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Spin Foams What?

Start with a triangulated 4-manifold T (T ∗ ⊃ ∆n — the set of
dual n-simplices). A spin foam is a coloring of the triangulation
faces (∆2). A spin foam model assigns an amplitude to each
spin foam F :

A(F ) =
∏

f∈∆2

AF (f )
∏

e∈∆2

AE (e)
∏

v∈∆1

AV (v).

Also, to the triangulation as a whole and expectation values to
observables

Z =
∑

F

A(F ), 〈O〉 =
1
Z

∑
F

O(F )A(F ).

Sum over all histories — discrete path integral!

Goal — compute these sums numerically.
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Barrett-Crane Model What?

A spin foam model for Riemannian General Relativity.

I Historically, obtained as a constrained version of
discretized BF theory.

I Can also be derived from Group Field Theory.
I Specifies vertex amplitude (10j symbol):

AV (v) =
0

1

2

3 4

j1,0j1,1

j1,4j1,2

j1,3

j2,0

j2,1 j2,4

j2,2 j2,3

BC vertex — unique
rotationally invariant.

The ji,k are
balanced irreps (j ⊗ j) of

Spin(4) ∼= SU(2)× SU(2).

I Several choices for amplitudes AF (f ) and AE (e).
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q-deformation What?

For q = 1, no deformation.

First, deal with SU(2).

Spin networks: graphs −→ ribbon graphs.
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Regularization Why?

Application of q-deformation.

I For q a root of unity (ROU) the number of irreps is finite.
Partition function Z is automatically finite.

I Ponzano-Regge model for 3-d Riemannian GR (1968). An
early spin foam model — divergent.

I At a ROU q, this model is regularized. Constructed by
Turaev and Viro as a state sum for 3-manifold invariants
(1992).

I DFKR model (Barrett-Crane variation due to De Pietri,
Freidel, Krasnov & Rovelli, 1999) — also divergent,
discovered from numerical investigation (2002).

I At a ROU q, the DFKR model is also regularized.
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Cosmological Constant Why?

Application of q-deformation.

In Loop Quantum Gravity, SU(2) spin networks are embedded
in a spatial slice.

I The spin network basis describes states
of quantum spatial geometry.

∣∣∣∣∣∣
〉

I Kodama state |K; Λ〉— approximates deSitter space, a
vacuum with positive Cosmological Constant, Λ > 0.

I Smolin (1995) argues that invariance under large gauge
transformations discretizes the CC, Λ ∼ 1/r .

I Expansion coefficients give topological link and graph
invariants: 〈 ∣∣∣∣∣∣K

〉
∼

〈 〉
q

I With precisely q = exp(iπ/r)!

7 / 15



Cosmological Constant Why?

Application of q-deformation.

In Loop Quantum Gravity, SU(2) spin networks are embedded
in a spatial slice.

I The spin network basis describes states
of quantum spatial geometry.

∣∣∣∣∣∣
〉

I Kodama state |K; Λ〉— approximates deSitter space, a
vacuum with positive Cosmological Constant, Λ > 0.

I Smolin (1995) argues that invariance under large gauge
transformations discretizes the CC, Λ ∼ 1/r .

I Expansion coefficients give topological link and graph
invariants: 〈 ∣∣∣∣∣∣K

〉
∼

〈 〉
q

I With precisely q = exp(iπ/r)!

7 / 15



Cosmological Constant Why?

Application of q-deformation.

In Loop Quantum Gravity, SU(2) spin networks are embedded
in a spatial slice.

I The spin network basis describes states
of quantum spatial geometry.

∣∣∣∣∣∣
〉

I Kodama state |K; Λ〉— approximates deSitter space, a
vacuum with positive Cosmological Constant, Λ > 0.

I Smolin (1995) argues that invariance under large gauge
transformations discretizes the CC, Λ ∼ 1/r .

I Expansion coefficients give topological link and graph
invariants: 〈 ∣∣∣∣∣∣K

〉
∼

〈 〉
q

I With precisely q = exp(iπ/r)!
7 / 15



q-Barrett-Crane model How?

I Ingredients for q-deformation have been in the literature for
some time.

I A special family of deformations (Yetter, 1999):

Uq,q−1(spin(4)) ∼= Uq(su(2))⊕ Uq−1(su(2)).

BC vertex still rotationally invariant, ribbon structure trivial.
I Intersection structure of 10j symbol (only non-planar spin

network) fixed from the Crane-Yetter model (1994)

:

0

1

2

3 4

j1,0j1,1

j1,4j1,2

j1,3

j2,0

j2,1 j2,4

j2,2 j2,3

I Retains permutation
symmetry.

I Christensen-Egan
(2002) efficient
algorithm generalizes.
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Computer Simulation How?

I Implement Uq(su(2)) spin network evaluations — |q| > 1
numerically unstable! But ROU q is OK.
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Models How?

Perez-Rovelli (2000):

AF (f ) = j , AE (e) =

j4

j3

j2

j1

j1 j2 j3 j4

.

DFKR (2000):

AF (f ) = j , AE (e) =

 j4

j3

j2

j1

−1

.

Baez-Christensen (2002):

AF (f ) = 1, AE (e) =

 j4

j3

j2

j1

−1

.
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Observables How?

Spin foam observables depend on face spin labels:

spin avg. J(F ) =
1
|∆2|

∑
f∈∆2

bj(f )e ,

spin var. (δJ)2(F ) =
1
|∆2|

∑
f∈∆2

(bj(f )e − 〈J〉)2 ,

area avg. A(F ) =
1
|∆2|

∑
f∈∆2

√
bj(f )e bj(f ) + 1e,

spin corr. Cd (F ) =
1

Nd

∑
dist(f ,f ′)=d

bj(f )e bj(f ′)e − 〈J〉2〈
(δJ)2

〉 .

Quantum half integers bje = j when q = 1, but bje ∼ sin(2jπ/r)
when q = eiπ/r .
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Observables Discontinuous as r →∞ So What?

0 20 40 60 80 100 1=q
r

0.0

0.5

1.0

1.5

2.0 〉A〈,hCB

〉J〈,hCB

0005×〉A〈,RP
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Single Spin Distribution So What?
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I SSD — frequency of
occurence of j .

I BA — A(F ), where F
contains minimal bubble.

I For PR and BCh, bubbles
dominate!

I Not for DFKR.
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Spin Correlation So What?
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Consistent with isolated bubble hypothesis.
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Summary and Outlook Summary

I Computer simulation of q-Barrett-Crane models now
possible and practical, for modest sized triangulations.

I Observables show a discontinuity as q → 1 through roots
of unity. At odds with cosmological constant interpretation.

I BC models show strong dependence on edge and face
amplitudes.

I Outlook
I Simulations with |q| ∼ 1.
I Spin correlation on larger triangulations.
I Lorentzian signature.

Thank you for your attention!
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