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A SURVEY OF THE PRESENT STATE OF THE SUBJECT

The subject of this thesis are Toeplitz operators on Bergman-type spaces1, an area which has received
some attention during the last decade. These operators arise mainly in two areas of mathematics: in
connection with quantum mechanics (the quantization procedures on symmetric spaces, cf. [5], [6]) and
in the theory of subnormal operators (the basic model for a subnormal operator is the Bergman shift;
see [9], [23]). Whereas the theory of these operators on the Hardy space H2 is by now well understood
and has become classical (cf. e.g. [22] and the bibliography given therein), its area measure counterparts
are far less tractable, and the results are sparser and often markedly di�erent (see, for instance, [2] or
[6]). It is natural to ask if this is not because the class of Toeplitz operators on a Bergman-type space is,
in some sense, larger than on H2. The classical Toeplitz operators are characterized by the intertwining
relation S∗TS = T (see f.i. [24]), and so form a w∗-closed subset of B(H2) of in�nite codimension. In my
paper [16], I have shown that such a characterization is impossible on A2(D). In [17], it turned out that
Toeplitz operators on A2(D) are, in fact, dense in B(A2(D)) in the strong operator topology, which gives
an a�rmative answer to the conjecture above. Further progress has been attempted by Gautrin [13], who
proved even norm-density; unfortunately, his proof contained an error, and so the problem of norm-density of
Toeplitz operators remained open. So did also the similar problem whether the C∗-algebra generated by them
contains all bounded operators (and if not, what is it?). The corresponding C∗-algebra on the Hardy space
is closely related to the theory of Toeplitz (or symbol) calculus (cf. [22], Appendix 4), the study of which has
contributed to the development of powerful techniques of operator theory (dilation theory, commutant lifting
theorem). In case the corresponding C∗-algebra on the Bergman space contained all bounded operators, an
analogue of such a calculus could be of exceptional interest. Some attempts in this direction have been made
e.g. by McDonald and Sundberg (for symbols in a certain C∗-subalgebra of L∞(D); see [2] and the references
therein). A closely related question of compactness of Hankel operators on Bergman-type spaces has been
intensively studied by various authors | Axler et al. [3], Zhu, Stroetho�, Zheng, Berger and Coburn (see
[6], [27]); these issues, however, are not discussed in this thesis.

THE OBJECTIVE AND METHODS OF THIS THESIS

The objective of this thesis is a solution to some of the problems mentioned above. It is proved that the
norm closure of the set of all Toeplitz operators on a Bergman-type space contains all compact operators
(Chapter 2); it does not, however, contain all bounded ones, and neither does even the C∗-algebra generated
by this set (Chapter 3). An unexpected fact is that these C∗-algebras are always contained in certain C∗-
algebra A which does not depend on the underlying space (see Chapter 3 for a more precise statement). An
attempt to construct a Toeplitz calculus on Bergman-type spaces, alluded to above, can be found in Chapter
4; it seems that the role of the Nagy-Foias dilation could be played by certain "dilating" to the Calkin
algebra. The Berezin transform, which plays an important role in the questions concerning compactness of
Toeplitz operators (cf. [6], [2], [27]) seems to be important also from the viewpoint of the theory developed
in Chapter 4; therefore the last Chapter 5 is devoted to its more detailed study.

Most methods are functional-analytic, or belong to operator theory and complex function theory. Rudi-
ments of interpolation theory, potential theory and Riemannian geometry are needed in Chapter 5; algebraic
topology (cohomotopy groups) appears in Remark 3.26.

RESULTS OF THE THESIS

Chapter 1 contains some preparatory material; most results are more or less known, although frequently
their proofs cannot be found in the literature ("folk theorems"), so they are assembled here. The items 1.12,
1.15, and 1.18 are mine, and so are all presented proofs.
1See the end of Chapter 1 for terminology and notation.
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In Chapter 2, density of Toeplitz operators on Bergman-type spaces is considered. It is proved that
they are SOT-dense in the set of all bounded operators and that their norm closure contains all compact
operators. A slightly simpli�ed version of my results from [16] is reproduced here, together with a new proof
and a generalization to arbitrary domains 
 ⊂ CN .

In Chapter 3, it is proved that the C∗-algebra generated by the Toeplitz operators does not contain all
bounded linear operators. An unexpected fact is that this algebra is always contained in a certain C∗-algebra
which is the same (more precisely: spatially C∗-isomorphic) for A2(D), A2(C), H2, A2(
) for a wide class
of domains 
 ⊂ C, and only slightly di�erent for A2(CN ) (the di�erence seems to be of topological nature
and related to the dimension, cf. Remark 3.26). A related class of spaces H2(ρ) is also discussed.

In Chapter 4, an attempt is made to construct an analogue of the classical Toeplitz (or symbol) calculus
on Bergman-type spaces (see the beginning of the chapter for a more explicit discussion). The problem is
rather di�cult, and only a partial solution is presented. Lemma 4.1 follows from the results of [3] or [23];
a very short and elegant proof is presented here, based on our Theorem 2.4. In 4.3 | 4.6, the techniques
due to Calkin [10] are developed; 4.12 mentions some classical results, while 4.16 was inspired by Douglas
([12], 7.47 �.). The proof of Lemma 4.19 is reproduced here from [6] (slightly simpli�ed) for the purpose of
subsequent discussion.

Some of the results from Chapters 1 and 4, as well as results of other authors ([5], [6], some preprints of
Zhu, Stroetho�, Zheng, etc.) from adjacent areas, indicate that a fundamental role in the theory is played by
the Berezin transform B; for this reason, the last chapter is devoted to its study. The operator B is shown
to be bounded on various Lp spaces and to be related to the Laplace or the Laplace-Beltrami operator,
respectively. For some classes of functions f , conditions for f to be invariant under B are given, and the
iterates Bnf are shown to converge. The items 5.1 { 5.4 and 5.16 are more or less known ("folk theorems"),
and so is perhaps 5.29; 5.18 and 5.28 are classical; 5.12 is a generalization of the Schur test, and 5.25 may
be compared with a theorem in [19] (see Remark 5.26).

Unless stated otherwise, all the results to follow belong to the present author. Proofs are usually supplied
for the "folk theorems" mentioned above. When other authors' results are needed, the references are always
given in the text and, except for 4.3 { 4.6 and 4.19, the proofs are not reproduced.

ADDENDUM
After �nishing this thesis, the author has received a preprint of Berger and Coburn [BC], and also a new

article of Zhu [Z] has appeared. In [BC], our Theorem 2.4 is proved for the special case 
 = CN (Theorem
9); the proof makes heavy use of the machinery developed by Berezin, but probably could be reduced to the
method employed in our "�rst proof" of Theorem 2.4. On page 38, they conjecture that "The C∗-algebra
generated by all {Tg : g bounded } is evidently very large. Despite Theorem 16, this algebra could contain all
bounded operators." A negative answer to this conjecture is provided by our results in Chapter 3 (Theorem
3.27). In [Z], 5.6 and 5.7 appear, and 5.14 is reported to have been proved in the special case p = 2.

[BC] C.A. Berger, L.A. Coburn: Berezin-Toeplitz estimates. Preprint, ? October 1990.
[Z] K.H. Zhu: On certain unitary operators and composition operators. Proc. Symp. Pure Math. 51,

371 { 385. Providence, 1990.
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Chapter 1. INTRODUCTION
The purpose of this chapter is to set up notation and to introduce some basic de�nitions. The style is

brief; some proofs are omitted and can be found e.g. in [2] or [6]. The symbol C will allways denote the
complex plane, D = {z ∈ C : |z| < 1} the open unit disc, T its boundary, the unit circle; Z is the set of all
integers, and N the set of all nonnegative ones.

Convention: By a domain in CN we mean an open, connected, nonempty and proper subset 
 of
CN (written: 
 ⊂ CN ), for some integer N ≥ 1. Thus, CN itself is not considered to be a domain. We shall
write 
 ⊆ CN to express that 
 is either a domain in CN in the above sense, or 
 = CN .

The symbol dz denotes the Lebesgue measure in CN , for all N ≥ 1, while Lp(
, dρ) stands for the usual
Lebesgue space on 
 with respect to a measure ρ; if ρ is omitted, the Lebesgue measure is understood.

If 
 is a domain in CN and 1 ≤ p ≤ ∞, we may de�ne
Ap(
) := {f ∈ Lp(
, dz) : f is analytic on 
}.

This is a closed subspace of Lp(
, dz). For p = ∞, A∞(
) = H∞(
), the space of all bounded analytic
functions on 
. For p = 2, A2(
) becomes a Hilbert space (with the inner product from L2). The spaces
A2(
) will be termed Bergman spaces ; the space A2(D), which is of particular interest, will be referred to as
the Bergman space. The latter will usually be considered as a subspace not of L2(D, dz), but of L2(D, dν),
with the norm and scalar product modi�ed accordingly; here

dν(z) = 1
π

dz

is a multiple of the Lebesgue measure chosen so that D had measure 1. If f =
∞∑

n=0
fnzn is holomorpic2 on

D, a simple calculation shows that
∫

D
|f(x)|2 dν(x) =

∞∑
n=0

|fn|2
n + 1 .

Consequently, f ∈ A2(D) if and only if the last expression is �nite. The scalar product of f and g =
∞∑

n=0
gnzn,

f, g ∈ A2(D), is given by
〈f, g〉A2(D) =

∞∑
n=0

fngn

n + 1 .

The set
(1) {√n + 1 zn}n∈N

is an orthonormal basis for A2(D). The polynomials are dense in A2(D).
(Observe that the last sentence, in general, need not be valid for A2(
). If we take 
 = D \ 〈0, 1),

then the closure of the polynomials in A2(
) is precisely A2(D) ⊂ A2(
). The Riemann mapping function
� : 
 → D belongs to A2(
) { even to A∞(
) { but not to A2(D).)

The space A2(D) is a reproducing kernel space in the sense of Aronszajn [1]. Denote P+ the orthogonal
projection of L2(
) onto A2(
).

Proposition 1.1. For each λ ∈ 
 ⊂ CN , the linear functional f 7→ f(λ) on A2(
) is bounded;
consequently, f(λ) = 〈f, gλ〉 > for some gλ ∈ A2(
). Further,

‖gλ‖ ≤ 1
(γNR2N )1/2 ,

2a synonym for analytic throughout this paper
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where γN is the (Lebesgue) volume of the unit ball of CN and R = dist(λ, CN \ 
).
Proof. Let R be the distance of λ to CN \ 
 and

Fλ(z) =
{ 0 if |z − λ| ≥ R,

(γNR2N )−1 if |z − λ| < R.

Then ∫



|Fλ(z)|2 dz = γNR2N

( 1
γNR2N

)2
= 1

γNR2N
< +∞,

so Fλ ∈ L2(
). Hence, for arbitrary f ∈ A2(
),

〈f, P+Fλ〉A2(
) = 〈f, Fλ〉L2(
) = 1
γNR2N

∫

|z−λ|<R

f(z) dz,

which equals f(λ) by the mean value theorem; hence, we may take gλ = P+Fλ. Finally,

‖gλ‖22 ≤ ‖Fλ‖22 = 1
γNR2N

.

¤
For 
 = D, the reproducing kernel may be written down explicitly { namely,

gλ(z) = 1
(1− λz)2 =

∞∑
n=0

(n + 1)λn
zn.

Let 
 be a domain in CN and φ ∈ L∞(
). We de�ne the multiplication operator Mφ : L2(
) → L2(
),
the Toeplitz operator Tφ : A2(
) → A2(
) and the Hankel operator Hφ : A2(
) → L2(
) ª A2(
) with
symbol φ, respectively, by the formulas

Mφf = φf, Tφf = P+Mφf, Hφf = (I − P+)Mφf.

These operators are clearly bounded, their norms not exceeding ‖φ‖∞. If φ ∈ A∞(
), Hφ is zero, while
Tφ = Mφ¹A2(
). The mappings φ 7→ Mφ, φ 7→ Tφ, φ 7→ Hφ are linear. The formulas below are well-known
in the theory of Toeplitz and Hankel operators on the Hardy space H2; they remain in force in the present
setting.

Proposition 1.2. For arbitrary f, g ∈ L∞(
),

[Tf , Tg) := Tfg − TfTg = H∗
f
Hg,

[Tf , Tg] := TfTg − TgTf = H∗
g Hf −H∗

f
Hg.

In particular,
Tfg = TfTg, TgTf = Tgf

when f ∈ L∞(
) and g ∈ H∞(
).
Proof.

Tfg − TfTg = P+fg − P+fP+g = P+f(I − P+)g = H∗
f
Hg;

[Tf , Tg] = [Tg, Tf )− [Tf , Tg);
and Hg = 0 if g ∈ H∞(
). ¤

The following proposition will prove handy when calculating some speci�c Toeplitz operators on A2(D).
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Proposition 1.3. Suppose f ∈ L∞(D) is a radial function (i.e. f(z) depends only on |z| ). Then Tf

is a diagonal operator with respect to the basis (1) with weights

cn(F ) :=
∫ 1

0
F (t).(n + 1)tn dt,

where F (t) := f(t1/2), t ∈ 〈0, 1).
Proof. Passing to the polar coordinates, we have

〈Tfzn, zm〉 =
∫

D
f(z) znzm dν(z) =

∫ 1

0
1

2π

∫ 2π

0
f(r)rn+me(n−m)it dt 2r dr.

If n 6= m, this is zero; if n = m, it equals
∫ 1

0
F (r2)r2n 2r dr =

∫ 1

0
F (t).tn dt,

and the assertion follows immediately. ¤
The next proposition gives some feeling that the situation for A2(D) is di�erent from that for H2 {

there are no nonzero compact Toeplitz operators on H2.
Proposition 1.4. Assume that φ ∈ L∞(
) and that the support supp φ is a compact subset of 
.

Then Mφ¹A2(D) is a compact operator; consequently, the operators Tφ and Hφ are also compact.
Proof. Suppose supp φ = K is a compact subset of 
, and set R = dist(K, CN \
) > 0. Assume that

fn ∈ A2(
) is a sequence weakly converging to 0. Such sequence must be bounded { say, ‖f‖2 ≤ C ∀n.
Then

|fn(λ)| ≤ ‖fn‖2‖gλ‖2 ≤ C√
γNR2N

∀λ ∈ K,

whence
|φ(λ)fn(λ)| ≤ C‖φ‖∞√

γNR2N
∀λ ∈ 
.

Also, fn
w→0 implies fn(λ) = 〈fn, gλ〉 → 0 ∀λ ∈ 
. Thus, we may apply the Lebesgue dominated convergence

theorem to conclude that

‖φfn‖22 =
∫



|φ(λ)fn(λ)|2 dλ =

∫

K

|φ(λ)fn(λ)|2 dλ → 0

as n →∞. Hence Mφ¹A2(
) maps weakly convergent sequences into norm convergent ones, and so must be
compact. ¤

De�ne
V (D) := {f ∈ L∞(D) : ess lim

|z|↗1
f(z) = 0}.

Corollary 1.5. If φ ∈ V (D), then Mφ¹A2(D), Tφ and Hφ are compact operators.
Proof. There exist φn ∈ V (D) such that supp φn are compact subsets of D and φn⇒φ. Consequently,

Mφn → Mφ in norm; since Mφn are all compact, so must be Mφ, and hence also Tφ and Hφ. ¤
If we take φ ∈ L∞(
), φ ≥ 0 whose support is a compact subset of 
, then 〈Tφ1, 1〉 = ∫


 φ(z) dz > 0
and so Tφ 6= 0; hence, indeed, Tφ is nonzero compact Toeplitz operator.

For 
 = CN , the space A2(CN ), de�ned as above, would consist only of constant zero; hence, we adopt
a di�erent de�nition in this case. For x, y ∈ CN , write

xy :=
N∑

n=1
xnyn and |x| := (xx)1/2.
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(Thus, |x − y| is the usual Euclidean distance between x and y.) The Gaussian measure on CN is, by
de�nition,

dµ(z) = (2π)−Ne−|z|
2/2 dz.

Denote Lp(CN , dµ) the usual Lebesgue spaces; L∞(CN , dµ) shall be occassionally abbreviated to
L∞(CN ), since they happen to coincide. Set, for 1 ≤ p ≤ ∞,

Ap(CN ) := {f ∈ Lp(CN , dµ) : f is an entire function on CN}.

Again, this is a closed subspace of Lp(CN , dµ). A∞(CN ) = H∞(CN ), which contains only constant zero.
For p = 2, A2(CN ) is a Hilbert space, called the Fock or Segal-Bargmann space. Many results valid for
A2(D) carry over to the Fock space setting. For a multiindex n = (n1, n2, . . . , nN ) ∈ NN , the following
abbreviations will be employed:

an = an1,n2,...,nN
,

zn = zn11 zn22 . . . znN

N (for z ∈ CN ),
n! = n1!n2! . . . nN !, 2n = 2n1+n2+...+nN .

If f is an entire function, f(z) = ∑
n∈NN

fnzn, then

∫

CN

|f(z)|2 dµ(z) =
∑

n∈NN

n!2n|fn|2.

Consequently, f ∈ A2(CN ) if and only if the last expression is �nite. The inner product of f and g =∑
n∈NN

gnzn, f, g ∈ A2(CN ), is given by

〈f, g〉A2(CN ) =
∑

n∈NN

n!2nfngn.

The set

(2) {(n!2n)−1/2 zn}n∈NN

is an orthonormal basis of A2(CN ). The polynomials are dense in A2(CN ). Once again, A2(CN ) is a
reproducing kernel space; the reproducing kernel at λ ∈ CN is given by

gλ(z) = eλz/2,

and ‖gλ‖2 = e|λ|
2/4. For φ ∈ L∞(CN , dµ) = L∞(CN ), the operators Mφ, Tφ and Hφ may be de�ned in the

same way as for A2(
); of course, P+ will be the orthogonal projection of L2(CN , dµ) onto A2(CN ) this
time. These operators are bounded, their norms not exceeding ‖φ‖∞. The maps

φ 7→ Mφ, φ 7→ Tφ, φ 7→ Hφ

are linear. The following propositions are analogies of Propositions 1.2 | 1.5; their proofs are similar, and
therefore omitted.

Proposition 1.6. For arbitrary f, g ∈ L∞(CN ),

[Tf , Tg) := Tfg − TfTg = H∗
f
Hg,

[Tf , Tg] := TfTg − TgTf = H∗
g Hf −H∗

f
Hg.
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In particular,
Tfg = TfTg, TgTf = Tgf

when f ∈ L∞(CN ) and g ∈ H∞(CN ).
Proposition 1.7. Suppose f ∈ L∞(CN ) is a radial function (i.e. f(z) depends only on |z1|, |z2|, . . . , |zn|).

Then Tf is a diagonal operator with respect to the basis (2) with weights

cn(F ) :=
∫ ∞

0

∫ ∞

0
. . .

∫ ∞

0
F (t) tne−(t1+t2+...+tN )

n! dt,

where F (t) := f(√2t1,
√2t2, . . . ,

√2tN ), t ∈ 〈0, +∞)N .
Proposition 1.8. Assume that φ ∈ L∞(CN ) and supp φ is compact. Then Mφ¹A2(CN ), Tφ and Hφ

are compact operators.
Corollary 1.9. If φ ∈ V (CN ), where

V (CN ) := {f ∈ L∞(CN ) : ess lim
|z|→+∞

f(z) = 0},

then Mφ¹A2(CN ), Tφ and Hφ are compact operators.
The Corollaries 1.5 and 1.9 cannot be inverted | there exist functions φ ∈ L∞(D) \ V (D) and φ ∈

L∞(CN ) \ V (CN ), respectively, such that Tφ are compact operators. Furthermore, Toeplitz operators both
on A2(D) and A2(CN ) may be well-de�ned and bounded also for some φ /∈ L∞. It seems that boundedness or
compactness of Tφ is not determined by the boundedness of φ or its vanishing near the boundary, respectively,
but rather by these properties of the image φ̃ of φ under certain smoothing transformations. For the Fock
space, this result is due to Berger and Coburn [6]. If φ ∈ L2(CN , dµ) and λ ∈ CN , de�ne kλ := gλ/‖gλ‖,
and

φ̃(λ) := 〈φkλ, kλ〉 =
∫

CN

φ(z) e
λz
2 + λz

2 −
|λ|2

2 dµ(z) =

=
∫

CN

φ(z) e−|λ−z|2/2 dz

(2π)N
.

φ̃ is called the Berezin transform of φ; the de�nition may be extended to φ ∈ L1(CN , dµ) in an obvious way.
Theorem 1.10. Let φ ∈ L2(CN , dµ).
(i) If Tφ is bounded, φ̃ ∈ L∞(CN ); if it is compact, φ̃ ∈ V (CN ).

(ii) Mφ¹A2(CN ) is bounded i� (|φ|2)̃ ∈ L∞(CN ), and compact i� (|φ|2)̃ ∈ V (CN ).
(iii) If φ ≥ 0, then Tφ is bounded i� φ̃ ∈ L∞(CN ), and compact i� φ ∈ V (CN ).

For the Bergman space A2(D), the best reference seems to be Axler [2]. The M�obius transformation ωλ

corresponding to λ ∈ D is, by de�nition, the function

x 7→ ωλ(x) := x− λ

1− λx
,

which maps D bijectively onto itself. The function

d(x, y) := |ωx(y)|

is called the pseudo-hyperbolic metric; it is, indeed, a metric on D. Denote Dh(λ,R) the disc with center λ
and radius R with respect to this metric. If φ ∈ L1(D, dν), denote

φ[(λ) := 1
ν(Dh(λ, 1/2))

∫

Dh(λ,1/2)
φ(x) dν(x),
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the mean value of φ on Dh(λ, 1/2).
Theorem 1.11. Let φ ∈ L2(D, dν).
(a) Mφ¹A2(D) is bounded i� (|φ|2)[ ∈ L∞(D), and compact i� (|φ|2)[ ∈ V (D).
(b) If φ ≥ 0, Tφ is bounded i� φ[ ∈ L∞(D), and compact i� φ[ ∈ V (D).

The number 1/2 may be replaced by arbitrary R ∈ (0, 1).
The Berezin transform may be de�ned on D, too. For φ ∈ L2(D, dν) and λ ∈ D, set kλ := gλ/‖gλ‖ and

φ̃(λ) := 〈φkλ, kλ〉 =
∫

D
φ(z) .

(1− |λ|2)2

|1− λz|4 dν(z).

Using the last theorem, it is possible to prove a complete analogue of Theorem 1.10.
Theorem 1.12. Let φ ∈ L2(D).
(i) If Tφ is bounded, φ̃ ∈ L∞(D); if it is compact, φ̃ ∈ V (D).

(ii) Mφ¹A2(D) is bounded i� (|φ|2)̃ ∈ L∞(D), and compact i� (|φ|2)̃ ∈ V (D).
(iii) If φ ≥ 0, then Tφ is bounded i� φ̃ ∈ L∞(D), and compact i� φ ∈ V (D).
Lemma 1.13. When |λ| → 1, kλ

w→0.
Proof. Since ‖kλ‖ = 1 ∀λ ∈ D and the polynomials are dense in A2(D), it is enough to check that

〈p, kλ〉 → 0 as |λ| → 1 when p is a polynomial; but that's immediate, because
〈zn, kλ〉 = (1− |λ|2)〈zn, gλ〉 = (1− |λ|2) . λn → 0 as n → +∞.

¤

Remark 1.14. The last lemma remains in force for A2(CN ), too; the proof is similar. ¤

Lemma 1.15. For each R ∈ (0, 1), there is C = C(R) > 0 such that
∫

D
φ(z) (1− |λ|2)2

|1− λz|4 dν(z) ≥ C2

ν(Dh(λ,R))
∫

Dh(λ,R)
φ(z) dν(z)

for every nonnegative function φ on D.
Proof. It su�ces to �nd C > 0 so that

(1− |λ|2)2

|1− λz|4 ≥ C2

ν(Dh(λ,R)) ∀z ∈ Dh(λ,R).

This is equivalent to
1

|1− λz|2 ≥ C.
1−R2|λ|2

R(1− |λ|2)2 ∀z ∈ Dh(λ, R).

But, if z ∈ Dh(λ,R),
|1− λz| = |λ|

∣∣∣∣
1
λ
− z

∣∣∣∣ ≤ |λ|
∣∣∣∣
1
λ
− |λ| −R

1− |λ|R
∣∣∣∣ = 1− |λ|2

1−R|λ| ;
hence it is enough to manage that

(1−R|λ|
1− |λ|2

)2
≥ C.

1−R2|λ|2
R(1− |λ|2)2 ,

and a short computation reveals that C = R(1−R)/(1 + R) will do. ¤

Proof. (of Theorem 1.12) (i) If Tφ is bounded,

|φ̃(λ)| = |〈φkλ, kλ〉| = |〈Tφkλ, kλ〉| ≤ ‖Tφ‖.‖kλ‖2 = ‖Tφ‖.
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If Tφ is compact, ‖Tφkλ‖ → 0 as |λ| → 1 owing to Lemma 1.13; hence φ̃(λ) = 〈Tφkλ, kλ〉 → 0 as |λ| → 1.
(ii) Mφ¹A2(D) is bounded or compact, respectively, if and only if

(Mφ¹A2(D))∗(Mφ¹A2(D)) = T|φ|2

is; hence, (ii) reduces to (iii).
(iii) The "only if" part is contained in (i). To prove the "if" part, suppose that φ ≥ 0 and φ̃ ∈ L∞(D);

then, owing to Lemma 1.15, φ[ ∈ L∞(D), and so Tφ is bounded by Theorem 1.11(b). The statement
concerning compactness may be proved in a similar manner. ¤

It is actually possible to go a little further and de�ne the Berezin transform for linear operators on
A2(CN ) or A2(D) by the formula

T̃ (λ) := 〈Tkλ, kλ〉; kλ = gλ

‖gλ‖ , λ ∈ CN or D.

The operator T need not be bounded, and it su�ces if its domain of de�nition contains all kλ, λ ∈ CN or D.
Proposition 1.16. (i) If T is bounded, T̃ ∈ L∞ and ‖T̃‖∞ ≤ ‖T‖. If T is compact, T̃ ∈ V .

(ii) If T = Tφ is a Toeplitz operator, φ ∈ L2, then T̃φ = φ̃.
(iii) If T is diagonal with respect to the basis (1) or (2), respectively, then T̃ is radial.

Here L∞ is either L∞(D) or L∞(CN ), and similarly for L2 and V .
Proof. (i) |T̃ (λ)| ≤ ‖T‖.‖kλ‖2 = ‖T‖; if T is compact, Tkλ → 0 as |λ| ↗ 1 owing to Lemma 1.13,

and so T̃ (λ) → 0 as |λ| ↗ 1. The proof for the Fock space is similar (cf. Remark 1.14).
(ii) Immediate.
(iii) We will deal with A2(D) only, the proof of the other case being similar. Suppose T is diagonal with

weights cn. Then
Tgλ =

∞∑
n=0

(n + 1)λn
cnzn,

whence
T̃ (λ) = (1− |λ|2)2.

∞∑
n=0

(n + 1)cn|λ|2n,

and that's a radial function. ¤

Corollary 1.17. If φ ∈ L2(CN ) or L2(D) is radial, then so is φ̃.
Proof. Combine Propositions 1.3 and 1.7 with Proposition 1.16(iii). ¤

Remark 1.18. The item (i) of the last proposition bears certain resemblance to the same items of
Theorems 1.10 and 1.12. It should be noted, however, that this analogy fails for (iii): there exist unbounded
positive operators T such that T̃ ∈ L∞, and non-compact positive operators T such that T̃ ∈ V . For
completeness, we present below an example of the latter (on A2(D)).

Example 1.19. Let A be the operator on A2(D) sending zn into cnzn (n ∈ N), where

cn =
{ 1 if n = 2k − 1, k = 1, 2, . . . ,

0 otherwise.

Then A is a bounded positive noncompact linear operator; we are going to show that Ã ∈ V (D). From the
proof of Proposition 1.16, we see that

Ã(λ) = (1− |λ|2)2.
∞∑

k=1
2k|λ|2(2k+1) = R(1−R)2

∞∑

k=1
2kR2k

,
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where, for brevity, R = |λ2|. The function x 7→ 2xR2x is increasing on the interval (0, xR) and decreasing on
(xR, +∞), where xR is given by 2xR = − 1

ln R . Let kR be the least integer greater or equal to xR. Then
∞∑

k=1
2kR2k =

kR∑

k=1
2kR2k +

∞∑

k=kR+1
2kR2k ≤

kR∑

k=1
2k +

∫ ∞

xR

2xR2x

dx = 2kR+1 +
[

R2x

ln R ln 2
]∞

xR

=

= 2kR+1 + 1/e

− ln R ln 2 ≤ 4 1
− ln R

+ 1/e

− ln 2 ln R
≤ 5
− ln R

.

Consequently,
0 ≤ Ã(λ) ≤ R(1−R)2 5

− ln R
= O(1−R) as R ↗ 1,

which proves that Ã ∈ V (D). ¤

Notation. If H is a Hilbert space, B(H) stands for the C∗-algebra of all bounded linear operators on
H (with the operator norm ‖·‖), Comp(H) for the space of all compact operators from B(H); Comp(H) will be
abbreviated Comp when it's clear what H is. The norm is denoted ‖ · ‖ on all spaces; ‖ · ‖p is sometimes used
for the norm in Lp or Ap. Where ambiguity might arise, the space where the norm is taken is given as an
index, e.g. ‖f‖L2(D,dν). Similar conventions will be observed for scalar products 〈 . , . 〉. SOT and WOT are
abbreviations for the strong and weak operator topologies on B(H), respectively. If M is a subset of B(H),
closM denotes the closure of M in the operator norm topology. When discussing B(A2(D)) or B(A2(CN )),
diag(cn) means the diagonal operator with weights cn with respect to the basis (1) or (2), respectively. The
symbol ⇒ is employed to denote uniform convergence; w→ means weak convergence in a Banach space. A
bar over a subset of CN denotes the closure; a bar over a number, a function, etc., the complex conjugate.
For other symbols, not mentioned in this Introduction, consult the List of Notation.

By a Bergman-type space, we mean either a Bergman space A2(
), 
 ⊂ CN , or the Fock space A2(CN ).
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Chapter 2. DENSITY OF TOEPLITZ OPERATORS

Let Tφ be a Toeplitz operator on the Hardy space H2. It is easily seen that
T ∗z TφTz = Tφ for any φ ∈ L∞(T).

According to a classical result, the converse also holds: if some operator T : H2 −→ H2 satis�es T ∗z TTz = T,
then T = Tφ for some φ ∈ L∞(T). This result serves as a starting point for the theory of symbols of
operators (cf. [24]). It shows that, loosely speaking, there are only few Toeplitz operators on H2.

In my paper [15], I have shown that Toeplitz operators on A2(D) don't admit the characterization as
above. More precisely, if ATφB = Tφ for all φ ∈ L∞(D), then A = cI, B = c−1I for some (nonzero) complex
number c. The proof works also for A2(
) and A2(CN ).

A natural question to ask is if this is not because there are, loosely speaking, more operators which are
Toeplitz than in the classical (i.e. H2) case. To put it precisely, we can ask if following statements are true:

(1o) the Toeplitz operators are dense (in some topology) in B(A2(D));
(2o) every �nite dimensional operator is Toeplitz;
(3o) for any linearly independent elements f, g ∈ A2(D), there exists φ ∈ L∞(D) such that Tφf = g.

Clearly (2o) implies (1o) in the strong operator topology, and either (1o) or (3o) implies the impossibility of
the above-mentioned characterization ATφB = Tφ.

The statement (2o) is easily seen not to be true. For example, there is no φ ∈ L∞(D) such that
Tφ = 〈. , 1〉1. This fact is an easy consequence of the M�untz-Sz�asz theorem for L2 spaces (see, for instance,
[14]). In fact, this theorem yields a much stronger result: if Tφ = 〈. , f〉g for some φ ∈ L∞(D) and
f, g ∈ A2(D) , f(z) = ∑∞

0 fnzn , g(z) = ∑∞
0 gnzn , then

∑

fn=0

1
n

< +∞ and
∑
gn=0

1
n

< +∞ .

(Loosely speaking, only few Taylor coe�cients of f and g can be zero.) It's a conjecture of author's that in
fact there are no �nite-dimensional Toeplitz operators in B(A2(D)) at all.

(3o) is readily seen to be false, too. It su�ces to take f = 1: if there were, for every g ∈ A2(D), some
φ ∈ L∞(D) such that g = Tφ1 (= P+φ), then the mapping (here (A2(D))d stands for the dual space of
A2(D))

A : L∞(D) −→ (A2(D))d , φ 7−→ 〈. , P+φ〉 = 〈. , φ〉L2(D)

would be onto. Let B be the operator of inclusion of A2(D) into L1(D):
B : A2(D) −→ L1(D) , ψ 7−→ ψ .

This is a continuous operator (by the Schwarz inequality) and has A as its adjoint, Bd = A. By the
Hausdor� normal solvability theorem (cf. [26], chapter VII, §5), Ran A is closed if, and only if, Ran B is
closed. Because B is injective, Ran B is closed if and only if B is bounded below (just use the open mapping
theorem). But the norm of zn in L1(D) is

∫

D
|zn| dz =

∫ 1

0
rn.2r dr = 2

n + 2 ,

whereas the norm of zn in A2(D) is

‖zn‖2 =
(∫

D
|zn|2 dz

)1/2
= (n + 1)−1/2 .

Consequently, B is not bounded below, so Ran A is not closed, and A cannot be surjective. (The last part
of the argument can be avoided by evoking directly the fact that the closure of A2(D) in L1(D) is A1(D),
the space of all integrable analytic functions on D. Our method is more elementary. )

11



All the same, there is a weakened version of (3o) that does hold and which, moreover, implies that (1o)
holds in SOT.

Theorem 2.1. Let3 
 ⊆ CN , T ∈ B(A2(
)), Fi, Gi ∈ A2(
) (i = 1, 2, . . . , N). Then there exists
φ ∈ L∞(
) such that

〈TφFi, Gi〉 = 〈TFi, Gi〉 , i = 1, 2, . . . , N.

Proof. We shall prove the theorem for the case 
 6= CN ; the proof for the Fock space is perfectly
similar. Let f1, f2, . . . , fn, resp. g1, g2, . . . , gm be a basis of the (�nite-dimensional) subspace of A2(
)
generated by F1, . . . , FN , resp. G1, . . . , GN . Clearly it's su�cient to �nd φ ∈ L∞(
) such that

〈Tφfi, gj〉 = 〈Tfi, gj〉 for all i = 1, . . . , n and j = 1, . . . , m.

Consider the operator R : L∞(
) −→ Cn×m, de�ned by the formula

(Rφ)ij =
∫



φ(z)fi(z)gj(z) dz = 〈Tφfi, gj〉.

Suppose some u ∈ Cn×m is orthogonal to the range of R, i.e.
n∑

i=1

m∑

j=1
(Rφ)ijuij = 0 for all φ ∈ L∞(
).

This means that

(3)
∫



φ(z).

n∑

i=1

m∑

j=1
uijfi(z)gj(z) dz = 0 for all φ ∈ L∞(
),

which implies

(4)
n∑

i=1

m∑

j=1
uijfi(z)gj(z) = 0

dz-almost everywhere in 
; since the left-hand side is obviously continuous on 
, this equality holds, in fact,
on the whole of 
. Thus, the function

F (x, y) =
n∑

i=1

m∑

j=1
uijfi(x)gj(y),

which is analytic in 
× 
, equals zero whenever x = y. By a well-known uniqueness theorem, this implies
that F is identically zero on 
 × 
. Because the functions fi, i = 1, 2, . . . , n, are linearly independent, we
have

m∑

j=1
uijgj(y) = 0 for all y ∈ 
, i = 1, 2, . . . , n;

but gj , j = 1, 2, . . . , m, are also linearly independent, and so uij = 0 for all i, j, i.e. u = 0. This means that
the range of R is all of Cn×m, which immediately yields the desired conclusion. ¤

Corollary 2.2. The set T = {Tφ : φ ∈ L∞(
)} is dense in B(A2(
)) in SOT (the strong operator
topology). The assertion holds also for 
 = CN .
3Remember that, according to the convention from the Introduction, this means that either 
 is a domain
in CN , or that 
 = CN .
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Proof. In view of the preceding theorem, it is certainly dense in WOT (the weak operator topology);
and because T is a subspace, i.e. a convex set, its WOT- and SOT- closures coincide. ¤

Note that the crucial step in the proof of Theorem 2.1 was the implication (3)⇒(4). Thus, the theorem
remains in force if we have (3) only for φ ∈ D(
) (the set of all in�nitely di�erentiable functions on 
 whose
support is a compact subset of 
) | any w∗-dense subset of L∞(
) will do. Consequently, the following
theorem holds.

Theorem 2.3. Let 
 ⊆ CN . Then the set T1 = {Tφ : φ ∈ D(
)} is SOT-dense in B(A2(
)).
A natural question arises at this point | namely, whether the Toeplitz operators are not actually norm-

dense in B(A2(
)). We shall see later that this is not the case | even the C∗-algebra generated by them
is smaller than B(A2(
)). It is true, however, that the norm closure of the Toeplitz operators contains all
compact operators.

Theorem 2.4. Suppose 
 ⊆ CN . Let T1 = {Tφ : φ ∈ D(
)}. Then clos T1 = Comp(A2(
)).
Since Tφ ∈ Comp for φ ∈ D(
) in view of Propositions 1.4 and 1.8, the inclusion clos T1 ⊂ Comp(A2(
))

is obvious; it remains to show that
Comp(A2(
)) ⊂ clos T1.

We are going to present two proofs. The �rst is shorter and works for arbitrary 
 ⊆ CN ; however, it is not
constructive. The second applies only for D or CN , involves much computation, but exhibits explicitely how
to manage the approximation.

Proof. First (short) proof. We begin by a simple lemma.
Lemma 2.5. Let 
 ⊆ CN . Then the reproducing kernels gλ, λ ∈ 
, span A2(
).
Proof. Suppose f ∈ A2(
) is orthogonal to all gλ, λ ∈ 
. Then f(λ) = 〈f, gλ〉 = 0 ∀λ ∈ 
, i.e. f = 0.

¤
Recall that the dual of Comp(H), where H is a separable Hilbert space, may be identi�ed with Trace(H),

the space of all trace class operators on H equipped with the trace norm ‖ · ‖Tr; the pairing is given by
(K,T ) 7→ Tr(KT ) = Tr(TK), Tr being the trace.

Suppose that 
 ⊆ CN and that clos T1 is a proper subset of Comp(A2(
)). By the Hahn-Banach theorem,
there exists T ∈ Trace(A2(
)), T 6= 0, such that

Tr(TTφ) = 0 ∀φ ∈ D(
).
Let A,B be two Hilbert-Schmidt operators such that T = AB∗, {en}∞n=0 an orthonormal basis for A2(
),
fn = Aen, gn = Ben. Then Tr(TTφ) = Tr(B∗TφA) =

∞∑
n=0

〈B∗TφAen, en〉, and so the last condition may be
rewritten as ∞∑

n=0
〈Tφfn, gn〉 = 0 ∀φ ∈ D(
),

or ∞∑
n=0

∫



φ(λ)fn(λ)gn(λ) dν(λ) = 0 ∀φ ∈ D(
)

(if 
 = CN , replace dν by dµ). Because φ has compact support, ∑ ‖fn‖2 < +∞ and ∑ ‖gn‖2 < +∞, we
may interchange the integration and summation signs, which yields

∫



φ(λ)F (λ, λ) dν(λ) (or dµ(λ)) = 0 ∀φ ∈ D(
),

where
F (x, y) =

∞∑
n=0

fn(x)gn(y) = Tr(TGx,y),

Gx,y = 〈· , gx〉gy.
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It follows that F (λ, λ) = 0 for almost all λ ∈ 
; in other words, the function F (x, y), analytic on 
 × 
,
vanishes when x = y. Appealing to the aforementioned uniqueness principle, F = 0 everywhere on 
 × 
,
i.e. Tr(TGx,y) = 0 ∀x, y ∈ 
. In view of the last lemma, Tr(TK) = 0 for all rank one operators K; by
linearity and continuity, Tr(TK) = 0 for all compact K, whence T = 0 | a contradiction. The proof is
complete. ¤

The other proof is a slightly simpli�ed version of the author's original one from [16]. It is based on two
lemmas. We state and prove them �rst for A2(D); the (slightly easier) case of A2(CN ) will be discussed
afterwards.

For m,n ∈ N and a ∈ D, let T(m,n,a) be the operator on A2(D) given by

f 7−→ 〈f, gm,a〉gn,a ,

where a ∈ D, m and n are non-negative integers, and gm,a ∈ A2(D) is given by the formula

gm,a(x) := (m + 1)!zm

(1− az)m+2 .

One has
〈f, gm,a〉 = f (m)(a),

the m-th derivative of f ∈ A2(D) at a ∈ D; thus,

〈T(m,n,a)f, g〉 = f (m)(a)g(n)(a)

for arbitrary f, g ∈ A2(D).
Lemma 2.6. Let M, N be non-negative integers, a ∈ D, and denote

R(M,N,a,t) = T(M,N,a+t) − T(M,N,a)
2t

− i
T(M,N,a+it) − T(M,N,a)

2t
.

Then R(M,N,a,t) tends to T(M+1,N,a) (in norm) as the real number t tends to zero:

limR3t→0
∥∥R(M,N,a,t) − T(M+1,N,a)

∥∥ = 0 .

Similarly,
limR3t→0

∥∥∥R′(M,N,a,t) − T(M,N+1,a)
∥∥∥ = 0 ,

where
R′(M,N,a,t) = T(M,N,a+t) − T(M,N,a)

2t
+ i

T(M,N,a+it) − T(M,N,a)
2t

.

(Here i stands for √−1.)
Proof. Let F, G ∈ A2(D) and denote, for a while, f = F (M) and g = G(N). Then

〈(
R(M,N,a,t) − T(M+1,N,a)

)
F,G

〉 =

= f(a + t)g(a + t)− f(a)g(a)
2t

− i
f(a + it)g(a + it)− f(a)g(a)

2t
− f ′(a)g(a) .(5)

Let

(6) f(x) =
∞∑
0

fn.(x− a)n , g(x) =
∞∑
0

gn.(x− a)n
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be the Taylor expansion of f, resp. g at a. These series are locally uniformly convergent in the disc
|x− a| < 1− a. Consequently, for |t| < 1− |a| the right-hand side of (5) equals to

1
2t




∑

m,n≥0
(m,n)6=(0,0)

fmtm.gntn


− i

2t




∑

m,n≥0
(m,n) 6=(0,0)

fm.(it)m.gn.(−it)n


− f1g0 .

Rearranging all terms into one series, the terms corresponding to (m,n) = (1, 0) and (0, 1) cancel, and we
get

(7) 1
2 .

∑

m,n≥0
m+n≥2

fmgntm+n−1(1− im−n+1) .

Let Fn, resp. Gn be the coe�cients of the Taylor expansion of the function F, resp. G at a. Because
f = F (M), we have

fm = 1
m!f

(m)(a) = 1
m!F

(M+m)(a) = (M + m)!
m! Fm+M ,

and similarly for gn. It follows that (7) is equal to

(8) 1
2 .

∑

m,n≥0
m+n≥2

(M + m)!
m! Fm+M .

(N + n)!
n! Gn+N .tm+n−1.(1− im−n+1) .

We are going to estimate the absolute value of the last expression in terms of ‖F‖2 and ‖G‖2. One has

‖F‖22 =
∫

D
|F (z)|2 dz ≥

∫

|z−a|<1−|a|
‖F (z)‖2 dz =

=
∫ 1−|a|

0

∫ 2π

0

∑

j,k≥0
FjF krj+ke(j−k)it.

r

π
dt dr ,

(we have passed to polar coordinates). Since the Taylor series

F (z) =
∞∑
0

Fn.(z − a)n

is locally uniformly convergent on the disc |z−a| < 1−|a|, we can interchange the integration and summation
signs and get

‖F‖22 ≥
∞∑

j,k=0

∫ 1−|a|

0

∫ 2π

0
FjF krj+ke(j−k)it.

r

π
dr dt =

=
∞∑

k=0

(1− |a|)2k+2

k + 1 |Fk|2 .(9)

Similar argument holds for G. Denote, for a while,

αk = (1− |a|)k+1

(k + 1)1/2 |Fk| , βk = (1− |a|)k+1

(k + 1)1/2 |Gk| .

According to (9), α and β belong to l2 and
‖α‖2 ≤ ‖F‖2 , ‖β‖2 ≤ ‖G‖2 .
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Returning to our previous calculations, we see that the absolute value of (8) is not greater then
1
2 .

∑

m,n≥0
m+n≥2

(M + m)!
m! |Fm+M | . (N + n)!

n! |Gn+N | . tm+n−1. 2 =

=
∑

m,n≥0
m+n≥2

(M + m)!
m!

(M + m + 1)1/2tm− 1
2

(1− |a|)M+m+1 αM+m .
(N + n)!

n!
(N + n + 1)1/2tn− 1

2

(1− |a|)N+n+1 βN+n .

Break this sum into three parts, namely,
∑

m,n≥1
+

∑
m=0
n≥2

+
∑

m≥2
n=0

:= σ1 + σ2 + σ3 .

Let's �rst consider σ1. Obviously

σ1 =
( ∞∑

m=1

(M + m)!
m!

(M + m + 1) 1
2 tm−

1
2

(1− |a|)M+m+1 αM+m

)
×

×
( ∞∑

n=1

(N + n)!
n!

(N + n + 1) 1
2 tn−

1
2

(1− |a|)N+n+1 βN+n

)
.(10)

According to the Cauchy-Schwarz inequality, the �rst factor on the right-hand side is less than or equal to

‖α‖2 .

( ∞∑
m=1

(M + m)!2
m!2 .

(M + m + 1).t2m−1

(1− |a|)2M+2m+2

)1/2
=(11)

= ‖α‖2 .

(
t .

∞∑
m=0

(M + m + 1)!2
(m + 1)!2 .

(M + m + 2).t2m

(1− |a|)2M+2m+4

)1/2
=

‖α‖2 . t1/2c1(M, a, t),

where c1(M, a, t) tends to a �nite limit (M + 1)!2(M + 2)
(1− |a|)2M+4 as t2 → 0+, i.e. as t → 0.

A similar estimate holds for the second factor in (10). Putting the two estimates together, we see that
σ1 ≤ ‖α‖2 . ‖β‖2 . t . c2(M, N, a, t)
≤ ‖F‖2 . ‖G‖2 . t . c2(M, N, a, t) ,(12)

where
c2(M, N, a, t) = c1(M, a, t)c1(N, a, t)

tends to a �nite limit as t → 0.
Now let's turn our attention to σ2. We have

σ2 ≤ M !(M + 1)1/2

(1− |a|)M+1 . ‖α‖2 .

[ ∞∑
n=2

(N + n)!
n!

(N + n + 1)1/2

(1− |a|)N+n+1 . tn−1 . βN+n

]
.

Using Cauchy-Schwarz inequality shows that the bracketed term is not greater then

(13) ‖β‖2 .

( ∞∑
n=2

(N + n)!2
n!2 .

(N + n + 1)
(1− |a|)2N+2n+2 . t2n−2

)1/2
= ‖β‖2 . tc3(N, a, t) ,
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where c3(N, a, t) tends to a �nite limit as t → 0. Consequently,
σ2 ≤ c4(M, N, a, t) . ‖α‖2 . ‖β‖2 . t ≤
≤ c4(M, N, a, t) . ‖F‖2 . ‖G‖2 . t ,

with c4(M,N, a, t) tending to a �nite limit as t → 0.
Similar estimate, of course, can be obtained for σ3. Summing up,we see that

|〈(R(M,N,a,t) − T(M+1,N,a))F,G〉| ≤ c5(M, N, a, t) . t . ‖F‖2 . ‖G‖2

for all F, G ∈ A2(D), where c5(M,N, a, t) tends to a �nite limit as t → 0. Consequently,
‖R(M,N,a,t) − T(M+1,N,a)‖ ≤ c5(M, N, a, t) . t

and the �rst part of the lemma follows. The assertion concerning R′(M,N,a,t) can be proved in the same way.
¤

We need one more lemma, the proof of which is (fortunately) a little shorter. Remember the symbol
"clos" denotes the closure in the norm topology of B(A2(D)).

Lemma 2.7. Denote T1 = {Tφ : φ ∈ D(D)}. Then
T(0,0,a) ∈ clos T1 for every a ∈ D .

Proof. For each δ in the interval (0, 1−|a|
2 ), pick a function fδ ∈ D(D) such that

fδ(z) =
{ 0 if |z − a| ≥ δ + δ2

δ−2 if |z − a| ≤ δ

and
0 ≤ fδ(z) ≤ δ−2 if δ < |z − a| < δ + δ2 .

Let f, g ∈ a2. Then
〈(Tfδ

− T(0,0,a))f, g〉 =
∫

D
fδ(z)f(z)g(z) dz − f(a)g(a) =

=

 1

δ2

∫

|z−a|≤δ

f(z)g(z) dz − f(a)g(a)

 +

∫

δ<|z−a|<δ+δ2

fδ(z)f(z)g(z) dz :=

:= ρ1 + ρ2 .(14)
Let fn, resp. gn be the coe�cients of the Taylor expansion of f, resp. g at a:

f(x) =
∞∑
0

fn . (x− a)n , g(x) =
∞∑
0

gn . (x− a)n .

Substituting these formulas into the expression for ρ1 gives

ρ1 = 1
δ2

∫

|z−a|≤δ

∞∑
m,n=0

fn . (z − a)n . gm . (z − a)m dz − f0g0 =

= 1
δ2

∫ δ

0

∫ 2π

0

∞∑
m,n=0

fngmrn+me(n−m)it .
r

π
dt dr − f0g0 =

= 1
δ2 .

∞∑
n=0

fngn .
δ2n+2

n + 1 − f0g0 =

=
∞∑

n=1
fngn .

δ2n

n + 1 .
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Denote, for a little while,

αn = (1− |a|)n+1

(n + 1)1/2 |fn| , βn = (1− |a|)n+1

(n + 1)1/2 |gn| .

In course of the proof of Lemma 2.6, we have seen that α and β belong to l2 and

‖α‖2 ≤ ‖f‖2 , ‖β‖2 ≤ ‖g‖2 .

Now
∞∑

n=1
|fngn| .

δ2n

n + 1 =
∞∑

n=1
αnβn .

δ2n

(1− |a|)2n+2 =

= δ2

(1− |a|)4 .

∞∑
n=1

αnβn .

[
δ

1− |a|
]2(n−1)

≤ δ2

(1− |a|)4 .

∞∑
n=1

αnβn ≤

≤ δ2

(1− |a|)4 . ‖α‖2 . ‖β‖2 ≤ δ2

(1− |a|)4 . ‖f‖2 . ‖g‖2 ,

which implies that

(15) |ρ1| ≤ δ2

(1− |a|)4 . ‖f‖2 . ‖g‖2 .

As for ρ2, we have

|ρ2| ≤ sup
δ<|z−a|<δ+δ2

|fδ(z)f(z)g(z)| .
∫

δ<|z−a|<δ+δ2

dz ≤

≤ 1
δ2 . sup

δ<|z−a|<δ+δ2
|f(z)g(z)| . δ3(δ + 2) .

Because
|f(z)| = |〈f, gz〉| ≤ ‖f‖2. ‖gz‖2 = ‖f‖2. [gz(z)]1/2 = ‖f‖2

1− |z|2
(and similarly for g), the supremum does not exceed

‖f‖2. ‖g‖2
[1− (|a|+ δ + δ2)2]2 .

Summing up, we have

(16) |ρ2| ≤ δ . ‖f‖2. ‖g‖2. c6(a, δ),

where
c6(a, δ) = δ + 2

[1− (|a|+ δ + δ2)2]2
tends to a �nite limit as δ → 0+.

Putting together (14),(15) and (16) yields

‖Tfδ
− T(0,0,a)‖ ≤ c7(a, δ) . δ ,

where c7(a, δ) tends to a �nite limit as δ → 0+. The lemma follows immediately. ¤

18



Proof. Second (constructive) proof (of Theorem 2.4). Note that the mapping φ 7→ Tφ is linear,
so T1 and clos T1 are linear subsets (i.e. subspaces) of B(A2(D)). In view of Lemma 2.7, T(0,0,a) ∈ clos T1
for each a ∈ D. By linearity, R(0,0,a,t) and R′(0,0,a,t) ∈ clos T1 whenever a ∈ D and |t| < 1− |a|; by Lemma
2.6, this implies T(1,0,a) and T(0,1,a) ∈ clos T1. Proceeding by induction, we conclude that T(m,n,a) ∈ clos T1
for every a ∈ D and m,n = 0, 1, 2, . . .. Taking a = 0 shows that, in particular, 〈. , zm〉zn ∈ clos T1.
By linearity, 〈. , p〉q ∈ clos T1 whenever p, q are polynomials. Because polynomials are dense in A2(D),
necessarily 〈. , f〉g ∈ clos T1 for all f, g ∈ A2(D), i.e. all one-dimensional operators are in clos T1. Using the
linearity of clos T1 for the third time shows that all �nite rank operators belong to clos T1; since these are
dense in Comp(A2(D)), Theorem 2.4 follows. ¤

Remark 2.8. For the Fock space A2(CN ) in place of A2(D), the proof comes through essentially
without alterations. The Taylor series (6) are convergent for all x ∈ C, and so the formulas obtained from
them are valid for all t ∈ C (instead of |t| < 1− |a|). For the same reason, (9) becomes

‖F‖22 =
∞∑

n=0
n!2n|Fn|2,

and so ‖F‖2 = ‖α‖2 this time, where α ∈ l2,

αk = (k!2k)1/2|Fk|,

and similarly for G. Formula (11) becomes

‖α‖2.

( ∞∑
m=1

(M + m)!2
m!2 .

t2m−1

(M + m)!.2M+m

)1/2
=

= ‖α‖2.

(
t

∞∑
m=0

(M + m + 1)!
(m + 1)!2 . 2M+m+1 t2m

)1/2
=

= ‖F‖2 . t1/2c1(M, t),
where c1(M, t) tends to a �nite limit as t2 → 0+, i.e. as t → 0; the estimate (12) for σ1

σ1 ≤ ‖F‖2.‖G‖2.tc2(M,N, t)
follows. Similarly, (13) becomes

‖β‖2.

( ∞∑
n=2

(N + n)!
n!2

t2n−2

2N+n

)1/2
= ‖G‖2.tc3(N, t),

with
c3(N, t) =

( ∞∑
n=0

N + n + 2)!
(n + 2)!2

t2n

2N+n

)1/2

tending to a �nite limit as t → 0, and so
σ2 ≤ c4(M,N, t).‖F‖2.‖G‖2.t

with c4(M,N, t) tending to a �nite limit as t → 0.
In the proof of Lemma 2.7, the functions fδ ∈ D(C) must be chosen so that

fδ(z) = 0 if |z − a| ≥ δ + δ2,

fδ(z) = 2δ−2 if |z − a| ≤ δ,
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and 0 ≤ fδ(z) ≤ 2/δ2 otherwise; here 0 < δ < 1. Proceed till you de�ne ρ1 and ρ2 as in (14); then pass to
polar coordinates to obtain

ρ1 = 2
δ2

∫ δ

0
1

2π

∫ 2π

0

∞∑
n=0

∞∑
m=0

fngmrn+me(n−m)ite−r2/2 dt r dr − f0g0 =

= 1
δ2

∞∑
n=0

2n+1fngn

∫ δ2/2

0
tne−t dt− f0g0.

For n ≥ 1, the function tne−t increases on the interval (0, n) ⊃ (0, δ); consequently, ∫ δ2/2
0 tne−t dt ≤

(δ2/2)n+1e−δ2/2, and

|ρ1| ≤
∣∣∣∣

2
δ2 f0g0.(1− e−δ2/2)− f0g0

∣∣∣∣ +
∣∣∣∣∣

2
δ2 e−δ2/2

∞∑
n=1

2n+1fngn

(
δ2

2
)n+1∣∣∣∣∣ =

= |f0g0|.O
(

δ2

2
)

+ 2e−δ2/2.
∞∑

n=1
|fngn|δ2n.

Employing the α, β ∈ l2 again, the last expression is seen to be bounded by
c6(δ).δ2.‖F‖2.‖G‖2,

with c6(δ) tending to a �nite limit as δ → 0+.
As for ρ2, we have, again,

|ρ2| ≤ sup
δ<|z−a|<δ+δ2

|fδ(z)f(z)g(z)| .
∫

δ<|z−a|<δ+δ2

dz ≤

≤ 2
δ2 sup

δ<|z−a|<δ+δ2
|f(z)g(z)| . δ3(δ + 2)

2 e−δ2/2 ≤

≤δ(δ + 2)e−δ2/2 sup
δ<|z−a|<δ+δ2

|f(z)g(z)|,

sup
δ<|z−a|<δ+δ2

|f(z)g(z)| ≤ ‖F‖2.‖G‖2.e(δ+δ2)2/2,

|ρ2| ≤ δ(δ + 2).‖F‖2.‖G‖2.eδ3(δ+2)/2 = δ.‖F‖2.‖G‖2.c6(δ),
where c6(δ) → 3 as δ → 0+. Thus,

|ρ1 + ρ2| ≤ ‖F‖2.‖G‖2.δ.c7(δ),
where c7(δ) → 3 as δ → 0+, and Lemma 2.7 follows as before. This shows that the second proof of Theorem
2.4 works also for the Fock space A2(CN ). ¤

Remark 2.9. Because Comp(A2(
)) is SOT-dense in B(A2(
)) and norm convergence implies SOT-
convergence, Theorem 2.4 yields another proof of Theorem 2.3. ¤

For 
 = D, there is a natural intermediate function space between D(D) and L∞(D) | namely, C(D),
the functions continuous on the closed unit disc D. The norm closure of the set T2 = {Tφ : φ ∈ C(D)} was
described in my paper [16], using the techniques of Olin and Thomson and of Bunce.

Theorem 2.10. clos T2 is a C∗-algebra and coincides with T2 + Comp(A2(D)).
Corollary 2.11. For every T ∈ clos T2, σe(T ) is connected. In particular, clos T2 6= B(A2(D)).
We omit the proofs, which can be found in [16]. Using our Theorem 2.4, they can also be deduced from

results of Axler, Conway and McDonald [3].
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Chapter 3. TOEPLITZ ALGEBRAS

As we have already mentioned, the results of the previous chapter prompt to ask whether the Toeplitz
operators (e.g. on A2(D)) are not actually norm-dense in the space of all linear operators; or if, at least, the
C∗-algebra generated by them is not all of B(A2(D)). In this chapter, we are going to prove that this is not
the case: all Toeplitz operators on the Bergman space A2(D) are contained in a certain C∗-algebra which
is a proper subalgebra of B(A2(D)). The same result holds also for the classical Hardy space H2, the Fock
space A2(C), Bergman spaces A2(
) for a wide class of domains 
 ⊂ C and for spaces H2(ρ) (to be de�ned
later in this chapter). Moreover, the corresponding algebras can be chosen to be, loosely speaking, the same
(more precisely: spatially isomorphic to each other) in all these cases. Let us start with A2(D), where the
proof is most transparent.

De�ne
A(Tz) := {T ∈ B(A2(D)) : T − T ∗z TTz ∈ Comp}.

There is an alternative de�nition of A(Tz):
Proposition 3.1. A(Tz) = {T ∈ B(A2(D)) : [T, Tz] ∈ Comp}.
Proof. The operators

I − T ∗z Tz = diag(1− n + 1
n + 2) = diag( 1

n + 2)

and
I − TzT

∗
z = diag(1− n

n + 1) = diag( 1
n + 1)

are compact; consequently,

T − T ∗z TTz ∈ Comp =⇒ Tz(T − T ∗z TTz) = (TzT − TTz) + (I − TzT
∗
z )TTz ∈ Comp ⇐⇒

⇐⇒ TzT − TTz ∈ Comp,
and, on the other hand,

TzT − TTz ∈ Comp =⇒ T ∗z TzT − T ∗z TTz = (T − T ∗z TTz)− (I − T ∗z Tz)T ∈ Comp ⇐⇒

⇐⇒ T − T ∗z TTz ∈ Comp.
¤

The following theorem shows that A(Tz) is the algebra appealed to above.
Theorem 3.2. (i) A(Tz) is a C∗-algebra.

(ii) ∀φ ∈ L∞(D) : Tφ ∈ A(Tz).
Proof. (i) It's clear that A(Tz) is a linear and selfadjoint set, which is moreover closed in the norm

topology; so the only thing that remains to be checked is that it is closed under multiplication. But

[AB, Tz] = A(BTz − TzB) + (ATz − TzA)B = A[B, Tz] + [A, Tz]B,

which is compact if [A, Tz] and [B, Tz] are.
(ii) If φ ∈ L∞(D), then

Tφ − T ∗z TφTz = Tφ − TzTφTz = Tφ−zφz = T(1−|z|2)φ(z).

But (1− |z|2)φ(z) ∈ V (D) and so the last operator is compact by Corollary 1.5. ¤

Corollary 3.3. The C∗-algebra generated by {Tφ : φ ∈ L∞(D)} is strictly smaller than B(A2(D)).
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Proof. In view of the preceding Theorem, it su�ces to �nd an operator not in A(Tz); one of them is

J = diag(−1)n,

since
J − T ∗z JTz = diag((−1)n − n + 1

n + 2(−1)n+1)
certainly is not compact. ¤

Theorem 3.2 carries over trivially to the classical Hardy space H2. Indeed, when Tφ is a Toeplitz
operator on H2, then

Tφ = S∗TφS,

where S = Tz is the usual (forward) shift operator on H2. Thus, if we de�ne

A(S) := {T ∈ B(H2) : T − S∗TS ∈ Comp(H2)},

then the following assertions are immediate.
Proposition 3.4. A(S) = {T ∈ B(H2) : [T, S] ∈ Comp(H2)}.
Theorem 3.5. (i) A(S) is a C∗-subalgebra of B(H2).

(ii) Tφ ∈ A(S) for every Toeplitz operator Tφ on H2.
Corollary 3.6. The C∗-algebra generated by the Toeplitz operators in B(H2) is strictly smaller than

B(H2).
The proofs are similar to those for 3.1 | 3.3, and actually a lot simpler. In the Corollary, the same

operator J (this time, of course, diagonality is understood with respect to the standard orthonormal basis
{zn}∞n=0 of H2) works. The algebras A(Tz) and A(S) are, in fact, isomorphic; moreover, the isomorphism
A(Tz) → A(S) may be chosen to be spatial, i.e. of the form

T 7→ W ∗TW,

where W is a �xed unitary operator from H2 onto A2(D). To see this, let W be the operator mapping the
standard basis {zn}n∈N of H2 onto the basis {√n + 1 zn}n∈N od A2(D),

W :
∞∑

n=0
fnzn 7→

∞∑
n=0

fn

√
n + 1 zn.

Then

T ∈ A(Tz) ⇐⇒ [T, Tz] ∈ Comp ⇐⇒ W ∗TTzW −W ∗TzTW ∈ Comp ⇐⇒
⇐⇒ (W ∗TW )(W ∗TzW )− (W ∗TzW )(W ∗TW ) ∈ Comp ⇐⇒
⇐⇒ (W ∗TW )S − S(W ∗TW ) ∈ Comp ⇐⇒ W ∗TW ∈ A(S);

here Tz is the Toeplitz operator on A2(D), not on H2, and the last-but-one equivalence is due to the fact
that

W ∗TzW − S = S.diag(
√

n + 1
n + 2 − 1)

is a compact operator4.
In general, we may de�ne

A(M) := {T ∈ B(H) : [M,T ] ∈ Comp(H)}
4Here, once more, the diagonality is understood with respect to the standard basis of H2.
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for arbitrary operator M on a Hilbert space H. The following theorem generalizes the considerations of the
previous paragraph.

Theorem 3.7. (i) A(M) = A(M + K) for arbitrary compact operator K.
(ii) Suppose that σe(M) = T and ind M = −1 (the Fredholm index). Then there exists a unitary

operator W : H2 → H such that the transformation
T 7→ W ∗TW

is a C∗-algebra isomorphism of A(M) onto A(S). In particular, A(M) is a proper C∗-subalgebra
of B(H).

Proof. (i) is immediate (actually, it has already been used in the end of the last-but-one paragraph).
(ii) According to the Brown-Douglas-Fillmore theory [8], an operator M satisfying these conditions is

unitarily equivalent to S modulo the compacts, i.e. there exists a unitary operator W : H2 → H and a
compact operator K ∈ Comp(H) such that

WSW ∗ = M + K.

Owing to part (i), A(M) = A(WSW ∗), and rehearsing the argumentation of the last-but-one paragraph
leads to the desired conclusion. ¤

Now we are in a position to prove the analogue of Theorem 3.2 for general Bergman spaces A2(
).
In case the domain 
 is bounded, a short proof may be given based on the results of Axler, Conway &
McDonald [3] or of Olin & Thomson [23]5. We shall present it �rst, and then, in case the domain 
 is simply
connected, employ an idea of Axler to obtain a more elementary proof which uses only methods of complex
function theory.

We begin by recalling the pertinent results of Axler et al. [3]. Assume that 
 is bounded. A point
x ∈ ∂
 is called removable if there exists a neighbourhood V of x such that every function f ∈ A2(
) can be
analytically continued to V . (For instance, every isolated point of ∂
 is removable, by a variant of Riemann's
removable singularity theorem.) The collection of all removable boundary points is called ∂r
, the removable
boundary of 
; ∂e
 := ∂
 \ ∂r
 is the essential boundary . It is proved in [3] that 
 ∪ ∂r
 is an open set
and that ∂r
 has zero Lebesgue measure; consequently, L2(
) = L2(
 ∪ ∂r
) and A2(
) = A2(
 ∪ ∂r
).
This makes it possible to replace, without loss of generality, 
 by 
 ∪ ∂r
, i.e. to assume that ∂r
 = ∅,
∂
 = ∂e
. In that case, the following two assertions hold.

Proposition 3.8. (cf. [3], Prop. 8) If 6 f ∈ C(
), then Hf ∈ Comp(A2(
)).
Proposition 3.9. ([3], Corol. 10) If f ∈ C(
), then σe(Tf ) = f(∂
).
Now we are ready to prove our main theorem.
Theorem 3.10. Assume that 
 is a bounded domain in C. Then there exists a unitary operator

W : H2 → A2(
) such that the transformation
T 7→ W ∗TW, B(A2(
)) → B(H2),

sends every Toeplitz operator Tφ, φ ∈ L∞(
), on A2(
) to an element of A(S). In particular, the C∗-algebra
generated by the Toeplitz operators on A2(
) is a proper subalgebra of B(A2(
)).

Proof. Without loss of generality we may assume D ⊂ 
. Let � ∈ L∞(
) be the function z/|z|
adjusted in a small neighbourhood of 0 so as to be continuous on 
; for instance, take

�(reit) =
{

eit if r ≥ 1,

reit if r ≤ 1.

5The main idea, however, goes back to Bunce[9].
6C(
) is the space of functions continuous on the closure 
 of 
.
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Because � ∈ C(
), the Hankel operators H� and H� are compact by Proposition 3.8 and, consequently, so
must be the operator (cf. Proposition 1.2)

[Tφ, T�] = H∗
�Hφ −H∗

φ
H�

for arbitrary φ ∈ L∞(
); thus, Tφ ∈ A(T�). In view of Proposition 3.9, σe(T�) = �(∂
) = T. If we prove
that ind T� = −1, we can apply Theorem 3.7 and the desired conclusion will follow.

For 0 ≤ θ ≤ 1, de�ne
�θ(reit) =

{
rθeit for r ≥ 1,

reit for r ≤ 1.

Then �θ ∈ L∞(
), and so the operators T�θ
are de�ned. Moreover, for arbitrary θ1, θ2 ∈ 〈0, 1〉,

‖T�θ1 − T�θ2‖ ≤ ‖�θ1 − �θ2‖∞ = sup
1≤r≤diam


|rθ1 − rθ2 | ≤ c.|θ1 − θ2|,

where diam 
 is the diameter of 
 and
c = sup

1≤r≤diam

0≤θ≤1

|rθ ln r|

does not depend on θ. This shows that the mapping θ 7→ T�θ
is continuous. Besides, σe(T�θ

) = �θ(∂e
) 63 0,
i.e. all T�θ

are Fredholm and so their index is de�ned. Since "ind " is a continuous integer-valued function,
it must be constant along the path θ 7→ T�θ

, whence ind T�θ0 = ind T�θ1 , or
ind T� = ind Tz.

But ker Tz = {0}, while RanTz consists of all functions from A2(
) that vanish at 0. Consequently, ind Tz =
−1, and the proof is complete. ¤

If 
 ⊂ C is simply connected, it turns out that the condition that 
 be bounded may be weakened |
namely, it su�ces that 
 have �nite Lebesgue measure. (If the latter condition is not met, the spaces A2(
)
become too small | they won't even contain nonzero constant functions.) It is also not necessary to appeal
to the results quoted above if one is willing to do a little computing. So suppose 
$C is simply connected
and let � : 
 → D be the Riemann mapping function.

Lemma 3.11. σe(T�) = T and ind T� = −1.

Proof. For arbitrary x ∈ D, the operator T�−x is injective and its range clearly consists exactly of
functions vanishing at �−1(x) (since �(z) − x, loosely speaking, behaves like z − �−1(x) in a su�ciently
small neighbourhood of �−1(x)). Hence, ind T�−x = −1 for x ∈ D. On the other hand, ‖T�‖ ≤ ‖�‖∞ = 1
and so ind T�−x = 0 if |x| > 1. Since

x 7→ ind T�−x

is a continuous function on C \ σe(T�), necessarily σe(T�) = T. ¤

Lemma 3.12. Assume T is a Fredholm operator, ind T < 0, and I − T ∗T ∈ Comp. Then also
I − TT ∗ ∈ Comp and T is essentially normal.

Proof. (Cf. [8], proof of Theorem 3.1.) By assumption, I − T ∗T ∈ Comp, and on multiplying by
the inverse of I + (T ∗T )1/2, we �nd that I − (T ∗T )1/2 ∈ Comp. If T = W (T ∗T )1/2 is the polar decompo-
sition, it follows that T is a compact perturbation of the partial isometry W. Since ind W = ind T < 0,
dim ker W < codim Ran W, there exists a partial isometry L with initial space ker W and �nal space con-
tained in (Ran W )⊥, and therefore T is a compact perturbation of the isometry V = W + L. Now I − V V ∗

is the projection onto (Ran V )⊥, which is a subspace of dimension −ind V = −ind T < +∞; hence, I −V V ∗

is a �nite rank operator. Because T is a compact perturbation of V, I − TT ∗ must be a compact operator.
¤
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Theorem 3.14. Assume 
 ⊂ C is a simply connected domain (of �nite Lebesgue measure) and let
� : 
 → D be the Riemann mapping function. Then Tf ∈ A(T�) ∀f ∈ L∞(
) and there exists a unitary
operator W : H2 → A2(
) such that the transformation T 7→ W ∗TW establishes a C∗-isomorphism of
A(T�) onto A(S). In particular, the C∗-algebra generated by the Toeplitz operators Tf , f ∈ L∞(
), is a
proper subalgebra of B(A2(
)).

Proof. Let f ∈ L∞(
). We have
Tf − T ∗�TfT� = Tf−�f� = T(1−|�|2)f .

For arbitrary δ > 0, the set
{y ∈ 
 : |�(y)| ≤ 1− δ}

is a compact subset of 
. Consequently, (1− |�|2)f ∈ V (
), and Proposition 1.4 implies that
(17) Tf − T ∗�TfT� ∈ Comp ∀ f ∈ L∞(
).
Taking f = 1, we see that I − T ∗�T� must be compact, and an application of Lemma 3.11 and Lemma
3.12 shows that I − T�T ∗� is compact as well. Multiplying (17) by T� from the left yields (cf. the proof of
Proposition 3.1)

T�Tf − TfT� ∈ Comp,
i.e. Tf ∈ A(T�). It remains only to make use of Lemma 3.11, Lemma 3.12 and Theorem 3.7. ¤

The Theorems 3.2, 3.5, 3.10 & 3.14 imply that the same situation is encountered for A2(D), H2 and
A2(
) for 
 bounded (not necessarily simply connected) or for 
 simply connected and of �nite measure.
Prior to investigating what happens for the Fock space, we brie
y discuss another class of spaces which also
seem to join here.

Let ρ be a positive Borel measure on 〈0, 1〉. Set

an =
∫

〈0,1〉
tn dρ(t)

and de�ne H2(ρ) to be the space of all functions f(z) =
∞∑

n=0
fnzn analytic on D for which

‖f‖ρ :=
( ∞∑

n=0
an|fn|2

)1/2
< +∞.

Example: When dρ(r) = dr (the Lebesgue measure on 〈0, 1〉), H2(ρ) is our old friend A2(D).
The following propositions summarize basic properties of these spaces.
Proposition 3.18. (i) H2(ρ) is a Hilbert space with scalar product

〈f, g〉ρ :=
∞∑

n=0
anfngn, where f(z) =

∞∑
n=0

fnzn, g(z) =
∞∑

n=0
gnzn.

The set {zn/
√

an}n∈N is an orthonormal basis for H2(ρ).
(ii) If ρ({1}) = 0 (i.e. ρ has no mass at 1), then

‖f‖2
ρ =

∫

〈0,1〉

∫ 2π

0
|f(r1/2eit)|2 dt

2π
dρ(r)

for any function f analytic on D. If ρ({1}) > 0, the last formula still holds if we agree to set
∫ 2π

0
|f(eit)|2 dt

2π
= sup

0<r<1

∫ 2π

0
|f(reit)|2 dt

2π
.
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Proof. (i) is immediate; in fact, the mapping de�ned by f 7→ {√anfn}n∈N is an isometric isomorphism
of H2(ρ) onto l2(N).
(ii) Pass to the polar coordinates and compute to get

∫

〈0,R)

∫ 2π

0
|f(r1/2eit)|2 dt

2π
dρ(r) =

∞∑
n=0

(∫

〈0,R)
rn dρ(r)

)
.|fn|2.

Letting R ↗ 1 gives the desired formula. (Interchanges of integration and summation signs can be justi�ed
by the uniform convergence of

∞∑
n=0

fnzn on compact subsets of D, and by the Lebesgue monotone convergence
theorem.) ¤

Proposition 3.19. The evaluation functionals f 7→ f(λ), λ ∈ D, on H2(ρ) are continuous for all
λ ∈ D if and only if 1 ∈ supp ρ.

Proof. Since f(λ) =
∞∑

n=0
fnλn =

∞∑
n=0

anfn

(
λ

n

an

)
, the evaluation functional at λ ∈ D is continuous on

H2(ρ) i� the function
gλ(z) =

∞∑
n=0

λ
n
zn

an

belongs to H2(ρ). Because ‖gλ‖2
ρ =

∞∑
n=0

|λ|2n

an
, this happens i� the radius of convergence of the series

∞∑
n=0

xn

anis at least one, i.e. i�
lim sup |an|1/n ≥ 1.

The expression a
1/n
n =

(∫
〈0,1〉 t

n dρ(t)
)1/n is the norm of the function t 7→ t in the Lebesgue space

Ln(〈0, 1〉, dρ). For ρ �nite (which is our case) this is well-known to tend to the norm in L∞(〈0, 1〉, dρ),
i.e. to ess sup t = sup{t : t ∈ supp ρ}. This is ≥ 1 if and only if 1 ∈ supp ρ. ¤

In order to de�ne Toeplitz operators on H2(ρ), we need it to be a subspace of "some L2". At that
moment, technical di�culties arise when ρ has positive mass at 1, i.e. when ρ({1}) > 0; so let us agree to
exclude this case. Also, replacing ρ by cρ for some number c > 0 leads to isomorphic spaces H2(ρ) and
H2(cρ); so there is no harm in assuming ρ(〈0, 1〉) = 1. Thus we are lead to the condition

(20) ρ({1}) = 0, ρ(〈0, 1〉) = 1, 1 ∈ supp ρ,

whose validity shall be assumed from now on. Proposition 3.18(ii) then implies that H2(ρ) is a closed
subspace of the Hilbert space

L2(ρ) :=
{

f on D :
∫

〈0,1〉

∫ 2π

0
|f(r1/2eit)|2 dt

2π
dρ(r)

}
< +∞

(with the obvious inner product). Let P+ be the orthogonal projection of L2(ρ) onto H2(ρ) and de�ne
Toeplitz operator Tφ : H2(ρ) → H2(ρ) by

Tφf := P+φf, f ∈ H2(ρ),

where φ ∈ L∞(ρ) := L∞(D, dt dρ(r)). The formulas from Proposition 1.2

TφTg = Tφg, TgTφ = Tgφ, for φ ∈ L∞(ρ), g ∈ H∞(D) ⊂ L∞(ρ),
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are readily seen to remain in force, as well as Corollary 1.5. (The proofs carry over without change.)
Consequently,

(21) Tφ − T ∗z TφTz = T(1−|z|2)φ ∈ Comp(H2(ρ)).

The following proposition implies that this is equivalent to Tφ ∈ A(Tz) and that A(Tz) is, once again,
C∗-isomorphic to A(S).

Proposition 3.20. Assume that the condition (20) is ful�lled. Let Z be the (forward) shift operator
on H2(ρ) with respect to the orthonormal basis {zn/

√
an}n∈N. Then Tz is a compact perturbation of Z.

Proof. Denote, for a little while, en = zn/
√

an, so that Zen = en+1 (n ∈ N). By de�nition,
Tzz

n = zn+1, i.e. Tze
n =

√
an+1
an

en+1 and Z − Tz = Z.diag
(

1−
√

an+1
an

)
. Hence it su�ces to show that

an+1
an

→ 1.
Clearly an+1 ≤ an and, by H�older's inequality, a

1/n
n ≤ a

1/m
m if m > n. Taking m = n + 1 gives

a
n+1

n
n ≤ an+1 ≤ an,

or
a1/n

n ≤ an+1
an

≤ 1.

In course of the proof of Proposition 3.19, the left-hand side was observed to tend to sup(supp µ) = 1 as
n →∞. The proposition follows. ¤

Corollary 3.21. Assume that (20) is ful�lled. Then Tφ ∈ A(Tz) ∀φ ∈ L∞(ρ), and A(Tz) = A(Z) is
spatially isomorphic to A(S).

Proof. Premultiplying (21) by Tz shows that

TzTφ − TzT
∗
z TφTz = [Tz, Tφ] + (I − TzT

∗
z )TφTz

is compact; owing to the last proposition, I − TzT
∗
z ∈ Comp, and so also [Tz, Tφ] ∈ Comp, i.e. Tφ ∈ A(Tz).

By Theorem 3.7(i), A(Tz) = A(Z). Finally, if we de�ne W : H2 → H2(ρ) by zn ∈ H2 7→ zn/
√

an ∈ H2(ρ),
then Z = WSW ∗, and so the transformation T ∈ A(Z) 7→ W ∗TW ∈ A(S) is a C∗-algebra isomorphism of
A(Z) onto A(S). ¤

Corollary 3.22. Assume that (20) is ful�lled. Then the C∗-algebra generated by Tφ, φ ∈ L∞(ρ), is a
proper subalgebra of B(H2(ρ)).

Remark 3.23. We conclude our brief excursion into H2(ρ) spaces by a simple example. Take ρ to be
the Lebesgue measure on 〈0, 1〉. Then

an = 1
n + 1 , n ∈ N,

H2(ρ) is but our old friend A2(D), and the last Corollary reduces to Theorem 3.2. ¤

Now let us turn our attention to the Fock space A2(C). Recall that it has an orthonormal basis {en}∞n=0,

en(z) := (n! 2n)−1/2 zn.

Denote Z the forward shift operator with respect to this basis, and let

�(z) = z

|z| = ei arg z.
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Theorem 3.24. (i) The operator T� is a compact perturbation of Z. Consequently, A(T�) = A(Z).
(ii) Tf ∈ A(T�), i.e. TfT� − T�Tf ∈ Comp, for every f ∈ L∞(C).
(iii) There exists a unitary operator W : H2 → A2(C) such that the transformation T 7→ W ∗TW is a

C∗-isomorphism of A(Z) onto A(S).
In particular, the C∗-algebra generated by all Tf , f ∈ L∞(C), is a proper subset of B(A2(C)).
Proof. (i) Compute:

〈T�zn, zm〉 =
∫

C
z

|z| z
nzm dµ(z) =

∫ +∞

0

∫ 2π

0
rn+me(n−m+1)it dt

2π
e−r2/2r dr.

This is zero unless m = n + 1, and in that case it equals
∫ +∞

0
r2n+1e−r2/2r dr =

∫ +∞

0
2n+ 1

2 tn+ 1
2 e−t dt = 2n+ 1

2 �(n + 3
2),

where � is Euler's gamma-function. Thus

〈T�en, em〉 =
{ 0 if m 6= n + 1

(n! 2n)−1/2.(m! 2m)−1/2.2n+ 1
2 �(n + 3

2 ) if m = n + 1.

Consequently, T�en = cnen+1, where

cn = �(n + 3
2 )

�(n + 1)1/2.�(n + 2)1/2 .

It follows that
Z − T� = Z . diag(1− cn),

and in order to verify our claim it su�ces to show that cn → 1 as n → +∞. According to Stirling's formula,
�(x + 1) ∼ √2π xx+ 1

2 e−x,

where "∼" means that the ratio of the right-hand to the left-hand side approaches 1 as x → +∞. Substituting
this into the expression for cn produces

cn ∼
(n + 1

2 )n+1 . e−n− 1
2 .
√2π

n
n
2 + 1

4 . e−
n
2 . 4√2π . (n + 1) n

2 + 3
4 .e−

n
2− 1

2 . 4√2π
.

The terms containing π cancel, as well as those containing e, and what remains is the product of
(

n + 1
2

n

)n/2
,

(
n + 1

2
n + 1

)n+1
2

and (n + 1
2 )1/2

n1/4.(n + 1)1/4 ,

which tend to e1/4, e−1/4 and 1, respectively. So, indeed, cn → 1 and the assertion follows.
(ii) Recall the formulas (cf. Proposition 1.6)

(22) Tfg − TfTg = H∗
f
Hg, TfTg − TgTf = H∗

g Hf −H∗
f
Hg,

which hold for arbitrary f, g ∈ L∞(C). Owing to the second one,
TfT� − T�Tf = H∗

�Hf −H∗
f
H�

will be compact for arbitrary f ∈ L∞(C) if H�, H� ∈ Comp. The latter is equivalent to H∗�H�, H∗
�H� ∈

Comp, respectively, and the �rst formula in (22) shows that this in turn is equivalent to
I − T ∗�T� and I − T�T ∗� ∈ Comp,
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respectively. Owing to part (i), the last two operators are compact perturbations of I − Z∗Z = 0 and
I − ZZ∗ = 〈 . , e0〉e0, respectively, and the result follows.

(iii) De�ne W : H2 → A2(C) by mapping the standard basis of H2 onto the basis {en}n∈N of A2(C),

W : zn ∈ H2 7→ zn

√
n! 2n

∈ A2(C).

This operator is unitary and the transformation T 7→ W ∗TW maps Z to S; hence, as before, it induces a
C∗-isomorphism of A(Z) = A(T�) onto A(S). The proof is complete. ¤

A variant of this result may also be obtained for A2(CN ), N ≥ 2; however, things come o� a little
di�erent this time | the corresponding C∗-algebra is no longer spatially isomorphic to A(S). All the same,
it is still a proper subset of B(A2(CN )).

We shall need some results of Berger and Coburn [6]. De�ne

ESV := {� ∈ L∞(CN ) : lim
|z|→+∞

ess sup |z−w|≤1|�(z)− �(w)| = 0}

and
BCESV := {� ∈ ESV : � is continuous on CN}.

Here, as usual,

|x| =
(

N∑
n=1

|xn|2
)1/2

for x = (x1, x2, . . . , xN ) ∈ CN .

Further, let S := {x ∈ CN : |x| = 1} be the unit sphere in CN .
Proposition 3.25. Let G : S → C be a continuous function on S. De�ne

(23) �(rx) =
{

G(x) if r ≥ 1,

rG(x) if r ≤ 1,
x ∈ S, 0 ≤ r < +∞.

Then
(i) � ∈ BCESV, and

(ii) the Hankel operators H�, H� are compact.
Assume further that

(24) G(S) = T.

Then also
(iii) σe(T�) = T and
(iv) ind T� = 0 if N ≥ 2, and ind T� is minus the winding number of the function G : T → T (with

respect to the origin) when N = 1.
Proof. (i) � is continuous and bounded since G is, and � ∈ ESV in view of [6], Theorem 3(i).
(ii) Theorem 11 of [6] says that H� and H� are compact for arbitrary � ∈ ESV .
(iii) & (iv) Immediate consequences of [6], Theorem 19. ¤

Remark 3.26. It is possible to prove part (iv) in another way, using the idea from the end of the
proof of Theorem 3.10. Suppose that θ 7→ Gθ, θ ∈ 〈0, 1〉, Gθ ∈ C(S), is a homotopy between G0 and G1;
construct functions �θ according to (23) and consider the Toeplitz operators T�θ

. It can be shown that T�θare Fredholm operators ∀θ ∈ 〈0, 1〉, and, consequently, ind T�0 = ind T�1 . If N ≥ 2, the homotopy group
π(S, T) = π2N−1(T) is trivial; hence there is a homotopy connecting G0 = G to G1 = 1. It follows that

ind T� = ind T1 = ind I = 0.
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If N = 1, π(T, T) = π1(T) is isomorphic to Z; an isomorphism is given by G 7→ wind G. It follows that
there is a homotopy connecting G0 = G to G1, G1(eit) = ekit, k = wind G, and

ind T� = ind T�1 = −k.

Thus the occurence of two cases | N = 1 versus N ≥ 2 | in the part (iv) is of topological nature, being
related to (non)vanishing of the homotopy groups πn(T). ¤

Theorem 3.27. Assume that the functions G : S → C and � : CN → C satisfy the conditions
(23),(24) and that N ≥ 2. Then

(a) Tf ∈ A(T�) for all f ∈ L∞(CN ).
(b) There exists a unitary operator W : L2(T) → A2(CN ) such that the transformation T 7→ W ∗TW

is a C∗-isomorphism of A(T�) onto A(U), where U is the bilateral (forward) shift operator (the
multiplication by z) on the Lebesgue space L2(T). In particular, A(T�) is a C∗-algebra.

(c) The operator J : L2(T) → L2(T), Jf(z) := f(−z), does not belong to A(U). Consequently, A(T�)
is a proper C∗-subalgebra of B(A2(CN )).

Proof. (a) For arbitrary f ∈ L∞(CN ),
TfT� − T�Tf = H∗

�Hf −H∗
f
H� (cf. Proposition 1.6),

and the operators H�, H� are compact by Theorem 3.24(ii).
(b) According to Theorem 3.24(iii) & (iv), σe(T�) = T = σe(U) and ind T� = 0 = ind U . Hence, by the

Brown-Douglas-Fillmore theory [8], there exists a unitary operator W : L2(T) → A2(CN ) such that
W ∗T�W = U + K,

where K ∈ Comp. The result follows in the same way as in the proof of Theorem 3.7, with S replaced by U .
(c) With respect to the standart orthonormal basis {en}n∈Z, en(z) = zn, z ∈ T, of L2(T), the operators

J and U are given by
Uen = en+1, Jen = (−1)nen (n ∈ Z).

It follows that UJ − JU = 2UJ ; but the operator UJ is unitary, and so certainly not compact. ¤

Remark 3.28. To be precise, we ought to check that there exist functions G and � satisfying the
conditions (23) and (24). As an example, take G(z) = e4iRe z1 . ¤

The argument above applies also in the case N = 1; one has only to replace L2(T) by H2 and U by Sk

or S∗(−k) when k = −ind T� = wind G 6= 0. In particular, if G : T → T is the identity, we get another proof
of Theorem 3.24.

What's the relationship between A(S) and A(U)? Since H2 is a subspace of L2(T), we may consider
B(H2) to be a subset (in fact, a C∗-subalgebra) of B(L2(T)) by identifying T ∈ B(H2) with

(
T 0
0 0

)
∈

B(H2 ⊕H2
−), H2

− := L2(T)ªH2. The mapping A 7→ P+A¹H2, i.e.
(

A11 A12
A21 A22

)
∈ B(H2 ⊕H2

−) 7−→ A11 ∈ B(H2),

is then a projection of B(L2(T)) onto B(H2).
Theorem 3.29. Under this identi�cation, A(S) becomes A(U) ∩ B(H2). Moreover, P+A¹H2 ∈ A(S)

whenever A ∈ A(U).
Proof. With respect to the decomposition L2(T) = H2 ⊕H2

−,

U =
(

S K1
0 ∗

)
,
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where K = 〈 . , z〉1 is a compact operator. If T ∈ B(H2), then
(

T 0
0 0

)
U − U

(
T 0
0 0

)
=

(
TS TK1
0 0

)
−

(
ST 0
0 0

)
=

( [T, S] TK1
0 0

)
,

and so
(

T 0
0 0

)
∈ A(U) i� T ∈ A(S). As for the second assertion, let A =

(
A11 A12
A21 A22

)
∈ B(H2 ⊕H2

−);
then

AU − UA =
(

A11S − SA11 −K1A21 ∗
∗ ∗

)
.

Hence A11 = P+A¹H2 ∈ A(S) if A ∈ A(U), q.e.d. ¤
Thus, A(S) is "smaller" then A(U) in the sense that the former is C∗-isomorphic to a subalgebra of the

latter. All the same, it is still possible that A(S) and A(U) are actually C∗-isomorphic. We are only able
to prove that, if such is the case, the isomorphism can not be spatial, i.e. of the form T 7→ WTW ∗, where
W : H2 → L2(T) is unitary (T ∈ A(S), WTW ∗ ∈ A(U)). Before exhibiting the proof, let us �rst establish
some general properties of the algebras A.

In general, there are two candidates for the de�nition of A, which have happened to coincide in all cases
encountered so far. Let H be a separable in�nite-dimensional Hilbert space and M ∈ B(H). De�ne

A(M) := {T ∈ B(H) : MT − TM ∈ Comp(H)}
and

A](M) := {T ∈ B(H) : T −M∗TM ∈ Comp(H)}.
The �rst investigation of A](S) is reported to have been done by Barr��a and Halmos, whose results, unfor-
tunately, appeared only as a rather unavailable preprint [4], and so remain unknown to the present author.
Afterwards these spaces seem to have received almost no attention at all, although many results on essential
commutants may be phrased in terms of them. Let us mention the theorem of Johnson and Parrot [20]
which says that ⋂

φ∈L∞(T)
A(Mφ) = {Mφ + K : φ ∈ L∞(T), K ∈ Comp},

where Mφ is the operator of multiplication by φ on L2(T), and two results of Davidson [11] concerning
Toeplitz operators on H2:

⋂

θ inner
A](Tθ) = {Tφ + K : φ ∈ L∞(T), K compact },

and ⋂

θ inner
(A(Tθ) ∩ A(T ∗θ )) = {Tφ + K : φ ∈ QC, K compact}.

(QC = (H∞ + C) ∩H∞ + C are the quasicontinuous functions on T.)
The following proposition describes elementary properties of A(M) and A](M).
Proposition 3.30. (a) A(M) and A](M) are norm-closed subspaces of B(H).
(b) A(M) is an operator algebra with identity. It contains M, Comp, and may be even all of B(H). It

is a C∗-algebra if M is selfadjoint; in general, A(M∗) = A(M)∗.
(c) A](M) is a selfadjoint set containing Comp. It may be all of B(H), but may also reduce merely to

Comp.
(d) A](M) is C∗-algebra if I−MM∗ ∈ Comp, and contains the identity if and only if I−M∗M ∈ Comp.
(e) A(M) = A](M) ⇐⇒ M is essentially unitary, and then it is a C∗-algebra with identity.
Proof. (a) Obvious.
(b) If A,B ∈ A(M), then [AB, M ] = A[B, M ] + [A,M ]B is also compact, hence AB ∈ A(M). The

assertions I,M ∈ A(M), Comp ⊂ A(M) are immediate, and so is A(M∗) = A(M)∗. If M is selfadjoint,
M∗ = M, whence A(M) = A(M)∗ is also selfadjoint, and so is a C∗-algebra. If M ∈ Comp, A(M) = B(H).
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(c) The �rst two assertions are straightforward. If M ∈ Comp, A](M) = Comp; if M = I, A](M) = B(H).
(d) The second statement is clear; if I −MM∗ ∈ Comp and A,B ∈ A](M), then

AB −M∗ABM = A(B −M∗BM) + (A−M∗AM)M∗BM −M∗A(I −MM∗)BM ∈ Comp,

and so AB ∈ A](M). Owing to (a) and (b), A](M) must be a *-subalgebra of B(H), hence a C∗-algebra.
(e) If A(M) = A](M), then I ∈ A](M) owing to (b), and so I − M∗M ∈ Comp; moreover, M ∈

A(M) ⇒M ∈ A](M) ⇒M∗ ∈ A](M) ⇒M∗ ∈ A(M) owing to (c), i.e. M is essentially normal. It follows
that M is essentially unitary. On the other hand, if M is essentially unitary, then

A−M∗AM ∈ Comp =⇒ M(A−M∗AM) = MA−AM + (I −MM∗)AM ∈ Comp =⇒
=⇒ MA−AM ∈ Comp,

and
MA−AM ∈ Comp =⇒ M∗(MA−AM) = A−M∗AM − (I −M∗M)A ∈ Comp =⇒

=⇒ A−M∗AM ∈ Comp,
hence A(M) = A](M); it is a C∗-algebra by virtue of (d). ¤

The last two properties suggest it might be helpful to try to describe A(M) and A](M) in terms of the
image m of M in the Calkin algebra

Calk(H) := B(H)/Comp(H).
We will denote the images of R, S, T,M, . . . ∈ B(H) in Calk(H) by corresponding small letters r, s, t, m, . . . ,
and by π the canonical projection B(H) → Calk(H); π is a C∗-homomorphism.

Proposition 3.31. (a) T ∈ A(M) ⇐⇒ t ∈ π(A(M)), and similarly for A](M).
(b) T ∈ A(M) ⇐⇒ t ∈ m′, the commutant of m in Calk(H).
(c) T ∈ A](M) ⇐⇒ t = m∗tm.
(d) A(M) is a C∗-algebra i� m is a normal element of Calk(H).
(e) m′′ ⊂ m′; in particular, continuous functions of m belong to π(A(M)).
(f) A(M) ⊂ A(R) i� r ∈ m′′.
Proof. (a) A direct consequence of the fact that A(M), resp. A](M) contain Comp.
(b) and (c) Straightforward.
(d) A(M) is a C∗-algebra i� m′ is. In that case, m∗ ∈ m′, and so m is normal. On the other hand, if

m is normal and tm = mt, then t∗m = mt∗ by the Putnam-Fuglede theorem; hence t∗ ∈ m′, and so m′ is a
C∗-algebra.

(e) m ∈ m′ implies m′′ ⊂ m′; continuous functions of m belong to m′′; π(A(M)) = m′ by (a).
(f) A(M) ⊂ A(R) i� m′ ⊂ r′. If this is the case, then m′′ ⊃ r′′ and so r ∈ r′′ ⊂ m′′. On the other hand,

if r ∈ m′′, then r′ ⊃ m′′′ = m′. ¤
As a parting shot, we prove the promised theorem that the algebras A(U) and A(S) are not spatially

isomorphic. A result of Johnson and Parrot, already alluded to above, will be needed:
Theorem 3.32. If T is an operator on L2(T) such that [T, M ] is compact for all operators M of the

form
(25) M = Mφ + K, φ ∈ L∞(T), K compact,
then T is itself of this form.

Proof. See [20]. ¤
The Johnson-Parrot theorem may be rephrased in the following way: Let

L∞ := {π(Mφ) : φ ∈ L∞(T)} ⊂ Calk(L2(T)).
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Then L∞ coincides with its commutant: L∞′ = L∞.
Lemma 3.33. If an operator M of the form (25) is Fredholm, then ind F = 0.
Proof. We shall use the previous theorem7 8. If M = Mφ + K1 is Fredholm, then m ≡ π(M) ∈ Calk

is invertible. If t ∈ L∞, then mt = tm and so
0 = m−1(mt− tm)m−1 = tm−1 −m−1t,

whence m−1 ∈ L∞′. By virtue of the Johnson-Parrot theorem, m−1 ∈ L∞; consequently, there exist
ψ ∈ L∞(T) and K2 ∈ Comp such that

(Mφ + K1).Mψ = I + K2,

which implies that
Mφψ−1 ∈ Comp.

Let {zn}n∈Z be the standard basis of L2(T); since zn w→0, the last condition forces
‖Mφψ−1zn‖ → 0.

But ‖Mφψ−1zn‖2 = ‖φψ − 1‖22 for all n ∈ Z; therefore φψ = 1 and Mψ is the inverse of Mφ. It follows that
ind Mφ = 0, and so likewise ind M = ind (Mφ + K1) = 0. ¤

Theorem 3.34. Let S be the unilateral forward shift on H2, U the bilateral forward shift on L2(T),
W : H2 → L2(T) a unitary operator, and Y = WSW ∗. Then it cannot happen that A(U) ⊂ A(Y ). In
particular, the algebras A(U) and A(Y ) are not spatially isomorphic.

Proof. By virtue of the part (f) of the last proposition, A(U) ⊂ A(Y ) is equivalent to y ∈ u′′. Since
U = Mz is of the form (25), we have u ∈ L∞ and the Johnson-Parrot theorem implies that

u′′ ⊂ L∞′′ = L∞ = L∞′ ⊂ u′.

Hence y ∈ L∞, i.e. Y = Mφ + K for some φ ∈ L∞(T) and K ∈ Comp. Because Y = WSW ∗,

σe(Y ) = σe(S) = T,

so Y is Fredholm. In view of the preceding lemma, ind Y = 0. But
ind Y = ind (WSW ∗) = ind S = −1

| a contradiction. Thus it can never happen that A(U) ⊂ A(Y ), or even A(U) = A(Y ). ¤
We close this chapter with two open problems.
Problem. Are the C∗-algebras A(U) and A(S) (non-spatially) isomorphic?
Problem. Denote WB and WF the unitary operators

WB : H2 → A2(D), zn ∈ H2 7→ √
n + 1 zn ∈ A2(D),

7A more elementary proof is bound to exist, but we won't bother with it, since we are going to use the
Johnson-Parrot theorem in the sequel anyway.
8O.K., here is an elementary proof. Since F, hence also Mφ, is Fredholm, ker Mφ must be �nite-dimensional
and Ran Mφ must be closed. If φ vanished on a set E ⊂ T of positive measure, the kernel of Mφ would
contain an isometric copy of L2(E) and thus would not be �nite-dimensional. Consequently, φ 6= 0 almost
everywhere on T; it follows that Mφ is injective. By the open mapping theorem, Ran Mφ is closed if and
only if Mφ is bounded below, which takes place i� |φ| is bounded away from zero. But then Mφ is invertible,
its inverse being M1/φ; hence, ind Mφ = 0, and so ind F = 0 as well.
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resp.
WF : H2 → A2(C), zn ∈ H2 7→ (n! 2n)−1/2zn ∈ A2(C),

constructed in the paragraph following Corollary 3.6 and in course of the proof of Theorem 3.24(iii), respec-
tively. Denote further

Bφ := W ∗
BTφWB for φ ∈ L∞(D),

resp.
Fφ := W ∗

F TφWF for φ ∈ L∞(C),
and let TB , TF be the C∗-subalgebras of B(H2) generated by {Bφ : φ ∈ L∞(D)} and {Fφ : φ ∈ L∞(C)},
respectively. Theorems 3.2 and 3.24 then assert that

TB ⊂ A(S) and TF ⊂ A(S).

Are these inclusions strict?
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Chapter 4. THE TOEPLITZ CALCULUS

In this chapter, Toeplitz operators both on the Hardy space and the Bergman space, as well as on the
Fock space, are dealt with; to prevent confusion, the following convention will be observed throughout: Tφ

always denotes a Toeplitz operator on H2 (i.e. φ ∈ L∞(T)), Bφ stands for a Toeplitz operator on A2(D)
(φ ∈ L∞(D)), and Fφ for a Toeplitz operator on the Fock space A2(C) (φ ∈ L∞(C)). The algebra A(S)
will frequently be abbreviated to A. When convenient, the spaces A2(D) and A2(C) will be identi�ed with
H2 by means of the unitary operators WB and WF , respectively, mentioned at the very end of the previous
chapter.

We begin by recalling several facts from the theory of Toeplitz operators on H2. Denote
τH := {Tφ : φ ∈ L∞(T)}

and let TH be the C∗-algebra generated by τH . Further, de�ne
(26) S0 := {T ∈ B(H2) : lim

n→∞
‖Ten‖ = 0} = {T ∈ B(H2) : lim

n→∞
‖TSnf‖ = 0 ∀f ∈ H2},

where S = Tz is the (forward) shift operator with respect to the standard basis {en}n∈N, en(z) = zn, of
H2. The equality (26) is easily veri�ed: if Ten → 0, then TSnp → 0 for every polynomial p; since these are
dense in H2 and the operators TSn are uniformly bounded (by ‖T‖), TSnf → 0 for any f ∈ H2.

The following are classical results from the theory of Toeplitz operators on H2. The abelianized algebra
TH , i.e. TH factored by its commutator ideal Com TH , is (isometrically) C∗-isomorphic to L∞(T), i.e. there
is a contractive map
(27) ξ : TH → L∞(T)
which is linear, multiplicative, surjective, preserves adjoints, and ker ξ = Com TH . The mapping

φ 7→ Tφ

is an isometric cross-section of ξ, i.e. ξ(Tφ) = φ. Thus, every operator T ∈ TH admits a unique decomposition
T = Tφ + X, X ∈ Com TH , φ ∈ L∞(T),

and φ = ξ(T ); that's why the mapping ξ is sometimes called the symbol map. This map, in fact, can be
described somewhat more explicitly: it can be shown that

Com TH ⊂ S0;
consequently, for arbitrary T ∈ TH , the limit

Mf := lim
n→∞

U∗nTSnf

exists for every f ∈ H2. Here H2 is thought of as a subspace of L2(T) and U is the (bilateral, forward) shift
operator on L2(T). The resulting operator M : H2 → L2(T) is bounded (by ‖T‖, as a matter of fact) and
commutes with U, so it must be of the form Mφ for some φ ∈ L∞(T). Now it's already easy to verify that
φ = ξ(T ). Thus

ξ(T ) = lim
n→∞

U∗nTen ∈ L∞(T) ⊂ L2(T).
We are not going to prove the facts mentioned above, but rather refer to the books of Douglas [12] or
Nikolski��[22].

Note also that, owing to the multiplicativity of ξ,

(28) ξ(TφTψ) = ξ(Tφ)ξ(Tψ) = φψ = ξ(Tφψ) ∀φ, ψ ∈ L∞(T),
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which implies that ker ξ = Com TH contains not only the commutator [Tφ, Tψ], but even the semi-commutator

[Tφ, Tψ) := Tφψ − TφTψ

of Tφ and Tψ.
The objective of this chapter is an attempt to construct a similar theory, or "symbol calculus", for the

algebras TB , TF or even A. (The algebra A(U) shall not be explicitely considered, the reason being that the
larger the algebra, the less chance to construct some calculus; and A(U) is "larger" than A(S) ≡ A | cf.
Theorem 3.29. All the same, most of the ideas below can be applied to A(U) as well.)

The most naive idea (e.g. for TB) is to try to obtain a continuous linear mapping

(29) ξB : TB → L∞(D)

which is be multiplicative and admits φ 7→ Bφ as a cross-section. Unfortunately, this is doomed to a failure:
the following lemma shows that Com TB ⊃ Comp, and so if ξB is to be multiplicative, its kernel must contain
Comp. But there exist non-zero compact Toeplitz operators on A2(D) (cf. Corollary 1.5), and so φ 7→ Bφ

cannot be a cross-section of ξB . For TF and A the same situation occurs.
Lemma 4.1. (a) The algebras TB , TF and A contain Comp.
(b) The commutator ideals Com TB , Com TF and ComA contain Comp.
Proof. (a) TB and TF contain Comp in view of Theorem 2.4, and A ⊃ TB .
(b) The algebras TB , TF and A are not commutative, so it su�ces to show that Comp is the smallest

proper (closed, two-sided, selfadjoint) ideal in each of them. We shall prove this for TB ; the proof for TF is
similar, and ComA ⊃ Com TB since A ⊃ TB .

So let I be a proper (closed, two-sided, ∗{ ) ideal in TB . Take a nonzero T ∈ I and vectors x, y 6= 0
such that Tx = y. In view of (a), the operators A = 〈 . , e〉x and B = 〈 . , y〉f belong to TB for arbitrary e, f .
Since I is an ideal, BTA = ‖y‖2〈 . , e〉f belongs to I. It follows that I contains all rank one operators, hence
all �nite rank operators (by linearity), which are dense in Comp. ¤

So let us give up multiplicativity, and ask only for a continuous linear map (29) which admits φ 7→ Bφ

as a cross-section. Unfortunately, we are doomed to fail once again. The reason is that ξB(Bφ) = φ implies
‖Bφ‖ ≥ ‖ξB‖−1‖φ‖∞, i.e. the mapping φ 7→ Bφ would have to be bounded below. This is, however, easily
seen not to be the case. If χ is the characteristic function of the disc {z : |z|2 ≤ R}, 0 < R < 1, then Bφ is
a diagonal operator with weights (cf. Proposition 1.3)

cn =
∫ R

0
(n + 1)tn dt = Rn+1

n + 1 ,

which implies ‖Bφ‖ = R while ‖φ‖∞ = 1.
This suggests that, perhaps, there is nothing wrong with multiplicativity, but rather with the target space

L∞(D); so let us insist on multiplicativity and try to replace L∞(D) by something else. A natural candidate
for the "something" turns up quickly. Namely, the C∗-algebras A/ComA, TB/Com TB and TF /Com TF

are commutative, and therefore C∗-isomorphic to the spaces of all continuous functions on their maximal
ideal spaces, via the Gelfand transform. It remains to describe these spaces and see whether they are not
somehow connected with L∞(D) (or L∞(C), respectively) | for instance, they might be homeomorphic
to some subsets of the maximal ideal space of L∞(D) (or of L∞(C), for that matter | these two are
homeomorphic) , or something like that. This description in turn amounts to identifying the multiplicative
linear functionals on A/ComA, TB/Com TB and TF /Com TF , respectively | or, which is the same, on A,
TB , TF . Thus we are lead to a fundamental question: are there any multiplicative linear functionals on these
algebras at all?

Before going on, let us make two remarks. First, one might try to obtain a multiplicative linear functional
e.g. on A by restricting to A a multiplicative linear functional on B(H2). This is, however, impossible |
there are no multiplicative linear functionals on B(H2) and, consequently, ComB(H2) = B(H2). To see this,
decompose H2 into H1 ⊕H2, where both H1 and H2 are in�nite-dimensional. Then there exists a unitary
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operator which maps H1 onto H2 and vice versa; denote it V, and let Pi stand for the orthogonal projection
onto Hi (i = 1, 2). Now, if φ were a nontrivial multiplicative linear functional on B(H2),

P1 + P2 = I =⇒ φ(P1) + φ(P2) = 1,

V ∗V = I =⇒ φ(V )φ(V ) = 1,

V ∗P1V = P2 =⇒ φ(P2) = φ(V ∗)φ(P1)φ(V ) = φ(P1),
so φ(P1) = φ(P2) = 1/2; but

P1P2 = 0 =⇒ 1
4 = φ(P1)φ(P2) = 0,

a contradiction.
Second, we have noted that the symbol map ξ for Toeplitz operators on H2 satis�es (28)

ξ(TφTψ − Tφψ) = 0.

It should be pointed out that this relation cannot be satis�ed on the Bergman space A2(D) or the Fock space
A2(C), i.e. for algebras TB or TF (or A): the following example shows that there even exists φ ∈ L∞(D)
such that [B∗

φ, Bφ) is a nonzero multiple of the identity.
Example 4.2. De�ne the function φ ∈ L∞(D) by

φ(z) = exp(i ln ln 1
|z|2 ).

In view of Proposition 1.3, Bφ is a diagonal operator with weights

cn =
∫ 1

0
exp(i ln ln 1

t
) . (n + 1)tn dt.

Changing the variable to w = zn+1 gives

cn =
∫ 1

0
exp(i ln ln 1

w
− i ln(n + 1)) dw = e−i ln(n+1)

∫ 1

0
exp(i ln ln 1

w
) dw.

Substituting once more, namely, y = ln 1
w

, yields
∫ 1

0
exp(i ln ln 1

w
) dw =

∫ +∞

0
exp(i ln y) . e−y dy = �(i + 1) (popularly "i!").

Also, Bφ = B∗
φ = diag(cn) and Bφφ = I since φ is unimodular on D. Summing up, we have

Bφφ −BφBφ = diag(1− |cn|2) = diag(1− |�(i + 1)|2) = (1− |�(i + 1)|2).I

It remains to show that |�(i + 1)| 6= 1. To that aim, recall the formulas for the gamma function

�(x + 1) = x�(x), �(x) = �(x), �(x)�(1− x) = π

sin πx
,

and compute:
|�(i + 1)|2 = �(i + 1)�(1− i) = i�(i)�(1− i) =

= πi

sin πi
= 2π

eπ − e−π
= 0, 272 . . . < 1.
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On the Fock space, a similar counterexample can be constructed. The function φ ∈ L∞(C),
φ(z) = exp(i|z|2/2),

is unimodular; the corresponding Toeplitz operator Fφ is diagonal (cf. Proposition 1.7) with weights

cn =
∫ +∞

0
eit .

tne−t

n! dt.

Expanding eit into the Taylor series and integrating term by term9 yields

cn =
∞∑

k=0

(
n + k

k

)
ik = (1− i)−n−1.

Consequently, Fφφ−FφFφ = diag(1−|cn|2) = diag(1−2−n−1), which is an invertible operator and so cannot
belong to ker ξF for any nonzero ξF . ¤

Now let us come back to the search of multiplicative linear functionals on the three algebras TB , TF and
A. Owing to Lemma 4.1, every multiplicative linear functional on A must vanish on Comp; consequently,
it su�ces to look for multiplicative linear functionals on A/Comp, and similarly for TB and TF . These are
subalgebras of the Calkin algebra Calk(H2) = B(H2)/Comp(H2), which suggests that some techniques used
for the study of Calk might turn useful. The algebra A/Comp ⊂ Calk admits a particularly easy description
(cf. Proposition 3.31(b)): it coincides with the commutant of the image s = π(S) of the shift operator S
in Calk(H2). For this reason, we shall be concerned mainly with A from now on, but most of what is said
applies to TB and TF as well.

In the classical (i.e. H2) case, a powerful tool is provided by the dilation theory, which enables one
to "lift", in some sense, a Toeplitz operator Tφ from H2 to an operator on a larger space (namely, L2(T))
enjoying certain properties (see e.g. [25]). It turns out that a similar lifting can be constructed using certain
representation of the Calkin algebra. The classical lifting mentioned above (i.e. of Tφ to L2(T)) may then
be obtained by passing to certain subspace, isomorphic to L2(T) (the subspace is the same for all operators
Tφ). We proceed to describe the representation of Calk(H2); the idea goes back to Calkin [10].

Denote by π the canonical projection of B(H2) onto Calk(H2); to simplify the notation, we shall often
write (once again) t, s, etc. for π(T ), π(S), etc.

We begin by a brief excursion into Banach limits. Loosely speaking, they are extensions of the usual
"lim" to the space l∞ of all bounded sequences of complex numbers. In more precise terms, a Banach limit
is a mapping Lim from l∞ into C which satis�es the following conditions:

(C1) it is linear, of norm 1, and extends the usual lim (i.e. Lim fn = lim fn whenever the latter exists);
(C2) it preserves complex conjugation, i.e. Lim fn = Lim fn ∀{fn} ∈ l∞); consequently, Lim fn is a

real number when fn is real for all n ∈ N;
(C3) it is positive, i.e. fn ≥ 0 ∀n ∈ N implies Lim fn ≥ 0.

To obtain such a functional, one may procced as follows. First, use the Hahn-Banach theorem to extend
"lim" to a linear functional on l∞ without increasing the norm; this gives a functional "Lim" which satis�es
(C1). Next, replace Lim by Lim fn + fn

2 if necessary; the resulting functional satis�es both (C1) and (C2).
Finally, observe that (C1) and (C2) already imply (C3). It su�ces to show that if 0 ≤ fn ≤ 1 for all n, then
0 ≤ Lim fn ≤ 1. But

(0 ≤ fn ≤ 1 ∀n) ⇐⇒ (fn is real, |fn| ≤ 1 and |1− fn| ≤ 1 ∀n) =⇒
=⇒ (Lim fn is real, |Lim fn| ≤ 1 and |1− Lim fn| ≤ 1) ⇐⇒

(by (C1) and (C2)) ⇐⇒ 0 ≤ Lim fn ≤ 1.

9This is legal for ∫ 1
0 , since the Taylor series converges uniformly for 0 < t < 1; as for ∫ +∞

1 , split the series
into four (corresponding to ik = ±1,±i) and apply the Lebesgue Monotone Convergencs Theorem to each.
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Thus, Banach limits exist in abundance. There are two additional conditions one could impose:
(C4) Lim fn+1 = Lim fn;
(C5) Lim fngn = Lim fn Lim gn.

An unpleasant thing is that these two conditions con
ict with each other: let

xn =
{ 1 if n is even

0 if n is odd , yn = xn+1.

If there were a "Lim" which satis�es both (C4) and (C5), we would have Lim xn = Lim yn (by (C4)) and
Lim(xn + yn) = 1 , whence Lim xn = Lim yn = 1/2; but Lim xn . Lim yn = 0 by (C5) | a contradiction.

All the same, it is quite easy to construct a Banach limit which satis�es either only (C4), or only (C5).
The former may be obtained from every Banach limit by replacing it with Lim

(
1

n+1
∑n

k=0 xk

)
. This does

not a�ect (C1) | (C3) and

Lim
(

1
n + 1

n∑

k=0
xk

)
− Lim

(
1

n + 1
n∑

k=0
xk+1

)
= Lim x0 − xn+1

n + 1 = 0.

To obtain a Banach limit satisfying (C5), adopt a di�erent approach. With pointwise multiplication, l∞ is
a commutative Banach algebra, and hence is isomorphic, by means of the Gelfand transform, to the space
C(M) of all continuous (complex-valued) functions on its maximal ideal space M. This space is usually
denoted βN, since it coincides with the Stone-�Cech compacti�cation of the set N equipped with the discrete
topology. The elements of M = βN are multiplicative linear functionals on N and are known to satisfy (C1)
| (C3) and (C5), except for the fact that they need not extend the functional "lim". The set N can be
embedded into βN in a natural way; the multiplicative linear functional corresponding to n ∈ N is given by

n̂ : {xk} ∈ l∞ 7→ xn ∈ C.

We assert that if φ ∈ βN \N, then φ extends "lim". To prove this, it su�ces to check that φ({xn}) = 0
whenever limn→∞ xn = 0. Since N is dense in βN, there exists a net {nι}ι∈� ⊂ N such that n̂ι → φ. If
there were a number m ∈ N which occured in {nι}ι∈� an in�nite number of times, we would have φ = m,
contrary to our assumption φ ∈ βN \N. It follows that nι →∞, whence

φ({xk}) = lim
ι∈� n̂ι({xk}) = lim

ι∈� xnι = 0

whenever limk→∞ xk = 0, and our claim is veri�ed.
Thus, Banach limits satisfying either (C4) or (C5) exist in abundance, too. In the sequel, a Banach

limit, always denoted "Lim", is assumed to satisfy only (C1) | (C3); it will be pointed out explicitely when
one of the additional properties is required.

Now we may proceed to introduce the Calkin representation. Let

L′′ :=
{
{xk}k∈N : xk ∈ H2 ∀k ∈ N, and xk

w→0
}

be the set of all sequences of elements of H2 which tend weakly to zero. With componentwise addition and
scalar multiplication, L′′ becomes a vector space. Let Lim be a Banach limit. The functional10

‖x‖L := (Lim ‖xk‖2
H2)1/2, x = {xk} ∈ L′′

is easily seen to be a pseudonorm on L′′. The factor space

L′ := L′′/{x ∈ L′′ : ‖x‖L = 0}
10If Lim satis�es (C5), ‖x‖L equals Lim ‖xk‖.
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is a normed linear space with respect to the norm ‖x‖L; in fact, it is even a pre-Hilbert space with respect
to the scalar product

〈x, y〉L := Lim〈xn, yn〉, x, y ∈ L′′.
Let L be the completion of L′. Then L is a Hilbert space and L′ is a dense subset of L. For notational
convenience, the elements of L′ will be denoted simply as x = {xn}, y = {yk}, etc., which is not so
cumbersome as writing rigorously x mod {w ∈ L′′ : ‖w‖L = 0}, or something similar.

Remark 4.3. The space L is uncomfortably large | it is not separable. This can be seen as follows.
Let {qn}n∈N be the set of all rational numbers (qm 6= qk if m 6= k). For each irrational number α, select a
sequence �α ⊂ N such that limj∈�α

qj = α. Thus if α 6= β are irrational numbers, the sequences �α and �β

have at most a �nite number of terms in common. Let Xα be the sequence {ej}j∈�α
, where {ej}j∈N is, as

before, the standard orthonormal basis of H2. Then Xα ∈ L′′ and
‖Xα −Xβ‖2

L = Lim ‖e�α(j) − e�β(j)‖2 = 2
for arbitrary irrational numbers α 6= β. Since there are uncountably many irrational numbers, L must be
inseparable. ¤

Let T be a bounded linear operator on H2. If xn
w→0 in H2, then also Txn

w→0. Consequently, the
mapping

{xk} 7→ {Txk}
maps L′′ into L′′; because

Lim ‖Txk‖2 ≤ Lim(‖T‖2 . ‖xk‖2) = ‖T‖2 . Lim ‖xk‖2,

it does not increase norms, and so can be extended to a bounded linear operator on L, which will be denoted
T ]. Thus T ] is a linear operator on L and

‖T ]‖L→L ≤ ‖T‖.

Let us establish some properties of the space L and the transformation T 7→ T ] which will be needed in the
sequel.

Proposition 4.4. The transformation T 7→ T ] is linear and contractive, (T ∗)] = (T ])∗ and (T1T2)] =
T ]

1T ]
2 .
Proof. The �rst two assertions have been veri�ed in the preceding paragraph; as for the other two, it

su�ces to check them on elements of L′′, which reduces to direct consequences of the properties of Banach
limits. ¤

Proposition 4.5. T ] = 0 i� T ∈ Comp.
Proof. The last proposition implies that the kernel of the transformation T 7→ T ] is an ideal (two-

sided, closed, selfadjoint) in B(H2). There are only three such ideals : {0}, Comp and the whole B(H2). Since
(IH2)] = IL, it su�ces to show that K] = 0 if K ∈ Comp. But K ∈ Comp and xn

w→0 implies ‖Kxn‖ → 0, i.e.
K]x = 0 for x ∈ L′′; by continuity, K] = 0. ¤

Corollary 4.6. ‖T ]‖ ≤ ‖T‖e, the essential norm of T . Consequently, the transformation T 7→ T ]

induces a mapping t 7→ t] from the Calkin algebra Calk(H2) into B(L). This mapping is an (isometric)
C∗-isomorphism of Calk onto a C∗-subalgebra of B(L). Hence, we have even ‖T ]‖ = ‖T‖e.

Proof. The preceding two propositions imply that
‖T ]‖ = ‖T ] + K]‖ ≤ ‖T + K‖

for every compact operator K; hence ‖T ]‖ ≤ ‖T‖e. The rest follows from Propositions 4.4 & 4.5 and the fact
that an injective C∗-homomorphism is isometric. ¤
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Corollary 4.7. T ∈ A ⇐⇒ t ∈ s′ ⇐⇒ T ] ∈ S]′.
Proof. Immediate from the last corollary. ¤

Proposition 4.8. (1) The mapping
J : x ∈ H2 7→ {Snx}n∈N ∈ L′′

is an isometrical isomorphism of H2 onto a subspace H ⊂ L. An orthonormal basis for H is given
by
(30) En = Jen = S]nE0 = {en+k}k∈N ∈ L′′, n ∈ N,

where {ek}k∈N is the standard orthonormal basis of H2.
(2) The operator S] behaves on H as S on H2: H is an invariant subspace for S] and S]J = JS, i.e.

S]EN = EN+1.
(3) The operator S] ∈ B(L) is unitary.
Proof. (1) Since S∗k → 0 in SOT, Skx

w→0 for every x ∈ H2, so {Skx}k∈N ≡ Jx ∈ L′′. Further,
‖Jx‖2

L = Lim ‖Skx‖2 = Lim ‖x‖2 = ‖x‖2,

i.e. J is an isometry. Since {en} is an orthonormal basis for H2, {Jen} must be an orthonormal basis for
H = Ran J ; the formulas (30) are immediate.

(2) It su�ces to check that S]EN = EN+1, and that's immediate from the de�nitions.
(3) S∗S = I, hence S]∗S] = IL; I−SS∗ is a compact operator (namely, 〈 . , e0〉e0), hence IL−S]S]∗ = 0.

So, indeed, S] is unitary. ¤
The last Proposition has an interesting corollary. The shift operator S on H2 has a minimal unitary

dilation (in fact, a minimal unitary extension) sensu Nagy-Foias; the latter, in fact, can be identi�ed with the
bilateral shift operator U = Mz on L2(T). Owing to parts (2) and (3) of the last Proposition, S] is a unitary
extension (hence, of course, also a unitary dilation) of the operator S]¹H which is unitarily equivalent to
the operator S on H2. It follows that S] must contain the minimal unitary dilation U = Mz of S | there
has to be a subspace K of L which contains H, is invariant under S], and the restriction S]¹K is unitarily
equivalent to Mz on L2(T). This subspace can be, in fact, described explicitly: it is K = ∨

n∈Z
S]nE0. The

vectors EN := S]NE0, N ∈ Z, form an orthonormal basis for K. These vectors belong to L′′, and so may
be written down explicitely:

EN =



{ 0, . . . , 0︸ ︷︷ ︸
−N zeroes

, e0, e1, e2, . . .} if N < 0,

{eN , eN+1, eN+2, . . .} if N ≥ 0 (as in (30) ).
Both expressions may be written as EN = {Sk+Ne0}k∈N if we agree to let the unde�ned terms (for N < 0,
0 ≤ k < −N) be zero. The isometry J : H2 → H may be extended to a unitary map of L2(T) onto K by
setting

J(zN ) = E−N for N ≥ 0.

Clearly the subspace K ⊂ L reduces S].
Remark 4.9. The orthogonal projection P of L onto H also admits an explicit description. Since

J is an isometry of H2 onto H, P is the orthogonal projection onto Ran J, so P = JJ∗. Consequently, for
{xn} ∈ L′′, Px = Jh where h = J∗x ∈ H2 is characterized by

〈h, g〉H2 = 〈J∗x, g〉H2 = 〈x, Jg〉L = Lim〈xn, Sng〉 = Lim〈S∗nxn, g〉 ∀g ∈ H2,

i.e. h is the "weak limit with respect to Lim" of the sequence S∗nxn. ¤

41



Our next aim is to determine T ∈ B(H2) for which T ]K ⊂ K and T ]¹K = 0, respectively.
Proposition 4.10. Suppose that T ∈ A or that Lim satis�es (C4). Then T ]K ⊂ K if and only if

(31)
∑

n∈Z
|Lim

k
tk,n+k|2 = Lim

k

∞∑
n=0

|tk,n|2, where tk,n := 〈Tek, en〉.

Visually, in the matrix of T with respect to the orthonormal basis {en}, the Lim's on the left-hand side
are Limits of the entries on diagonals parallel to the main diagonal, whereas on the right-hand side is the
Limit of norms of the columns of the matrix.

Proof. T ]K ⊂ K is equivalent to T ]EN ∈ K ∀N ∈ N.
For T ∈ A, T ]S] = S]T ], so T ]EN = T ]S]NE0 = S]NE0; since K reduces S], T ]EN ∈ K ⇐⇒ T ]E0 ∈

K. Because {EN} is a basis of K, this is in turn equivalent to

(32) ‖T ]E0‖2 =
∑

M∈N
|〈T ]E0, EM 〉|2.

Now ‖T ]E0‖2 = Lim
k
‖TSke0‖2, which is the right-hand side of (31), while

〈T ]E0, EM 〉 = Lim
k
〈TSke0, SM+ke0〉 = Lim

k
〈Tek, eM+k〉,

and so (32) is equivalent to (31).
For a Lim satifying (C4), we have to check (32) not only for E0, but for all EN ,; but

‖T ]EN‖2 = Lim
k
‖TSN+ke0‖2 = Lim ‖TSke0‖2

〈T ]EN , EM 〉 = Lim〈TSN+ke0, SM+ke0〉 = Lim〈Tek, eM−N+k〉,
the last equalities on each line being a consequence of (C4); thus we arrive at (31) once again. ¤

The last criterion is rather discouraging; not only because it is somewhat complicated to check, but
also because it depends on the Banach limit chosen. To see this, restrict attention to diagonal operators. If
T = diag(cn), cn ∈ C, then (31) reduces to

|Lim ck|2 = Lim |ck|2.

This always holds if Lim satis�es (C5), i.e. is multiplicative; as we have seen, it cannot satisfy (C4) in that
case, and so our criterion says exactly that T ]K ⊂ K for all diagonal operators T belonging to A (i.e. subject
to ck − ck+1 → 0). On the other hand, if we take ck = (−1)k, then Lim ck = 0 for every Lim satisfying (C4),
while Lim |ck|2 = 1. All one can say for general Lim's is that |Lim ck|2 ≤ Lim |ck|2, the equality taking place
i� Lim |ck − c|2 = 0, where c = Lim ck. In fact,

Lim |ck − c|2 = Lim(|ck|2 − ckc− cck + |c|2) =
= Lim |ck|2 − Lim ck . c− c.Lim ck + |c|2 = Lim |ck|2 − |c|2.

The criterion for T ]¹K = 0 is much simpler. De�ne

S̃0 := {T ∈ B(H2) : Lim ‖Ten‖2 = 0}.

If Lim satis�es (C4), T ∈ S̃0 implies that Lim ‖TSnf‖2 = 0 for all f ∈ H2. This is obvious when f is a
polynomial (i.e. a linear combination of en); for general f ∈ H2, take a polynomial p such that ‖f − p‖ < ε
and observe that Lim ‖TSn(f − p)‖2 ≤ ‖T‖2ε2, so Lim ‖TSnf‖2 ≤ 2‖T‖2ε2; since ε > 0 may be arbitrary,
the claim follows.
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Proposition 4.11. Suppose that T ∈ A or that Lim satis�es (C4). Then T ]¹K = 0 if and only if
T ∈ S̃0.

Proof. T ]¹K = 0 if and only if T ]EN = 0 for all N ∈ Z.
If T ∈ A, T ]EN = S]NT ]E0, so it su�ces to determine when T ]E0 = 0. But

‖T ]E0‖2 = Lim ‖TSne0‖2 = Lim ‖Ten‖2,

and the assertion follows.
If Lim satis�es (C4), we have

‖T ]EN‖2 = Lim
k
‖TSk+Ne0‖2 = Lim ‖TSke0‖2,

which vanishes i� T ∈ S̃0. ¤
Now let us see how the above apparatus applies to Toeplitz operators on the Hardy space H2. For

T = Tφ, φ ∈ L∞(T) ⊂ L2(T), we have 〈Tek, en〉 = φn−k (the Fourier coe�cient). Hence, the condition (31)
reads ∑

n∈Z
|φn|2 = Lim

k

∞∑

n=−k

|φn|2,

which is certainly true; thus, T ]
φK ⊂ K. Via the isomorphism J between K and L2(T), the operator T ]

φ¹K
induces some operator on L2(T); let us identify it. One has11

〈T ]
φEN , EM 〉 = Lim

k
〈TφSk+Ne0, Sk+Me0〉 = Lim

k

∫

T
φ(z)zk+Nzk+M dz = φM−N ,

and so T ]
φJ = JMφ on L2(T), where Mφ : L2(T) → L2(T) is the operator of multiplication by φ ∈ L∞(T).

Next, since T ]
φK ⊂ K for all φ ∈ L∞(T), we must also have T ]K ⊂ K for all T ∈ TH , the C∗-algebra

generated by τH = {Tφ : φ ∈ L∞(T)}. The operator T ]¹K then commutes with S]¹K; passing to L2(T)
via the isomorphism J, we see that the operator J−1T ]J commutes with Mz, so is of the form Mφ for
some φ ∈ L∞(T). Thus, in view of the preceding paragraph, T = Tφ + X, where X]¹K = 0, i.e. X ∈ S̃0
(Proposition 4.11). Also, ‖φ‖∞ = ‖Mφ‖ = ‖T ]

φ¹K‖ = ‖T ]¹K‖ ≤ ‖T ]‖ = ‖T‖e ≤ ‖T‖, which shows that the
linear map ξ : TH → L∞(T) : T 7→ φ is multiplicative, because, whenever T1, T2 ∈ TH ,

(T1T2)]¹K = (T ]
1¹K)(T ]

2¹K) = (JMφ1J
−1)(JMφ2J

−1) = JMφ1φ2J
−1,

and so ξ(T1T2) = φ1φ2 = ξ(T1)ξ(T2). Consequently, ker ξ must contain the commutator ideal Com TH of the
C∗-algebra TH . In fact, a stronger (at �rst sight) condition holds: ker ξ contains not only the commutator
[Tφ, Tψ], but also the semi-commutator [Tφ, Tψ) = Tφψ − TφTψ, for arbitrary φ, ψ ∈ L∞(T):

(TφTψ)]¹K = (T ]
φ¹K)(T ]

ψ¹K) = (JMφJ−1)(JMψJ−1) = JMφψJ−1 = T ]
φψ¹K,

and so
(33) ξ(Tφψ − TφTψ) = 0.

Remark 4.12. Before going on, let us brie
y discuss the relationship between various spaces of
operators which have appeared above:

S0 = {T ∈ B(H2) : lim
n→∞

‖TSne0‖ = 0} = {T ∈ B(H2) : lim
n→∞

‖TSnf‖ = 0 ∀f ∈ H2}

11Here, exceptionally, dz is the arc-length measure on T.
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S̃0 = {T ∈ B(H2) : Lim ‖TSne0‖2 = 0} = (sometimes)
={T ∈ B(H2) : Lim ‖TSnf‖ = 0 ∀f ∈ H2},

A = {T ∈ B(H2) : T − S∗TS ∈ Comp},
τH = {Tφ : φ ∈ L∞(T)}, TH = C∗-alg(τH),

Com TH = the commutator ideal of TH ,

Comp = the compact operators in B(H2).
Consider also

E := {T ∈ B(H2) : ∃ lim
n→∞

U∗nTSnf, ∀f ∈ H2} = {T ∈ B(H2) : ∃ lim
n→∞

U∗nTSne0},

Ẽ := τH + S̃0.

It is well-known that S0 ⊃ Com TH = S0 ∩ TH ⊃ Comp and TH = τH + Com TH ; both inclusions are proper.
Consequently,

τH + Comp ⊂ τH + Com TH = TH ⊂ τH + S0 = E ,

both inclusions being proper (the last equality is easily veri�ed). Next, S0 is a proper12 subset of S̃0, and
so E is a proper subset of Ẽ . As for A, we have, of course, TH ⊂ A; further, A \ E 6= ∅ (take the diagonal
operator with weights ck = exp(i ln(k + 1))) and S̃0 \ A 6= ∅ (�nd a sequence {ck}k∈N, consisting only of
in�nitely many zeroes and in�nitely many 1's, and such that Lim ck = 0; then take diag(cn)). The author
does not know if the sets E \ A, Ẽ \ A, A \ Ẽ and S0 \ A are empty or not. As for the Toeplitz operators
on the Bergman space A2(D) (remember we have agreed to denote them Bφ throughout this chapter), the
spaces

τB = {Bφ : φ ∈ L∞(D)}, TB = C∗-alg (τB),
satisfy Comp ⊂ TB ⊂ A (the �rst inclusion is proper, and so is probably the second) and τB \ E 6= ∅ (the
operator which has served as a counterexample to A ⊂ E equals in fact Bφ for a suitable φ ∈ L∞(D), cf.
Example 4.2). These assertions remain in force for the Fock space A2(C) in place of A2(D) (cf. also Example
4.2). ¤

In the last-but-one paragraph, we have almost recovered the decomposition of TH and the symbol map
which were mentioned at the beginning of this chapter. Let us try to carry out the same procedure for the
algebra A.

Theorem 4.13. Let T ∈ A and suppose T ]K ⊂ K. Then T admits a unique decomposition of the
form T = Tφ + R, where φ ∈ L∞(T), ‖φ‖∞ ≤ ‖T‖e ≤ ‖T‖, and R ∈ S̃0. Besides, the map T 7→ φ is
multiplicative, i.e. if V ∈ A, V ]K ⊂ K, V = Tψ + Q, then TV 7→ φψ. Consequently, TV − V T ∈ S̃0.

Proof. Repeat verbatim what was said for the case of TH : T ]K ⊂ K =⇒ J−1T ]J : L2(T) → L2(T),
T ∈ A =⇒ J−1T ]J commutes with Mz, so is of the form Mφ, φ ∈ L∞(T). The operator R := T − Tφ then
satis�es R]¹K = 0, i.e. R ∈ S̃0. ‖φ‖∞ = ‖Mφ‖ = ‖T ]¹K‖ ≤ ‖T ]‖ = ‖T‖e ≤ ‖T‖, whence also the uniqueness
assertion follows. Finally, (TV )]¹K = (T ]¹K)(V ]¹K) = (JMφJ−1)(JMψJ−1) = JMφψJ−1 = (V T )]¹K. ¤

Thus, things go well when T ]K ⊂ K, and this happens i� T ∈ τH + S̃0 = Ẽ (and T ∈ A). In general,
we have only the following weaker result.

Proposition 4.14. Let T ∈ A. Then T = Tφ + R, where ‖φ‖∞ ≤ ‖T‖e ≤ ‖T‖ and P (K)R]¹K = 0.
The decomposition is unique.

Proof. T ∈ A =⇒ T ]S] = S]T ]; denote W = P (K)T ¹K. Then WK ⊂ K and WS]¹K =
P (K)TS]¹K = S]W, because S]P (K) = P (K)S] (since K reduces S]). This implies, once again, J−1WJ =
12To see that the inclusion is proper, take a diagonal operator with weights ck such that Lim ck = 0 and
lim ck does not exist.
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Mφ, φ ∈ L∞(T), and the operator R := T − Tφ must satisfy P (K)R]¹K = 0. The norm estimate is proved
in the same way as before. ¤

Note that, however, this map T 7→ φ is no longer multiplicative. The operators R such that P (K)R]¹K =
0 admit an easy characterization: their matrices have entries which "tend to zero" along every diagonal
parallel to the main diagonal.

Proposition 4.15. Assume that R ∈ A or that Lim satis�es (C4). Then P (K)R]¹K = 0 if and only
if
(34) Lim

k
〈Rek, eN+k〉 = 0 ∀N ∈ Z.

Proof. P (K)R]¹K = 0 i� 〈R]EN , EM 〉 = 0 ∀M,N ∈ Z. If R ∈ A, this is equivalent to 〈R]E0, EM 〉 =
0 ∀M ∈ Z, which is exactly (34). In the other case,

〈R]EN , EM 〉 = Lim
k
〈ReN+k, eM+k〉 = Lim

k
〈Rek, eM−N+k〉,

the last equality being a consequence of (C4). ¤

We close this chapter with two observations. The �rst concerns the Allan-Douglas localization principle
[12]. Because T ]S] = S]T ] if T ∈ A, the space ker(S]−µ) = ker(S]∗−µ) is invariant under T ] when T ∈ A,
for every µ ∈ T. Denote Iµ the (closed, two-sided, *-) ideal in A generated by Comp and S − µ. Let Aµ be
the C∗-algebra A/Iµ. Similar construction may be applied to the algebras TB and TF .

Theorem 4.16. The mapping W 7→ (W + Iµ)µ∈T from A/Comp into the C∗-direct sum ⊕
µ∈T

Aµ is an
(isometrical) C∗-isomorphism of A/Comp onto a C∗-subalgebra of ⊕

µ∈T
Aµ.

The same assertion is valid for TB and TF in place of A.
Proof. Follows from the general Allan-Douglas theory; for instance, apply [7, proof of Theorem

1.34{d.] with A = A/Comp, B = {f(s) : f ∈ C(T)}, where s = π(S) is the image of S in Calk(H2),
N = {f(s) : f ∈ C(T), f(µ) = 0}, JN = Iµ/Comp, AN = Aµ/Comp. ¤

Since, as was pointed out at the beginning of this chapter, Comp ⊂ ComA, multiplicative linear function-
als on A correspond bijectively to those on A/Comp. If φ is one of the latter, then φ(s) ∈ σ(s) = σe(S) = T,
and so φ(S − µ) = 0 for some µ ∈ T, i.e. ker φ ⊃ Iµ/Comp, so φ induces a multiplicative linear functional
on Aµ/Comp and hence on Aµ. On the other hand, every multiplicative linear functional on Aµ yields a
multiplicative linear functional on A. Thus, the problem of existence of multiplicative linear functionals on
A can be reduced to the same problem for Aµ. Unfortunately, the latter seems to be equally hopeless to
solve. We conclude this small digression with a proposition which shows that it su�ces to deal with A1.

Lemma 4.17. For ε ∈ T and f a function on D or C, let (Rεf)(z) := f(εz). Then R−1
ε = Rε, Rε is

a unitary (i.e. isometric and onto) operator on A2(D), L∞(D), A2(C) and L∞(C), and the transformation
T 7→ R∗εTRε is an isometry on both B(A2(D)) and B(A2(C)) which maps Comp into Comp, A onto A, and
Bφ into BRεφ, resp. Fφ into FRεφ.

Proof. Straightforward. ¤

Proposition 4.18. For any µ, ν ∈ T, Aµ ' Aν (isometrical C∗-isomorphism).
Proof. The transformation T 7→ R∗εTRε maps A onto A, Comp onto Comp, and S − µ into εS − µ;

consequently, it must map Iµ onto Iεµ and Aµ onto Aεµ. The map is, moreover, clearly an isometrical
C∗-isomorphism. ¤

The second observation applies only to the one-dimensional Fock space A2(C), so imagine H2 to be
identi�ed with A2(C) by means of the unitary operator WF , as was remarked at the beginning of this chapter.
Let T̃ , once again, denote the Berezin transform of the operator T ∈ B(A2(C)), i.e.

T̃ (λ) = 〈Tkλ, kλ〉, kλ(z) = exp
(

λz

2 − |λ|2
4

)
∈ A2(C),
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and de�ne T̂ := F
T̃
, the Toeplitz operator on A2(C) with symbol T̃ . Owing to the fact that, unlike D, the

group of isometries of the Euclidean metric on C admits a commutative transitive subgroup, Berger and
Coburn [6] have shown that

T̂ =
∫

C
W ∗

αTWα dµ(α),

where the integral is the weak (Gelfand-Pettis) integral, and Wα are unitary operators on A2(C) given by
(Wαf)(z) = kα(z)f(z − α), α ∈ C.

They proved the following lemma (attributed to W.Zame).
Lemma 4.19. Let H be a separable Hilbert space, (X, ν) a �nite measure space, and F : X → B(H)

a norm-bounded, WOT-measurable function (i.e. x 7→ 〈F (x)f, g〉 is ν-measurable ∀f, g ∈ H), whose values
are compact operators. Then the weak (Gelfand-Pettis) integral

∫

X

F (x) dν(x)

(exists and) is also a compact operator.
Proof. See [6], Lemma 12; we reproduce the proof here for convenience. First, for arbitrary f, g ∈

H, the function 〈F (x)f, g〉 is bounded and ν-measurable, so the integral ∫
X
〈F (x)f, g〉 dν(x) exists and its

modulus does not exceed
ν(X) . sup

X
‖F (x)‖ . ‖f‖.‖g‖.

Consequently, the weak integral ∫

X

F (x) dν(x)
exists and its norm is bounded by ν(x) . sup

X
‖F (x)‖.

Pick a basis {ej}j∈N of H and let Pk stand for the projection onto the span of e0, e1, . . . , ek. Denote
Ek = {x ∈ X : ‖PkF (x)− F (x)‖ < ε}.

Note that ⋃
k∈N

Ek = X since F takes values in Comp. Further, the function x 7→ ‖PkF (x) − F (x)‖ is
measurable, since it equals
(35) sup |〈(PkF (x)− F (x))f, g〉|,

the supremum being taken over f, g in a countable dense subset of the unit ball of H. Consequently, the sets

E′
k = Ek \

k−1⋃

j=0
Ej

are measurable, disjoint, and their union is all of X. Choose m so large that
∑

k>m

ν(E′
k) < ε.

Then
∫

X

F (x) dν(x) =
m∑

k=1
Pk

∫

E′
k

F (x) dν(x)+
m∑

k=1

∫

E′
k

[F (x)− PkF (x)] dν(x) +
∫

⋃
k>m

E′
k

F (x) dν(x).

46



Since Pk ∈ Comp, the �rst summand belongs to Comp, while the norms of the second and the third do not
exceed εν(X) and ε supx∈X ‖F (x)‖, respectively. As ε > 0 was arbitrary, the assertion of the lemma follows.
¤

Corollary 4.20. If K ∈ Comp, then K̂ ∈ Comp.
Proof. Apply the lemma to X = C, ν = µ (the Gaussian measure) and F (x) = W ∗

αKWα. The
function F (α) is even WOT-continuous, since α 7→ Wα is SOT continuous. To prove the latter, it su�ces
to check that α 7→ Wαgλ is continuous for each λ ∈ C (because the linear combinations of gλ are dense in
A2(C), cf. Lemma 2.5), which is easily veri�ed. ¤

Corollary 4.21. If T ∈ A, then T̂ ∈ A.
Proof. We have

T̂ − S∗T̂ S =
∫

C
(W ∗

αTWα − S∗W ∗
αTWαS) dµ(α).

However,
(36) Wα = Bexp( |α|24 +iIm(αz)), (see [6], section 3),

which implies W ∗
αTWα ∈ A whenever T ∈ A. It remains to apply the lemma to X = C, ν = µ and

F (α) = W ∗
αTWα − S∗W ∗

αTWαS; again, F is even WOT-continuous. ¤
The last two corollaries prompt to formulate the following
Conjecture. (a) If T ∈ ComA, then T̂ ∈ ComA.

(b) For all T ∈ A, the operator T − T̂ belongs to ComA.
Both assertions could be proved if we could replace B(H) and Comp in Lemma 4.19 by A and ComA,

respectively. (Indeed, according to the de�nition of T̂ ,

T − T̂ =
∫

C
W ∗

α[Wα, T ] dµ(α),

and the integrand is bounded by 2‖T‖, WOT-continuous, and, in view of (36), belongs to ComA for every
α ∈ C.) The author suspects that the lemma remains in force even if B(H) and Comp are replaced by an
arbitrary C∗-algebra A⊂ B(H) and a closed, two-sided *-ideal I in A. The above approach of W.Zame works
whenever the C∗-algebra I has a countable approximate identity, or if X is a separable topological space,
ν a Borel measure, and the function x 7→ ‖QF (x)‖ is continuous for every operator Q ∈A, 0 ≤ Q ≤ I.
Regarding the conjecture above, the former possibility (a countable approximate identity for ComA) is
highly improbable, while the latter seems quite likely indeed to take place, although I have not been able to
prove it (i.e. to prove that the function

α 7→ ‖QW ∗
αTWα‖, α ∈ C,

is continuous; it is easy to see from (35) that it is lower semicontinuous, which, however, is not enough for
our purposes).

Thus, in the abelianized algebra Aab := A/ComA, the transformation T 7→ T̂ would act as the identity;
consequently, some insight into the structure of that algebra (multiplicative linear functionals etc.) could be
gained by studying the iterated transforms T 7→ T̂ 7→ ̂̂

T 7→ ̂̂̂
T 7→ . . . or, which amounts to the same, of the

iterated Berezin transforms f 7→ f̃ 7→ f̃ (2) 7→ f̃ (3) 7→ . . . on L∞(C). The latter is equivalent to the study of
the asymptotics of the heat equation, since

f̃ (k)(z) = u(k/2, z),

where u(t, z) is the solution on (0, +∞) × C of the heat equation ∂u

∂t
= 4� u(t, z) with initial condition

u(0, z) = f(z). (See [6] again, or compute directly.) This is one of motivations for undertaking a further
study of the Berezin transform, which is the objective of the subsequent chapter.
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Chapter 5. THE BEREZIN TRANSFORM

Since the Berezin transform seemingly plays an important role in the theory of Toeplitz operators on the
Bergman space and the Fock space, it will be studied in a greater detail in this chapter. Three main topics
will be discussed. First, we investigate the boundedness of the Berezin transform on various Lp spaces. The
connection of the transform with the Laplace and the Laplace-Beltrami operator, respectively, is established.
Second, we prove that the �xed points of the Berezin transform are exactly the harmonic functions. Third,
some ergodicity properties are discussed; the motivation for this comes from the considerations at the end
of Chapter 4. The results are stated for A2(D) and A2(C) only; generalizations to other domains are likely
to be possible, but seem to be closer in spirit to Riemannian geometry rather than functional analysis. We
begin by recalling the de�nitions and basic properties.

If f ∈ L1(D, dν), the Berezin transform of f is, by de�nition,

f̃(w) = 〈fkw, kw〉 =
∫

D
(1− |w|2)2

|1− wz|4 f(z) dν(z), w ∈ D,

where kw is the normalized reproducing kernel at w ∈ D:

kw(z) = gw(z)
‖gw‖ = 1− |w|2

(1− wz)2 .

Note that kw ∈ L∞(D) ∀w ∈ D, so the de�nition makes sense.
Similarly, if f ∈ L1(CN , dµ), de�ne f̃ to be

f̃(w) = 〈fkw, kw〉 =
∫

CN

e−|w−z|2/2f(z) dz

(2π)N
, w ∈ CN ,

where13

kw = gw(z)
‖gw‖ = e

wz
2 −

|w|2
4 .

(Since it will always be clear whether we are discussing A2(CN ) or A2(D), no ambigiuty concerning gw and
kw should arise.)

For typographical reasons, the Berezin transform f̃ is sometimes also denoted Bf .
Proposition 5.1. f̃ is an in�nitely di�erentiable function on D, resp. CN .
Proof. Di�erentiate under the integral sign. (See the proof of Proposition 5.20 for details.) ¤

Proposition 5.2. If f is bounded, then so is Bf ≡ f̃ and ‖f̃‖∞ ≤ ‖f‖∞. In other words, B is a
contraction in L∞(D), resp. L∞(CN ).

Proof. |f̃(w)| ≤ ‖fkw‖2‖kw‖2 ≤ ‖f‖∞.‖kw‖22 = ‖f‖∞. ¤

Remark 5.3. Since f = f̃ when f is a constant function, the norm of B on L∞(CN ) or L∞(D) is, in
fact, equal to one. ¤

Proposition 5.4. If f ≥ 0, then f̃ ≥ 0; if f ≥ g, then f̃ ≥ g̃.
Proof. B is an integral operator with positive kernel. ¤
We are going to show that the Berezin transform is also a contractive linear operator on other Lp

spaces, provided they are taken with respect to an appropriate measure | namely, the measure which is
intrinsic for the Riemannian geometry of the domain. Recall that the Lebesgue measure dz on CN is (up
13Here, as usual, wz = ∑N

j=1 wizi, |w|2 = ww, etc.
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to multiplication by a constant factor) the only measure invariant with respect to the group of the rigid
motions of CN . Similarly, on D, the only measure left invariant by all M�obius transformations

(37) z 7→ ε
z − w

1− wz
:= εωw(z) (w ∈ D, ε ∈ T)

is the pseudo-hyperbolic measure
dη(z) := dν(z)

(1− |z|2)2 .

(The invariance may be veri�ed by direct computation.) It turns out that the Berezin transform behaves
well with respect to the invariant measures.

Proposition 5.5. (a) The mapping B : f 7→ f̃ is a contractive linear operator on each of the spaces
Lp(D, dη(z)), 1 ≤ p ≤ ∞.

(b) Similar assertion holds for Lp(CN , dz), 1 ≤ p ≤ ∞.
Proof. (a) Since L1(D, dη) ⊂ L1(D, dν), the Berezin transform is de�ned on the former space, and

|f̃(w)| =
∣∣∣∣
∫

D
f(z) (1− |w|2)2

|1− wz|4 dν(z)
∣∣∣∣ ≤ B(|f |)(w).

Thus
∫

D
|f̃(w)| dν(w)

(1− |w|2)2 ≤
∫

D

(∫

D
|f(z)| (1− |w|2)2

|1− wz|4 dν(z)
)

dν(w)
(1− |w|2)2 =

=
∫

D
|f(z)|

∫

D
dν(w)
|1− wz|4 dν(z) =

=
∫

D
|f(z)| . 〈gw, gw〉 dν(z) =

∫

D
|f(z)| dν(z)

(1− |z|2)2 ,

the change of the order of integration being justi�ed by the positivity of the integrand. It follows that B is
a contraction on L1(D, dη). The same is true for L∞ (Proposition 5.2), and so the result follows from the
Marcinkiewicz interpolation theorem. The proof of (b) is similar. ¤

The last proposition suggests that there might be some closer relationship between the Berezin transform
and the Riemannian geometry on D, resp. CN . This is indeed the case. Before clarifying this point, we
establish an alternative formula for f̃ .

Proposition 5.6. (a) In the notation of (37), for arbitrary f ∈ L1(D, dν),

f̃(w) =
∫

D
f(ω−w(y)) dy.

(b) Similarly,
f̃(w) =

∫

CN

f(y + w) dµ(y)

for every f ∈ L1(CN , dµ).
Proof. If we make an (analytic) change of coordinates

y = ωw(z), i.e. z = ω−w(y),
then

dν(y) = |ω′w|2 . dν(z) = (1− |w|2)2

|1− wz|4 dν(z),
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and so
f̃(w) =

∫

D
f(z) (1− |w|2)2

|1− wz|4 dν(z) =
∫

D
f(ω−w(y)) dν(y)

as claimed. (b) is similar, only even simpler. ¤

Proposition 5.7. The Berezin transform commutes with the "group of rigid motions" of D, resp.
CN . More precisely,

B(f ◦ ωa) = (Bf) ◦ ωa

for every f ∈ L1(D, dν), a ∈ D, while
B(f ◦ ta) = (Bf) ◦ ta

for every f ∈ L1(CN , dµ), a ∈ CN ; here ta(z) := z − a.
Proof. For f ∈ L1(D, dν) and a,w ∈ D,

B(f ◦ ωa)(w) =
∫

D
f(ωa(ω−w(z))) dν(z)

=
∫

D
f(ωa(ω−w(1 + aw

1 + aw
z))) dν(z)

=
∫

D
f(ω{

1+aw
1+awωw(a)

}(z)) dν(z)

=f̃
(− 1 + aw

1 + aw
ωw(a))

=f̃(−ω−a(−w)) = f̃(ωa(w)),
since

ωa(ω−w(εz)) = ε
1 + aw

1 + aw
. ω{εωw(a)}(z) for ε ∈ T, a, w ∈ D

and 1 + aw

1 + aw
ω−w(a) = ω−a(w) = −ωa(−w).

The proof for CN is, once again, similar but much simpler, because the translations ta on CN , unlike M�obius
transformations, commute. ¤

The last proposition has important consequences, since operators commuting with the (M�obius or Eu-
clidean) translations may be described explicitly. Consider the Laplace operator

� :=
N∏

j=1
4 ∂2

∂zj∂zj

on CN , and the Laplace-Beltrami operator14

�h := (1− |z|2)2 ∂2

∂z∂z

on D. These operators are symmetric on the subspace of L2(CN , dz) or L2(D, dη), respectively, consisting of
in�nitely di�erentiable functions with compact support; since their coe�cients are real, they can be extended
to (unbounded) selfadjoint operators on the respective L2 spaces. Besides, direct calculation reveals that
they commute with the group of motions of CN and D, respectively:

�(f ◦ ta) = (�f) ◦ ta, �h(f ◦ ωa) = (�hf) ◦ ωa.

14Sometimes �h is de�ned as four times this operator.
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According to a fundamental work of Gelfand [17], a sort of converse also holds : every operator on L2(CN , dz)
or L2(D, dη), commuting with the group of motions, must be a function of � or �h, respectively. In view
of Proposition 5.7, this applies, in particular, to the Berezin transform | it must be a function of �, resp.
�h. This idea goes back to Berezin [5], who even exhibited an explicit formula for B (on D) in terms of �h:
f̃ = F (�h)f where

(38) F (x) =
∞∏

n=1

(
1− x

n(n + 1)
)−1

= πx

sin π
(√

x + 1
4 − 1

2
) .

In the case of CN , an explicit formula has been established by Berger and Coburn [6]:

(39) f̃ = e�/2f,

i.e. f̃ is the solution of the heat equation with the initial condition f at the time 1/2. These formulas,
although established here only for f ∈ L2(CN , dz) or f ∈ L2(D, dη), respectively, can be shown to (be
meaningful and) hold actually for wider classes of functions | this can be done e.g. by appealing to the
theory of pseudodi�erential operators; we won't, however, pursue this matter further.

The spaces Lp(CN , dz) and Lp(D, dη) are rather small | they don't even contain (nonzero) constant
functions. A question which comes into mind is whether the Berezin transform is not actually a bounded
linear operator on the spaces Lp with respect to the other natural measure | namely, Lp(CN , dµ) or
Lp(D, dν), respectively. This turns out to be true whenever p > 1. Before presenting the proof, we are
going to show how the machinery of interpolation spaces may be used to obtain a weaker result. We shall
temporarily restrict our attention to D, since most proofs work, with minor modi�cations, for CN as well.

To prove that B is a bounded operator on Lp(D, dν), 1 < p < ∞, it would su�ce to prove this fact
for p = 1 | since B is a contraction on L∞(D), we could apply the Marcinkiewicz interpolation theorem.
Unfortunately, this approach will not work.

Proposition 5.8. B is not a bounded operator on L1(D, dν).
Proof. If it were, its adjoint Bd ≡ C,

(40) (Cf)(z) =
∫

D
(1− |w|2)2

|1− wz|4 f(w) dν(w), z ∈ D,

would be a bounded operator on L∞(D). It will be shown below (in course of the proof of Lemma 5.13(b) )
that

1
2π

∫ 2π

0
1

|1− zreit|4 dt = 1 + |z|2r2

(1− |z|2r2)3 =
∞∑

n=0
(n + 1)2r2n|z|2n,

for z ∈ D and r ∈ (0, 1). Consequently,

(C1)(z) =
∫

D
(1− |w|2)2

|1− wz|4 dν(w) =
∫ 1

0
(1− r2)2 1

2π

∫ 2π

0
|1− zreit|−4 dt 2r dr

=
∫ 1

0
(1− r2)2

∞∑
n=0

(n + 1)2r2n|z|2n 2r dr

=
∫ 1

0

∞∑
n=0

(n + 1)2(1− t)2tn|z|2n dt

=
∞∑

n=0

2(n + 1)
(n + 2)(n + 3) |z|

2n.

As |z| ↗ 1, this expression behaves (asymptotically) like − log(1 − |z|2); hence C1 /∈ L∞(D), so C ≡ Bd

cannot be a bounded operator on L∞(D). ¤
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All the same, the above method may be exploited to prove that B is a bounded operator from Lp(D, dν)
into Lq(D, dν) whenever q < p.

Lemma 5.9. The integral operator C given by (40) is a contraction on L1(D, dν) which maps L∞(D)
boundedly into Lp(D, dν) for every p ∈ 〈1,∞). Similar assertion is valid for CN .

Proof. For arbitrary f ∈ L1(D, dν),
∫

D
|Cf(z)| dν(z) ≤

∫

D

∫

D
(1− |w|2)2

|1− wz|4 |f(w)| dν(w) dν(z)

=
∫

D
|f(w)|

∫

D
(1− |w|2)2

|1− wz|4 dν(z) dν(w) (by Fubini)

=
∫

D
|f(w)| . 〈kw, kw〉 dν(w) =

∫

D
|f(w)| dν(w),

so C is a contraction on L1(D, dν). If f ∈ L∞(D), then

|Cf(z)| ≤ ‖f‖∞ .

∫

D
(1− |w|2)2

|1− wz|4 dν(w) = ‖f‖∞ . |C1(z)|.

Hence, to prove the second assertion of the lemma, it su�ces to check that C1 belongs to Lp(D, dν) for each
p ∈ 〈1,∞). In course of the proof of the preceding proposition, we have observed that C1(z) behaves like
− log(1− |z|2) as |z| ↗ 1, so it is enough to show that log(1− |z|2) ∈ Lp(D, dν) ∀p ∈ 〈1,∞). But

∫

D
| log(1− |z|2)|p dν(z) =

∫ 1

0
| log(1− r2)|p 2r dr =

∫ 1

0
| log(1− t)|p dt =

∫ 1

0
| log t|p dt,

and, changing the variable to y = − log t, this reduces to
∫ +∞

0
ype−y dy = �(p + 1) < +∞.

The proof for CN is similar. ¤

Theorem 5.10. (a) If 1 ≤ q < p ≤ ∞, then B is a bounded operator from Lp(D, dν) into Lq(D, dν).
(b) The same assertion holds for Lp and Lq of (CN , dµ).
Proof. We shall deal only with D, the other case being similar. Consider the integral operator C given

by (40). By the previous lemma, C is a bounded operator from L1(D, dν) into L1(D, dν) and from L∞(D)
into Lp(D, dν), ∀p ∈ 〈1,∞). According to the Marcinkiewicz interpolation theorem, it must be a bounded
operator from Lq(D, dν) into Lr(D, dν) ∀r ∈ 〈1, q) for arbitrary q ∈ 〈1,∞〉. It follows that its adjoint, which
is exactly B, is a bounded map from Lr′(D, dν) into Lq′(D, dν) whenever q′ ∈ (1,∞〉 and r′ ∈ (q′,∞〉; as
Lq′(D, dν) is boundedly imbedded in L1(D, dν) for arbitrary q′ ≥ 1, we may take even q′ ∈ 〈1,∞〉. Changing
slightly the notation produces the assertion of the theorem. ¤

Remark 5.11. We have proved actually a little more. Recall that the space X1(D) is, by de�nition,
the class of all functions f on D such that f ∈ Lp(D, dν) for all 1 ≤ p < ∞ and

‖f‖X := sup
1≤p<∞

‖f‖p

p
< +∞.

Equipped with the norm ‖ . ‖X , X1(D) becomes a Banach space (cf. [21], section 4.8). In course of the proof
of Lemma 5.9, we have almost proved that C maps L∞(D) into X1(D). Indeed, it su�ces, as above, to
verify that C1 ∈ X1(D); this is reduced to the assertion that log(1 − |z|2) ∈ X1(D), and this in turn to
log t ∈ X1(0, 1), i.e. to the assertion that

(41) sup
p≥1

�(p + 1)1/p

p
< +∞.
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But, owing to Stirling's formula,
�(p + 1)1/p ∼ p

e
. (2πp) 1

2p ,

so (41) is true. Thus, C is a bounded map from L∞(D) into X1(D).
The Marcinkiewicz interpolation theorem asserts that if a linear operator T maps (boundedly) L∞(D) →

L∞(D) and L1(D, dν) → L1(D, dν), it must map Lp(D, dν) boundedly into Lp ∀p ∈ (1,∞). The �rst
condition may be relaxed15 to L∞(D) → BMO(D); the space BMO(D) is bigger than L∞(D), but still
lies in all Lq(D, dν), 1 ≤ q < ∞. The space X1 is, in turn, bigger than BMO while still lying in all Lq,
1 ≤ q < ∞. If we knew that the condition L∞ → BMO may be further relaxed to L∞ → X1, we could
conclude that C would be a bounded map from Lp into Lp ∀p ∈ (1,∞) | and, consequently, so would be
the Berezin transform B, the adjoint of C. Whether the condition may indeed be relaxed like this seems to
be an interesting unsolved problem from interpolation theory. ¤

To prove that the Berezin transform B is actually bounded on Lp(D, dν), 1 < p < ∞, we employ a
generalization of the classical Schur test.

Proposition 5.12. Let (X, dx) and (Y, dy) be measure spaces, k(x, y) a nonnegative measurable
function on X × Y, 1 < p < ∞, q = p

p− 1 . If P and Q are positive measurable functions on X and Y,

respectively, and α, β positive numbers such that
∫

Y

k(x, y)Q(y)q/p dy ≤ αP (x) dx-almost everywhere on X,

∫

X

k(x, y)P (x)p/q dx ≤ βQ(y) dy-almost everywhere on Y,

then the integral operator T : Lp(Y, dy) → Lp(X, dx),

(Tg)(x) :=
∫

Y

k(x, y)g(y) dy,

is bounded and ‖T‖p→p ≤ α1/qβ1/p.
Proof. Let g ∈ Lp(Y, dy). Then

∫

X

(∫

Y

k(x, y)|g(y)| dy

)p

dx =
∫

X

(∫

Y

[
k(x, y)
Q(y) |g(y)|p

]1/p [
k(x, y)1/qQ(y)1/q

]
dy

)
dx

(by H�older's inequality) ≤
∫

X

(∫

Y

k(x, y)
Q(y) |g(y)|p dy .

[∫

Y

k(x, y)Q(y)q/p dy

]p/q
)

dx

≤
∫

X

(∫

Y

k(x, y)
Q(y) |g(y)|p dy . αp/qP (x)p/q

)
dx

(by Fubini) =
∫

Y

∫

X

αp/q

Q(y) |g(y)|p . P (x)p/qk(x, y) dx dy

≤
∫

Y

αp/q

Q(y) |g(y)|p . βQ(y) dy = αp/qβ . ‖g‖p
p.

It follows that ‖Tg‖p ≤ ‖T (|g|)‖p ≤ α1/qβ1/p‖g‖p, as asserted. ¤

Lemma 5.13. (a) If a ∈ (−1, 0), then
∫ 1

0
(1− t)a

1−Rt
dt ≤ 1

(−a)(a + 1) . (1−R)a ∀R ∈ 〈0, 1).

15cf. [21], paragraph 4.10.6, and the references given therein.
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(b) If a ∈ (−1, 2), then
∫

D
(1− |x|2)a

|1− xy|4 dν(x) ≤ Ca . (1− |y|2)a−2 ∀y ∈ D,

where Ca is a (�nite) number depending only on a.
Proof. (a) Making several changes of the variable yields

∫ 1

0
(1− t)a

1−Rt
dt =

∫ 1

0
wa

(1−R) + Rw
dw (w = 1− t, dt = −dw)

=− 1
a

∫ +∞

1
s1/a ds

(1−R) + Rs1/a
(s = wa, dw = 1

a
s

1
a−1 ds)

=c

∫ +∞

1
ds

R + (1−R)sc
(u = (1−R)1/cs, ds = (1−R)−1/c du)

=c(1−R)−1/c

∫ +∞

(1−R)1/c

du

R + uc
,

where c = −1
a
∈ (1, +∞); but

∫ +∞

1
du

R + uc
≤

∫ +∞

1
du

uc
= 1

c− 1 ,

∫

(1−R)1/c

du

R + uc
≤

∫ 1

(1−R)1/c

du ≤ 1,

so, indeed, ∫ 1

0
(1− t)a

1−Rt
dt ≤ c(1−R)−1/c .

c

c− 1 = 1
(−a)(a + 1)(1−R)a.

(b) Let r ∈ (0, 1) and denote, for brevity, ρ = |yr| and R = |y|2. By virtue of the Residue theorem,
1

2π

∫ 2π

0
1

|1− yreit|4 dt = 1
2π

∫ 2π

0
|1− ρeit|−4 dt =

= 1
2π

∫ 2π

0
(1− ρeit)−2(1− ρ

eit

)−2
dt = 1

2πi

∮

T
(1− ρz)−2(1− ρ

z

)−2 dz

z
=

=
∑

|z|<1
Resz

z

(1− ρz)2(z − ρ)2 = Resz=ρ
z

(1− ρz)2(z − ρ)2 =

=
(

z

(1− ρz)2

)′∣∣∣∣∣
z=ρ

= 1 + ρz

(1− ρz)3

∣∣∣∣
z=ρ

= 1 + Rr2

(1−Rr2)3 .

Hence
∫

D
(1− |x|2)a

|1− yx|4 dν(x) =
∫ 1

0
1

2π

∫ 2π

0
(1− r2)a

|1− yreit|4 dt 2r dr =

=
∫ 1

0
(1− r2)a(1 + Rr2)

(1−Rr2)3 2r dr =

=
∫ 1

0
(1− t)a(1 + Rt)

(1−Rt)3 dt ≤

≤ 2
∫ 1

0
(1− t)a

(1−Rt)3 dt.

54



Find α ∈ (−1, 0) and β ∈ (0, 2) such that α + β = a ∈ (−1, 2). Then
(1− t)a

(1−Rt)3 = (1−R)β−2
( 1−R

1−Rt

)2−β ( 1− t

1−Rt

)β (1− t)α

1−Rt
≤ (1−R)β−2 (1− t)α

1−Rt
,

as 1− t

1−Rt
,

1−R

1−Rt
∈ 〈0, 1〉.Owing to part (a),

∫ 1

0
(1− t)α

1−Rt
dt ≤ 1

(−α)(α + 1)(1−R)α.

Hence
2

∫ 1

0
(1− t)a

(1−Rt)3 dt ≤ 2 (1−R)β−2 .
1

(−α)(α + 1)(1−R)α = Ca . (1−R)a−2

as asserted. ¤

Theorem 5.14. The Berezin transform B is a bounded operator on the spaces Lp(D, dν), 1 < p < ∞.
Proof. Use the Schur test (Proposition 5.12) with P (x) = (1− |x|2)−1/p, Q(y) = (1− |y|2)−1/q:

∫

D
(1− |x|2)2

|1− xy|4 (1− |y|2)−1/p dν(y) = (1− |x|2)2
∫

D
(1− |y|2)−1/p

|1− xy|4 dν(y) ≤

≤ (1− |x|2)2 . C−1/p . (1− |x|2)− 1
p−2 = C−1/p . P (x),

∫

D
(1− |x|2)2

|1− xy|4 (1− |x|2)−1/q dν(x) ≤ C2− 1
q

. (1− |y|2)2− 1
q−2 = C2− 1

q
. Q(y),

by virtue of Lemma 5.13 ¤

Remark 5.15. The bound for the norm of B on Lp(D, dν), given by the Schur test (Proposition
5.12), is (C−1/p)1/q.(C2− 1

q
)1/p. Computing this explicitly leads to 2p

√
p√

p2 − 1 . ¤

Let us turn now to the second topic: determination of all functions which are invariant under the Berezin
transform.

Proposition 5.16. If a function f ∈ L1(D, dν) or L1(CN , dµ) is harmonic, then f̃ = f .
Proof. If f ∈ L1(D, dν) is harmonic, then so is f ◦ ω−w; by the mean value property,

f̃(w) =
∫

D
f(ω−w(x)) dν(x) = f(ω−w(0)) = f(w).

The case f ∈ L1(CN ) is similar. ¤
A natural question to ask is if there are other functions such that f̃ = f . The following two propositions

suggest that the answer is probably negative.
Proposition 5.17. (a) If f ∈ L2(D, dη) and f̃ = f, then f is harmonic.
(b) If f ∈ L2(CN , dz) and f̃ = f, then f is harmonic.
Proof. We shall employ the formulas (38), (39).
(b) Fix a selfadjoint Laplace operator � on L2(CN , dz) and let E(λ) be its resolution of the identity16.

Assume that f̃ = f ; by (39), this is equivalent to e�/2f = f . Consequently

0 = ‖(e�/2 − I)f‖2 =
∫

R
|eλ/2 − 1|2 d〈E(λ)f, f〉.

16Continuity from the right is assumed
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It follows that eλ/2 = 1 d〈E(λ)f, f〉-almost everywhere on R | in other words, f belongs to the range of
the projection E(0)− E(0−), which is exactly ker �. Thus �f = 0 and we are done.

(a) is similar, only with the function F (λ) from (38) instead of eλ/2. The formula

F (x)−1 =
sin π

(√
x + 1

4 − 1
2
)

πx

implies that, for x ∈ R, F (x) = 1 if and only if x = 0. Finally, �hf = 0 is equivalent to �f = 0. ¤

Remark 5.18. The last proposition does not say too much, since the only harmonic function in
L2(D, dη) or L2(CN , dz) is constant zero. To see this e.g. for L2(D, dη), denote

M(r) = 1
2π

∫ 2π

0
|f(reit)|2 dt.

This is a nonnegative and nondecreasing function of r. At the same time,

‖f‖2
L2(D,dη) =

∫ 1

0
M(r) .

2r

(1− r2)2 dr < +∞,

so M(r) must tend to zero as r → 1. Thus M(r) ≡ 0, whence f = 0. ¤
Therefore it would be desirable to extend the last result to some larger space | say, at least, to L∞(D)

or L∞(CN ), respectively. In the Fock space setting, this can be done quite easily.
Proposition 5.19. Assume f ∈ L∞(CN ), f̃ = f . Then f is harmonic (and, consequently, constant).
Proof. f = f̃ is locally integrable, and so determines a distribution on CN ; since f = f̃ is moreover

bounded, this distribution is tempered, and we may apply the Fourier transform F . According to the
de�nition of f̃ , f̃ = e−|z|

2/2 ∗ f (convolution), so f̃ = f implies

e−|z|
2/2.u(z) = u(z)

where u := Ff . In other words,
〈u, (e−|z|2/2 − 1)φ(z)〉 = 0

for every φ ∈ S(CN ), the space of rapidly decreasing functions on CN ' R2N . Since et − 1 behaves like t
when t → 0, the last condition is equivalent to

〈u,−|z|2φ(z)〉 = 0 ∀φ ∈ S(CN ),

i.e. to −|z|2u(z) = 0. Applying F−1 gives �f = 0 as desired. ¤
This proof cannot be carried over verbatim to D, since there is no analogue of the Fourier transform

which would behave reasonably with respect to �h. Using the method from the proof of Theorem 5.22
below, it is possible to show that f ∈ L1(D, dη) is harmonic if f̃ = f and �f is Lebesgue integrable; the last
condition, however, need not be a priori satis�ed even for a bounded f . All that can be said is that �hf
must be bounded if f = f̃ ∈ L∞(D):

Proposition 5.20. Assume that f ∈ L∞(D). Then ‖�hf̃‖∞ ≤ 5‖f‖∞.

Proof. As usual, if w = x+yi ∈ D, denote ∂

∂w
= 1

2
(

∂

∂x
− i

∂

∂y

)
and ∂

∂w
= 1

2
(

∂

∂x
+ i

∂

∂y

)
. A short

computation yields
∂

∂w

(1− |w|2)2

|1− wz|4 = 2(z − w)(1− wz)(1− |w|2)
|1− wz|6 .
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Because |z − w|.|1− wz| = |1− wz|2.
∣∣∣∣

z − w

1− wz

∣∣∣∣ ≤ |1− wz|2, it follows that
∣∣∣∣f(z) .

∂

∂w

(1− |w|2)2

|1− wz|4
∣∣∣∣ ≤ ‖f‖∞ .

2(1− |w|2)
|1− wz|4 ≤ 2‖f‖∞

(1− |w|)4 .

This is uniformly bounded when w runs through a small vicinity of an arbitrary point w0 ∈ D. Consequently,
it is legal to di�erentiate under the integral sign in the formula de�ning f̃ , which gives

∂f̃

∂w
=

∫

D
f(z) .

2(z − w)(1− wz)(1− |w|2)
|1− wz|6 dν(z).

Going through the same procedure once again, we see that

∂2f̃
∂w∂w

=
∫

D
K(w, z)f(z) dν(z),

where the kernel is

K(z, w) = ∂2

∂w∂w

(1− |w|2)2

|1− wz|4 =

=(4|w|2 − 2)(1− |w|2)2

|1− wz|4 + 4 1− |w|2
|1− wz|4 − 4(1− |z|2)(1− |w|2)

|1− wz|6 .

Recalling the formulas

(1− wz)−2 =
∞∑

n=0
(n + 1)wnzn and (1− wz)−3 =

∞∑
n=0

(n + 1)(n + 2)
2 wnzn

and integrating term by term17, we get
∫

D
dν(z)

|1− wz|4 = (1− |w|2)−2

and
4

∫

D
1− |z|2
|1− wz|6 dν(z) = 2(1− |w|2)−3,

respectively. Consequently,
∣∣∣∣∣

∂2f̃
∂w∂w

∣∣∣∣∣ ≤ ‖f‖∞ .

[
(4|w|2 − 2) + 4

1− |w|2 + 2
(1− |w|2)2

]
,

whence
|�hf̃(w)| ≤ ‖f‖∞ .

[(4|w|2 − 2)(1− |w|2)2 + 4(1− |w|2) + 2]
.

For w ∈ D, the maximum of the bracketed term is approximately 4.439 . . . < 5; thus

‖�hf̃‖∞ ≤ 5‖f‖∞
as claimed. ¤
17This is legal (since the series converge uniformly on compact subsets of D) if we integrate over RD,
0 < R < 1; doing so and taking limits for R ↗ 1 leads to the desired formulas.
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Using this proposition, a proof may be given that f is harmonic whenever f̃ = f ∈ L∞(D). Since a lot
technicialities seems to be necessary, only its sketch will be outlined here. Denote

M = {f ∈ L∞(D) : f = f̃}.

This is a closed subspace of L∞(D). The last proposition shows that A := �h¹M is a bounded operator on
M, ‖A‖ ≤ 5. Since

G(z) :=
∞∏

n=1

(
1− z

n(n + 1)
)

=
sin π

(√
z + 1

4 − 1
2
)

πz

is an entire function, it is possible to de�ne G(A) and, owing to the spectral mapping theorem,
σ(G(A)) = G(σ(A)).

Assuming18 that the formula (38) is valid for f and thinking for some time leads to the conclusion that
G(�h), whenever it is de�ned, must be the inverse of the Berezin transform. Consequently, G(A) = I and
G(σ(A)) = {1}. Next, show that z = 0 is the only zero of G(z)−1 in the disc |z| ≤ 5; this implies σ(A) = {0}.
Let H(z) := G(z)− 1

z
and C := H(A). C is clearly bounded; σ(C) = {G′(0)} = {−1}, so C is invertible;

�nally,
CA = G(A)− I = 0,

so A = 0, i.e. M⊂ ker �h. ¤
The last topic we wanted to discuss were ergodicity properties of the Berezin transform. Once again, sit-

uation is quite transparent when we restrict our attention to L2(CN , dz) and L2(D, dη), but gets complicated
if we want to deal with wider function classes.

Proposition 5.21. As an operator on L2(CN , dz) or L2(D, dη), Bn → 0 in the strong operator
topology.

Proof. We shall deal only with CN , the proof for D being similar. Since B is a contraction of the
form B = e�/2 for a selfadjoint operator �, its spectrum must be contained in 〈0, 1〉. Denote, once again,
E(λ) the resolution of the identity for the (selfadjoint) operator B. Then

‖Bnf‖2 =
∫

〈0,1〉
|λn|2 d〈E(λ)f, f〉.

According to the Lebesgue monotone convergence theorem, this tends to
‖I − E(1−))f‖2 = ‖Pker(B−I)f‖2.

But it follows from Proposition 5.17 and Remark 5.18 that ker(B−I) = {0}, whence ‖Bnf‖ → 0 as claimed.
¤

It is easy to see that this simple behaviour does not persist when we consider B on L∞(CN ) or L∞(D).
For example, take f ∈ L∞(C),

f(z) =
{ 1 if Re z > 0,

−1 if Re z < 0.

A short computation shows that
(Bnf)(z) = f̃(z/

√
n),

so (Bnf)(z) → f̃(0) = 0 as n → ∞ for all z ∈ C. However, the convergence cannot be uniform since, for
every n ∈ N,

lim
x→+∞(Bnf)(x + yi) = lim

x→+∞ f̃(x + yi) = +1.

18It seems necessary to resort to the theory of pseudodi�erential operators in order to prove this.
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All the same, the uniform convergence can be established in some particular cases. If f is harmonic, then
Bf = f (Proposition 5.16), so trivially Bnf⇒f . What about subharmonic f?

Theorem 5.22. Assume that f ∈ L1(D, dν) is a real-valued subharmonic function on D which admits
an integrable harmonic majorant (i.e. there exists a function v ∈ L1(D, dν) harmonic on D and such that
v(x) ≥ f(x) ∀x ∈ D). Then Bnf ↗ u, the least harmonic majorant of f .

Proof. According to a theorem of Frostman ([19], Theorem 5.25), there exists a positive Borel measure
κ on D such that

f(w) = u(w) + 1
4

∫

D
ln |ωw(x)|2 dκ(x) ∀w ∈ D.

(When f is twice continuously di�erentiable, dκ(x) = �f(x) dν(x); π dκ is called the Riesz measure of f .)
Write, for brevity, g(x) = ln |x|2. Since |ωw(x)| = |ωx(w)|, we have

f(w) = u(w) + 1
4

∫

D
g ◦ ωx(w) dκ(x).

Hence
f̃(z) = ũ(z) +

∫

D
(1− |z|2)2

|1− wz|4 .
1
4

∫

D
g ◦ ωx(w) dκ(x) dν(w).

Since f ≤ u ≤ v and f, v ∈ L1(D, dν), we have u ∈ L1(D, dν), so ũ = u in view of Proposition 5.16. Because
the integrand is nonpositive, we may interchange the order of integration, which gives

(42) f̃(z) = u(z) + 1
4

∫

D
B(g ◦ ωx)(z) dκ(x).

Proceeding by induction, we obtain

(Bnf)(z) = u(z) + 1
4

∫

D
Bn(g ◦ ωx)(z) dκ(x).

Assume that
(43) Bn(g ◦ ωx)(z) ↗ 0 as n →∞, for all x, z ∈ D.

Because κ is a positive measure, we may apply the Lebesgue monotone convergence theorem to conclude
that

Bnf ↗ u as n →∞
and the proof of the theorem is complete.

It remains to prove (43). Since Bn(g ◦ ωx) = (Bng) ◦ ωx (cf. Proposition 5.7), it su�ces to show that
Bng ↗ 0. By de�nition, g(x) = ln |x|2, while direct computation reveals that

g̃(x) = |x|2 − 1.

It follows that g ≤ g̃. By Proposition 5.4, this implies Bkg ≤ Bk+1g ∀k ∈ N, so
g ≤ Bg ≤ B2g ≤ B3g ≤ . . . ≤ 0.

Hence a limit ψ(x) := lim
n→∞

(Bng)(x) must exist, ψ ≤ 0, and, owing to the Lebesgue monotone convergence
theorem, ψ̃ = ψ. We claim that ψ ≡ 0. Assume the contrary. Because 0 ≥ ψ(x) ≥ g̃(x) = |x|2 − 1, we have
lim
|x|→1

ψ(x) = 0; consequently, ψ must attain its in�mum at some point y ∈ D | suppose (replacing ψ by
ψ ◦ ωy otherwise) that y = 0. Then

ψ(0) = ψ̃(0) =
∫

D
ψ(x) dν(x) > infD ψ(x) .

∫

D
dν(x) = ψ(0)
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| a contradiction. ¤

Remark 5.23. If f is real-valued, subharmonic and f ∈ L2(D, dη), we may proceed a little more
quickly. The subharmonicity implies that

f̃(w) =
∫

D
f(ω−w(y)) dν(y) ≥ f(ω−w(0)) = f(w),

i.e. f̃ ≥ f . Further, B commutes with �h, whence �hf̃ = B(�hf) ≥ 0 since �hf ≥ 0; in other words, f̃ is
also subharmonic. Proceeding by induction, we obtain a nondecreasing sequence {Bkf}k∈N of subharmonic
functions. Their limit ψ is either identically +∞, or is a subharmonic function satisfying ψ̃ = ψ. Since
ψ ∈ L2(D, dη), the former case cannot occur; further,

ψ(0) = ψ̃(0) =
∫

D
ψ(y) dν(y),

and so ψ is actually harmonic; hence, it is a harmonic majorant of f . If h is another harmonic majorant of
f, then f ≤ h implies Bnf ≤ Bnh = h, whence also ψ ≤ h; consequently, ψ is the least harmonic majorant
of f, and we are done.

Observe that, although there is no nonzero harmonic function in L2(D, dη), there are plenty subharmonic
ones. The functions Bng, g(z) = ln |z|2, n ∈ N, serve as an example:

∫

D
|g(x)|2 dν(x) =

∫ 1

0

( ln t

1− t

)2
dt =

∫ 1

0

∞∑
n=0

∞∑
m=0

tm+n ln2 t dt =

=
∞∑

n=0

∞∑
m=0

2
(m + n + 1)3 =

∞∑

k=0

2
(k + 1)2 = π2

3 < +∞.

¤
In fact, another proof of Theorem 5.22 may be given on the lines of Remark 5.23 | the assumption

f ∈  L2(D, dν) was used only to infer that Bf is subharmonic when f is. Using the formula (42), this fact
may be shown to hold in general.

Theorem 5.24. Assume f ∈ L1(D, dν) is a real-valued subharmonic function on D which admits an
integrable harmonic majorant v. Then the functions Bnf are subharmonic, ∀n ∈ N.

Proof. Let 0 < R < 1. Owing to the formula (42),

1
2π

∫ 2π

0
f̃(Reit) dt = 1

2π

∫ 2π

0
u(Reit) dt + 1

2π

∫ 2π

0
1
4

∫

D
B(g ◦ ωx)(Reit) dκ(x) dt.

Because the second integrand is nonpositive, we may interchange the order of integration; consequently,

1
2π

∫ 2π

0
f̃(Reit) dt = u(0) + 1

4
∫

D

( 1
2π

∫ 2π

0
B(g ◦ ωx)(Reit) dt

)
dκ(x).

The function B(g ◦ ωx)(z) = |ωx(z)|2 − 1 is a subharmonic function (of z), which implies

1
2π

∫ 2π

0
B(g ◦ ωx)(Reit) dt ≥ B(g ◦ ωx)(0).

Hence
1

2π

∫ 2π

0
f̃(Reit) dt ≥ u(0) + 1

4
∫

D
B(g ◦ ωx)(0) dκ(x) = f̃(0)
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for every R ∈ (0, 1). The same procedure, of course, may be carried out for the functions f ◦ ωa, a ∈ D. It
follows that f̃ satis�es the sub-mean value property, and therefore is subharmonic on D.

Because f ≤ v, we have also f̃ ≤ ṽ = v (Propositions 5.4 and 5.16), so f̃ also has an integrable harmonic
majorant. Consequently, we may proceed by induction, and the theorem follows. ¤

Given a bounded real-valued subharmonic function on D, the boundary values of its least harmonic
majorant can be described explicitly. A proof of this fact is included below, since it seems to be missing in
textbooks on potential theory.

Proposition 5.25. Suppose φ is a bounded real-valued subharmonic function on D. De�ne φ on T by
(44) φ(ε) = lim sup

r↗1
φ(rε), ε ∈ T,

and let ψ be the Poisson extension of φ¹T into the interior of D. Then ψ is the least harmonic majorant of
φ.

Proof. Let u be the least harmonic majorant of φ. Except for ε in a set of zero (arc-length) measure,
we have

lim
r↗1 u(rε) ≥ lim sup

r↗1
φ(rε) = φ(ε) = lim

r↗1 ψ(rε).

It follows that the bounded harmonic function u− ψ has nonnegative radial limits a.e. on T; hence, u ≥ ψ
on D. Let us show that also u ≤ ψ. Because (sub)harmonicity is invariant under M�obius transformations,
it su�ces to show that ψ(0) ≥ u(0). Without loss of generality, we may assume φ ≤ 0; hence also u ≤ 0,
ψ ≤ 0. Applying the Fatou lemma to the functions t 7→ φ(reit), we see that

1
2π

∫ 2π

0
lim sup

r↗1
φ(reit) dt ≥ lim sup

r↗1
1

2π

∫ 2π

0
φ(reit) dt.

The left-hand side is, by de�nition, ψ(0), whereas the lim sup on the right-hand side may be replaced either
by lim or by sup and equals u(0). ¤

Remark 5.26. The last proposition may be compared with Theorem 3.11 of [19], which asserts the
same, but with (44) replaced by

φ(ε) = lim sup
D3z→ε

φ(z)

The proof of our version seems to be more elementary. ¤
The proofs of Theorem 5.22 as well as of Remark 5.23 may be carried over to the Fock space setting.
Theorem 5.27. If f is a bounded real-valued subharmonic function on CN , then Bnf ↗ u, the least

harmonic majorant of f .
Since the only bounded harmonic functions on CN are the constant ones, necessarily

u(z) = sup
x∈CN

f(x) ∀z ∈ CN .

As a matter of fact, an analogue of Proposition 5.25 remains in force: the above supremum coincides with
the radial limit of f on almost all half-lines emanating from the origin19.

Remark 5.28. For N = 1, the statement of the theorem is trivial, since there are no bounded
subharmonic functions on C but constant ones. However, nontrivial bounded subharmonic functions exist
when N ≥ 2; as an example, take max{−1, |z|2−2N}. ¤

We conclude this chapter with an application of Theorems 5.22 and 5.27 Recall that
V (D) := {f ∈ L∞(D) : ess lim

|z|↗1
f(z) = 0}

19Cf. [19], Theorem 3.21.
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and similarly for CN .
Proposition 5.29. If (a) f ∈ V (D) or (b) f ∈ V (CN ), then Bnf⇒0.
Proof. (a) First observe that it su�ces to consider f ≤ 0 since B is linear. Next, it su�ces to consider

f ∈ D(D), because B is a contraction and D(D) is dense in V (D). So suppose f ≤ 0 and supp f ⊂ RD,
R ∈ (0, 1). De�ne the function F on 〈0, 1〉 as follows:

F (t) = −‖f‖∞ if 0 ≤ t ≤ R,

F (1) = 0,

F (t) is linear on 〈R, 1〉,
and set φ(z) = F (|z|), z ∈ D. The function φ is subharmonic, its least harmonic majorant being constant
zero. By virtue of Theorem 5.22, Bnφ ↗ 0; since φ = 0 on T, Dini's theorem forces even Bnφ⇒0. But
φ ≤ f ≤ 0, hence Bkφ ≤ Bkf ≤ 0, and so Bnf⇒0 as well.

(b) The proof is easier this time, since an explicit formula for Bnf is well-known from the theory of the
heat equation:

(Bnf)(z) = (2πn)−N/2 .

∫

CN

exp
(
−|z − x|2

2n

)
. f(x) dx.

Reasoning as above, it su�ces to consider f ≥ 0 and supp f ⊂ RD, R ∈ (0, +∞). In that case,

|(Bnf)(z)| ≤ ‖f‖∞
(2πn)N/2 .

∫

|x|≤R

dx = γNR2N‖f‖∞
(2πn)N/2 ∀z ∈ CN ,

γN being the volume of the unit ball in CN . Letting n →∞ yields ‖Bnf‖∞ → 0 as claimed.
Corollary 5.30. Suppose f ∈ C(D). Then Bnf⇒h, the harmonic function whose boundary values

coincide with f¹T.
Proof. Because f ∈ C(D), f¹T ∈ C(T), hence also h ∈ C(D) and f − h ∈ V (D). It follows that

Bn(f − h)⇒0. But Bh = h, so Bnf⇒h.
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CONCLUSIONS FOR FURTHER DEVELOPMENT IN THE AREA
The results above lead to some challenging questions. It is still unclear what is the norm closure of the

set of all Toeplitz operators on a Bergman-type space (Chapter 2); likewise, it is an open problem whether
the C∗-algebra generated by them is all of A or not, and whether A(U) and A(S) are isomorphic. One
would also like to generalize Theorem 3.10 (or 3.14) to domains of higher dimensions; perhaps A(U) should
play the "universal" role which A(S) plays for 
 ⊂ C (cf. Remark 3.26). Many interesting problems are
also encountered in Chapter 4 (the question of existence of some kind of Toeplitz calculus still remains open
in general) and Chapter 5 (�xed points and ergodicity properties of the Berezin transform acting on L∞, for
example; Proposition 5.20 looks promising from this point of view).

LIST OF NOTATION

The numbers etc. refer to the place where the symbol is de�ned. Since there are paragraphs which are
not numbered, references like "3.30 & before" are used to indicate that the symbol �rst occurs between the
items 3.29 and 3.30.

Ap(
) the Bergman (
 ⊂ CN ) or the Fock (
 = CN ) space
A(M) the A-algebra corresponding to an operator M (3.30 & before)
A](M) the A]-algebra corresponding to M (3.30 & before)

A an abbreviation for A(S) (3.4)
Aµ the localization of A at µ ∈ T (4.16)
Aab = A/ComA

B the Berezin transform, Bf ≡ f̃
Bφ = W ∗

BTφWB (the very end of Chapter 3)
BCESV a function space, see 3.25 & before

B(H) the space of all bounded linear operators on a Hilbert space H
BMO the space of all functions of bounded mean oscillation (sometimes also called the

John-Nirenberg space, and denoted JN)
C the complex plane

cn(f) see 1.3, 1.7
Comp, Comp(H) the compact operators (on a Hilbert space H)

clos X closure of a set X ⊂ B(H) in the operator norm topology
C(
) the space of functions continuous on the closure 
 of a domain 
 ⊂ CN

Calk, Calk(H) the Calkin algebra (on a Hilbert space H)
Com A the commutator ideal of an algebra A

C∗-alg X the smallest C∗-algebra containing a set X ⊂ B(H)
C the adjoint of B (5.8)

Ca a constant (5.13)
d Xd, the dual of a Banach space X; T d, the dual of an operator T

D the unit disc
dz the Lebesgue measure on CN , N ≥ 1

dν(z) = 1
π

dz, a measure on D
dµ(z) the Gaussian measure on CN

dκ(z) the Riesz measure of a subharmonic function (5.21)
diag(cn) the diagonal operator with weight sequence {cn}

dist the (euclidean) distance
d(x, y) the pseudohyperbolic distance of x, y ∈ D

Dh(λ,R) the pseudohyperbolic disc with center λ and radius R
D(
) the space of all in�nitely di�erentiable functions the supports of which are compact

subsets of 
 ⊆ CN

ess lim the essential limit; similarly ess sup
ESV a function space, see 3.25 & before
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{EN} an orthonormal basis in H and K (4.8)
E , Ẽ spaces of operators, see 4.12
{ej} orthonormal bases in various Hilbert spaces
E(λ) resolution of the identity of a selfadjoint operator (continuity from the right is

assumed)
Fφ = W ∗

F TφWF (the very end of Chapter 3)
F the Fourier transform
gλ the reproducing kernel (or evaluation functional) at λ, for various spaces (A2(
),

A2(CN ), H2(ρ))
g(m,a) the functional evaluating the m-th derivative at λ, on A2(D) (before Lemma 2.6)

G the Gauss sphere, C ∪ {∞}
g(x) = ln |x|2 at the end of Chapter 5

H∞(
) the space of bounded analytic functions on 

Hφ the Hankel operator with symbol φ
H2 the Hardy space (on the unit circle)
H2
− = L2(T)ªH2

H2(ρ) Hilbert spaces, see before 3.18
H a subspace of L, see 4.8
i� if and only if

ind the Fredholm index
Iµ the local ideal, see 4.16
J 1) the diagonal operator J = diag(−1)n

2) an isometry of H2 onto H, see 4.8
kλ normalized evaluation functionals, kλ = gλ

‖gλ‖
K a subspace of L, see 4.8 �.

Lp, Lp(
), Lp(
, dρ) Lebesgue spaces (1 ≤ p ≤ ∞); if dρ is omitted, the Lebesgue measure is understood
L2(ρ), L∞(ρ) function spaces, see before 3.20

l2 = l2(N) the space of all square-summable sequences of complex numbers, endowed with the
usual Hilbert space structure

l∞ = l∞(N) the space of all bounded sequences of complex numbers, with supremum norm
L∞ a subset of Calk(L2(T)), see 3.32

L′,L′′,L spaces used to construct the Calkin representation (see before 4.3) (exceptionally,
the primes do not denote commutants)

Lim a Banach limit, see Chapter 4
Mφ the operator of multiplication by a φ ∈ L∞

N = {0, 1, 2, . . .}
n̂ the functional on l∞: {xk}k∈N 7→ xn

P+ the orthogonal projection of L2 onto H2 or A2, in various settings
QC the quasicontinuous functions on T

Ran T the range of a mapping T
R the set of all real numbers
Rε a composition operator, see 4.17

supp the support (of a function or a measure)
S the unilateral (forward) shift on H2
S the unit sphere in CN

S(CN ) the Schwarz space of rapidly decreasing functions
SOT the strong operator topology

S0, S̃0 spaces of operators, see page 51 and before 4.11, respectively
T the unit circle in C
Tφ the Toeplitz operator with symbol φ
T = {Tφ : φ ∈ L∞(D)}, a subset of B(A2(D))
T1 = {Tφ : φ ∈ D(D)}, a subset of B(A2(D))
T2 = {Tφ : φ ∈ C(D)}, a subset of B(A2(D))
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Trace the ideal of trace-class operators
Tr(T ) the trace of an operator T

T(m,n,a) operators on A2(D), see before 2.6
TB , TF , TH the C∗-algebras generated by all Toeplitz operators with bounded symbols on

A2(D), A2(CN ), H2
ta the translation operator, ta(z) = z − a, a, z ∈ CN

U the bilateral (forward) shift on L2(T)
V (D) = {φ ∈ L∞(D) : ess lim

|z|↗1
φ(z) = 0}

V (CN ) = {φ ∈ L∞(CN ) : ess lim
|z|↗+∞

φ(z) = 0}
WOT the weak operator topology

WB ,WF the unitary operators of H2 onto A2(D), A2(CN ) (see the very end of Chapter 3)
X1(D), X1(0, 1) Banach function spaces, see 5.11

Z the set of all integers
Z the (forward) shift operator on H2(ρ), in 3.20 { 3.22; in 3.24, a (forward) shift

operator on A2(C)
βN the Stone-�Cech compacti�cation of N
γN the (Lebesgue) volume of the unit ball in CN

�(x) Euler's gamma-function, n! = �(n + 1)
� the Laplace operator

�h the Laplace-Beltrami operator on D, see 5.7
dη an invariant measure on D, dη(z) = (1− |z|2)2 dν(z)
φk the k-th Fourier coe�cient of φ ∈ L2(T)

 a domain in CN , or CN (see the Convention at the beginning of Chapter 1)
|
| the Lebesgue measure of 



, (∂
) the closure (boundary) of 
 ⊂ CN in GN

π the canonical projection of B(H) onto Calk(H)
πn(T), π(S, T) homotopy groups

σ the spectrum
σe the essential spectrum

τB , τH , τF the set of all Toeplitz operators with bounded symbol, on A2(D), H2, A2(CN ),
respectively

ξ, ξB , ξF symbol maps on H2, A2(D), A2(CN ), see page 35 & �.

If n = (n1, n2, . . . , nN ) is a multiindex, then

an = an1,n2,...,nN , n! = n1!n2! . . . nN !,

2n = 2n1+n2+...+nN , zn = zn11 zn22 . . . znN

N .

If x, y ∈ CN , then
xy = yx =

N∑

j=1
xjyj , |x| = (xx)1/2.

If ω = x + yi ∈ C, then
∂

∂ω
= 1

2
(

∂

∂x
− i

∂

∂y

)
,

∂

∂ω
= 1

2
(

∂

∂x
+ i

∂

∂y

)
.

:= equals by de�nition
[A,B] = AB −BA, the commutator of A and B

[Tf , Tg) = Tfg − TfTg, the semicommutator
T ] an operator on L, see before 4.4
′ the �rst derivative, or the commutant (exception: L′)
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′′ the double commutant (exception: L′′)
T̂ see before 4.19
˜ the Berezin transform, on L∞(D), L∞(CN ), B(A2(D)),

B(A2(CN ))
˜(k) the k-tuple iterate of ˜

[ a smoothing transformation, see before 1.11
1 the constant function equal to one

‖ . ‖B norm on a Banach space B; B is frequently omitted
〈 . , . 〉H scalar product on a Hilbert space H; H is sometimes omitted
‖ . ‖p norm on Lp

‖ . ‖ρ, 〈 . , . 〉ρ norm & scalar product on H2(ρ)
‖ . ‖L, 〈 . , . 〉L norm & scalar product on L

‖ . ‖X norm in X1
‖ . ‖e the essential norm (of an operator)

‖ . ‖p→p, ‖ . ‖L→L norm of an operator from Lp into Lp, from L into L
→ converges
⇒ converges uniformly
↗ converges increasinglyw→ converges weakly (on a Banach space)
∗ convolution
¹ restriction
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