q-deformed spin foams for Riemannian quantum gravity

Igor Khavkine

Department of Applied Mathematics
University of Western Ontario
Canada

26 June 2007
LOOPS '07
UNAM Morelia, Mexico
based on arXiv:0704.0278 [gr-qc] (with Dan Christensen)

Outline

What?
Barrett-Crane Model q-deformation
Why?
Regularization
Cosmological Constant How?
q-Barrett-Crane model
Computer Simulation
So What?
Results
Summary

Spin Foams

Start with a triangulated 4-manifold $T\left(T^{*} \supset \Delta_{n}\right.$ — the set of dual n-simplices). A spin foam is a coloring of the triangulation faces $\left(\Delta_{2}\right)$. A spin foam model assigns an amplitude to each spin foam F :

$$
\mathcal{A}(F)=\prod_{f \in \Delta_{2}} A_{F}(f) \prod_{e \in \Delta_{2}} A_{E}(e) \prod_{v \in \Delta_{1}} A_{V}(v)
$$

Also, to the triangulation as a whole and expectation values to observables

$$
Z=\sum_{F} \mathcal{A}(F), \quad\langle O\rangle=\frac{1}{Z} \sum_{F} O(F) \mathcal{A}(F) .
$$

Sum over all histories - discrete path integral!

Spin Foams

Start with a triangulated 4-manifold $T\left(T^{*} \supset \Delta_{n}\right.$ — the set of dual n-simplices). A spin foam is a coloring of the triangulation faces $\left(\Delta_{2}\right)$. A spin foam model assigns an amplitude to each spin foam F :

$$
\mathcal{A}(F)=\prod_{f \in \Delta_{2}} A_{F}(f) \prod_{e \in \Delta_{2}} A_{E}(e) \prod_{v \in \Delta_{1}} A_{V}(v)
$$

Also, to the triangulation as a whole and expectation values to observables

$$
Z=\sum_{F} \mathcal{A}(F), \quad\langle O\rangle=\frac{1}{Z} \sum_{F} O(F) \mathcal{A}(F)
$$

Sum over all histories - discrete path integral!
Goal - compute these sums numerically.

Barrett-Crane Model

A spin foam model for Riemannian General Relativity.

- Historically, obtained as a constrained version of discretized BF theory.
- Can also be derived from Group Field Theory.
- Specifies vertex amplitude (10j symbol):

$B C$ vertex - unique rotationally invariant.

The $j_{i, k}$ are balanced irreps $(j \otimes j)$ of $\operatorname{Spin}(4) \cong S U(2) \times S U(2)$.

- Several choices for amplitudes $A_{F}(f)$ and $A_{E}(e)$.

q-deformation

For $q=1$, no deformation.
First, deal with $S U(2)$.

q-deformation

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

$U_{q}(\mathfrak{s u}(2))$ generated by $\left(\Sigma \sim q^{\frac{1}{2} r_{3}}\right)$:

$$
\begin{aligned}
{\left[\sigma_{+}, \sigma_{-}\right] } & =4 \frac{\Sigma^{2}-\Sigma^{-2}}{q-q^{-1}} \\
\Sigma \sigma_{ \pm} & =q \sigma_{ \pm} \Sigma
\end{aligned}
$$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$U_{q}(\mathfrak{s u}(2))$ generated by $\left(\Sigma \sim q^{\frac{1}{2} \sigma_{3}}\right)$:

$$
\begin{aligned}
{\left[\sigma_{+}, \sigma_{-}\right] } & =4 \frac{\Sigma^{2}-\Sigma^{-2}}{q-q^{-1}} \\
\Sigma \sigma_{ \pm} & =q \sigma_{ \pm} \Sigma
\end{aligned}
$$

Irreps classified by (generic q):

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$U_{q}(\mathfrak{s u}(2))$ generated by $\left(\Sigma \sim q^{\frac{1}{2} \sigma_{3}}\right)$:

$$
\begin{aligned}
{\left[\sigma_{+}, \sigma_{-}\right] } & =4 \frac{\Sigma^{2}-\Sigma^{-2}}{q-q^{-1}} \\
\Sigma \sigma_{ \pm} & =q \sigma_{ \pm} \Sigma
\end{aligned}
$$

Irreps classified by (generic q):

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$\operatorname{ROU} q=e^{i \pi / r}: \quad j \leq \frac{r}{2}-1$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$U_{q}(\mathfrak{s u}(2))$ generated by $\left(\Sigma \sim q^{\frac{1}{2} \sigma_{3}}\right)$:

$$
\begin{aligned}
{\left[\sigma_{+}, \sigma_{-}\right] } & =4 \frac{\Sigma^{2}-\Sigma^{-2}}{q-q^{-1}} \\
\Sigma \sigma_{ \pm} & =q \sigma_{ \pm} \Sigma
\end{aligned}
$$

Irreps classified by (generic q):

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$\operatorname{ROU} q=e^{i \pi / r}: \quad j \leq \frac{r}{2}-1$
$U(\mathfrak{s p i n}(4)) \cong U(\mathfrak{s u}(2)) \oplus U(\mathfrak{s u}(2))$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$$
U(\mathfrak{s p i n}(4)) \cong U(\mathfrak{s u}(2)) \oplus U(\mathfrak{s u}(2)) \quad U_{q, q^{\prime}}(\mathfrak{s p i n}(4)) \cong U_{q}(\mathfrak{s u}(2)) \oplus U_{q^{\prime}}(\mathfrak{s u}(2))
$$

For $q=1$, no deformation.
First, deal with $S U(2)$.
$U(\mathfrak{s u}(2))$ generated by:

$$
\begin{gathered}
{\left[\sigma_{+}, \sigma_{-}\right]=4 \sigma_{3}} \\
{\left[\sigma_{3}, \sigma_{ \pm}\right]= \pm 2 \sigma_{ \pm}}
\end{gathered}
$$

Irreps classified by:

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$U_{q}(\mathfrak{s u}(2))$ generated by $\left(\Sigma \sim q^{\frac{1}{2} \sigma_{3}}\right)$:

$$
\begin{aligned}
{\left[\sigma_{+}, \sigma_{-}\right] } & =4 \frac{\Sigma^{2}-\Sigma^{-2}}{q-q^{-1}} \\
\Sigma \sigma_{ \pm} & =q \sigma_{ \pm} \Sigma
\end{aligned}
$$

Irreps classified by (generic q):

$$
\begin{gathered}
j=0, \frac{1}{2}, 1, \frac{3}{2}, \ldots \\
\operatorname{dim} j=2 j+1
\end{gathered}
$$

$\operatorname{ROU} q=e^{i \pi / r}: \quad j \leq \frac{r}{2}-1$
$U(\mathfrak{s p i n}(4)) \cong U(\mathfrak{s u}(2)) \oplus U(\mathfrak{s u}(2)) \quad U_{q, q^{\prime}}(\mathfrak{s p i n}(4)) \cong U_{q}(\mathfrak{s u}(2)) \oplus U_{q^{\prime}}(\mathfrak{s u}(2))$
Spin networks: graphs \longrightarrow ribbon graphs.

Regularization

Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.

Regularization

Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.
- Ponzano-Regge model for 3-d Riemannian GR (1968). An early spin foam model - divergent.
- At a ROU q, this model is regularized. Constructed by Turaev and Viro as a state sum for 3-manifold invariants (1992).

Regularization

Application of q-deformation.

- For q a root of unity (ROU) the number of irreps is finite. Partition function Z is automatically finite.
- Ponzano-Regge model for 3-d Riemannian GR (1968). An early spin foam model - divergent.
- At a ROU q, this model is regularized. Constructed by Turaev and Viro as a state sum for 3-manifold invariants (1992).
- DFKR model (Barrett-Crane variation due to De Pietri, Freidel, Krasnov \& Rovelli, 1999) - also divergent, discovered from numerical investigation (2002).
- At a ROU q, the DFKR model is also regularized.

Cosmological Constant

Application of q-deformation.
In Loop Quantum Gravity, SU(2) spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

Cosmological Constant

Application of q-deformation.

In Loop Quantum Gravity, $S U(2)$ spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

- Kodama state $|\mathcal{K} ; \wedge\rangle$ — approximates deSitter space, a vacuum with positive Cosmological Constant, $\Lambda>0$.
- Smolin (1995) argues that invariance under large gauge transformations discretizes the CC, $\wedge \sim 1 / r$.

Cosmological Constant

Application of q-deformation.

In Loop Quantum Gravity, $S U(2)$ spin networks are embedded in a spatial slice.

- The spin network basis describes states of quantum spatial geometry.

- Kodama state $|\mathcal{K} ; \wedge\rangle$ — approximates deSitter space, a vacuum with positive Cosmological Constant, $\wedge>0$.
- Smolin (1995) argues that invariance under large gauge transformations discretizes the CC, $\wedge \sim 1 / r$.
- Expansion coefficients give topological link and graph invariants:

- With precisely $q=\exp (i \pi / r)$!
- Ingredients for q-deformation have been in the literature for some time.

q-Barrett-Crane model

- Ingredients for q-deformation have been in the literature for some time.
- A special family of deformations (Yetter, 1999):

$$
U_{q, q^{-1}}(\mathfrak{s p i n}(4)) \cong U_{q}(\mathfrak{s u}(2)) \oplus U_{q^{-1}}(\mathfrak{s u}(2)) .
$$

$B C$ vertex still rotationally invariant, ribbon structure trivial.

q-Barrett-Crane model

- Ingredients for q-deformation have been in the literature for some time.
- A special family of deformations (Yetter, 1999):

$$
U_{q, q^{-1}}(\mathfrak{s p i n}(4)) \cong U_{q}(\mathfrak{s u}(2)) \oplus U_{q^{-1}}(\mathfrak{s u}(2)) .
$$

$B C$ vertex still rotationally invariant, ribbon structure trivial.

- Intersection structure of $10 j$ symbol (only non-planar spin network) fixed from the Crane-Yetter model (1994)

q-Barrett-Crane model

- Ingredients for q-deformation have been in the literature for some time.
- A special family of deformations (Yetter, 1999):

$$
U_{q, q^{-1}}(\mathfrak{s p i n}(4)) \cong U_{q}(\mathfrak{s u}(2)) \oplus U_{q^{-1}}(\mathfrak{s u}(2)) .
$$

$B C$ vertex still rotationally invariant, ribbon structure trivial.

- Intersection structure of $10 j$ symbol (only non-planar spin network) fixed from the Crane-Yetter model (1994):

- Retains permutation symmetry.
- Christensen-Egan (2002) efficient algorithm generalizes.

Computer Simulation

- Implement $U_{q}(\mathfrak{s u}(2))$ spin network evaluations - $|q|>1$ numerically unstable! But ROU q is OK.

Computer Simulation

- Implement $U_{q(\mathfrak{s u}(2)) \text { spin network evaluations - }|q|>1 .}$ numerically unstable! But ROU q is OK.
tetrahedral network vs. q

Computer Simulation

- Implement $U_{q(\mathfrak{s u}(2)) \text { spin network evaluations - }|q|>1 .}$ numerically unstable! But ROU q is OK.
- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$
\langle O\rangle=\frac{1}{Z} \sum_{F} O(F) \mathcal{A}(F)
$$

Computer Simulation

- Implement $U_{q(\mathfrak{s u}(2)) \text { spin network evaluations - }|q|>1 .}$ numerically unstable! But ROU q is OK.
- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$
\langle O\rangle=\frac{1}{Z} \sum_{F} O(F) \mathcal{A}(F)
$$

- Elementary move - add closed bubble in dual skeleton.

Computer Simulation

- Implement $U_{q(\mathfrak{s u}(2)) \text { spin network evaluations - }|q|>1 .}$ numerically unstable! But ROU q is OK.
- Evaluate partition function and observables using importance sampling (Metropolis algorithm):

$$
\langle O\rangle=\frac{1}{Z} \sum_{F} O(F) \mathcal{A}(F)
$$

- Elementary move - add closed bubble in dual skeleton.
- Works well since $\mathcal{A}(F) \geq 0$ when $q=1$ or ROU, in the absence of boundaries.

Models

Perez-Rovelli (2000):

$$
A_{F}(f)={ }_{j} \bigcirc, \quad A_{E}(e)=\frac{{ }_{{ }_{H}} \bigcirc{ }_{k} \bigcirc_{{ }_{2}}{ }_{3} \bigcirc{ }_{4} \bigcirc .}{}
$$

DFKR (2000):

$$
A_{F}(f)=\bigcirc, \quad A_{E}(e)=\left[\begin{array}{l}
j_{1} \\
j_{3} \\
j_{4}
\end{array}\right]^{-1} .
$$

Baez-Christensen (2002):

$$
A_{F}(f)=1, \quad A_{E}(e)=\left[\frac{j_{1}}{j_{2}}\right.
$$

Observables

Spin foam observables depend on face spin labels:
spin avg. $\quad J(F)=\frac{1}{\left|\Delta_{2}\right|} \sum_{f \in \Delta_{2}}\lfloor j(f)\rceil$,
spin var. $\quad(\delta J)^{2}(F)=\frac{1}{\left|\Delta_{2}\right|} \sum_{f \in \Delta_{2}}(\lfloor j(f)\rceil-\langle J\rangle)^{2}$,
area avg. $\quad A(F)=\frac{1}{\left|\Delta_{2}\right|} \sum_{f \in \Delta_{2}} \sqrt{\lfloor j(f)\rceil\lfloor j(f)+1\rceil}$,
spin corr. $\quad C_{d}(F)=\frac{1}{N_{d}} \sum_{\operatorname{dist}\left(f, f^{\prime}\right)=d} \frac{\lfloor j(f)\rceil\left\lfloor j\left(f^{\prime}\right)\right\rceil-\langle J\rangle^{2}}{\left\langle(\delta J)^{2}\right\rangle}$.
Quantum half integers $\lfloor j\rceil=j$ when $q=1$, but $\lfloor j\rceil \sim \sin (2 j \pi / r)$ when $q=e^{i \pi / r}$.

Observables Discontinuous as $r \rightarrow \infty$

Single Spin Distribution

- SSD - frequency of occurence of j.
- BA - $\mathcal{A}(F)$, where F contains minimal bubble.

Single Spin Distribution

- SSD - frequency of occurence of j.
- BA - $\mathcal{A}(F)$, where F contains minimal bubble.
- For PR and BCh, bubbles dominate!

Single Spin Distribution

- SSD - frequency of occurence of j.
- BA - $\mathcal{A}(F)$, where F contains minimal bubble.
- For PR and BCh, bubbles dominate!
- Not for DFKR.

Spin Correlation

minimal triangulation larger triangulation

Consistent with isolated bubble hypothesis.

Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.

Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \rightarrow 1$ through roots of unity. At odds with cosmological constant interpretation.

Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \rightarrow 1$ through roots of unity. At odds with cosmological constant interpretation.
- BC models show strong dependence on edge and face amplitudes.

Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \rightarrow 1$ through roots of unity. At odds with cosmological constant interpretation.
- BC models show strong dependence on edge and face amplitudes.
- Outlook
- Simulations with $|q| \sim 1$.
- Spin correlation on larger triangulations.
- Lorentzian signature.

Summary and Outlook

- Computer simulation of q-Barrett-Crane models now possible and practical, for modest sized triangulations.
- Observables show a discontinuity as $q \rightarrow 1$ through roots of unity. At odds with cosmological constant interpretation.
- BC models show strong dependence on edge and face amplitudes.
- Outlook
- Simulations with $|q| \sim 1$.
- Spin correlation on larger triangulations.
- Lorentzian signature.

Thank you for your attention!

