take G(z) = etRe =1 [

The argument above applies also in the case N = 1; one has only to replace L?(T) by H? and U by S*
or S*(=%) when k = —ind Ty = wind G # 0. In particular, if G : T — T is the identity, we get another proof
of Theorem 3.24.

What’s the relationship between A(S) and A(U)? Since H? is a subspace of L?(T), we may consider

B(H?) to be a subset (in fact, a C*-subalgebra) of B(L?(T)) by identifying T € B(H?) with (g 8) €
B(H?> & H?), H? := L*>(T) © H?. The mapping A — P, A[H?, i.e.

(A“ A”) € B(H? & H2) — Ay € B(H?),
A21 A22

is then a projection of B(L?(T)) onto B(H?).

Theorem 3.29. Under this identification, A(S) becomes A(U) N B(H?). Moreover, Py A|H? € A(S)
whenever A € A(U).

Proof. With respect to the decomposition L?(T) = H2 ¢ H?,

(S K
o0 %)
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where K = (.,%)1 is a compact operator. If T' € B(H?), then

T 0\, (T O\_ (TS TE;\ (ST 0\_/(IT.5] TK
0 0 o0o/~\o o o o)=L 0o o0 )
All A12

and so o € A(U) it T € A(S). As for the second assertion, let A =

then

) € B(H? ® H?);
AU—UAZ<A115—SA11—K1A21 *)

* *

Hence A;; = PLATH? € A(S) if A€ A(U), qed. O

Thus, A(S) is ”smaller” then A(U) in the sense that the former is C*-isomorphic to a subalgebra of the
latter. All the same, it is still possible that A(S) and A(U) are actually C*-isomorphic. We are only able
to prove that, if such is the case, the isomorphism can not be spatial, i.e. of the form T +— WTW™*, where
W : H? — L?(T) is unitary (T € A(S), WTW* € A(U)). Before exhibiting the proof, let us first establish
some general properties of the algebras A.

In general, there are two candidates for the definition of A, which have happened to coincide in all cases
encountered so far. Let H be a separable infinite-dimensional Hilbert space and M € B(H). Define

AM):={T € B(H): MT —TM € Comp(H)}

and
AYM) :={T € B(H) : T — M*TM & Comp(H)}.

The first investigation of A*(S) is reported to have been done by Barrfa and Halmos, whose results, unfor-
tunately, appeared only as a rather unavailable preprint [4], and so remain unknown to the present author.
Afterwards these spaces seem to have received almost no attention at all, although many results on essential
commutants may be phrased in terms of them. Let us mention the theorem of Johnson and Parrot [20]
which says that
(| AMy) ={M+ K : ¢ e L>(T), K € Comp},
¢€L>(T)

where My is the operator of multiplication by ¢ on L?(T), and two results of Davidson [11] concerning
Toeplitz operators on HZ:

ﬂ AYTy) = {Ty + K : ¢ € L>°(T), K compact },

6 inner

and
ﬂ (A(Ty) N A(Ty)) ={Typ + K : ¢ € QC, K compact}.

0 inner

(QC = (H*® + C) N H> + C are the quasicontinuous functions on T.)
The following proposition describes elementary properties of A(M) and A*(M).

Proposition 3.30. (a) A(M) and A*(M) are norm-closed subspaces of B(H).
(b) A(M) is an operator algebra with identity. It contains M, Comp, and may be even all of B(H). It
is a C*-algebra if M is selfadjoint; in general, A(M*) = A(M)".
(c) AY(M) is a selfadjoint set containing Comp. It may be all of B(H), but may also reduce merely to
Comp.
(d) A*(M) is C*-algebra if [ — MM?* € Comp, and contains the identity if and only if [ — M*M & Comp.
(e) A(M)= A*(M) <= M is essentially unitary, and then it is a C*-algebra with identity.
Proof. (a) Obvious.
(b) If A,B € A(M), then [AB,M] = A[B, M] + [A, M]B is also compact, hence AB € A(M). The
assertions I, M € A(M), Comp C A(M) are immediate, and so is A(M*) = A(M)". If M is selfadjoint,
M* = M, whence A(M) = A(M)" is also selfadjoint, and so is a C*-algebra. If M € Comp, A(M) = B(H).
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(c) The first two assertions are straightforward. If M € Comp, A*(M) = Comp; if M = I, A*(M) = B(H).
(d) The second statement is clear; if I — M M* € Comp and A, B € A*(M), then

AB — M*ABM = A(B — M*BM) + (A — M*AM)M*BM — M*A(I — MM*)BM € Comp,

and so AB € A*(M). Owing to (a) and (b), .A*(M) must be a *-subalgebra of B(H), hence a C*-algebra.

(e) If A(M) = A*(M), then I € A*(M) owing to (b), and so I — M*M € Comp; moreover, M &
AM) =M € AY(M) =M* € AY(M) =M* € A(M) owing to (c), i.e. M is essentially normal. Tt follows
that M is essentially unitary. On the other hand, if M is essentially unitary, then

A— M*"AM € Comp = M(A—M*"AM)=MA—-AM + (I — MM*)AM € Comp =

= MA— AM € Comp,

and
MA— AM € Comp = M*(MA—AM)=A—-M*"AM — (I — M*M)A € Comp =

= A— M*"AM € Comp,

hence A(M) = A*(M); it is a C*-algebra by virtue of (d). O
The last two properties suggest it might be helpful to try to describe A(M) and A*(M) in terms of the
image m of M in the Calkin algebra

Calk(H) := B(H)/Comp(H).

We will denote the images of R, S, T, M, ... € B(H) in Calk(H) by corresponding small letters r, s, t,m, ...,
and by 7 the canonical projection B(H) — Calk(H); 7 is a C*-homomorphism.

Proposition 3.31. (a) T € A(M) <= t € 7(A(M)), and similarly for A*(M).

(b)) T € A(M) < tem/, the commutant of m in Calk(H).

(c) T € AA(M) < t=m"tm.

(d) A(M) is a C*-algebra iff m is a normal element of Calk(H).

(e) m"” C m’; in particular, continuous functions of m belong to w(A(M)).

(f) AM) C AR) iff r € m".

Proof. (a) A direct consequence of the fact that A(M), resp. A*(M) contain Comp.

(b) and (c) Straightforward.

(d) A(M) is a C*-algebra iff m’ is. In that case, m* € m/, and so m is normal. On the other hand, if
m is normal and tm = mt, then t*m = mt* by the Putnam-Fuglede theorem; hence t* € m/, and so m’ is a
C*-algebra.

(e) m € m’ implies m"” C m/; continuous functions of m belong to m”; m(A(M)) = m’ by (a).

(£) A(M) C A(R) iff m’ C »'. If this is the case, then m” D r” and so r € " C m”. On the other hand,
ifrem/” thenr Dm"” =m/. O

As a parting shot, we prove the promised theorem that the algebras A(U) and A(S) are not spatially
isomorphic. A result of Johnson and Parrot, already alluded to above, will be needed:

Theorem 3.32. If T is an operator on L*(T) such that [T, M| is compact for all operators M of the
form

25 M=M;+ K, ¢ € L=(T), K compact,
é

then T is itself of this form.
Proof. See [20]. O

The Johnson-Parrot theorem may be rephrased in the following way: Let
Lo = {m(My) : ¢ € L>°(T)} C Calk(L*(T)).
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Then Lo coincides with its commutant: Loo' = Loo.
Lemma 3.33. If an operator M of the form (25) is Fredholm, then ind F = 0.

Proof. We shall use the previous theorem”®. If M = My + K, is Fredholm, then m = (M) € Calk
is invertible. If t € L., then mt = tm and so

0=m"t(mt —tm)m™* =tm™* —m™ ¢,

1

whence m~! € L., '. By virtue of the Johnson-Parrot theorem, m~! € L.; consequently, there exist

1 € L*(T) and K5 € Comp such that
(My + K1) My =1 + K,

which implies that
Af@p,l € Comp.

Let {2"},ecz be the standard basis of L?(T); since 2"-%0, the last condition forces
[Mgyp—12"] — 0.

But ||[Mgy—12"||* = ||¢yp — 1|3 for all n € Z; therefore ¢yp = 1 and M, is the inverse of My. It follows that
ind My = 0, and so likewise ind M = ind (My + K;) =0. O

Theorem 3.34. Let S be the unilateral forward shift on H?, U the bilateral forward shift on L*(T),
W : H? — L*(T) a unitary operator, and Y = WSW*. Then it cannot happen that A(U) C A(Y). In
particular, the algebras A(U) and A(Y) are not spatially isomorphic.

Proof. By virtue of the part () of the last proposition, A(U) C A(Y) is equivalent to y € u”. Since
U = M, is of the form (25), we have u € L, and the Johnson-Parrot theorem implies that

v C L =L =L Cul.
Hence y € Lo, i.e. Y = My + K for some ¢ € L*°(T) and K € Comp. Because Y = WSW*,
0.(Y) =0.(5) =T,
so Y is Fredholm. In view of the preceding lemma, indY = 0. But
indY =ind(WSW*) =ind S = —1

— a contradiction. Thus it can never happen that A(U) C A(Y), or even A(U) = A(Y). O

We close this chapter with two open problems.
Problem. Are the C*-algebras A(U) and A(S) (non-spatially) isomorphic?
Problem. Denote W and Wy the unitary operators

Wg: H> — A*(D), 2" € H? — n+12" € A%(D),

A more elementary proof is bound to exist, but we won’t bother with it, since we are going to use the
Johnson-Parrot theorem in the sequel anyway.

80.K., here is an elementary proof. Since F, hence also My, is Fredholm, ker M, must be finite-dimensional
and Ran Mg must be closed. If ¢ vanished on a set & C T of positive measure, the kernel of My would
contain an isometric copy of L?(E) and thus would not be finite-dimensional. Consequently, ¢ # 0 almost
everywhere on T; it follows that My is injective. By the open mapping theorem, Ran M, is closed if and
only if My is bounded below, which takes place iff |¢| is bounded away {rom zero. But then M, is invertible,
its inverse being M; /4; hence, ind My = 0, and so ind F' = 0 as well.
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resp.
Wr:H* - A%(C), 2" e H?w— (nl2")71/22" ¢ 4%(C),

constructed in the paragraph following Corollary 3.6 and in course of the proof of Theorem 3.24(iii), respec-
tively. Denote further
B¢ = WET¢W3 for ¢ € L™ (D),

resp.
F¢ = W;T¢WF for ¢ € LOO(C),

and let 7g, Tr be the C*-subalgebras of B(H?) generated by {By : ¢ € L>(D)} and {F} : ¢ € L>(C)},
respectively. Theorems 3.2 and 3.24 then assert that

Tp C A(S) and Tr C A(S).

Are these inclusions strict?
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Chapter 4. THE TOEPLITZ CALCULUS

In this chapter, Toeplitz operators both on the Hardy space and the Bergman space, as well as on the
Fock space, are dealt with; to prevent confusion, the following convention will be observed throughout: T
always denotes a Toeplitz operator on H? (i.e. ¢ € L*°(T)), By stands for a Toeplitz operator on A%(D)
(¢ € L>°(D)), and Fy for a Toeplitz operator on the Fock space A%(C) (¢ € L>(C)). The algebra A(S)
will frequently be abbreviated to \A. When convenient, the spaces A%(D) and A?(C) will be identified with
H? by means of the unitary operators Wp and W, respectively, mentioned at the very end of the previous
chapter.

We begin by recalling several facts from the theory of Toeplitz operators on H2. Denote

T :={Ty : ¢ € L=(T)}
and let 7y be the C*-algebra generated by 7g. Further, define

(26) Go:={T € B(H?) : lim ||Te,| =0} ={T € B(H?): lim ||TS™f|| =0Vf € H*},

where S = T, is the (forward) shift operator with respect to the standard basis {e,}nen, en(z) = 2", of
H?. The equality (26) is easily verified: if T'e,, — 0, then T'S™p — 0 for every polynomial p; since these are
dense in H? and the operators T'S™ are uniformly bounded (by ||T||), TS™f — 0 for any f € H?.

The following are classical results from the theory of Toeplitz operators on H2. The abelianized algebra
Ty, i.e. Ty factored by its commutator ideal Com 7y, is (isometrically) C*-isomorphic to L*°(T), i.e. there
is a contractive map

(27) §: Ty — L=(T)
which is linear, multiplicative, surjective, preserves adjoints, and ker ¢ = Com 7. The mapping
¢ =Ty
is an isometric cross-section of £, i.e. £(Ty) = ¢. Thus, every operator T' € Ty admits a unique decomposition
T=Ty+ X, X € Com Ty, ¢ € L*°(T),

and ¢ = &(T); that’s why the mapping ¢ is sometimes called the symbol map. This map, in fact, can be
described somewhat more explicitly: it can be shown that

Com Ty C Gg;
consequently, for arbitrary T' € 7p, the limit

Mf = nlin;o usnrstf
exists for every f € H2. Here H? is thought of as a subspace of L?(T) and U is the (bilateral, forward) shift
operator on L?(T). The resulting operator M : H? — L?(T) is bounded (by ||T||, as a matter of fact) and
commutes with U, so it must be of the form My for some ¢ € L*°(T). Now it’s already easy to verify that
¢ = £(T). Thus
&(T) = lim U*"Te, € L(T) C L*(T).

n—oo

We are not going to prove the facts mentioned above, but rather refer to the books of Douglas [12] or
Nikolskii[22].
Note also that, owing to the multiplicativity of &,

(28) E(TpTy) = E(Ty)E(Ty) = o = E(Tyy)  Vo,9 € L=(T),
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which implies that ker £ = Com 7y contains not only the commutator [Ty, Ty ], but even the semi-commutator
[T, Ty) :=Toy — TyTy

of T¢ and Tw.

The objective of this chapter is an attempt to construct a similar theory, or ”symbol calculus”, for the
algebras 7p, 7r or even A. (The algebra A(U) shall not be explicitely considered, the reason being that the
larger the algebra, the less chance to construct some calculus; and A(U) is ”larger” than A(S) = A — cf.
Theorem 3.29. All the same, most of the ideas below can be applied to A(U) as well.)

The most naive idea (e.g. for 7g) is to try to obtain a continuous linear mapping

(29) {1 — L=(D)

which is be multiplicative and admits ¢ — By as a cross-section. Unfortunately, this is doomed to a failure:
the following lemma shows that Com 7p D Comp, and so if g is to be multiplicative, its kernel must contain
Comp. But there exist non-zero compact Toeplitz operators on A%(D) (cf. Corollary 1.5), and so ¢ — By
cannot be a cross-section of {g. For 7r and A the same situation occurs.

Lemma 4.1. (a) The algebras T, Tr and A contain Comp.
(b) The commutator ideals ComTg, ComTr and Com A contain Comp.

Proof. (a) 75 and 7y contain Comp in view of Theorem 2.4, and A D 7p.

(b) The algebras T, 77 and A are not commutative, so it suffices to show that Comp is the smallest
proper (closed, two-sided, selfadjoint) ideal in each of them. We shall prove this for 7g; the proof for 7F is
similar, and Com .4 D Com 7p since A D 7p.

So let Z be a proper (closed, two-sided, *—) ideal in 75. Take a nonzero T' € T and vectors z,y # 0
such that Tx = y. In view of (a), the operators A = (., e)x and B = (.,y)f belong to Tp for arbitrary e, f.
Since 7 is an ideal, BT'A = ||y||*(.,€) f belongs to Z. It follows that Z contains all rank one operators, hence
all finite rank operators (by linearity), which are dense in Comp. [

So let us give up multiplicativity, and ask only for a continuous linear map (29) which admits ¢ — By
as a cross-section. Unfortunately, we are doomed to fail once again. The reason is that {g(By) = ¢ implies
|Bsll > 1€ |¢]loo, i-e. the mapping ¢ — By would have to be bounded below. This is, however, easily
seen not to be the case. If x is the characteristic function of the disc {z : |2|*> < R}, 0 < R < 1, then By is
a diagonal operator with weights (cf. Proposition 1.3)

n+1

R
n = Ddt =
c /0 (n+1) i

which implies || By || = R while [|¢]|- = 1.

This suggests that, perhaps, there is nothing wrong with multiplicativity, but rather with the target space
L>(D); so let us insist on multiplicativity and try to replace L> (D) by something else. A natural candidate
for the ”something” turns up quickly. Namely, the C*-algebras A/Com A, 7g/Com 7p and 7Tr/Com Tp
are commutative, and therefore C*-isomorphic to the spaces of all continuous functions on their maximal
ideal spaces, via the Gelfand transform. It remains to describe these spaces and see whether they are not
somehow connected with L*°(D) (or L*°(C), respectively) — for instance, they might be homeomorphic
to some subsets of the maximal ideal space of L°(D) (or of L>°(C), for that matter — these two are
homeomorphic) , or something like that. This description in turn amounts to identifying the multiplicative
linear functionals on A/Com A, Tg/Com 75 and Tr/Com TF, respectively — or, which is the same, on A,
T, Tr. Thus we are lead to a fundamental question: are there any multiplicative linear functionals on these
algebras at all?

Before going on, let us make two remarks. First, one might try to obtain a multiplicative linear functional
e.g. on A by restricting to A a multiplicative linear functional on B(H?). This is, however, impossible —
there are no multiplicative linear functionals on B(H?) and, consequently, Com B(H?) = B(H?). To see this,
decompose H? into Hy @ H,, where both H; and H, are infinite-dimensional. Then there exists a unitary
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operator which maps H; onto H, and vice versa; denote it V, and let P; stand for the orthogonal projection
onto H; (i = 1,2). Now, if ¢ were a nontrivial multiplicative linear functional on B(H?),

P+ P=1 = ¢(P)+¢(P) =1,
VIV =1 = ¢(V)o(V) =1,
VIRV =Py = ¢(P2) = ¢(V*)o(P1)p(V) = (1),
so ¢(P1) = ¢(P2) = 1/2; but
P1P2 :O —— %:¢(P1)¢(PZ):O7

a contradiction.
Second, we have noted that the symbol map & for Toeplitz operators on H? satisfies (28)

§(TyTy = Toy) = 0.
It should be pointed out that this relation cannot be satisfied on the Bergman space A%(D) or the Fock space

A?(CQC), i.e. for algebras 7 or Tr (or A): the following example shows that there even exists ¢ € L>°(D)
such that [B}, By) is a nonzero multiple of the identity.

Example 4.2. Define the function ¢ € L>*°(D) by

¢(z) = exp(ilnln #)

In view of Proposition 1.3, By is a diagonal operator with weights
! 1
Cn = / exp(ilnln ;) .(n+ Dt dt.
0
Changing the variable to w = 2" gives

1 1
1 - 1
Cn = / exp(ilnln — —iln(n 4 1)) dw = e~ +1) / exp(ilnln —) dw.
o 1
Substituting once more, namely, y = In —, yields
w

1 —+ o0
1
/ exp(ilnln —) dw = / exp(ilny).e Ydy=T(i+1) (popularly ”i!”).
0 w 0
Also, Bg =B = diag(¢,,) and B$¢ = [ since ¢ is unimodular on D. Summing up, we have

By, — BBy = diag(1 — |c,[*) = diag(1 — [T(i + 1)[*) = (1 = [T(i + 1)[*).1

It remains to show that |T'(¢ + 1)| # 1. To that aim, recall the formulas for the gamma function

—_— ™

[(x+ 1) = a2l(x), ['(z) =T'(x), L(z)F(1—2x) =

sinmz’
and compute:
TG+ 1> =T3¢ + DI(1 —d) =i0@E)T(1 — i) =
T 2

Sin e em —e T
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On the Fock space, a similar counterexample can be constructed. The function ¢ € L>*°(C),
¢(2) = exp(ilz[*/2),

is unimodular; the corresponding Toeplitz operator Fy is diagonal (cf. Proposition 1.7) with weights

+o0 tne—t
: [ €
Cn :/ et ' dt.
0 n-

Expanding e into the Taylor series and integrating term by term® yields

Cn = i (”Zk)zk =(1—i)™L

k=0

Consequently, F;;, — FoFy, = diag(1—|c,|*) = diag(1—27"""), which is an invertible operator and so cannot
belong to ker {r for any nonzero {p. O

Now let us come back to the search of multiplicative linear functionals on the three algebras 75, 7r and
A. Owing to Lemma 4.1, every multiplicative linear functional on A must vanish on Comp; consequently,
it suffices to look for multiplicative linear functionals on A/Comp, and similarly for 75 and 7. These are
subalgebras of the Calkin algebra Calk(H?) = B(H?)/Comp(H?), which suggests that some techniques used
for the study of Calk might turn useful. The algebra .A/Comp C Calk admits a particularly easy description
(cf. Proposition 3.31(b)): it coincides with the commutant of the image s = w(S) of the shift operator S
in Calk(H?). For this reason, we shall be concerned mainly with A from now on, but most of what is said
applies to 75 and 77 as well.

In the classical (i.e. H?) case, a powerful tool is provided by the dilation theory, which enables one
to ”1ift”, in some sense, a Toeplitz operator T, from H? to an operator on a larger space (namely, L*(T))
enjoying certain properties (see e.g. [25]). It turns out that a similar lifting can be constructed using certain
representation of the Calkin algebra. The classical lifting mentioned above (i.e. of T to L?(T)) may then
be obtained by passing to certain subspace, isomorphic to L?(T) (the subspace is the same for all operators
Ty). We proceed to describe the representation of Calk(H?); the idea goes back to Calkin [10].

Denote by 7 the canonical projection of B(H?) onto Calk(H?); to simplify the notation, we shall often
write (once again) t, s, etc. for (T, w(5), etc.

We begin by a brief excursion into Banach limits. Loosely speaking, they are extensions of the usual
”lim” to the space [*° of all bounded sequences of complex numbers. In more precise terms, a Banach limit
is a mapping Lim from [*° into C which satisfies the following conditions:

(C1) it is linear, of norm 1, and extends the usual lim (i.e. Lim f, = lim f,, whenever the latter exists);
(C2) it preserves complex conjugation, i.e. Lim f, = Lim f, V{f,} € [®); consequently, Lim f, is a
real number when f, is real for all n € N;
(C3) it is positive, i.e. f,, > 0 Vn € N implies Lim f,, > 0.
To obtain such a functional, one may procced as follows. First, use the Hahn-Banach theorem to extend
“lim” to a linear functional on [*° without increasing the norm; this gives a functional ”Lim” which satisfies

(C1). Next, replace Lim by Lim Jn + Jn

Finally, observe that (C1) and (C2) already imply (C3). It suffices to show that if 0 < f,, <1 for all n, then
0 < Lim f, < 1. But

if necessary; the resulting functional satisfies both (C1) and (C2).

(0< f,<1Vn) < (fnisreal, |fp] <land |l1- f,|<1Vn) =

= (Lim f, is real, |Lim f,,| <1 and |1 — Lim f,| < 1) <

(by (C1) and (C2)) & 0<Limf, <1

9This is legal for fol, since the Taylor series converges uniformly for 0 < ¢ < 1; as for f1+00, split the series
into four (corresponding to i* = 41, +i) and apply the Lebesgue Monotone Convergencs Theorem to each.
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Thus, Banach limits exist in abundance. There are two additional conditions one could impose:
(04) Lim fn+1 = Lim fn;
(C5) Lim f,¢, = Lim f,, Lim g,,.
An unpleasant thing is that these two conditions conflict with each other: let

1 if nis even
Ty = Yn = Tn+1-

0 ifnisodd

If there were a "Lim” which satisfies both (C4) and (C5), we would have Limz,, = Limy, (by (C4)) and

Lim(z, + y») =1, whence Lim z,, = Limy,, = 1/2; but Lim z,, . Limy,, = 0 by (C5) — a contradiction.
All the same, it is quite easy to construct a Banach limit which satisfies either only (C4), or only (C5).

The former may be obtained from every Banach limit by replacing it with Lim (n%_l ZZ:O xk). This does

not affect (C1) — (C3) and

. 1 & . 1 & . To— Tpgl
Lim <n+1 ;03%) — Lim (n—l—l kz_()ka) = Lim hrl =0.

To obtain a Banach limit satisfying (C5), adopt a different approach. With pointwise multiplication, {*° is
a commutative Banach algebra, and hence is isomorphic, by means of the Gelfand transform, to the space
C(9M) of all continuous (complex-valued) functions on its maximal ideal space 9. This space is usually
denoted AN, since it coincides with the Stone-Cech compactification of the set N equipped with the discrete
topology. The elements of 9t = BN are multiplicative linear functionals on N and are known to satisfy (C1)
— (C3) and (C5), except for the fact that they need not extend the functional "lim”. The set N can be
embedded into SN in a natural way; the multiplicative linear functional corresponding to n € N is given by

n:{xy} €l®—ux, eC.

We assert that if ¢ € SN \ N, then ¢ extends ”lim”. To prove this, it suffices to check that ¢({z,}) =0
whenever lim, . z, = 0. Since N is dense in SN, there exists a net {n,},cao C N such that n, — ¢. If
there were a number m € N which occured in {n,},ca an infinite number of times, we would have ¢ = m,
contrary to our assumption ¢ € SN \ N. It follows that n, — oo, whence

¢({zr}) = lim 7, ({24 }) = lim @, =0
whenever limy_. o x = 0, and our claim is verified.
Thus, Banach limits satisfying either (C4) or (C5) exist in abundance, too. In the sequel, a Banach
limit, always denoted ”TLim”, is assumed to satisfy only (C1) — (C3); it will be pointed out explicitely when

one of the additional properties is required.
Now we may proceed to introduce the Calkin representation. Let

L= {{mk}keN cxp € H? Vk € N, and a:kﬂO}

be the set of all sequences of elements of H? which tend weakly to zero. With componentwise addition and
scalar multiplication, £” becomes a vector space. Let Lim be a Banach limit. The functional'®

Izlle := (Lim [|lzx|32)"/*, @ = {ox} € L
is easily seen to be a pseudonorm on L£”. The factor space

L =L {xel |z|=0}

10Tf Lim satisfies (C5), ||z|| 2 equals Lim ||z
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is a normed linear space with respect to the norm ||z||z; in fact, it is even a pre-Hilbert space with respect
to the scalar product
(x,y)c = Lim{z,, yn), x,y € L.

Let £ be the completion of £’. Then L is a Hilbert space and £’ is a dense subset of £. For notational
convenience, the elements of £ will be denoted simply as ¢ = {z,}, v = {yx}, etc., which is not so
cumbersome as writing rigorously  mod {w € L : ||w||z = 0}, or something similar.

Remark 4.3. The space L is uncomfortably large — it is not separable. This can be seen as follows.
Let {gn}nen be the set of all rational numbers (¢, 7# gx if m # k). For each irrational number «, select a
sequence A, C N such that limjea, ¢ = o Thus if o # 3 are irrational numbers, the sequences A, and Ag
have at most a finite number of terms in common. Let X, be the sequence {e;};ea,, where {¢;};en is, as
before, the standard orthonormal basis of H2. Then X, € £” and

a?

| Xo — Xsll7z = Lim [lea,, () — ey II° = 2

for arbitrary irrational numbers a # . Since there are uncountably many irrational numbers, £ must be
inseparable. [

Let T be a bounded linear operator on H?. If x,~%0 in H?, then also Tz,—0. Consequently, the
mapping
{zn} = {Txr}

maps L” into L”; because
Lim || Ty |[* < Lim(|| 7% [l ]1?) = | T|* . Lim [Jzx|1%,

it does not increase norms, and so can be extended to a bounded linear operator on £, which will be denoted
T%. Thus T* is a linear operator on £ and

1T 2w < |IT||-
Let us establish some properties of the space £ and the transformation 7' +— T* which will be needed in the

sequel.

Proposition 4.4. The transformation T — T* is linear and contractive, (T*)* = (T*)* and (T1Ty)* =
THTY.

Proof. The first two assertions have been verified in the preceding paragraph; as for the other two, it
suffices to check them on elements of £”, which reduces to direct consequences of the properties of Banach
limits. [

Proposition 4.5. T% =0 iff T € Comp.

Proof. The last proposition implies that the kernel of the transformation T +— T* is an ideal (two-
sided, closed, selfadjoint) in B(H?). There are only three such ideals : {0}, Comp and the whole B(H?). Since
(Ig2)* = I, it suffices to show that K* = 0 if K € Comp. But K € Comp and z,,~0 implies |Kz,| — 0, i.e.
Ktz =0 for x € £"; by continuity, K* =0. O

Corollary 4.6. ||T*|| < ||T||c, the essential norm of T. Consequently, the transformation T s T*
induces a mapping t — t* from the Calkin algebra Calk(H?) into B(L). This mapping is an (isometric)
C*-isomorphism of Calk onto a C*-subalgebra of B(L). Hence, we have even ||T%| = ||T||..

Proof. The preceding two propositions imply that
ITH| = 7% + KF|| < |T + K|

for every compact operator K; hence ||T%|| < ||T||c. The rest follows from Propositions 4.4 & 4.5 and the fact
that an injective C*-homomorphism is isometric. [
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Corollary 4.7. Tc€ A < tcs < Ttec SV,

Proof. Immediate from the last corollary. O

Proposition 4.8. (1) The mapping
J:x € H? — {S"z}en € L

is an isometrical isomorphism of H? onto a subspace H C L. An orthonormal basis for H is given
by

(30) E, =Je,=58"Ey = {epnsr}ren € L, n €N,

where {ey}ren is the standard orthonormal basis of H?.

(2) The operator S* behaves on H as S on H?: 'H is an invariant subspace for S* and S*J = JS, i.e.
S*En = Enys.

(3) The operator S* € B(L) is unitary.

Proof. (1) Since S** — 0 in SOT, S*z50 for every z € H?, so {S*z}ren = Jx € L. Further,
IJ2|Z = Lim [|$*2|* = Lim [|=||* = ||z,

i.e. J is an isometry. Since {e,} is an orthonormal basis for H2, {Je,} must be an orthonormal basis for
‘H = Ran J; the formulas (30) are immediate.

(2) It suffices to check that StEN = Eny1, and that’s immediate from the definitions.

(3) S*S = I, hence S**S% = I.; [ —SS* is a compact operator (namely, (., eg)eg), hence I —S#S# = (.
So, indeed, S* is unitary. [

The last Proposition has an interesting corollary. The shift operator S on H? has a minimal unitary
dilation (in fact, a minimal unitary extension) sensu Nagy-Foias; the latter, in fact, can be identified with the
bilateral shift operator U = M, on L?(T). Owing to parts (2) and (3) of the last Proposition, S* is a unitary
extension (hence, of course, also a unitary dilation) of the operator S*|H which is unitarily equivalent to
the operator S on H2. It follows that S* must contain the minimal unitary dilation U = M, of S — there
has to be a subspace K of £ which contains H, is invariant under S%, and the restriction S*KC is unitarily
equivalent to M, on L?(T). This subspace can be, in fact, described explicitly: it is K = \/ S*"FEy. The

nez
vectors Ey := S*NE,, N € Z, form an orthonormal basis for . These vectors belong to £”, and so may

be written down explicitely:

{0,...,0,e9,€1,€2,...} if N <O,
————
EN: —N zeroes

{en,ent1,EN12, -} itN>0 (as in (30)).

Both expressions may be written as Ey = {S*Veg}ren if we agree to let the undefined terms (for N < 0,
0 < k < —N) be zero. The isometry J : H?> — H may be extended to a unitary map of L?(T) onto K by
setting

JENY=E_x for N > 0.

Clearly the subspace K C £ reduces S*.
Remark 4.9. The orthogonal projection P of £ onto H also admits an explicit description. Since
J is an isometry of H? onto H, P is the orthogonal projection onto Ran J, so P = JJ*. Consequently, for
{z,} € L", Px = Jh where h = J*z € H? is characterized by
<hvg>H2 = <J*I7g>Hz = <z7<]g>£ = L1m<xn, Sng> = L1m<S*nz7hg> \V/g € H27

i.e. h is the "weak limit with respect to Lim” of the sequence S*"x,. O
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Our next aim is to determine 7' € B(H?) for which T* C K and T#[K = 0, respectively.
Proposition 4.10. Suppose that T € A or that Lim satisfies (C4). Then T*K C K if and only if

2

im tg, nox|? = Li th, thn = (Teg, en).
(31) Z|L}¢m k,nJrk‘ LimZ;J knl| > where k,n < ekaf’n>

neZz

Visually, in the matrix of T with respect to the orthonormal basis {e, }, the Lim’s on the left-hand side
are Limits of the entries on diagonals parallel to the main diagonal, whereas on the right-hand side is the
Limit of norms of the columns of the matrix.

Proof. T!K C K is equivalent to T*Ey € K VN € N.
For T € A, T'S* = SiT% so T*Eyx = T'SN Ey = S*N Ey; since K reduces S*, T*Ey € K < T'E, €
K. Because {En} is a basis of K, this is in turn equivalent to

(32) IT*Eol|” = > (T*Eo, Ear)|*.
MeN

Now || T*El|? = L'}Cm | T'S¥eo|?, which is the right-hand side of (31), while
(T*Eqy, Epy) = L%m(TSkeg, SMAke ) = L%m(Tek, EM1k),s

and so (32) is equivalent to (31).
For a Lim satifying (C4), we have to check (32) not only for Ey, but for all Ey,; but

I7*Ex|l® = Lim | TS™ e |* = Lim | 75*eo

(T*En, Ey) = Lim(TSN ey, SMHFeg) = Lim(Tey, err—nik),

the last equalities on each line being a consequence of (C4); thus we arrive at (31) once again. O

The last criterion is rather discouraging; not only because it is somewhat complicated to check, but
also because it depends on the Banach limit chosen. To see this, restrict attention to diagonal operators. If
T = diag(cp), ¢ € C, then (31) reduces to

| Lim ¢ |* = Lim |cg|?.

This always holds if Lim satisfies (C5), i.e. is multiplicative; as we have seen, it cannot satisfy (C4) in that
case, and so our criterion says exactly that T#/C C K for all diagonal operators T belonging to A (i.e. subject
to ¢ — cxr1 — 0). On the other hand, if we take ¢, = (—1)¥, then Lim ¢, = 0 for every Lim satisfying (C4),
while Lim |cg|? = 1. All one can say for general Lim’s is that | Lim cx|?> < Lim |cx|?, the equality taking place
iff Lim |c; — ¢|> = 0, where ¢ = Lim ¢;. In fact,

Lim |c; — c|? = Lim(|ex|* — ene — cex + |c?) =
= Lim|cx|? — Lim ¢y, . ¢ — c.Lim ¢g + |c|* = Lim |c|* — |c[?.
The criterion for T#[K = 0 is much simpler. Define
So := {T € B(H?) : Lim ||Te,|* = 0}.
If Lim satisfies (C4), T € & implies that Lim |[T'S™f||2 = 0 for all f € H2. This is obvious when f is a
polynomial (i.e. a linear combination of e, ); for general f € H?, take a polynomial p such that ||f — p|| < €
and observe that Lim | TS™(f — p)||* < ||T]|?€%, so Lim [|T'S™ f||? < 2||T||?€?; since € > 0 may be arbitrary,

the claim follows.
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Proposition 4.11.  Suppose that T € A or that Lim satisfies (C4). Then T = 0 if and only if
T € &p.

Proof. T![K =0 if and only if T*Ex = 0 for all N € Z.
If T e A T'Ey = S*NT!Ey, so it suffices to determine when T*FEy = 0. But
|T*Ep||* = Lim | T'S™eo||*> = Lim || Te, ||?,

and the assertion follows.
If Lim satisfies (C4), we have

|IT*En|f* = Lim | TS* e ||* = Lim | 78" eo |,

which vanishes iff T € éo. ([

Now let us see how the above apparatus applies to Toeplitz operators on the Hardy space H2. For
T =Ty, ¢ € L=(T) C L*(T), we have (Tey, e,) = ¢, (the Fourier coefficient). Hence, the condition (31)

reads -
Z ‘qbn‘Q = Likm Z |¢n|27

nez n=—k

which is certainly true; thus, TilC C K. Via the isomorphism J between K and L?(T), the operator Ti K
induces some operator on L?(T); let us identify it. One has'?

<T£EN7EM> = Li}gm<T¢Sk+N€0» StMeg) = Likm/ ¢(2)2" N dz = g,
T

and so T(g] = JM, on L*(T), where My : L?>(T) — L*(T) is the operator of multiplication by ¢ € L>(T).

Next, since TilC C K for all ¢ € L*(T), we must also have T*K C K for all T € Ty, the C*-algebra
generated by 7 = {T} : ¢ € L>=(T)}. The operator T#]K then commutes with S*[K; passing to L?(T)
via the isomorphism J, we see that the operator J'T%J commutes with M., so is of the form My for
some ¢ € L>=(T). Thus, in view of the preceding paragraph, T = T + X, where X*[K = 0, i.e. X € So
(Proposition 4.11). Also, [|¢|lecc = || My = ||T£ K|l = ||ITHE|| < ||ITH| = ||T)le < ||IT||, which shows that the
linear map & : Ty — L>°(T) : T — ¢ is multiplicative, because, whenever T}, T € Ty,

(To)* I = (TEK)(TEK) = (M, J ™) (T Mg, I ) = TMy g, T,
and 50 {(T1T3) = @12 = £(T1)E(T3). Consequently, ker £ must contain the commutator ideal Com 7y of the
C*-algebra 7. In fact, a stronger (at first sight) condition holds: ker £ contains not, only the commutator

[Ts, Ty), but also the semi-commutator [Ty, Ty) = Tgy — TpTy, for arbitrary ¢,v € L*°(T):

(TsTp) 1K = (TEONTEIK) = (JMp ) (IMyJ ) = TMgyd ' = T} 1K,

(33) §(Tyy — TyTy) = 0.

Remark 4.12. Before going on, let us briefly discuss the relationship between various spaces of
operators which have appeared above:

Gy = {T € B(H?) : lim |TS"e|| =0} = {T € B(H?): lim |TS"f||=0Vf € H?}

'Here, exceptionally, dz is the arc-length measure on T.
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So = {T € B(H?) : Lim | T'S™eo|> = 0} = (sometimes)
={T € B(H?) : Lim ||TS™f|| = 0 Vf € H*},

A={T € B(H?) :T —~ S*TS € Comp},
T ={Ty: ¢ € L=(T)}, Ty = C*-alg(ty),
Com 7y = the commutator ideal of 7,
Comp = the compact operators in B(H?).

Consider also

E:={T € B(H?) :3 lim UTS™f, Vf € H*} ={T € B(H?) : 3 lim U*"T'S™ ey},

gZ: TH+é0.

It is well-known that Gg D Com 7y = Gy N7y D Comp and 7y = 7y + Com 7; both inclusions are proper.
Consequently,
T+ Comp C 7y + Com Ty =Ty C 7y + G9 = €,

both inclusions being proper (the last equality is easily verified). Next, &g is a proper'? subset of éo, and
so & is a proper subset of E. As for A, we have, of course, 7y C A; further, A\ & # 0 (take the diagonal
operator with weights ¢, = exp(iln(k + 1))) and &g \ A # 0 (find a sequence {cx}ren, consisting only of
infinitely many zeroes and infinitely many 1’s, and such that Lim ¢, = 0; then take diag(cy)). The author
does not know if the sets £\ A, £\ A, A \ £ and &, \ A are empty or not. As for the Toeplitz operators
on the Bergman space A?(D) (remember we have agreed to denote them By throughout this chapter), the

spaces
B :{B¢I¢€LOO(D)}7 TB: C*—alg (TB),

satisfy Comp C 75 C A (the first inclusion is proper, and so is probably the second) and 75 \ € # 0 (the
operator which has served as a counterexample to A C & equals in fact By for a suitable ¢ € L>(D), cf.
Example 4.2). These assertions remain in force for the Fock space A?(C) in place of A%2(D) (cf. also Example
42). O

In the last-but-one paragraph, we have almost recovered the decomposition of 7y and the symbol map
which were mentioned at the beginning of this chapter. Let us try to carry out the same procedure for the
algebra A.

Theorem 4.13. Let T € A and suppose T*K C K. Then T admits a unique decomposition of the
form T = Ty + R, where ¢ € L>®(T), ||¢llcc < |Tlle < ||IT||, and R € &y. Besides, the map T +— ¢ is

multiplicative, i.e. if V€ A, VIK C K, V = Ty + Q, then TV — ¢p. Consequently, TV — VT € éo.
Proof. Repeat verbatim what was said for the case of 7y: T*K ¢ K = J~'T%J : L*>(T) — L?*(T),
TeA = J 'T*J commutes with M., so is of the form My, ¢ € L*°(T). The operator R := T — Ty then
satisfies R¥[KC = 0,i.e. R € &q. [|¢]lec = | Myl = |T*IK| < |T%|| = ||T|le < ||T||, whence also the uniqueness
assertion follows. Finally, (TV)*IK = (T*IK)(V#IK) = (JMpJ 1) (IMyJ 1) = Mgy J = (VT)IK. O
Thus, things go well when T#K C K, and this happens iff T € 75 + Sy =& (and T € A). In general,
we have only the following weaker result.

Proposition 4.14. Let T € A. Then T = Ty + R, where ||¢||c < |T||le < ||T|| and P(K)R*IK = 0.
The decomposition is unique.

Proof. T € A = T!S* = S'T*; denote W = P(K)T[K. Then WK C K and WSHK =
P(K)TS*IK = S*W, because S*P(K) = P(K)S* (since K reduces S*). This implies, once again, J 'W.J =

12To see that the inclusion is proper, take a diagonal operator with weights ¢; such that Limc, = 0 and
lim ¢, does not exist.
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My, ¢ € L=(T), and the operator R := T — T, must satisfy P(K)R*[KC = 0. The norm estimate is proved
in the same way as before. [J

Note that, however, this map T +— ¢ is no longer multiplicative. The operators R such that P(IC)Rjj K=
0 admit an easy characterization: their matrices have entries which ”tend to zero” along every diagonal
parallel to the main diagonal.

Proposition 4.15. Assume that R € A or that Lim satisfies (C4). Then P(K)R!IK = 0 if and only
(34) L‘}ﬁm<R6k7€N+k> =0 VN € Z.

Proof. P(K)R'IK =0iff (R*En,Epr) =0VM,N € Z. If R € A, this is equivalent to (R*Ey, Epy) =
0 VM € Z, which is exactly (34). In the other case,

(R*En,En) = L%fm<R€N+k7 eMtk) = Likm<R€k, EM—N+k)s

the last equality being a consequence of (C4). O

We close this chapter with two observations. The first concerns the Allan-Douglas localization principle
[12]. Because T#S* = S*T*¥ if T € A, the space ker(S* — y) = ker(S** —7i) is invariant under 7% when T € A,
for every i € T. Denote Z,, the (closed, two-sided, *-) ideal in A generated by Comp and S — p. Let A, be
the C*-algebra A/Z,,. Similar construction may be applied to the algebras 7 and 7p.

Theorem 4.16. The mapping W — (W +Z,) uer from A/Comp into the C*-direct sum @ A, is an

pneT
(isometrical) C*-isomorphism of A/Comp onto a C*-subalgebra of @ A,.
pneT
The same assertion is valid for Tg and Tr in place of A.

Proof. Follows from the general Allan-Douglas theory; for instance, apply [7, proof of Theorem
1.34-d.] with A = A/Comp, B = {f(s) : f € C(T)}, where s = 7(9) is the image of S in Calk(H?),
N ={f(s): f € C(T), f() =0}, Jn = T,jComp, Ay = A, /Comp. [

Since, as was pointed out at the beginning of this chapter, Comp C Com .4, multiplicative linear function-
als on A correspond bijectively to those on A/Comp. If ¢ is one of the latter, then ¢(s) € o(s) = 0.(S) = T,
and so ¢(S — p) = 0 for some pu € T, i.e. ker¢ D Z,/Comp, so ¢ induces a multiplicative linear functional
on A, /Comp and hence on A,. On the other hand, every multiplicative linear functional on A, yields a
multiplicative linear functional on A. Thus, the problem of existence of multiplicative linear functionals on
A can be reduced to the same problem for A,. Unfortunately, the latter seems to be equally hopeless to
solve. We conclude this small digression with a proposition which shows that it suffices to deal with A;.

Lemma 4.17. For e € T and f a function on D or C, let (R.f)(z) := f(ez). Then R;' = Re, R, is
a unitary (i.e. isometric and onto) operator on A?(D), L>°(D), A2?(C) and L>°(C), and the transformation
T — R:TR. is an isometry on both B(A%(D)) and B(A%(C)) which maps Comp into Comp, A onto A, and
By into Br_¢, resp. Fy into Fr_g.

Proof. Straightforward. O

Proposition 4.18. For any u, v € T, A, ~ A, (isometrical C*-isomorphism,).

Proof. The transformation 7' — R*TR. maps A onto A, Comp onto Comp, and S — p into €S — y;
consequently, it must map Z,, onto Z., and A, onto A.,. The map is, moreover, clearly an isometrical
C*-isomorphism. [

The second observation applies only to the one-dimensional Fock space A%(C), so imagine H? to be
identified with A2(C) by means of the unitary operator Wr, as was remarked at the beginning of this chapter.
Let T', once again, denote the Berezin transform of the operator T' € B(A?(C)), i.e.

T(\) = (Tky, ky),  ka(z) = exp (A; B |Z|2> € A2(C),

45



and define T := F, the Toeplitz operator on A*(C) with symbol T. Owing to the fact that, unlike D, the
group of isometries of the Euclidean metric on C admits a commutative transitive subgroup, Berger and
Coburn [6] have shown that

T = / WiTW, du(a),
c
where the integral is the weak (Gelfand-Pettis) integral, and W, are unitary operators on A?(C) given by
(Waf)(2) = ka(2) f(z — a), aeC.

They proved the following lemma (attributed to W.Zame).
(

Lemma 4.19. Let H be a separable Hilbert space, (X,v) a finite measure space, and F : X — B(H)
a norm-bounded, WOT-measurable function (i.e. x — (F(x)f,g) is v-measurable Vf,g € H), whose values
are compact operators. Then the weak (Gelfand-Pettis) integral

/X F(x) dv(z)

(exists and) is also a compact operator.

Proof. See [6], Lemma 12; we reproduce the proof here for convenience. First, for arbitrary f,g €
H, the function (F(z)f,g) is bounded and v-measurable, so the integral [, (F(z)f,g) dv(x) exists and its
modulus does not exceed

v(X) - sup [[E ()] |I£]-lgll-
Consequently, the weak integral
/ F(z)dv(x)
X
exists and its norm is bounded by v(z). sup || F(z)]|.
e

Pick a basis {e;};en of H and let Pj, stand for the projection onto the span of eg, e, ..., e,. Denote
Ey,={ze€ X :|P.F(z)— F(x)| < €}

Note that |J Er = X since F' takes values in Comp. Further, the function x — ||P.F(x) — F(x)| is
EEN
measurable, since it equals

(35) sup [{(PrF'(z) — F(x)) f, 9)!,
the supremum being taken over f, g in a countable dense subset of the unit ball of H. Consequently, the sets

k—1

E,=E\|JE
§=0

are measurable, disjoint, and their union is all of X. Choose m so large that

Z v(E}) < e

k>m

Then

[ rewt =3 [ reat
Z / [F(z) = PpF(x)) dv(z) + / F(x) dv(z).

k=1 k U El/c
k>m
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Since P, € Comp, the first summand belongs to Comp, while the norms of the second and the third do not
exceed ev(X) and esup,cx [|[F(z)]|, respectively. As e > 0 was arbitrary, the assertion of the lemma follows.
(I

Corollary 4.20. If K € Comp, then K e Comp.

Proof. Apply the lemma to X = C, v = u (the Gaussian measure) and F(z) = WXKW,. The
function F(«) is even WOT-continuous, since o — W, is SOT continuous. To prove the latter, it suffices

to check that a — W,g, is continuous for each A € C (because the linear combinations of gy are dense in
A%*(C), cf. Lemma 2.5), which is easily verified. O

Corollary 4.21. IfT € A, then T € A.

Proof. We have
T - S*TS = / (WETW, — S*WETW,S) du(a).
C

However,

(36) W, =B (see [6], section 3),

exp(#—&-ilm(az)) ’
which implies WXTW,, € A whenever T' € A. It remains to apply the lemma to X = C, v = p and
F(a) =WiTW, — S*W2TW,S; again, F is even WOT-continuous. 0

The last two corollaries prompt to formulate the following

Conjecture. (a) If T € ComA, then T € Com A.
(b) For all T € A, the operator T — T belongs to Com A.

Both assertions could be proved if we could replace B(H) and Comp in Lemma 4.19 by A and Com A,
respectively. (Indeed, according to the definition of T,

T-T= / Wi [Wa, T] du(c),
JC

and the integrand is bounded by 2||T'||, WOT-continuous, and, in view of (36), belongs to Com A for every
a € C.) The author suspects that the lemma remains in force even if B(H) and Comp are replaced by an
arbitrary C*-algebra 2AC B(H) and a closed, two-sided *-ideal Z in 2(. The above approach of W.Zame works
whenever the C*-algebra Z has a countable approximate identity, or if X is a separable topological space,
v a Borel measure, and the function x — ||QF(x)]|| is continuous for every operator @ €A, 0 < Q < I.
Regarding the conjecture above, the former possibility (a countable approximate identity for Com.A) is
highly improbable, while the latter seems quite likely indeed to take place, although I have not been able to
prove it (i.e. to prove that the function

a— [QWTW.|,  aeC,

is continuous; it is easy to see from (35) that it is lower semicontinuous, which, however, is not enough for
our purposes).

Thus, in the abelianized algebra A, := A/Com A, the transformation 7" +— T would act as the identity;
consequently, some insight into the structure of that algebra (multiplicative linear functionals etc.) could be

~

gained by studying the iterated transforms 7" — T—T—Tw— ... or, which amounts to the same, of the
iterated Berezin transforms f +— f — f(2) s f3) = . on L®(C). The latter is equivalent to the study of
the asymptotics of the heat equation, since

]?(k) (Z) = u(k/Qv Z)’

0
where u(t, z) is the solution on (0,+00) x C of the heat equation 8—? = 4A u(t, z) with initial condition

u(0,2) = f(z). (See [6] again, or compute directly.) This is one of motivations for undertaking a further
study of the Berezin transform, which is the objective of the subsequent chapter.
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Chapter 5. THE BEREZIN TRANSFORM

Since the Berezin transform seemingly plays an important role in the theory of Toeplitz operators on the
Bergman space and the Fock space, it will be studied in a greater detail in this chapter. Three main topics
will be discussed. First, we investigate the boundedness of the Berezin transform on various LP spaces. The
connection of the transform with the Laplace and the Laplace-Beltrami operator, respectively, is established.
Second, we prove that the fixed points of the Berezin transform are exactly the harmonic functions. Third,
some ergodicity properties are discussed; the motivation for this comes from the considerations at the end
of Chapter 4. The results are stated for A%2(D) and A%(C) only; generalizations to other domains are likely
to be possible, but seem to be closer in spirit to Riemannian geometry rather than functional analysis. We
begin by recalling the definitions and basic properties.

If f € LY(D,dv), the Berezin transform of f is, by definition,

(1 —[w[*)?

T f(z)dv(z), w € D,

f(w) = <fk1uvkw> = /
D
where k,, is the normalized reproducing kernel at w € D:

_gu(z) _ 1—|uwf

O =l T A w

Note that k,, € L (D) Yw € D, so the definition makes sense.
Similarly, if f € L'(C",dpu), define f to be

Flw) = (Fw, k) = / el /2 p()

cN (27T)N’

where!?
[ gw(Z) B P%i%
, = —e
7 el

(Since it will always be clear whether we are discussing A%(C%) or A%(D), no ambigiuty concerning g,, and
k. should arise.)

For typographical reasons, the Berezin transform fis sometimes also denoted Bf.
Proposition 5.1. f is an infinitely differentiable function on D, resp. CN.
Proof. Differentiate under the integral sign. (See the proof of Proposition 5.20 for details.) O

Proposition 5.2. If f is bounded, then so is Bf = [ and ||fllso < ||flloc. In other words, B is a
contraction in L>=(D), resp. L>=(CY).

Proof. |f(w)| < [fkwllzllkwllz < | fllsc-EwllZ = 1flleo- O

Remark 5.3. Since f = J?when f is a constant function, the norm of B on L>(C") or L>(D) is, in
fact, equal to one. [J

Proposition 5.4. If f >0, then f > 0; if f > g, then [ > §.

Proof. B is an integral operator with positive kernel. [

We are going to show that the Berezin transform is also a contractive linear operator on other LP
spaces, provided they are taken with respect to an appropriate measure — namely, the measure which is
intrinsic for the Riemannian geometry of the domain. Recall that the Lebesgue measure dz on CV is (up

— N — < —
"*Here, as usual, Wz = 3., W;2;, |wf* = ww, etc.
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to multiplication by a constant factor) the only measure invariant with respect to the group of the rigid
motions of CV. Similarly, on D, the only measure left invariant by all M&bius transformations

(37) Z elz:wwz = ewy(2) (weD,eeT)
is the pseudo-hyperbolic measure
dv(z)
W Ty

(The invariance may be verified by direct computation.) It turns out that the Berezin transform behaves
well with respect to the invariant measures.

Proposition 5.5. (a) The mapping B : f — f is a contractive linear operator on each of the spaces
LD, dn(2)), 1<p<oo

(b) Similar assertion holds for LP(CN dz), 1 <p < co.

Proof. (a) Since L'(D,dn) C L'(D,dv), the Berezin transform is defined on the former space, and

o = 082

o (S )
- [ e [ 1df4du<z>=
/If (Guw» Gu) dv(z /If |))

the change of the order of integration being justified by the positivity of the integrand. It follows that B is
a contraction on L'(D,dn). The same is true for L> (Proposition 5.2), and so the result follows from the
Marcinkiewicz interpolation theorem. The proof of (b) is similar. O

< B(|f])(w).

Thus

The last proposition suggests that there might be some closer relationship between the Berezin transform
and the Riemannian geometry on D, resp. CV. This is indeed the case. Before clarifying this point, we
establish an alternative formula for f.

Proposition 5.6. (a) In the notation of (37), for arbitrary f € L*(D,dv),

Flw) = /D F (@) dy.

(b) Similarly,

for every f € LY (CN,dp).

Proof. If we make an (analytic) change of coordinates

Y =ww(2), le. z2=w_yu(y),
then
(1= Jw*)?

_ 2 —
dl/(y) - ‘wiu| dI/(Z) - I]- —EZ|4

du(2),
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and so a | ‘
— |w
w= [ 1) 9= [ flomue) vty
|1 -
as claimed. (b) is similar, only even simpler. O

Proposition 5.7. The Berezin transform commutes with the “group of rigid motions” of D, resp.
CN. More precisely,

B(fow,) = (Bf)owg

for every f € L*(D,dv), a € D, while
B(fots) = (Bf)ot

for every f € L*(CV,du), a € CN; here t,(z) == z — a.
Proof. For f € L'(D,dv) and a,w € D,

B(fowa)(w) = [ flwalw-w(2)))dr(z)

D

since 1+ aw
aw
Wa(w_y(€2)) T+ aw w{eww(a)}(z) foree T, a,weD
and |+ aw
e gz W_y(a) = w_q(w) = —w(—w).

The proof for C¥ is, once again, similar but much simpler, because the translations ¢, on C¥, unlike M&bius
transformations, commute. O

The last proposition has important consequences, since operators commuting with the (M&bius or Eu-
clidean) translations may be described explicitly. Consider the Laplace operator

82
A= H 4623'(95]'
Jj=1

on CV, and the Laplace-Beltrami operator!*

32

L _ 242

on D. These operators are symmetric on the subspace of L>(C¥,dz) or L?>(D, dn), respectively, consisting of
infinitely differentiable functions with compact support; since their coeflicients are real, they can be extended
to (unbounded) selfadjoint operators on the respective L? spaces. Besides, direct calculation reveals that
they commute with the group of motions of CV and D, respectively:

A(fota) = (Af) o tq, Ah(fowa) = (Ahf) O Wgq.

14Sometimes Ay, is defined as four times this operator.
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According to a fundamental work of Gelfand [17], a sort of converse also holds : every operator on L?(C¥, dz)
or L?(D, dn), commuting with the group of motions, must be a function of A or Ay, respectively. In view
of Proposition 5.7, this applies, in particular, to the Berezin transform — it must be a function of A, resp.
Ay,. This idea goes back to Berezin [5], who even exhibited an explicit formula for B (on D) in terms of Ap:

f= F(Ap)f where

-1
e
(39) H ( ) _ |
= n+1) sinw(,/:z:—l—%f%)
In the case of C, an explicit formula has been established by Berger and Coburn [6]:
(39) f=e2f,

i.e. f is the solution of the heat equation with the initial condition f at the time 1/2. These formulas,
although established here only for f € L?>(C¥,dz) or f € L?*(D,dn), respectively, can be shown to (be
meaningful and) hold actually for wider classes of functions — this can be done e.g. by appealing to the
theory of pseudodifferential operators; we won’t, however, pursue this matter further.

The spaces LP(CY,dz) and LP(D,dn) are rather small — they don’t even contain (nonzero) constant
functions. A question which comes into mind is whether the Berezin transform is not actually a bounded
linear operator on the spaces LP with respect to the other natural measure — namely, LP(CY, du) or
LP(D,dv), respectively. This turns out to be true whenever p > 1. Before presenting the proof, we are
going to show how the machinery of interpolation spaces may be used to obtain a weaker result. We shall
temporarily restrict our attention to D, since most proofs work, with minor modifications, for CV as well.

To prove that B is a bounded operator on LP(D,dv), 1 < p < oo, it would suffice to prove this fact
for p = 1 — since B is a contraction on L (D), we could apply the Marcinkiewicz interpolation theorem.
Unfortunately, this approach will not work.

Proposition 5.8. B is not a bounded operator on L'(D,dv).
Proof. If it were, its adjoint B¢ = C,

(40) ne = [ Ul rw) du(w), €D,

|1 —wz[4

would be a bounded operator on L (D). It will be shown below (in course of the proof of Lemma 5.13(b) )
that

o0

1 2m 1 1 + |Z‘2T2 ,
= - dt = — 1)2p27 5|27
27 /0 [1 — zrett|* (1— [z[2r2)3 Z(” +1)7r7" 2™,

n=0

for z € D and r € (0,1). Consequently,

(Cl)(Z)Z/D(IUMdV(w)Z/O (1—1"2)2%/0 7T|1—E7’eit|74dtZ7’dr

|1 —wz|*
1 o0
:/ (1—7‘2)2Z(n+1)27‘2”|z\2"27‘dr
0 n=0
1 oo
:/ D (4 1)1 -2 dt

n=0
| ‘Qn.

_Z 77+2 n+3)

nO

As |z| /' 1, this expression behaves (asymptotically) like —log(1 — |2|?); hence C1 ¢ L>(D), so C = B¢
cannot be a bounded operator on L>*(D). O
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All the same, the above method may be exploited to prove that B is a bounded operator from L?(D, dv)
into LY(D, dv) whenever g < p.

Lemma 5.9. The integral operator C' given by (40) is a contraction on L*(D,dv) which maps L>°(D)
boundedly into LP(D,dv) for every p € (1,00). Similar assertion is valid for C.

Proof. For arbitrary f € L'(D,dv),

[rer@na < [ [ S v avga

/If I/ = w||4 v(2) dv(w) (by Fubini)

= [ @) thas ki) dow) = [ ()]t

so C'is a contraction on L*(D,dv). If f € L>°(D), then

CFO <Ml [ G o) = €1

Hence, to prove the second assertion of the lemma, it suffices to check that C1 belongs to L?(D, dv) for each
€ (1,00). In course of the proof of the preceding proposition, we have observed that C1(z) behaves like
—log(1 — |2]?) as |z| /1, so it is enough to show that log(1 — |z|?) € LP(D,dv) Vp € (1,00). But

/\log1—|z| )P dv(z) /|10g1—r \p2rdr—/ |log(1l —t)|P dt = /|logt|pdt

and, changing the variable to y = —logt, this reduces to
—+ o0
/ ye Vdy=T(p+1) < +o0.
0

The proof for CV is similar. O

Theorem 5.10. (a) If 1 < g < p < oo, then B is a bounded operator from LP(D,dv) into L1(D,dv).
(b) The same assertion holds for LP and L9 of (CVN,dp).

Proof. We shall deal only with D, the other case being similar. Consider the integral operator C given
by (40). By the previous lemma, C' is a bounded operator from L'(D,dv) into L'(D,dv) and from L>°(D)
into LP(D, dv), Vp € (1,00). According to the Marcinkiewicz interpolation theorem, it must be a bounded
operator from L1(D,dv) into L™ (D, dv) Vr € (1, q) for arbitrary q € (1, 00). It follows that its adjoint, which
is exactly B, is a bounded map from L" (D, dv) into LY (D, dv) whenever ¢ € (1,00) and ' € (¢, 00); as
LY (D, dv) is boundedly imbedded in L' (D, dv) for arbitrary ¢’ > 1, we may take even ¢’ € (1, 00). Changing
slightly the notation produces the assertion of the theorem. [

Remark 5.11. We have proved actually a little more. Recall that the space X; (D) is, by definition,
the class of all functions f on D such that f € LP(D,dv) for all 1 < p < co and

£l = sup Lo oy
1<p<oco P

Equipped with the norm || . ||x, X7 (D) becomes a Banach space (cf. [21], section 4.8). In course of the proof
of Lemma 5.9, we have almost proved that C' maps L*>°(D) into X;(D). Indeed, it suffices, as above, to

verify that C1 € X;(D); this is reduced to the assertion that log(1 — |2]?) € X{(D), and this in turn to
logt € X1(0,1), i.e. to the assertion that

L(p+1)'/P
(41) sup L+ D7 < +o0.
p>1 b
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But, owing to Stirling’s formula,
T(p+1)"/P ~ = (27Tp)

so (41) is true. Thus, C is a bounded map from LOO(D) into X, (D).

The Marcinkiewicz interpolation theorem asserts that if a linear operator T’ maps (boundedly) L*>° (D) —
L>*(D) and L'(D,dv) — L'(D,dv), it must map LP(D,dv) boundedly into LP Vp € (1,00). The first
condition may be relaxed!® to L>°(D) — BMO(D); the space BMO(D) is bigger than L>°(D), but still
lies in all L9(D,dv), 1 < g < oo. The space X; is, in turn, bigger than BMO while still lying in all LY,
1 < g < oo. If we knew that the condition L* — BMO may be further relaxed to L>* — X;, we could
conclude that C' would be a bounded map from L? into LP Vp € (1,00) — and, consequently, so would be
the Berezin transform B, the adjoint of C'. Whether the condition may indeed be relaxed like this seems to
be an interesting unsolved problem from interpolation theory. O

To prove that the Berezin transform B is actually bounded on LP(D,dv), 1 < p < oo, we employ a
generalization of the classical Schur test.

Proposition 5.12. Let (X, dx) and (Y,dy) be measure spaces, k(x,y) a nonnegative measurable

function on X XY, 1 <p < o0, q = Ll If P and Q are positive measurable functions on X and Y,

respectively, and o, B positive numbers such that

/ k(z,)Q(y)¥? dy < aP(x) dx-almost everywhere on X,
Y

/ k‘(;L',y)P(x)p/q dz < BQ(y) dy-almost everywhere on Y,
X

then the integral operator T : LP(Y, dy) — LP(X,dx),

/kxy y) dy,

is bounded and ||T|,—, < a*/15'/P,

Proof. Let g € LP(Y,dy). Then

/X (/Y k(x,y)Ig(y)Idy dw— < g kg(yy y)l”r/p {k(x,y)l/"@(y)l/q} dy) dz
(by Holder’s inequality) < . (x(Zyg; lg(y)|P dy . {/y k(z,y)Q(y) VP dy]p/q> dx
/ Q”i’y‘j 9P dy-?/ P do
(by Fubini) / / V)P . P(x)P k(z,y) dx dy

P — P13 P
Q( )| 9g(y)F. BQy) dy B-llglly

It follows that || Tg|, < | T(lgD)l, < a/28Y7|g|,, as asserted. O

Lemma 5.13. (a) Ifa € (—1,0), then

1(1_t)a 1 .
/0 —m 4 Ca)a+1) -(1-R) VR € (0,1).

15¢f. [21], paragraph 4.10.6, and the references given therein.
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(b) If a € (—1,2), then

(1- |x|2)a 2va—2
— 2 dv(x) < Cq.(1—|y|*)? Yy € D,
S CELRU TS

where Cq is a (finite) number depending only on a.

Proof. (a) Making several changes of the variable yields

1 1
(1—1)° _/ w® o _
/0 R dt = ; 7(1—R)+Rwdw (w=1-t, dt = —dw)
1 [t st/eds 1
=-_ - - T =w?, dw=-sa"'d
a /1 (1 - R) + Rs'/ (s v as s)

+oo ds |
= B S ——— = — /C = — 71/6
C/1 Rt (- R)s (u=(1—-R) ', ds=(1—-R) du)

Foo du
=c(1-R *1/0/ —,
C( ) (1—R)t/e R+ uc

1
where ¢ = —= € (1, 400); but
a

/+°° du </+°°du_ 1
1 R4+wue ™ J; u¢  c—1’

1
/ o< st
(1—R)1/e R+ uc (1—R)1/e

1(1_t)a —1/c c _ 1 a
/0 g 4scl- B / -1 (fa)(a—l-l)(l_R) '

(b) Let r € (0,1) and denote, for brevity, p = [yr| and R = |y|?>. By virtue of the Residue theorem,

1 2m 1 1 2 .
7/ S dt:—/ |1 — pe't|~*dt =
21 Jo |1 —Tgret)* 27 Jy

so, indeed,

1 [ p\—2 1 py—2 dz
= — 1—pe')y2(1—-L) "dt=— ¢ (1—p2) 2(1-5) " = =
3 | G- a= o d a2 0)
z z
= Res. = Res,= =
HZ 1—p2)°(z — p)? * A= p22 (-9
_ z ! _ 1+4pz _ 1+ Rr?
(1= p2)? T -, T 0-Re)

Hence

(1— o) / / -
dt 2r dr =
/D T gaft ¢ o Jo [L—gret|t “|4 ner=

_ (1—r%)*(1+ Rr?)
_/0 (1 — Rr2)3 2rdr =

[t (1 =t(1+ Rt)
- S

-y
of 0oy,

o4




Find o € (—1,0) and g € (0,2) such that « + 5 =a € (—1,2). Then

(1—t) L(1=R\"P /1t \ (-1~ (1=t
(1—Rt)3_(1_R)6 (1—Rt> (1—Rt> 1—Rt§(1_R)ﬁ 1—Rt’

1-t 1-R

S T TR © (0 1)-Owing to part (a),

/1 =D ) < ! (1-R)~.
0

1-Rt ~ ~ (—a)(a+1)
Hence ) ’ | 1
A= T L o
2/0 (1 — Rt)g dt <2 (1 R) . (_a)(a n 1) (1 R) =C,. (1 R)

as asserted. 0

Theorem 5.14. The Berezin transform B is a bounded operator on the spaces LP(D,dv), 1 < p < 0.
Proof. Use the Schur test (Proposition 5.12) with P(z) = (1 — |z[?)~Y?, Q(y) = (1 — |y|?) /¢
1—|z|?)? o e 1— |y|?)~V/p
[ S amwpray = a - ey [ P ) <
D

|1 —zy|* p [1-Ty/*

. oy — L ¢
< (U= [2P).Clypy. (1 - 2P) 32 = CLy . Pla),
(1 —zf?)? 2y—1 2y2—1-2
/D gy AP fdy(z) < Cy_a (L= [yP)* 7772 = Cp_1 . QUy),
by virtue of Lemma 5.13 O
Remark 5.15. The bound for the norm of B on LP(D,dv), given by the Schur test (Proposition
2

5.12), is (C’,l/p)l/q.(C'z_;)l/p. Computing this explicitly leads to pi\/ﬁ

VAT

Let us turn now to the second topic: determination of all functions which are invariant under the Berezin
transform.

Proposition 5.16. If a function f € L*(D,dv) or L'(CN,du) is harmonic, then f: f-

Proof. If f € L'(D,dv) is harmonic, then so is f o w_,,; by the mean value property,
flw) = /Df(wfw(iv))dV(x) = f(w-w(0)) = f(w).

The case f € L' (CY) is similar. O

A natural question to ask is if there are other functions such that f: f- The following two propositions
suggest that the answer is probably negative.

Proposition 5.17. (a) If f € L*(D,dn) and f: f, then f is harmonic.

(b) If f € L>(CN,dz) and f = f, then f is harmonic.

Proof. We shall employ the formulas (38), (39).

(b) Fix a selfadjoint Laplace operator A on L*(C", dz) and let E()) be its resolution of the identity!®.
Assume that f = f; by (39), this is equivalent to e®*/?f = f. Consequently

0= (22 — D)f|]* = /R N2 1R BN S, f).

16Continuity from the right is assumed
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It follows that e*? =1 d(E(\)f, f)-almost everywhere on R — in other words, f belongs to the range of
the projection E(0) — E(0—), which is exactly ker A. Thus Af = 0 and we are done.
(a) is similar, only with the function F(\) from (38) instead of /2. The formula

F(z)*l _ sin 7 (,/x—i— % — %)

T™r

implies that, for x € R, F(z) = 1 if and only if z = 0. Finally, A}, f = 0 is equivalent to Af =0. O

Remark 5.18. The last proposition does not say too much, since the only harmonic function in
L?(D,dn) or L?(C",dz) is constant zero. To see this e.g. for L?(D, dn), denote

2
M(r) = %/0 | f(re')|* dt.

This is a nonnegative and nondecreasing function of r. At the same time,

! 2r
2 _
o = [ M) gy dr < o

so M (r) must tend to zero as r — 1. Thus M (r) =0, whence f =0. O
Therefore it would be desirable to extend the last result to some larger space — say, at least, to L>°(D)
or L>(CY), respectively. In the Fock space setting, this can be done quite easily.

Proposition 5.19. Assume f € L=(CY), f: f. Then f is harmonic (and, consequently, constant).

Proof. f = fis locally integrable, and so determines a distribution on CV; since f = fis moreover
bounded, this distributign is tempered, and we may apply the Fourier transform F. According to the
definition of f, f = e~1*I"/2 % f (convolution), so f = f implies

67‘2‘2/2.’&(2) = u(z)

where u := F f. In other words,
(u, (e —1)gp(2)) = 0

for every ¢ € S(CV), the space of rapidly decreasing functions on CV ~ R2?¥. Since e’ — 1 behaves like ¢
when t — 0, the last condition is equivalent to

(u,—|z]*p(z)) =0 V¢ € S(CV),

i.e. to —|z]?u(z) = 0. Applying F ! gives Af = 0 as desired. [

This proof cannot be carried over verbatim to D, since there is no analogue of the Fourier transform
which would behave reasonably with respect to Ay. Using the method from the proof of Theorem 5.22
below, it is possible to show that f € L*(D, dn) is harmonic if f = f and Af is Lebesgue integrable; the last

condition, however, need not be a priori satisfied even for a bounded f. All that can be said is that Ay f
must be bounded if f = f € L>*(D):

Proposition 5.20. Assume that f € L (D). Then 1AL Flloe < 5|f]lco-

Proof. Asusual, if w = z+yi € D, denote i = 1 <6 — i8> and i = 1 (8 + i8>. A short
ow 2 Y w 2 \Or Y

computation yields

0 (A—wP)? _2E-w)(1—wz)(1 - w])
ow |1 —wz|t |1 —wz|6 ’
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Because |z — w|.|1 — wz| = |1 — wz|?. lz__gz < |1 —wz|?, it follows that
0 (1—|wP)? 2(1—|wP) _ 2||fllw
| < . < .
‘f(z) gw 1w | = Wl T = @

This is uniformly bounded when w runs through a small vicinity of an arbitrary point wo € D. Consequently,
it is legal to differentiate under the integral sign in the formula defining f, which gives

of 2(z —w)(1 — wz)(1 — |w?)
o —/Df(z) dv(z).

|1 —wz|6

Going through the same procedure once again, we see that

Pf
dwdw /D K(w,2)f(z) dv(z),

where the kernel is

02 (1—|wP)?
K = =
(z,w) Owow |1 —wzl4
: 1—|wP)? 1 wP (=] = wf)
=(4|w* — 2 ( 4 —4 .
@l =)= T 11— w2
Recalling the formulas
R _ s =t D)(n+2)
1—wz)"? = n+ Lw"z" and 1—wz)"% = (n—w"z”
(-w) 7 =3+ (-w) =3 B
and integrating term by term!”, we get
dv(z) I
B ———— ]_ — -
b ‘1 —EZH ( ‘w| )
and N
1- .
o 2B ) =20 - Py,

respectively. Consequently,

9% f
owow

4 2
L=|wP (1= |wP)? ]

< o [<4|w|2 ot

whence
AR F@)] < 1 flloo - [(4lw]* = 2)(1 = [w[*)? +4(1 = |w]*) + 2].

For w € D, the maximum of the bracketed term is approximately 4.439... < 5; thus

AR flloo < 5]l

as claimed. O

17This is legal (since the series converge uniformly on compact subsets of D) if we integrate over RD,
0 < R < 1; doing so and taking limits for R 1 leads to the desired formulas.
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Using this proposition, a proof may be given that f is harmonic whenever f = f € L*°(D). Since a lot
technicialities seems to be necessary, only its sketch will be outlined here. Denote

M={feL*D): f=f}

This is a closed subspace of L (D). The last proposition shows that A := Ay, [M is a bounded operator on
M, ||A]] < 5. Since

is an entire function, it is possible to define G(A) and, owing to the spectral mapping theorem,

=
[N

G(z) == ﬁ (1 - n(nz-l- 1)) - sl 7Zrz+

n=1

Assuming!® that the formula (38) is valid for f and thinking for some time leads to the conclusion that
G(Ap), whenever it is defined, must be the inverse of the Berezin transform. Consequently, G(A) = I and
G(o(A)) = {1}. Next, show that z = 0 is the only zero of G(z)—1 in the disc |z| < 5; this implies 0(A) = {0}.
G(z)—1
Let H(z) := % and C := H(A). C is clearly bounded; o(C) = {G'(0)} = {-1}, so C is invertible;
finally,
CA=G(A) - 1=0,

so A=0,ie. M CkerA,. O

The last topic we wanted to discuss were ergodicity properties of the Berezin transform. Once again, sit-
uation is quite transparent when we restrict our attention to L?(CY,dz) and L?(D, dn), but gets complicated
if we want to deal with wider function classes.

Proposition 5.21.  As an operator on L?*(CY,dz) or L*(D,dn), B"® — 0 in the strong operator
topology.
Proof. We shall deal only with CV, the proof for D being similar. Since B is a contraction of the

form B = e2/2 for a selfadjoint operator A, its spectrum must be contained in (0,1). Denote, once again,
E(X) the resolution of the identity for the (selfadjoint) operator B. Then

1B = /< WP AENL )

According to the Lebesgue monotone convergence theorem, this tends to

17 = EQ-)fI? = | Pex—n) fII*-

But it follows from Proposition 5.17 and Remark 5.18 that ker(B —I) = {0}, whence || B" f|| — 0 as claimed.
]

It is easy to see that this simple behaviour does not persist when we consider B on L>=(C") or L*°(D).
For example, take f € L>®(C),
1 if Rez > 0,
f(z) =

-1 if Rez < 0.

A short computation shows that

(B"f)(2) = f(z/Vn),

so (B™f)(z) — f(0) = 0 as n — oo for all z € C. However, the convergence cannot be uniform since, for
every n € N,

lim (B"f)(x +yi) = xgrfoof(m +yi) = +1.

r—+00

18Tt seems necessary to resort to the theory of pseudodifferential operators in order to prove this.

o8



All the same, the uniform convergence can be established in some particular cases. If f is harmonic, then
Bf = f (Proposition 5.16), so trivially B™ f=f. What about subharmonic f?

Theorem 5.22. Assume that f € L*(D,dv) is a real-valued subharmonic function on D which admits
an integrable harmonic magjorant (i.e. there ezists a function v € L*(D,dv) harmonic on D and such that
v(z) > f(z) Yz eD). Then B"f /" u, the least harmonic majorant of f.

Proof. According to a theorem of Frostman ([19], Theorem 5.25), there exists a positive Borel measure
+ on D such that

1 .
fw) = u(w) + 1 /D In |wy (z)|* dr(x) Yw € D.

(When f is twice continuously differentiable, dx(z) = Af(z) dv(z); 7dk is called the Riesz measure of f.)
Write, for brevity, g(z) = In |z|%. Since |wy,(z)| = |ws(w)], we have

) = uw) + 5 [ gown(w) dn(o)

Hence

f(z) =u(z) + /D (Sl . 1 /D g o wy(w) dr(z) dv(w).

1—wzt 4

Since f <u <wand f,v € L}(D,dv), we have u € L'(D, dv), so u = u in view of Proposition 5.16. Because
the integrand is nonpositive, we may interchange the order of integration, which gives

(42) F(2) = u(z) + i /D Blg o wa)(2) di(x).

Proceeding by induction, we obtain

(B 1)) = u) + 7 [ g own)() dn(o)
Assume that
(43) B"(gowg)(z) /0 asn — oo, for all z,z € D.

Because k is a positive measure, we may apply the Lebesgue monotone convergence theorem to conclude
that
B"f /u as n — 0o

and the proof of the theorem is complete.
It remains to prove (43). Since B"(gow,) = (B"g) o wy, (cf. Proposition 5.7), it suffices to show that
B"g /' 0. By definition, g(x) = In|z|?, while direct computation reveals that

(@) = |2 - 1.
It follows that g < g. By Proposition 5.4, this implies B¥g < B*tlg Vk € N, so
g<Bg<B’¢<Bg<..<0.

Hence a limit () := lim (B"g)(x) must exist, ¥ < 0, and, owing to the Lebesgue monotone convergence
n—oo g g g

theorem, ¢ = 1. We claim that ¢ = 0. Assume the contrary. Because 0 > (z) > §(z) = |z|> — 1, we have

|1'1‘m ¥(x) = 0; consequently, 1 must attain its infimum at some point y € D — suppose (replacing ¥ by
z|—1

1 o w, otherwise) that y = 0. Then
0(0) =50 = [ v@)dv(@) > igf (o). [ dvle) = 0(0)
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— a contradiction. [

Remark 5.23. If f is real-valued, subharmonic and f € L?(D,dn), we may proceed a little more
quickly. The subharmonicity implies that

Flw) = /D (@) () > F(@—wl(0) = f(w),

ie. fz f. Further, B commutes with Ay, whence Ahf: B(Apf) > 0 since Ay, f > 0; in other words, fis
also subharmonic. Proceeding by induction, we obtain a nondecreasing sequence { B¥ f},en of subharmonic
functions. Their limit ¢ is either identically +oo, or is a subharmonic function satisfying {/; = 1. Since
¥ € L*(D, dn), the former case cannot occur; further,

$(0) = 3(0) = /D b(y) dv(y),

and so v is actually harmonic; hence, it is a harmonic majorant of f. If h is another harmonic majorant of
f, then f < h implies B"f < B™h = h, whence also ¥ < h; consequently, 1 is the least harmonic majorant
of f, and we are done.

Observe that, although there is no nonzero harmonic function in L?(D, dn), there are plenty subharmonic
ones. The functions B"g, g(z) = In|z|?, n € N, serve as an example:

/D l9(2)|* dv(z) = /01 <11n_tt)2 dt = /01 i i M In? ¢t dt =

n=0m=0

2

— 2 — 2 ™
"2 D iy 2 Gaap 3

n=0 m=0 k=0
(I

In fact, another proof of Theorem 5.22 may be given on the lines of Remark 5.23 — the assumption
f € L?(D, dv) was used only to infer that Bf is subharmonic when f is. Using the formula (42), this fact
may be shown to hold in general.

Theorem 5.24. Assume f € L'(D,dv) is a real-valued subharmonic function on D which admits an
integrable harmonic majorant v. Then the functions B™ f are subharmonic, VYn € N.

Proof. Let 0 < R < 1. Owing to the formula (42),

1 1 27

2m ) ) 1 27r1 )
— Re')dt = — Re™) dt —/ f/B 2)(Re') d dt.
5 | TR di= oo [ uretydi o |4 | Blgown(Re) dn(e)

Because the second integrand is nonpositive, we may interchange the order of integration; consequently,

1

2m Jy

ﬂj’{(Reit)dt =u(0) + i/[) (2171_ | 7TB(gowz)(Reit) dt) dr(z).

The function B(g o w,)(2) = |w(2)[> — 1 is a subharmonic function (of z), which implies

% . 7TB(gowz)(Re”) dt > B(g o wy)(0).
0
Hence o
3| Tz ) + 1 [ Blaew)©) st = o)
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for every R € (0,1). The same procedure, of course, may be carried out for the functions f ow,, a € D. It
follows that }? satisfies the sub-mean value property, and therefore is subharmonic on D.

Because f < v, we have also f < ¥ = v (Propositions 5.4 and 5.16), so f also has an integrable harmonic
majorant. Consequently, we may proceed by induction, and the theorem follows. [

Given a bounded real-valued subharmonic function on D, the boundary values of its least harmonic
majorant can be described explicitly. A proof of this fact is included below, since it seems to be missing in
textbooks on potential theory.

Proposition 5.25. Suppose ¢ is a bounded real-valued subharmonic function on D. Define ¢ on T by

(44) ¢(€) = limsup ¢(re), ecT,
r,/1

and let ¥ be the Poisson extension of ¢|T into the interior of D. Then v is the least harmonic majorant of
@.

Proof. Let u be the least harmonic majorant of ¢. Except for € in a set of zero (arc-length) measure,
we have
lim u(re) > lim sup ¢(re) = ¢(e) = lim ¥ (re).
li u(re) 2 lim sup 6(r¢) = 6(0) = lim ()
It follows that the bounded harmonic function u — ¢ has nonnegative radial limits a.e. on T; hence, u > v
on D. Let us show that also v < 1. Because (sub)harmonicity is invariant under M&bius transformations,
it suffices to show that ¥(0) > u(0). Without loss of generality, we may assume ¢ < 0; hence also u < 0,
1 < 0. Applying the Fatou lemma to the functions t — ¢(re®), we see that

2m 2m
, 1 )
— lim sup ¢(re") dt > lim sup — P(re™) dt.
27 0 r, 1 r, /1 ™ Jo

The left-hand side is, by definition, 1(0), whereas the lim sup on the right-hand side may be replaced either
by lim or by sup and equals u(0). O

Remark 5.26. The last proposition may be compared with Theorem 3.11 of [19], which asserts the
same, but with (44) replaced by

6(€) = lim sup ¢(2)

D>z—e
The proof of our version seems to be more elementary. [
The proofs of Theorem 5.22 as well as of Remark 5.23 may be carried over to the Fock space setting.
Theorem 5.27. If f is a bounded real-valued subharmonic function on CV, then B"f / u, the least

harmonic majorant of f.
Since the only bounded harmonic functions on C¥ are the constant ones, necessarily

u(z) = sup f(x) vz e CV.

zeCN

As a matter of fact, an analogue of Proposition 5.25 remains in force: the above supremum coincides with
the radial limit of f on almost all half-lines emanating from the origin'®.

Remark 5.28. For N = 1, the statement of the theorem is trivial, since there are no bounded
subharmonic functions on C but constant ones. However, nontrivial bounded subharmonic functions exist
when N > 2: as an example, take max{—1,[z|>72V}. O

We conclude this chapter with an application of Theorems 5.22 and 5.27 Recall that

V(D) :={f e L>*D): e|ss|£in f(z) =0}

19Cf. [19], Theorem 3.21.
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and similarly for C¥.
Proposition 5.29. If (a) f € V(D) or (b) f € V(CY), then B"f=0.

Proof. (a) First observe that it suffices to consider f < 0 since B is linear. Next, it suffices to consider
f € D(D), because B is a contraction and D(D) is dense in V(D). So suppose f < 0 and supp f C RD,
R € (0,1). Define the function F' on (0, 1) as follows:

Ft) = —|Iflle if0<t<R,

F(t) is linear on (R, 1),

and set ¢(z) = F(|z]), z € D. The function ¢ is subharmonic, its least harmonic majorant being constant
zero. By virtue of Theorem 5.22, B"¢ " 0; since ¢ = 0 on T, Dini’s theorem forces even B"¢=0. But
¢ < f <0, hence B¥¢ < B¥f <0, and so B" f=0 as well.

(b) The proof is easier this time, since an explicit formula for B™ f is well-known from the theory of the

heat equation: . ,
(B"f)(2) = (2mn)~N/2. / _exp <|’32n:”|> f(x) dz.

C

Reasoning as above, it suffices to consider f > 0 and supp f C RD, R € (0, +00). In that case,

. 17 BN .
B N6) < i [ o= T e,

v~ being the volume of the unit ball in CV. Letting n — oo yields ||B" f|lcc — 0 as claimed.

Corollary 5.30. Suppose f € C(D). Then B"f=h, the harmonic function whose boundary values
coincide with f|T.

Proof. Because f € C(D), f|T € C(T), hence also h € C(D) and f —h € V(D). It follows that
B"(f —h)=0. But Bh = h, so B" f=3h.
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CONCLUSIONS FOR FURTHER DEVELOPMENT IN THE AREA

The results above lead to some challenging questions. It is still unclear what is the norm closure of the
set of all Toeplitz operators on a Bergman-type space (Chapter 2); likewise, it is an open problem whether
the C*-algebra generated by them is all of A or not, and whether A(U) and A(S) are isomorphic. One
would also like to generalize Theorem 3.10 (or 3.14) to domains of higher dimensions; perhaps A(U) should
play the "universal” role which A(S) plays for @ C C (c¢f. Remark 3.26). Many interesting problems are
also encountered in Chapter 4 (the question of existence of some kind of Toeplitz calculus still remains open
in general) and Chapter 5 (fixed points and ergodicity properties of the Berezin transform acting on L, for
example; Proposition 5.20 looks promising from this point of view).

LIST OF NOTATION

The numbers etc. refer to the place where the symbol is defined. Since there are paragraphs which are
not numbered, references like 73.30 & before” are used to indicate that the symbol first occurs between the
items 3.29 and 3.30.

AP(Q) the Bergman (2 C CV) or the Fock (Q2 = CV) space
A(M) the A-algebra corresponding to an operator M (3.30 & before)
AR(M) the A®-algebra corresponding to M (3.30 & before)
A an abbreviation for A(S) (3.4)
Ay, the localization of A at € T (4.16)

Aap =A/Com A
B the Berezin transform, Bf = f
By = W5T,Wg (the very end of Chapter 3)
BCESV a function space, see 3.25 & before
B(H) the space of all bounded linear operators on a Hilbert space H
BMO the space of all functions of bounded mean oscillation (sometimes also called the
John-Nirenberg space, and denoted JN)
C the complex plane
en(f) see 1.3, 1.7
Comp, Comp(H) the compact operators (on a Hilbert space H)
clos X closure of a set X C B(H) in the operator norm topology
c(Q) the space of functions continuous on the closure Q of a domain Q C C¥
Calk, Calk(H) the Calkin algebra (on a Hilbert space H)
Com A the commutator ideal of an algebra A

C*-alg X the smallest C*-algebra containing a set X C B(H)
C the adjoint of B (5.8)
Cq a constant (5.13)
d X the dual of a Banach space X; T%, the dual of an operator T
D the unit disc

dz the Lebesgue measure on CV, N > 1
dv(z) = dz, a measure on D
du(z) the Gaussian measure on CV
dr(z) the Riesz measure of a subharmonic function (5.21)
diag(cy) the diagonal operator with weight sequence {c,}
dist the (euclidean) distance
d(z,y) the pseudohyperbolic distance of z,y € D
Dp(A\ R) the pseudohyperbolic disc with center A and radius R
D(Q) the space of all infinitely differentiable functions the supports of which are compact
subsets of 9§ C CN
ess lim the essential limit; similarly esssup

ESV a function space, see 3.25 & before
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{En}

kx
K
LP, LP(Q2), LP(2, dp)

L*(p), L>(p)
12 = 2(N)

1 = [°(N)
Lo
Vs

Lim

an orthonormal basis in H and K (4.8)

spaces of operators, see 4.12

orthonormal bases in various Hilbert spaces

resolution of the identity of a selfadjoint operator (continuity from the right is
assumed)

= WpTo,Wr (the very end of Chapter 3)

the Fourier transform

the reproducing kernel (or evaluation functional) at A, for various spaces (A2(Q),
A2(CN), H2(p))

the functional evaluating the m-th derivative at A, on A%(D) (before Lemma 2.6)
the Gauss sphere, C U {oco}

=In|z|* at the end of Chapter 5

the space of bounded analytic functions on 2

the Hankel operator with symbol ¢

the Hardy space (on the unit circle)

= I[2(T) & H?

Hilbert spaces, see before 3.18

a subspace of L, see 4.8

if and only if

the Fredholm index

the local ideal, see 4.16

1) the diagonal operator J = diag(—1)"

2) an isometry of H? onto H, see 4.8

A

l9xl

normalized evaluation functionals, k) =

a subspace of L, see 4.8 ff.

Lebesgue spaces (1 < p < 00); if dp is omitted, the Lebesgue measure is understood
function spaces, see before 3.20

the space of all square-summable sequences of complex numbers, endowed with the
usual Hilbert space structure

the space of all bounded sequences of complex numbers, with supremum norm

a subset of Calk(L?(T)), see 3.32

spaces used to construct the Calkin representation (see before 4.3) (exceptionally,
the primes do not denote commutants)

a Banach limit, see Chapter 4

the operator of multiplication by a ¢ € L™

={0,1,2,...}

the functional on I*°: {xg}ken — Tn

the orthogonal projection of L? onto H? or A2, in various settings

the quasicontinuous functions on T

the range of a mapping T

the set of all real numbers

a composition operator, see 4.17

the support (of a function or a measure)

the unilateral (forward) shift on H?

the unit sphere in CV

the Schwarz space of rapidly decreasing functions

the strong operator topology

spaces of operators, see page 51 and before 4.11, respectively

the unit circle in C

the Toeplitz operator with symbol ¢

={Ty: ¢ € L°(D)}, a subset of B(A*(D))

={T, : ¢ € D(D)}, a subset of B(A%(D))

= {T,: ¢ € C(D)}, a subset of B(A%(D))
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Trace
Tr(T)

T(m,n,a)
TBa TF7 TH

ta
U
V(D)
v(cN)

wor

Wy, Wg
Xl(D)7 Xl (07 1)
zZ

A

Oe
By TH,TF

§7£Ba€F

Ifn= (TL17TL27...

If 2,y € CV, then

Ifw=x+yi € C, then

the ideal of trace-class operators

the trace of an operator T

operators on A%(D), see before 2.6

the C*-algebras generated by all Toeplitz operators with bounded symbols on

A2(D), A(CN), 12

the translation operator, t,(z) = z — a,

the bilateral (forward) shift on L?(T)

={¢ € L>[D): ess lim ¢(z) = 0}

= {¢ € L>®(CN) : ess lim ¢(z) = 0}
|21 +o0

the weak operator topology

the unitary operators of H? onto A?(D), A?(C") (see the very end of Chapter 3)

Banach function spaces, see 5.11

the set of all integers

the (forward) shift operator on H?2(p), in 3.20 — 3.22; in 3.24, a (forward) shift

operator on A2(C)

the Stone-Cech compactification of N

the (Lebesgue) volume of the unit ball in C

Euler’s gamma-function, n! = I'(n + 1)

the Laplace operator

the Laplace-Beltrami operator on D, see 5.7

an invariant measure on D, dn(z) = (1 — |2|?)? dv(z)

the k-th Fourier coefficient of ¢ € L?(T)

a domain in CV, or CV (see the Convention at the beginning of Chapter 1)

the Lebesgue measure of (2

the closure (boundary) of 2 ¢ C¥ in GV

the canonical projection of B(H) onto Calk(H)

homotopy groups

the spectrum

the essential spectrum

the set of all Toeplitz operators with bounded symbol, on A%(D), H?, A%2(CV),

respectively

symbol maps on H?, A?(D), A%2(CV), see page 35 & ff.

a,z € CN

,ny) is a multiindex, then

An = Qny,ng,...,nN» n! :nl!nQ!...nN!,
on ::2n1+n2+nn+nw’ P ::2?1232_..ny.
N
TUY = YT = o _ (m=\1/2
TY = Yyr = § TiYj, ‘x| = (zz)"/".

i=1

o _1(a 0\ o _1(0 .0
Ow 2\0x 0y’ ow  2\ox 0y)°

equals by definition

= AB — BA, the commutator of A and B

=T}ty — 15Ty, the semicommutator

an operator on L, see before 4.4

the first derivative, or the commutant (exception: L)

65



"

the double commutant (exception: £”)
see before 4.19

the Berezin transform, on L>°(D), L>=(CY), B(A?(D)),
B(42(CV))

the k-tuple iterate of ~

a smoothing transformation, see before 1.11

the constant function equal to one

norm on a Banach space B; B is frequently omitted
scalar product on a Hilbert space H; H is sometimes omitted
norm on LP

norm & scalar product on H?(p)

norm & scalar product on £

norm in X;

the essential norm (of an operator)

norm of an operator from LP into LP, from £ into £
converges

converges uniformly

converges increasingly

converges weakly (on a Banach space)

convolution

restriction
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