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M. Kř́ı̌zek, A. Mészáros
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PREFACE

All truth passes through three stages:

First, it is ridiculed.

Second, it is violently opposed.

Third, it is accepted as self-evident.

Arthur Schopenhauer

The problem of cosmological expansion on small scales (e.g., inside planetary

systems) has a long history, dating back to the papers (McVittie, 1932, 1933), and

quite many researchers dealt with this topic in the subsequent few decades. Although

most of them concluded that the Hubble expansion should be strongly suppressed at

small distances, there is no commonly-established criterion for such suppression at

present. Moreover, some of the widely-used theoretical arguments against the local

Hubble expansion contradict each other.

On the other hand, there is more and more evidence that a few long-standing

problems in planetology and celestial mechanics (e.g., the faint young Sun paradox,

the lunar tidal catastrophe, and some other puzzles in the dynamics and evolution

of the Solar system) could be well resolved by taking into account local cosmological

influences. Lastly, the presence of Hubble expansion in the Local group of galaxies

at the scale 1–2Mpc (i.e., an order of magnitude less than assumed before) became

commonly recognized in the last couple decades.

Unfortunately, the subject of local Hubble expansion remains strongly underrep-

resented at astronomical meetings. In fact, the only exception that we know was

the international conference “Problems of Practical Cosmology”, which was held

in Saint-Petersburg (Russia) eight years ago, on June 23–27, 2008 (for details see

http://ppc08.astro.spbu.ru/index.html). One of its sessions was specifically

devoted to the problems of local cosmology and entitled “The Earth, the Solar

system, and stellar systems for cosmology”. Unfortunately, the tradition of these

conferences has not been continued until the present time.

So, it is timely to gather specialists from different disciplines, ranging from plan-

etology to galaxy evolution, to discuss the problem of local cosmological influences

from various points of view, both theoretical and observational. To bring more light

into this topic we decided to organize the international conference Cosmology on

Small Scales 2016: Local Hubble Expansion and Selected Controversies in Cosmology.

It was held at the Institute of Mathematics of the Czech Academy of Sciences in Žit-

ná 25, Prague 1, from 21 to 24 September 2016 (see http://css2016.math.cas.cz).
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The Scientific Committee consisted of

Prof. Yurij Baryshev (St. Petersburg University, Russia)

Prof. Igor Karachentsev (Special Astrophysical Observatory of RAS, Russia)

Prof. Jaroslav Klokočńık (Astronomical Institute of CAS, Czech Republic)

Prof. Sergei Kopeikin (University of Missouri, USA)
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Assoc. Prof. Attila Mészáros (Charles University, Czech Republic)
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Prof. Marek Nowakowski (Universidad de los Andes, Colombia)

Prof. Lawrence Somer (The Catholic University of America, USA)

Prof. Weijia Zhang (Oxford University, Great Britain)

Local Organizing Committee consisted of
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Dr. Yurii Dumin — Vice-Chair (Russian Academy of Sciences, Russia)
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The present book of Proceedings includes only a fraction of the reports that

were presented at the meeting. Some other authors preferred to not submit their

reports for publication, because the corresponding results are already available in the

literature. This book is organized as follows: the first part contains the contributions

immediately related to the problem of local Hubble expansion. The second part

involves a number of works in a wider cosmological context, particularly, discussing

the relevant controversies. Finally, there is a contribution devoted to an alternative

theory of Hubble expansion, but the Program Committee is not responsible for its

scientific content.

We are deeply grateful to all authors for their contributions and the support

of RVO 67985840 (Institute of Mathematics of the Czech Academy of Sciences).

Out sincere thanks go also to all active members of the Cosmological Section of

the Czech Astronomical Society for their continual help. Finally, we are indebted

to Caroline Griffis Krizek and Lawrence Somer for proofreading, Hana B́ılková for

technical assistance in the final typesetting, and Tomáš Vejchodský fot his helpful

cooperation. The Proceedings can be downloaded from the website:

http://users.math.cas.cz/∼krizek/list.html

Michal Kř́ı̌zek and Yurii V. Dumin
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TWO FUNDAMENTAL COSMOLOGICAL LAWS

OF THE LOCAL UNIVERSE

Yurij V. Baryshev
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Universitetskij pr. 28, Staryj Peterhoff, St. Petersburg, 198504, Russia

yubaryshev@mail.ru

Abstract: The Local Universe is the most detail studied part of the ob-

servable region of space with the radius R about 100Mpc. There are two

empirical fundamental cosmological laws directly established from observa-

tions in the Local Universe independently from cosmological theory: first, the

Hubble-Humason-Sandage linear redshift-distance law and second, Carpenter-

Karachentsev-de Vaucouleurs density-radius power-law. Review of modern

state of these empirical laws and their cosmological significance is given. Pos-

sible theoretical interpretations of the surprising coexistence of both laws at

the spatial scales from 1Mpc to 100Mpc are discussed. Comparison of the

standard space-expansion explanation of the cosmological redshift with possi-

ble global gravitational redshift model is given.

Keywords: Cosmology, Local Universe, redshift law, density law

PACS: 98.80.-k

1. Introduction

Cosmology as a physical science is based on observations, experiments and the-

oretical interpretations. Hubble 1937 [22] put forwarded “The Observational Ap-

proach to Cosmology”. It was developed later by Sandage 1995a [41] who used the

term “Practical Cosmology” to denote the observational study of “our sample of the

Universe”, which delivers possibilities for testing alternative initial hypotheses and

main predictions of cosmological models.

Cosmology deals with a number of empirical facts among which one hopes to find

fundamental laws. This process is complicated by great limitations and even under

the paradigmatic grip of any current standard cosmology. One should distinguish

between two kinds of cosmological laws:

• directly measured empirical laws,

• logically inferred theoretical laws.
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The empirical laws are directly measured relations between observable quantities,

which should be corrected for known selection and distortion effects. The logically

inferred theoretical laws (theoretical interpretations) are made on the basis of an ac-

cepted cosmological model, e.g. the standard or an alternative cosmological model.

Theoretical derivations utilize modern theoretical physics and even its possible ex-

tensions, which can be tested by observations.

During one hundred years of intensive investigations of the Local Universe (which

can be defined as region of space with radius R about 100Mpc) two especially im-

portant cosmological empirical laws were unveiled (see reviews in [7], [5], [8]):

• the cosmological linear redshift-distance law cz = HR,

• the power-law correlation of galaxy clustering Γ(r) ∝ r−γ.

Here R is the distance to a galaxy, H is the Hubble constant, r is the radius of test

spheres around each galaxy, Γ(r) is the complete correlation function (the conditional

density) and γ is the power-law exponent.

The empirical laws, being based on repeatable observations, are independent of

existing or future cosmological models. However, the derived theoretical laws are

valid only in the frame of a specific cosmological model. Good examples are the

empirical Hubble linear redshift-distance (z ∝ R) law and the derived theoretical

space-expansion velocity-distance (Vsp−exp ∝ R) law within the Friedmann model.

An analysis of both empirical cosmological facts and theoretical initial assump-

tions together with main logical inference in the frame of the standard and sev-

eral alternative cosmological models is presented in our book Baryshev & Teeri-

korpi 2012 [7]. Below I concentrate on the significance for cosmology the redshift-

radius and density-radius empirical cosmological laws.

2. Hubble–Humason–Sandage linear redshift-distance law

The linear relation between cosmological redshift and distance to galaxies was

first established by Hubble 1929 [21] using distance estimations for 30 galaxies at

very small scales 1 ÷ 10Mpc, corresponding to redshifts z < 0.003 or spectroscopic

radial velocities vrad < 1000 km/s.

The extension of the linearity of the redshift-distance relation up to redshifts

about z < 0.05 or scales about 150Mpc was done by Hubble & Humason 1931 [23].

They emphasized that The interpretation of red-shift as actual velocity, however,

does not command the same confidence, and the term “velocity” will be used for

the present in the sense of “apparent” velocity, without prejudice as to its ultimate

significance.

Many years of detail studies of the linearity of the redshift-distance law was per-

formed by Sandage at the Palomar 5m Hale telescope. Sandage developed a special

program for 5m telescope to discriminate between selected world models [39]. One

of the last paper of Sandage’s team, devoted to analysis of the observed redshift-

distance relation, demonstrated linearity of z(R) law in the interval of redshifts

0.001÷ 0.1, see [43].
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Hence for the Local Universe we have observationally established the linear

redshift-distance Hubble–Humason–Sandage (HHS) law in the form:

z =
HlocR

c
=

Vapp

c
, (1)

where c is the speed of light, Hloc is the value of the Hubble constant measured in

the Local Universe, R is the measured distance to a galaxy, Vapp = Hloc × R is the

apparent radial velocity which corresponds measured shift of spectral lines z:

z =
λobs − λemit

λemit
, (2)

where λobs is the observed photon wavelength at the telescope and λemit is the wave-

length of photon emitted at distance R. The HHS law (1) is also frequently called

the Hubble law of redshifts. Note that here z is the cosmological part of the observed

shift of spectral lines after corrections for the Solar system motions and averaging

over peculiar velocities of galaxies.

The cosmological redshift is a universal physical phenomenon which does not

depend on the wavelength of a photon. A very important cosmological question

is about the minimal scale where the HHS law is true. Resent studies by Ekholm

et al. 2001 [14], Karachentsev et al. 2003 [28], and Karachentsev et al. 2013 [29]

demonstrated that according to modern data on 869 galaxy distances in the Local

Volume the linear Hubble law well established at small scales 1 ÷ 10Mpc. Remark-

ably, this is exactly the same interval of scales where Hubble 1929 [21] discovered

the redshift-distance law with only 30 galaxies.

In Fig. 1 apparent radial velocity-distance relation Vapp = cz = HlocR for 156 Lo-

cal Volume galaxies is shown from [28]. The value of the local Hubble constant is

Hloc = 72±3 km/sec/Mpc, which is consistent with recent estimations from different

Local Universe surveys.

3. Carpenter–Karachentsev–de Vaucouleurs density-radius power-law

The rich history of discovery and acute discussions around the density-radius

relation for the spatial galaxy distribution in the Local Universe is presented in [5],

[6], [7], [45], and [47].

Carpenter 1938 [9] was the first who obtained from observations of galaxy sys-

tems of different sizes an approximate power-law relation between the number of

galaxies N in a cluster and the size r of the clusters in the form N(r) ∝ r1.5.
Karachentsev 1966, 1968 [26], [27] added an important aspect to Carpenters re-

sult. He estimated average properties of 143 systems from binary galaxies to super-

clusters and found evidence that both luminous and total (virial) mass densities are

decreasing with increasing size of a system. This showed for the first time that the

massradius behavior of the dark matter is also a power law, but the exponent can

be different than for the luminous matter.
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Figure 1: Apparent radial velocity-distance relation Vapp = cz = HlocR for 156 Lo-

cal Volume galaxies is shown in [28]. Also the density-radius relation Γ(r) ∝ r−γ

from [48] is shown dy thin lines for VL2N sample from 2MRS survey [25] and for

power-law density-radius relation for exponent γ = 1.

De Vaucouleurs 1970, 1971 [10], [11] summarized his own and many others works

in studies of galaxy systems from pairs to superclusters, including clustering of Abel’s

rich galaxy clusters [1], [2]. Based on all available data de Vaucouleurs made the

decisive step in recognizing the cosmological significance of the clustering of galaxies

as the universal observational power-law density-radius relation [10]. He considered

this fundamental cosmological law as the case for a hierarchical cosmology.

Since that time the Carpenter–Karachentsev–de Vaucouleurs (CKdeV) density-

radius empirical cosmological law was discovered and presented in the form

ρ(r) = ρ0 (r/r0)
−γ, (3)

where ρ(r) is the mass density within a spherical volume of radius r and ρ0 and r0
are the density and radius at the lower cutoff of the structure. The available at that

time galaxy data led to the power-law exponent γ = 1.7.
Intriguingly, at international astronomical conferences, the Great Debate on the

existence of very large scale structures in the observed galaxy universe was originated.

An acute discussion between homogeneity defenders and inhomogeneity observers

(see reviews [6], [7]) is actually ongoing nowadays, though modern data demonstrate
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the existence of galaxy structures with sizes up to 400–1000Mpc (see e.g. [44]). The

reason of the hot debates is that in the frame of the standard cosmological model

the homogeneous matter distribution is the basic mathematical assumption for the

derivation of linear Hubble law of redshifts [35], [7].

In fact, to understand the observed CKdeV density-radius relation one needs

to develop a new mathematical and physical concepts which include discrete fractal

stochastic structures. This was done by Mandelbrot 1977 [33] in his theory of fractals,

which opens a new perspective for description of complex discrete physical systems

with properties very different from continuous fluid flows. Fractal approach to the

analysis of the distribution of galaxies was first used in [33], [38] and developed

in [46], [18], [47]. For a detailed review of the history and prospects of the fractal

approach to the study of the large-scale distribution of galaxies see [6], [7].

One of the most fundamental statistical properties of the general space distri-

bution of galaxies, which includes complex observed structures (filaments, voids,

shells, and walls), is the fractal dimension of the global structure as a whole. Ac-

cording to [18], the fractal dimension D of a stochastic fractal point process in

3-dimensional space can be inferred from the complete correlation function (condi-

tional density) Γ(r), which has the power-law:

Γ(r) =
〈n(~r1)n(~r2)〉

〈n(r)〉
= k r−γ = k r−(3−D), (4)

where n(~ri), is the particle number density inside volume dVi around point i with the

coordinates ~ri, r = |~r12| = |~r1−~r2|, the vector of the distance between points 1 and 2,

and 〈x〉, the ensemble average of x. The second and third equalities are written for

isotropic stationary processes, where D is the fractal dimension and γ = 3 − D is

called the co-dimension of the fractal. The physical dimension of the Γ(r) is 1/cm3

and it is calculated under the condition of all occupied points, this is why it is called

the conditional density.

The power-law character of the conditional density (4) is the principal expla-

nation of the CKdeV density-radius law (3). A more detailed analysis will include

transition from number density n(r) to mass density ρ(r), which should also take into

account the luminous and dark matter. Fortunately, conditional density analysis of

the real galaxy catalogues shows that it is sufficient for describing the spatial galaxy

distribution as a good first approximation.

The statistical estimate of the complete correlation function Γ(r) (conditional

density) for the galaxy sample considered is defined as (see [18]):

Γ(r) =
1

Nc(r)

Nc(r)∑

i=1

Ni(r)

V (r)
, (5)

where Ni(r) is the number of points inside spherical volume V (r) around i-th point

and Nc(r) is the number of centers of test spheres, i.e., the number of points about

which this volume is circumscribed. It is important to bear in mind that averaging
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Figure 2: Conditional density for Volume Limited samples of 2MRS galaxies in the

Local Universe [48]. The large dots mark the conditional density values where the

most reliable slope estimation is possible. The slope γ = 1.0±0.1 for all VL samples.

has to be performed without going beyond the considered sample volume, and this

restriction has important effect on the value of the greatest available scale lengths.

This condition strongly restricts the scale-lengths accessible for the analysis of galaxy

correlations, because, strictly speaking, in order to reliably compute the conditional

density on some selected scale, we must analyze much greater spherical region, where

all test spheres are completely embedded.

For large galaxy redshift surveys the conditional density Γ(r) is a directly deter-

mined quantity, which characterizes the spatial, kinematical, and dynamical state of

the Local Universe. It can be estimated from the power-law slope γ (co-dimension of

the fractal) of the complete correlation function Γ(r) without invoking any a priori

assumptions about the evolution of non-baryonic dark matter and its association

with baryonic matter (galaxies) or the form of the distribution of peculiar velocities

of galaxies.

Note that the complete correlation function Γ(r) has an important advantage

over reduced correlation function ξ(r) (Peebles’s two-point correlation function) in

that the computation of conditional density requires no assumption about the ho-

mogeneity of spatial galaxy distribution within analyzed galaxy sample.

Fig. 2 shows the conditional density calculations [48] for the largest complete

all-sky galaxy redshift survey 2MRS of the Local Universe [25]. The observed global

space distribution of 2MRS galaxies can be described by the power-law complete cor-

relation function of the form Γ(r) = kr−γ with a slope of γ ≈ 1 over a wide interval of

scale-lengths spanning from 0.1Mpc to 100Mpc. The deeper all-sky volume limited

sample is used (from VL1 to VL4), the larger is the maximum scale-length, where

the density power-law can be reliably estimated. The shift of the power-law maxi-
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Figure 3: Conditional density of Millennium mock galaxy catalog in a sample similar

to S1VL2 as a function of scale length in real and z space [48]. The slopes are

estimated in the 1 < r < 10Mpc interval. After scales about 30Mpc the mock

galaxy distribution becomes homogeneous.

mum scale-length is consistent with the stochastic fractal model having the fractal

dimension D = 3 − γ ≈ 2 in the whole interval of analyzed scales from 0.1Mpc up

to 100Mpc.

In the frame of the LCDM theory of large scale structure formation there are two

important predictions:

• the galaxy Local Universe is homogeneous after scales about 30Mpc;

• due to galaxy peculiar velocities there is very large difference between slopes

of conditional density calculated for redshift-based distances and real distances

independent on z.

According to [48], Fig. 3 shows results of the conditional density calculations for the

Millennium galaxy catalog (in a sample similar to S1VL2 2MRS) as a function of

scale length in real and z space. The predicted slopes are very different for z- and
r-space. Also over scales of 30Mpc the galaxy distribution becomes homogeneous.

So for future testing of the nature of the Local Universe galaxy distribution there

are two possibilities — first, to get more deep all-sky galaxy redshift surveys (at

least up to 500Mpc) and second, to compare conditional densities measured for

redshift and real space: Γ(rz) ⇐⇒ Γ(rreal). Hence, very important observational

test of the large scale structure origin in the Local Universe is the direct measure-

ments of the peculiar velocities of galaxies. This will require further development

of redshift-independent methods for determining galaxy distances and performing
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Figure 4: Demonstration of the Hubble–de Vaucouleurs paradox in the Local Uni-

verse. The Hubble-Humason-Sandage linear redshift law cz = HlocR and the fractal

Carpenter–Karachentsev–de Vaucouleurs density law Γ(r) = kr−γ with γ ≈ 1 coexist

at the same length-scale interval 0.1÷ 100Mpc. While in the frame of the SCM the

linear redshift-distance relation is the strict consequence of homogeneity [36].

time consuming observational programs aimed to measurement of such distances,

like Cosmic Flows surveys [49].

Note that stochastic fractal structures naturally arise in physics as a result of

the dynamical evolution of complex systems. Physical fractals are discrete stochas-

tic systems characterized by power-law correlation functions. In particular, fractal

structures arise in turbulent flows and in deterministic chaos of nonlinear dynamic

systems. Phase transitions and thermodynamics of self-gravitating systems are also

characterized by the formation of fractal structures [12], [13], [37]. However, many

important aspects of these studies so far remain undiscovered.

4. Physical interpretations of the relation between redshift and density

laws

Here I consider two possibilities for explanation of the surprising coincidence of

the observed spatial scales, where two empirical cosmological laws simultaneously

exit (see Fig. 4).
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In the frame of the Friedmann model of the Standard Cosmological Model (SCM)

there is a deep paradox between Hubble–Humason–Sandage linear redshift-distance

law and Carpenter–Karachentsev–de Vaucouleurs density-radius power-law. This

observational Hubble–de Vaucouleurs (HdeV) paradox exists due to the very basis

of SCM, which explains the linear HHS law as a strict mathematical consequence of

the homogeneity of the matter distribution (see [36], [35], [4]).

For a solution of HdeV paradox within SCM one should assume a large amount

of homogeneously distributed non-baryonic dark matter and dark energy. The domi-

nance of homogeneous dark substance density over the usual baryonic matter (galax-

ies) must start from scales where the linear HHS redshift-distance law already exists.

There are also several conceptual problems with interpretation of space-expansion

in SCM [4], [17], [20], [19].

Another solution of HdeV paradox can be obtained in the frame of the Fractal

Cosmological Model (FCM) [3], presented at the International conference Problems of

Practical Cosmology 2008. In the frame of the FCM the space-geometry is static flat

Minkowski space-time, the gravitational interaction is described within Feynman’s

field gravity approach [15], [16], [7], and the matter is a dynamically evolving usual

baryonic substance.

The spatial distribution of galaxies in the Local Universe is the stochastic fractal

structure with fractal dimension D ≈ 2 and the cosmological redshift is the new

gravitational global effect due to the whole mass within the sphere having radius

equal to the distance between the source and the observer. For fractal dimension

D = 2 the mass of the sphere of radius r grows as M(r) ∝ rD ∝ r2. Hence, the

gravitational potential is ϕ ∝ M/r ∝ r1 and the cosmological global gravitational

redshift is the linear function of distance zgl−gr ∝ r. This means that the surprising

coincidence of length scales for both HHS and CKdeV cosmological laws now is

a natural prediction of the fractal cosmological model.

So an important task of Practical Cosmology is to observationally distinct be-

tween expanding and static spaces, i.e., to establish the nature of the observed cos-

mological redshift. Note, that in the classical papers, Hubble 1929 [21] and Hubble &

Humason 1931 [23] emphasized that the cosmological part of the measured redshift

should be called apparent radial velocity and actually can present the de Sitter effect

of “slowing down of atomic vibrations” — which is actually a kind of the global

gravitational effect. During all his life Hubble insisted on the necessity of the obser-

vational verification of the nature of the cosmological redshift and suggested several

tests together with Tolman [24].

Intriguingly, up to now, after 85 years of observational cosmology there is no

crucial experiment which directly measures the real increasing distance with time.

In Sandage’s List of 23 Astronomical Problems for the 1995–2025 years [42] the first

problem of the Practical Cosmology is to test Is the expansion real?

The usually considered tests of space expansion

• Tolman’s surface brightness (1 + z)4 test;
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• Time dilation with SN Ia t(z) = t(0)(1 + z);

• CMBR temperature T (z) = T (0)(1 + z)

cannot distinct between space expansion redshift and global gravitational redshift

mechanisms.

The crucial test of cosmological space expansion should measure the real increas-

ing distances with time. Nowadays there are at least two proposals for such crucial

tests of the expansion of the Universe:

• Sandage’s z(t) test;

• Kopeikin’s ∆ν/ν test in the Solar system.

It is important to note that on the verge of modern technology there are possibilities

for real direct observational tests of the physical nature of the cosmological redshift.

First crucial test of the reality of the space expansion was suggested by Sandage [40],

who noted that the observed redshift of a distant object (e.g. quasar) in expanding

space must be changing with time according to relation dz/dt = (1 + z)H0 −H(z).
In terms of radial velocity, the predicted change dv/dt ∼ 1 cm s−1/yr. This may be

within the reach of the future ELT telescope [34], [32]. In the case of the global

gravitational redshift the change of redshift equals zero.

Even within the Solar system there is a possibility to test the global expansion

of the universe. According to recent papers by Kopeikin [30], [31] the equations

of light propagation used currently by Space Navigation Centers for fitting range

and Doppler-tracking observations of celestial bodies contain some terms of the cos-

mological origin that are proportional to the Hubble constant H0. Such project as

PHARAO may be an excellent candidate for measuring the effect of the global cos-

mological expansion within Solar system, which has a well-predicted blue-shift effect

having magnitude ∆ν/ν = 2H0∆t ≈ 4 × 10−15 (H0/70 kms−1Mpc−1) (∆t/103 s),
where H0 is the Hubble constant and ∆t is the time of observations. In the case of

the non-expanding Universe the frequency drift equals zero.

5. Conclusion

Cosmology at Small Scales is very important part of astronomy. New mathemat-

ical and physical ideas in cosmology should be discussed and tested by experiments

and observations in the Local Universe from the Solar system scales up to the su-

perclusters scales.

Surprises of recent observational cosmology of the Local Universe stimulate its

further investigations. A puzzling conclusion is that the Hubble’s law, i.e. the

strictly linear redshift-distance relation, is observed just inside strongly inhomoge-

neous galaxy distribution, i.e. deeply inside fractal structure at scales 1 ÷ 100Mpc.

This empirical fact presents a profound challenge to the standard cosmological model,
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where the homogeneity is the basic explanation of the Hubble law, and the connec-

tion between homogeneity and Hubble’s law was the first success of the expanding

world model (Peebles et al. 1991 [36]). However the spectacular observational fact

(Fig. 4) is that the Hubble’s law is not a consequence of homogeneity of the galaxy

distribution, as it was assumed during almost the whole history of cosmology.

New type of global physical laws can appear at cosmological scales which make

cosmology especially creative science. Intriguingly, up to now there is no crucial

experiment which directly measure the real increasing distance with time. The

global gravitational cosmological redshift can be such new physical phenomenon

which should be tested by observations and experiments.

New powerful mathematical methods of fractal structures analysis should be de-

veloped for investigation of the large scale structure of the Universe. Even new

approaches for description of gravitational interaction in the frame of modern theo-

retical physics can be tested at all scales from Solar system up to the cosmological

scales.

This is possible due to very fast development of observational techniques and

theoretical models which is applied to astronomical objects. Theoretical models

utilize modern theoretical physics and even its possible extensions, which can be

tested by observations. In conclusion we may say that now we are entering in the

golden age of cosmological physics of the Local Universe. So the research in the field

of Cosmology at Small Scales is a perspective direction in modern physical science.
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1. Introduction: theoretical approaches to the problem of local Hubble

expansion

The problem of small-scale cosmological effects has a long history: the question

if planetary systems are affected by the universal Hubble expansion was posed by

McVittie as early as 1933 [35], i.e., approximately at the same time when the concept

of Hubble expansion became the dominant paradigm in cosmology. Although this

question never was a hot topic, the corresponding papers occasionally appeared in

the astronomical literature in the subsequent eight decades [1, 7, 9, 10, 12, 19, 21,

27, 33, 37, 41]. Using quite different physical models and mathematical approaches,

most of these authors arrived at the negative conclusions. As a result, it is commonly

believed now1 that Hubble expansion should be strongly suppressed or absent at all

at the sufficiently small scales, for example, in planetary systems or inside galaxies.

1One of a few exceptions is a short review by Bonnor [3], which appealed for a critical reconsid-

eration of the available studies.
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Figure 1: Schematic illustration of Einstein–Straus theorem.

However, a surprising thing is that the commonly-used arguments not only pro-

hibit the local Hubble expansion but also strongly contradict each other. For exam-

ple, the most popular criterion for the suppression of Hubble expansion (especially,

among the observational astronomers) is just a gravitational binding of the system,

e.g., determined by the virial theorem of classical mechanics [32]. Namely, if mass

of the particles concentrated in the system becomes so large that the corresponding

energy of gravitational interaction approaches by absolute value the double kinetic

energy, then orbits of the particles should be bounded, i.e., no overall expansion of

the system is possible. In other words, just the classical forces of gravitational

attraction break the global Hubble flow in the regions of local mass enhance-

ment.

On the other hand, yet another well-known theoretical argument against the lo-

cal Hubble expansion, based on the self-consistent theoretical analysis in the frame-

work of General Relativity (GR), is the so-called Einstein–Straus theorem [19], il-

lustrated in Figure 1: Let us consider a uniform distribution of the background

matter with density ρ and then assume that substance in a spherical volume with

radius R is cut off and concentrated in its center, thereby forming the point-like

mass M= (4π/3)R3ρ. Then, according to the this theorem, there will be no Hubble

expansion inside the empty cavity, but the Hubble flow is restored again beyond its

boundary with the background matter distribution (and this boundary itself moves

exactly with Hubble velocity).

It is important to emphasize that, as distinct from the first criterion, there is no

any excessive mass in the above-mentioned sphere and, moreover, the Hubble expan-

sion is absent just in the empty space rather than in the region of mass enhancement.

In principle, this fact is quite natural: according to the standard GR formula,
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Hubble constant H is related to the local energy density ρ in the spatially-flat Uni-

verse as2

H =

√
8πG

3
ρ , (1)

where G is the gravitational constant. So, from the relativistic point of view, it is not

surprising that Hubble constant tends to zero when the energy density disappears3.

Therefore, the above discussion demonstrates that the attempts to treat the prob-

lem of local Hubble expansion in terms of the classical gravitational forces can be

very misleading. Indeed, the global Hubble expansion exists even in the perfectly-

uniform Universe, where there are no any “classical” gravitational forces at all (since

such forces can be produced only by nonhomogeneity of mass distribution). In other

words, it should be kept in mind that Hubble expansion corresponds to another “de-

gree of freedom” of the relativistic gravitational field as compared to the degrees of

freedom reduced to the classical gravitational forces.

Unfortunately, a lot of textbooks tried to estimate the local Hubble expansion

in terms of the “classical” gravity or just postulated its absence in the small-scale

systems. A typical example is the famous textbook [36], where the behavior of small-

scale systems (galaxies) in the globally-expanding Universe was pictorially described

as a set of coins pinned to the surface of an inflating ball (see Figure 27.2 in the

above-cited book), but no justification for such a picture was given.

2. Hubble expansion in the dark-energy-dominated cosmology

Because of the oversimplified geometry of the Einstein–Straus model (particu-

larly, a presence of the void, which can hardly have a reasonable astrophysical in-

terpretation), it is desirable to consider not so idealized situations. Unfortunately,

a serious obstacle in this way is the problem of separation between the peculiar and

Hubble flows of matter in a spatially inhomogeneous system. Namely, if there is

no empty cavity, and boundary with the background matter distribution is not per-

fectly sharp, as in Figure 1, then substance in the vicinity of the central mass will

experience a quite complex radial motion in the course of time, depending on the

initial conditions. In general, we do not have any universal criterion to answer the

question: what part of this motion should be attributed to the Hubble flow?

Fortunately, the situation is simplified very much in the case of idealized dark-

energy-dominated Universe, where the entire cosmological contribution to the energy–

momentum tensor of GR equations is produced by the Λ-term (cosmological con-

stant). The Λ-term is distributed, by definition, perfectly uniform in space and,

therefore, does not experience any back reaction from the additional (e.g., point-like)

2We use everywhere the system of units where the speed of light is equal to unity (c ≡ 1) and,

therefore, there is no difference between the mass- and energy-density.
3Of course, strictly speaking, formula (1) is applicable only to the totally uniform Universe.
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mass4. As a result, it becomes not so difficult to consider the “restricted cosmological

two-body problem”, i.e., motion of a test particle in the local gravitational field of

the central mass embedded into the cosmological background formed by the Λ-term5.

From our point of view, just this model enables one to get the simplest but reliable

estimate for the magnitude of the local Hubble expansion, which can be used as

a benchmark in more sophisticated studies.

The above-mentioned problem can be separated into two steps: Firstly, using

GR equations, one needs to find a space–time metric of the point-like mass M against

the Λ-background. Secondly, using the standard geodesic equations, we should cal-

culate the trajectories of test particles in this metric.

The first task was actually solved long time ago, in 1918, by Kottler [28]. The

required metric reads as6

ds2 = −

(
1−

2GM

r
−

Λr2

3

)
dt2 (2)

+

(
1−

2GM

r
−

Λr2

3

)
−1

dr2+ r2(dθ2+ sin2θ dϕ2) ,

for more general discussion, see also [29].

Just this metric was widely used starting from the early 2000’s — when the im-

portance of Λ-term in cosmology was clearly recognized — to study the motion of

test particles. The quite sophisticated mathematical treatments can be found, for

example, in papers [2, 23]; and the respective formulas were used for the analysis

of observational data on planetary dynamics in the Solar system [5, 24, 25]. Unfor-

tunately, the original Kottler metric (2) does not possess the correct cosmological

asymptotics at infinity (which is not surprising, since it was derived well before

a birth of the modern cosmology). The above-cited works, of course, reveal some

features of particle dynamics in the dark-energy-dominated Universe, but they are

unrelated (or, probably, partially related) to the Hubble expansion by itself.

So, to study effects of the Hubble expansion per se, it is necessary to transform

metric (2) to the standard Robertson–Walker coordinates, commonly used in the

cosmological calculations. Such a procedure was performed in our paper [15]; and

the resulting expressions for the “cosmological” Kottler metric can be found there.

Next, this metric should be used to solve the geodesic equations for a test particle

moving in the field of the central mass [17]:

4We do not discuss here the models with “dynamical” dark energy (where Λ-term is replaced

by a new field), because they are not so necessary to explain the available observational data.
5According to the standard terminology of celestial mechanics, the term “restricted” implies

that one of the bodies (test particle) has infinitely small mass.
6It is often called in the modern literature the Schwarzschild–de Sitter metric; although, from

our point of view, this term is not sufficiently correct.
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Figure 2: Orbits of a test body in the field of the central mass at rg = 10−2 and

various values of rΛ, assuming that R0= 1.
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Here, as distinct from formula (2), t and r are the Robertson–Walker coordinates;

and dot denotes a derivative with respect to the proper time of the moving particle.

An important feature of these equations is that they involve three characteristic

spatial scales — Schwarzschild radius rg = 2GM , de Sitter radius rΛ =
√
3/Λ,

and the initial radius of orbit of the test body (e.g., a planet) R0 — which differ

from each other by many orders of magnitude. For example, in the case of the

Earth–Moon system (where Earth is the central mass; and Moon, the test body), we
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have: rg∼10−2m, R0∼109m, and rΛ∼1027m. This makes the problem of accurate

numerical integration very hard.

However, for simplicity — just to reveal the possibility of local Hubble expan-

sion in the gravitationally-bound system — we can consider a toy model, where

these parameters differ from each other not so much, e.g., by only two or three or-

ders of magnitude. For example, let us take the initial orbital radius as the unit of

length (i.e., R0 ≡ 1); and let the Schwarzschild radius be rg = 10−2, and de Sitter

radius rΛ = 103 or 2·103. The corresponding numerical orbits are presented in Fig-

ure 2. As is seen, when Λ (i.e., the dark-energy density) increases and, respectively,

rΛ decreases, the orbits become more and more spiral. In other words, a test particle
orbiting about the central mass can really experience the local Hubble expansion. This
quantitative analysis argues against the commonly-accepted intuitive point of view

that the remote cosmological action would result just in a partial compensation of

the gravitational attraction to the center, i.e., the orbit will be slightly disturbed but

remain stationary [33]. According to our calculations, the secular (time-dependent)

effects are really possible.

Unfortunately, it is not so easy to get the reliable numerical values of such an effect

in the realistic planetary systems, because of the above-mentioned huge difference in

the characteristic scales and the need for integration over a very long time interval.

Besides, since the set of equations is strongly nonlinear, it is difficult to predict

how the other kinds of celestial perturbations (e.g., by the additional planets) will

interfere with the secular Hubble-type effects. Moreover, it is unclear in advance if

the local Hubble expansion will follow the standard linear relation:

ṙ = H
(loc)
0 r , (6)

where H
(loc)
0 is the local Hubble constant (which, generally speaking, can be different

from the global one). In principle, the corresponding relation in the vicinity of the

central massive body might be substantially nonlinear. So, all these questions are

still to be answered.

3. Observable footprints of the local Hubble expansion

A crucial factor supporting the interest to a probable manifestation of Hubble

expansion at the small scales is that there is a number of observable phenomena —

both in the Solar system and local intergalactic volume — that could be naturally

explained by the local Hubble expansion. A detailed list of such effects in the Solar

system can be found in papers [30, 31]. Particularly, they are:

• the so-called faint young Sun problem (i.e., the insufficient luminosity of the

young Sun to support development of the geological and biological evolution

on the Earth),
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Figure 3: Sketch of the tidal interaction between the Earth and Moon.

• the problem of liquid water on Mars (which actually has the same origin as the

above-mentioned one),

• the anomalous rate of recession of the Moon from the Earth (called also the

lunar tidal catastrophe),

• the long-term dynamics of the so-called fast satellites of Mars, Jupiter, Uranus,

and Neptune,

• the efficiency of formation of Neptune and comets in the Kuiper belt from the

protoplanetary disk.

3.1. The lunar tidal catastrophe

From our point of view, the most appealing example for the existence of the

local Hubble expansion is the anomalous Earth–Moon recession rate. Namely, it

was known for a long time that tidal interaction results in the deceleration of proper
rotation of the Earth ΩE and acceleration of orbital rotation of the Moon ΩME [26].

This is pictorially explained in Figure 3: since ΩE > ΩME, a tidal bulge on the Earth’s

surface is slightly shifted forward (in the direction of Earth’s rotation) because of the

finite-time relaxation effects. Such a shifted bulge pulls the Moon forward, thereby

accelerating it; and simultaneously, due to the back reaction, the proper rotation of

the Earth decelerates.
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Method Measurement by the lunar Estimate from the Earth’s

laser ranging tidal deceleration

Effects involved (1) geophysical tides (1) geophysical tides

(2) local Hubble expansion

Numerical value 3.8±0.1 cm/yr 1.6±0.2 cm/yr

Table 1: Relative contributions of various processes to the recession rate of the Moon

from the Earth.

The increasing orbital momentum of the Moon results in the increase of its dis-

tance from the Earth with the following rate:

ṙ = k ṪE , (7)

where TE is the Earth’s diurnal period, and k = 1.81·105 cm/s [14]. So, if secular

variation in the length of day is known from astrometric observations, relation (7)

can be used to derive the rate of secular increase in the lunar orbit ṙ.
On the other hand, the same quantity can be measured immediately by the lunar

laser ranging (LLR). This became possible since the early 1970’s, when a few optical

retroreflectors were installed on the lunar surface. The accuracy of LLR quickly

improved in the subsequent two decades, and its errors were reduced to 2–3 cm, which

enabled ones to measure immediately the secular expansion of the lunar orbit [11].

Surprisingly, the measured value of ṙ turned out to be substantially greater than the

value obtained from formula (7), as summarized in Table 1 [16].

Then, a lot of attempts were undertaken to reduce this discrepancy. Namely, the

value presented in the last column of the table corresponds to

ṪE = (8.77±1.04)·10−6 s/yr . (8)

It was derived from a series of astronomical observations accumulated since the

middle of the 17th century, when telescopic data became available (they are compiled,

for example, in monograph [42]). In principle, the period of three centuries might be

insufficiently long, because the length of day TE experience also some quasi-periodic

variations on the longer time scales, which can affect the linear trend (8).

One of the ways to get around this obstacle is to employ the ancient data on

eclipses, which cover the period over two millennia. Such an approach was pursued by

a number of researchers (e.g., review [43]), and the obtained values of ṪE sometimes

enabled them to get a reasonable agreement with LLR data. However, the various

sets of ancient observations give the results different from each other by almost two

times, and it is not clear a priori which of them are more reliable.
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Yet another idea to avoid the discrepancy presented in Table 1 is to take into

account a secular variation in the Earth’s moment of inertia, which is commonly

characterized by the second gravitational harmonic coefficient J̇2. Its decreasing

trend at the present time is assumed to be caused by the so-called viscous rebound

of the solid Earth from the decrease in load due to the last deglaciation. (Namely, the

Earth was compressed by the ice caps in polar regions during the glacial period and

now restores its shape.) The first determination of the above-mentioned parameter

by Lageos satellite [44] led to the value J̇2 = −3·10−11/yr, which seemed to be

consistent with LLR data. However, as was established later, such a determination

may be very unreliable [4] and even can give the opposite sign of J̇2 [8].

In view of the above difficulties, a promising explanation of the discrepancy

2.2±0.3 cm/yr in Table 1 can be based just on the presence of local Hubble ex-

pansion. Assuming validity of the standard relation (6), this corresponds to the

value of the local Hubble constant

H
(loc)
0 = 56±8 (km/s)/Mpc , (9)

which is quite close to its “global” value H0. So, such an interpretation is not

meaningless.

Unfortunately, as was mentioned in Section 2, by now we cannot reliably ex-

plain this quantity in terms of parameters of the Earth–Moon system because of the

problems in the numerical integration of the equations of motion. Instead, we shall

present here a more crude but universal estimate of the relation between the local

and global Hubble rates, which is actually applicable to any “small-scale” system.

It is reasonable to assume that the local Hubble expansion is formed only by

the uniformly-distributed dark energy (Λ-term), while the irregularly distributed

(clumped) forms of matter affect the rate of cosmological expansion only at the

sufficiently large distances, where they can be characterized by their average values.

(At smaller distances, the clumped forms of matter manifest themselves by the “clas-

sical” gravitational forces.) So, if the Universe is spatially flat and filled only with

dark energy and the dust-like matter with densities ρΛ0 and ρD0, respectively, then

general expression (1) can be rewritten as7

H0 =

√
8πG

3

√

ρΛ0 + ρD0 , (10)

H
(loc)
0 =

√
8πG

3

√

ρΛ0 . (11)

Therefore, a ratio of the local to global Hubble constants will be

H
(loc)
0

H0

=

[
1 +

ΩD0

ΩΛ0

]
−1/2

, (12)

where ΩΛ0= ρΛ0/ρcr and ΩD0= ρD0/ρcr are the corresponding relative densities.

7Subscripts “0” denote here the values of the corresponding quantities at the present time.
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Taking for a crude estimate ΩΛ0 = 0.75 and ΩD0 = 0.25, we arrive at

H0/H
(loc)
0 ≈ 1.15 . (13)

Consequently, the local value (9) corresponds to the global value

H0 = 65±9 (km/s)/Mpc , (14)

which is in a good agreement with the modern cosmological data (especially, based

on studies of type Ia supernovae).

Let us emphasize that the performed analysis crucially depends on the accepted

value of secular increase in the length of day ṪE. The qualitative idea of such anal-

ysis was put forward in our work [13], and in the first quantitative study of this

subject [14] we used the value corrected for the ancient eclipses, ṪE = 1.4·10−5 s/yr,
which was considered by some researchers as the best option [43]. As a result,

we arrived at the substantially reduced magnitude of the local Hubble constant,

H
(loc)
0 = 33±5 (km/s)/Mpc, which had no reasonable interpretation. On the other

hand, when in the later work [16] we employed ṪE derived purely from the set of

astrometric observations in the telescopic era [42] without any further corrections,

the resulting value of H
(loc)
0 was found to be in accordance with the large-scale cos-

mological data.

3.2. The faint young Sun paradox

Yet another appealing example for the existence of local Hubble expansion is

the problem of insufficient flux of energy from Sun to the Earth in the past; e.g.,

review [22]. Namely, according to the modern models of stellar evolution, the so-

lar luminosity increases by approximately 30% during the period after its birth

(about 5·109 yr). This means that the energy input to the Earth’s climate system,

e.g., 2–4 billion years ago was appreciably less than now and, therefore, the most

part of water must be in a frozen state. This would preclude the geological and

biological evolution of the Earth and contradicts a number of well-established facts

on the existence of considerable volumes of liquid water in that period of time. Al-

though a lot of attempts were undertaken to resolve this problem by the inclusion

of additional influences (first of all, the atmospheric greenhouse effect), no definitive

solution is available by now.

An interesting option was suggested recently by Kř́ıžek and Somer [30, 31], who

proposed to take into consideration the local Hubble expansion of the Earth’s orbit.

As a result, the Sun–Earth distance in the past would be appreciably less than

now and, consequently, the solar irradiation of the Earth’s surface increased. In

particular, the quantitative analysis performed in the above-cited papers have shown

that atH
(loc)
0 ≈ 0.5H0 expansion of the Earth’s orbit compensates the increasing solar

luminosity with very good accuracy; so that the Earth’s surface received almost the
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same flux of energy in the past 3.5·109 yr and will continue to do so for a considerable

period in future.

From our point of view, the above-mentioned idea is very promising. Unfortu-

nately, the value of local Hubble constant used in these papers is poorly consistent

with the one derived from our analysis of the Earth–Moon system in Section 3.1,

H
(loc)
0 ≈ 0.85H0. So, it is interesting to check if the same mechanism will work at

other rates of the local Hubble expansion? Such analysis was performed in our recent

work [18].

Namely, let solar luminosity increase linearly with time:

L(t) = L0 + (∆L/∆T ) t , (15)

where L0 is its present-day value (at t = 0), and ∆L is the variation of luminosity

over the time interval ∆T = 5·109 yr (for the sake of estimate, we shall use here the

rounded values). Then, assuming validity of the standard relation (6), a temporal

variation in the irradiation of the Earth’s surface can be found from a simple geomet-

ric consideration. The resulting curves for a number of hypothetical solar models

with ∆L/L0 = 0.3, 0.4, 0.5, 0.6 and various rates of the local Hubble expansion

H
(loc)
0 = 0.5, 0.6, 0.7, 0.8, 0.9H0 are presented in Figure 4.

It is seen that the Kř́ıžek–Somer case (∆L/L0 = 0.3, H
(loc)
0 /H0 = 0.5) really

provides a very stable energy input to the Earth for a few billion years both in

the past and future. At the higher rates of the local Hubble expansion (which

would be more consistent with our analysis of the Earth–Moon dynamics), a quite

favorable situation exists, for example, at ∆L/L0 = 0.5 and H
(loc)
0 /H0 = 0.8: the

solar irradiation at t < 0 is almost as stable as in the Kř́ıžek–Somer case, and more

appreciable variation at t > 0 is not so important because we actually do not know

the Earth’s evolution in the future.

Is it reasonable to consider the solar model with ∆L/L0 = 0.5 ? In fact, such

enhanced variations ∆L were typical for the first quantitative models of the Sun [40].

However, the subsequent investigations resulted in the progressively less values of ∆L;
and it is commonly accepted now that the increase in luminosity amounts to about

7% per Gyr over the past evolution of 4.57 Gyr. Nevertheless, we may imagine

processes like mixing in the solar interiors to change this value. This would imply

the star with a small convective core. The problem is that the Sun is just at the

limit of mass where convective cores appear [34].

Of course, one should keep in mind that the above calculations of solar irradia-

tion cannot be immediately confronted with the relevant data from paleoclimatology,

because it is necessary to take into account a lot of additional geophysical and geo-

chemical processes, first of all, the greenhouse effect. From this point of view, the

Earth–Moon system discussed in Section 3.1 represents a more “clean” case, where

the probable local Hubble expansion is less obscured by other phenomena.
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Figure 4: Temporal variations in solar irradiation of the Earth’s surface F/F0 for

different models of solar evolution (characterized by ∆L/L0) and various rates of the

local Hubble expansion (numbers near the curves denote the ratio H
(loc)
0 /H0). The

straight lines marked by 0.0 correspond to the case when the local Hubble expansion

is absent at all.
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3.3. Other systems

A number of other effects in the Solar system that might be associated with local

Hubble expansion have been already listed in the beginning of Section 3. Unfor-

tunately, they are much less studied than the lunar tidal catastrophe and the faint

young Sun paradox. So, we shall not discuss them in the present article; for more

details, see papers [30, 31].

Besides, a few researchers studied dynamics of all solar-system bodies, including

the major asteroids, on the basis of data by optical and radio astrometry collected

in the last decades [38, 39]. Their conclusion was that, in general, a self-consistent

picture of planetary motion (the high-precision ephemerides) can be obtained without

taking into account any local cosmological influences. However, it should be kept in

mind that such analyses involved a lot of fitting parameters, which were attributed,

e.g., to the unknown masses of asteroids, solar oblateness, effects of the solar wind

on radio wave propagation, etc. On the other hand, the probable Hubble expansion
was never included into their equations in explicit form. So, the small resulting

residuals might be merely a mathematical fact: it is well known from statistics that

any empirical data can be fitted as accurately as desirable if the number of free

parameters becomes sufficiently large.

If the local Hubble expansion is present in the Solar system, it should be naturally

expected also in galaxies. Unfortunately, the entire pattern of galaxy evolution is

very complicated by the formation of stars and their proper motions. So, as far as we

know, the problem of cosmological effects at the scale of galaxies remains completely

unexplored by now.

A much more elaborated subject is Hubble expansion in the local intergalactic

volume. It was believed for a long time that the standard Hubble flow can be traced

only at the distances starting from 5–10Mpc, where it becomes possible to introduce

the average cosmological matter density. Nevertheless, by the end of the 20th century,

the Hubble flow was detected also at the considerably less scales, down to 1–2Mpc.

At the same time, the concept of dark-energy-dominated Universe became the main

paradigm in cosmology. So, it was natural to explain both the presence of the Hubble

flow at the sufficiently small scales and its regularity (“quiescence”) just by the

perfectly-uniform dark energy (or Λ-term) [6, 20]. Unfortunately, it remains unclear

by now if the effective value of Hubble constant in the Local Group is smaller or larger

than at the global scales and, therefore, if the relation (12) between H
(loc)
0 and H0 is

applicable in this situation?

Let us mention also that the most of available theoretical works on the dynamics

of galaxies in the Local Group are based on the effective gravitational forces derived

from Kottler metric (2):

Feff(r) = M1

(
−

GM2

r2
+

Λ r

3

)
; (16)
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the last term often being called the “antigravity” force. Unfortunately, such treat-

ment has a limited scope of applicability: Firstly, as was already mentioned in Sec-

tion 2, the static metric (2) does not possess a correct cosmological asymptotics at

infinity and, therefore, the corresponding force (16) is unable to describe the entire

Hubble flow, including the large distances. Secondly, strictly speaking, the above-

written effective force is adequate only for the restricted two-body problem (where

M1 is the mass of a test particle, and M2 is the mass of the central gravitating

body). This is evident, in particular, from the fact that masses M1 and M2 appear

in expression (16) by different ways. So, there is no reason to assume validity of this

formula when M1 and M2 are comparable to each other or, especially, to apply it to

the many-body problem.

4. Concluding remarks

1. Despite a lot of theoretical works rejecting the possibility of local Hubble ex-

pansion, we believe that this problem is still unresolved: Firstly, the available

arguments often contradict each other. Secondly, the most of them become in-

applicable to the case when the Universe is dominated by the perfectly-uniform

dark energy (or Λ-term). Moreover, a self-consistent theoretical treatment of

the simplest models (such as the restricted two-body problem against the Λ-

background) demonstrates a principal possibility of the local cosmological in-

fluences: the Hubble expansion is not suppressed completely in the vicinity of

a massive body.

2. A few long-standing problems in planetology, geophysics, and celestial mechan-

ics can be well resolved by the assumption of local Hubble expansion whose

rate is comparable to that at the global scales. It is quite surprising that many

theorists believe that the possibility of local cosmological influences is strictly

prohibited just by the available observational data, while a lot of observers

believe that there are irrefutable theoretical proofs that Hubble expansion is

absent at small scales.

3. However, the important conceptual question still persists: What is the spa-

tial scale from which the cosmological expansion no longer takes place? This

is of crucial importance since otherwise, as pictorially explained by Misner et

al. [36, p. 719], the “meter stick” will also expand and, therefore, it will be

meaningless to speak about any expansion at all... We cannot give a definitive

numerical answer to this question. However, we believe that the systems domi-

nated by non-gravitational interactions should not experience the cosmological

expansion (e.g., the meter stick, the solid Earth, etc. do not expand).
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[31] Kř́ıžek, M. and Somer, L.: Manifestations of dark energy in the Solar system.

Grav. Cosmol. 21 (2015), 59.

[32] Landau, L.D. and Lifshitz, E.M.: Mechanics. Pergamon Press, Oxford, 1976,

3rd edn.

[33] Lineweaver, C.H. and Davis, T.M.: Misconceptions about the Big Bang. Sci.

American 292, no. 3 (2005), 36.

[34] Maeder, A.: Private communication (2016).

[35] McVittie, G.C.: The mass-particle in an expanding universe. Mon. Not. R.

Astron. Soc. 93 (1933), 325.

[36] Misner, C.W., Thorne, K. S., and Wheeler, J.A.: Gravitation. W.H. Freeman &

Co., San Francisco, 1973.

[37] Noerdlinger, P.D. and Petrosian, V.: The effect of cosmological expansion on

self-gravitating ensembles of particles. Astrophys. J. 168 (1971), 1.

[38] Pitjeva, E.V.: High-precision ephemerides of planets–EPM and determination

of some astronomical constants. Solar System Res. 39 (2005), 176.

[39] Pitjeva, E.V.: Relativistic effects and solar oblateness from radar observations

of planets and spacecraft. Astron. Lett. 31 (2005), 340.

[40] Schwarzschild, M.: Structure and evolution of the stars. Princeton Univ. Press,

Princeton, N.J., 1958.

[41] Sereno, M. and Jetzer, P.: Evolution of gravitational orbits in the expanding

universe. Phys. Rev. D 75 (2007), 064 031.

39



[42] Sidorenkov, N. S.: Physics of the Earth’s rotation instabilities. Nauka-Fizmatlit,

Moscow, 2002. In Russian.

[43] Stephenson, F.R. and Morrison, L.V.: Long-term changes in the rotation of the

Earth: 700 B.C. to A.D. 1980. Phil. Trans. Royal Soc. Lond. A 313 (1984), 47.

[44] Yoder, C. F. et al.: Secular variation of Earth’s gravitational harmonic J2 co-

efficient from Lageos and nontidal acceleration of Earth rotation. Nature 303

(1983), 757.

40



Conference Cosmology on Small Scales 2016
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Abstract: We make the hypothesis that the empty space, at macroscopic
and large scales, is scale invariant. This leads to essential simplifications in
the cosmological equations with scale invariance. There is an additional term
remaining that opposes to gravity and favors accelerated expansion. This
term makes a significant contribution, called Ωλ, to the energy-density of the
Universe, satisfying an equation Ωm + Ωk + Ωλ = 1. Numerical integrations of
the cosmological equations for different curvature k and density parameters Ωm

are performed. The cosmological models start explosively with first a braking
phase followed by a continuously accelerating expansion. The comparison
with observations of supernovae SN Ia, BAO and CMB data from Planck 2015
shows that the scale invariant model with k = 0 and Ωm = 0.30 very well
fits the observations in the Ωm vs. ΩΛ plane and consistently accounts for
the accelerating expansion or dark energy. The plot H(z) vs. redshift z, the
parameters q0 and the redshift ztrans of the transition between braking and
acceleration are examined. These dynamical tests are fully satisfied. The past
evolution of matter and radiation density shows only minor differences with
respect to the standard case. The local effects in the Newtonian approximation
are also investigated. In the two-body problem, they result in a weak outwards
expansion of the orbits at a rate of the order of the Hubble expansion, but not
exactly. The effects behave like the ratio (%c/%)1/2 of the critical density of
the Universe to the density of the system considered. In clusters of galaxies,
the additional expansion term may be responsible for the large excesses of the
dynamical masses derived from the standard Virial theorem.

Keywords: Cosmology, theory, dark energy, cosmological parameters

PACS: 04.20.-q, 04.25.-g

1. Introduction and recalls on scale invariance

The laws of physics are generally not unchanged under a change of scale, a fact
discovered by Galileo Galilei [15]. The scale references are closely related to the
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material content of the medium. Even the vacuum at the quantum level is not scale
invariant, since quantum effects produce some units of time and length. This point
is a historical argument, already forwarded long time ago against the Weyl theory.

The empty space at macroscopic and large scales, in the sense it is used for
example in the Minkowski metric, does not appear to have preferred scales of length
or time. We now make the hypothesis that the empty space at large scales is scale
invariant. Thus, in the same way as we may use Newton or Einstein theory at
macroscopic and large scales, even if we do not have a quantum theory of gravitation,
we may consider that the large scale empty space is scale invariant, even if this is
not true at the quantum level.

A strong reason has been emphasized by Dirac [9]: It appears as one of the
fundamental principles of Nature that the equations expressing basic laws should be
invariant under the widest possible group of transformations. The Maxwell equa-
tions of electrodynamics in absence of charges and currents show the property of
scale invariance. While scale invariance has often been studied in relation with pos-
sible variations of the gravitational constant G, no such hypothesis of variable G is
considered here. We do not know whether the above hypothesis of scale invariance
really applies. However, it is by carefully examining the implications of such a hy-
pothesis that we will find whether it corresponds to Nature or not. The detailed
results summarized here are presented in three recent papers [24].

Many developments on a scale invariant theory of gravitation have been per-
formed by giants of Physics like Eddington [13], Dirac [9], and Canuto [7]. Here,
we limit the recalls to the very minimum. In the 4-dimensional space of General
Relativity, the element interval ds′ 2 in coordinates x′ µ writes ds′ 2 = g′µνdx

′ µ dx′ ν ,
(the symbols with a prime refer to the space of General Relativity, which is not
scale invariant). A scale (or gauge) transformation is considered to a new coordinate
system xµ with the following relation between the two systems,

ds′ = λ(xµ) ds , (1)

where ds2 = gµνdx
µ dxν is the line element in the new more general framework, where

scale invariance is a fundamental property in addition to the general covariance.
Thus, there is a conformal transformation between the two systems,

g′µν = λ2 gµν . (2)

Parameter λ(xµ) is the scale factor connecting the two line elements. The Cosmo-
logical Principle demands that the scale factor only depends on time. The general
scale invariant field equation is [7]

R′µν−
1

2
gµνR

′−κµ;ν−κν;µ−2κµκν +2gµνκ
α
;α−gµνκακα = −8πGTµν−λ2ΛE gµν , (3)

whereG is the gravitational constant and ΛE the Einstein cosmological constant. The
term κµ is called the coefficient of metrical connection, “;” indicates a derivative,

κµ = − ∂

∂xµ
lnλ . (4)

42



In the scale covariant theory, it is a fundamental quantity like the gµν . The contracted
form of the Riemann-Christoffel tensor Rµν and the total curvature R are [9, 7]

Rµν = R′µν − κµ;ν − κν;µ − gµνκα;α − 2κµκν + 2gµνκ
ακα , (5)

R = R′ − 6κα;α + 6κακα . (6)

There, R′µν and R′ are the usual expressions in General Relativity. The second
member of the scale invariant field equation is scale invariant, as is the first one.
Thus, we have T ′µν = Tµν , where the right-hand term is the energy-momentum tensor
in the new more general coordinate system. This has further implications, which are
easily examined in the case of a perfect fluid [7]. The tensor Tµν being invariant,
one may write (p+ %)uµuν − gµνp = (p′ + %′)u′µu

′
ν − g′µνp′. The velocities u′µ and u′µ

transform like

u′µ =
dxµ

ds′
= λ−1dx

µ

ds
= λ−1uµ and u′µ = g′µνu

′ν = λ2gµνλ
−1uν = λuµ . (7)

Thus, the energy-momentum tensor transforms like

(p+ %)uµuν − gµνp = (p′ + %′)λ2uµuν − λ2gµνp
′ . (8)

This implies the following scaling of p and % in the new general coordinate system

p = p′ λ2 and % = %′ λ2 . (9)

Pressure and density are therefore not scale invariant, but are so-called coscalars of
power −2. To avoid any ambiguity, we always keep all expressions with ΛE, the true
Einstein cosmological constant, so that in (3), it appears multiplied by λ2.

2. Consequences of the scale invariance of the empty space

We consider the case of the empty space, with thus an energy-momentum tensor
Tµν = 0. The line-element is given by the Minkowski metric, ds2 = c2dt2 − (dx2 +
dy2+dz2). In General Relativity, it implies that the first member of Einstein equation
is equal to zero, R′µν − 1

2
gµν R

′ = 0. Thus, in the scale invariant field equation (3),
only the following terms are remaining [27],

κµ;ν + κν;µ + 2κµκν − 2gµνκ
α
;α + gµνκ

ακα = λ2ΛE gµν . (10)

We are left only with a relation between some functions of the scale factor λ (through
the κ-terms (4)), the gµν and the Einstein cosmological constant ΛE, interpreted as
the energy density of the vacuum, and which now appears as related to the properties
of scale invariance in the empty space. The problem of the cosmological constant in
the empty space is not a new one. Bertotti et al. [3] are quoting the following remark
they got from Professor Bondi, who stated that: “Einstein’s disenchantment with the
cosmological constant was partially motivated by a desire to preserve scale invariance

43



of the empty space Einstein equations”. This remark is in agreement with the fact
that ΛE is not scale invariant as are the Tµν . The above developments show that the
scale invariant theory may offer a possibility to conciliate the existence of ΛE with
the scale invariance of the empty space at macroscopic scales.

Only the zero component of κµ is non-vanishing. Thus, one has

κµ;ν = κ0;0 = ∂0κ0 =
dκ0

dt
≡ κ̇0 . (11)

The 0 and the 1, 2, 3 components of what remains from the field equation (10)
become respectively

3κ2
0 = λ2 ΛE and 2κ̇0 − κ2

0 = −λ2ΛE . (12)

From (4), one has κ0 = −λ̇/λ (with c = 1 at the denominator) and (12) leads to

3
λ̇2

λ2
= λ2 ΛE and 2

λ̈

λ
− λ̇2

λ2
= λ2 ΛE . (13)

These expressions may also be written in equivalent forms

λ̈

λ
= 2

λ̇2

λ2
, and

λ̈

λ
− λ̇2

λ2
=
λ2 ΛE

3
. (14)

The first relation of (14) places a constraint on λ(t). Considering a solution of the
form λ = a (t− b)n +d, we get d = 0 and n = −1. There is no constraint on b, which
means that the origin b of the timescale is not determined by the above equations.
(The origin of the time will be determined by the solutions of the equations of the
particular cosmological model considered.) We get from (13) and (14),

λ =

√
3

ΛE

1

c t
. (15)

The hypothesis that the empty space is scale invariant at large scales has important
consequences, such as (13), (14), and (15), as well as with respect to Bondi’s remark.

3. Cosmological equations and their properties

The equations of the scale invariant cosmology can be derived from the field
equation (3) using the Robertson–Walker metric [7]. They can also be obtained by
applying scale transformation to the current cosmological equations containing the
expansion function R(t). This direct method [24] is shown in the Appendix.

8πG%

3
=

k

R2
+
Ṙ2

R2
+ 2

λ̇ Ṙ

λR
+
λ̇2

λ2
− ΛEλ

2

3
, (16)

−8πGp =
k

R2
+ 2

R̈

R
+ 2

λ̈

λ
+
Ṙ

R

2

+ 4
Ṙ λ̇

R λ
− λ̇2

λ2
− ΛE λ

2 . (17)
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With expressions (13) and (14) for the empty space, which characterize λ and its
properties, the two above cosmological equations simplify [24],

8 πG%

3
=

k

R2
+
Ṙ2

R2
+ 2

Ṙλ̇

Rλ
, −8 πGp =

k

R2
+ 2

R̈

R
+
Ṙ2

R2
+ 4

Ṙλ̇

Rλ
. (18)

The combination of these two equations leads to

−4πG

3
(3p+ %) =

R̈

R
+
Ṙλ̇

Rλ
. (19)

There, k = 0 or ±1, p and % are the pressure and density in the scale invariant
system. These three equations differ from the classical ones only by the presence
of an additional term containing Ṙ λ̇/(Rλ). If λ(t) is a constant, one gets the
usual equations of cosmologies for the expansion term R(t). Thus at any fixed time,
the effects that do not depend on the time evolution are just those predicted by
General Relativity. Departures from General Relativity appear when the evolution
of a physical effect over the ages is intervening.

What is the significance of this additional term? The second term on the right-
hand side of (19) is negative, since according to (15) we have λ̇/λ = −1

t
. It represents

an acceleration that opposes gravitation, which may particularly dominate during the
advanced stages of evolution of the Universe, since according to (19) the accelera-
tion is proportional to the relative velocity of the expansion. For the empty space,
(19) directly leads to the solution R(t) ∼ t2 with a continuous expansion over the
ages. Equations (18) to (19) incorporate the scale invariance of the field equations
as well the scale invariance properties of the vacuum at large scales.

3.1. Density and geometrical parameters

The critical density corresponding to the case k = 0 of the flat space is from (18)
and (15), with the Hubble parameter H = Ṙ/R,

8πG%∗c
3

= H2 − 2
H

t
. (20)

We mark with a * this critical density that does not correspond to the usual definition.
The parenthesis is always≥ 0, since 2/(tH) = 2(dt/t)(R/dR) and the relative growth
rate for non empty models is higher than t2. With (18), (15), and (20), we have

%

%∗c
− k

R2H2
+

2

Ht

(
1− %

%∗c

)
= 1 . (21)

With Ω∗m =
%

%∗c

, Ωk = − k

R2H2
, we get Ω∗m + Ωk +

2

H t
(1− Ω∗m) = 1. (22)

Ω∗m = 1 consistently implies Ωk = 0 and reciprocally. With the usual definition of
the critical density,

Ωm =
%

%c

with %c = 3H2/(8πG) , we get Ωm = Ω∗m

(
1− 2

Ht

)
. (23)
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With Ωm, relation (22) becomes simply,

Ωm + Ωk + Ωλ = 1 , with Ωλ ≡
2

H t
. (24)

There, Ωλ is defined by the second relation in (24). The term Ωλ arising from scale
invariance has replaced the usual term ΩΛ. However, the difference of the physical
meaning is very profound. While ΩΛ is related to the cosmological constant or to
the dark energy, Ωλ expresses the energy density resulting from the variations of the
scale factor. This term does not demand the existence of unknown particles. It is
interesting that an equation like (24) is also valid in scale invariant cosmology.

We may also write Ωm = Ω∗m(1 − Ωλ) and Ω∗m = Ωm

Ωm+Ωk
. For k = 0, the ra-

tio 2/(tH) is not a constant (except for the empty model) and thus the various
Ω-parameters vary with age, except Ω∗m which is always equal to 1. While in Fried-
man’s models, there is only one model corresponding to k = 0, in the scale invariant
framework for k = 0 there is a variety of models with different Ωm and Ωλ at time t0.
For k = ±1, Ω∗m is different from 1, and the terms Ωm, Ωλ and Ωk are also not
constant in time. We may verify that all models have Ωm < 1, even for k = 1,
see [24].

We now consider the geometry parameters k, q0 = − R̈0R0

Ṙ2
0

and their relations

with Ωm, Ωk and Ωλ at t0, in absence of pressure. We emphasize that t0 is not the
present age of the Universe, but the present time. The present age is τ = t0 − tin,
where the initial time tin depends on the considered model. From (18) and (22), we
get

−2 q0 + 1− Ωk =
4

H0t0
and q0 =

Ωm

2
− Ωλ

2
. (25)

This establishes relations between the deceleration parameter q0 and the expressions
of the matter content for a scale invariant cosmology. If k = 0, we have

q0 =
1

2
− Ωλ = Ωm −

1

2
. (26)

For a present Ωm = 0.30, we get q0 = −0.20. The above relations are different from
those of the ΛCDM, where one has for k = 0,

q0 =
1

2
Ωm − ΩΛ =

3

2
Ωm − 1 =

1

2
− 3

2
ΩΛ . (27)

For Ωm = 0.30, we get q0 = −0.55. Let us now turn to the curvature parameter k.
From (18), the definition of the critical density and (24), we have at t0,

k

R2
0

= H2
0 (Ω∗m − 1)

(
1− 2

t0H0

)
. (28)

Values of Ω∗m > 1 correspond to a positive k-value, values smaller than 1 to a negative
k-value. With Ωm, we obtain

k

R2
0

= H2
0

[
Ωm −

(
1− 2

t0H0

)]
, and

k

R2
0

= H2
0

[
2 q0 − 1 +

4

H0t0

]
. (29)
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The expansion functions corresponding to the Friedman models do not have in-
flexion points. In the scale invariant cosmology, there are epochs dominated by
gravitational braking and other epochs by acceleration. According to (25), q = 0
occurs at time t when Ωm = Ωλ. The gravitational term dominates in the early
epochs and the λ-acceleration dominates in more advanced stages. The higher the
Ωm-value, the later the inflexion point occurs. The expansion functions associated to
the empty models have no inflexion points, since they are accelerating continually.
For a flat model with k = 0, we have an inflexion point for

1− Ωλ = Ωλ , and thus Ωλ = Ωm =
1

2
. (30)

These results differ from those of the ΛCDM models. According to (27), we have
q = 0 for a flat ΛCDM model when 1

2
Ωm = ΩΛ. The acceleration term needs only

to reach the half of the gravitational one in the ΛCDM model, while in the scale
invariant case the inflexion point is met for the equality of the two terms.

4. Conservation laws and scale invariance

A new invariance necessarily influences the conservation laws. In addition, we
have accounted for the scale invariance of the vacuum at macroscopic scales by
using (13) and (14). We first rewrite (18) as follows and take its derivative,

8 πG%R3 = 3 kR + 3 Ṙ2R + 6
λ̇

λ
ṘR2 , (31)

d

dt
(8πG%R3) = 3 kṘ + 3 Ṙ3 + 6 ṘR̈R + 6 R̈R2 λ̇

λ
+ 6 ṘR2 λ̈

λ
+ 12 Ṙ2R

λ̇

λ
− 6 ṘR2 λ̇

2

λ2

= −3ṘR2

[
− k

R2
− Ṙ2

R2
− 2

R̈

R
− 2

R̈

Ṙ

λ̇

λ
− 2

λ̈

λ
− 4

Ṙλ̇

Rλ
+ 2

λ̇2

λ2

]
. (32)

equations (18), (19) and (14) lead to many simplifications,

d

dt
(8 πG%R3) = −3 ṘR2

[
8πGp+

R

Ṙ

λ̇

λ

(
8 πGp+

8 πG%

3

)]
, (33)

3λ%dR + λRd%+R%dλ+ 3 pλdR + 3pRdλ = 0 , (34)

and

3
dR

R
+
d%

%
+
dλ

λ
+ 3

p

%

dR

R
+ 3

p

%

dλ

λ
= 0 . (35)

This can also be written in a form rather similar to the usual conservation law,

d(%R3)

dR
+ 3 pR2 + (%+ 3 p)

R3

λ

dλ

dR
= 0 . (36)
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These last two equations express the law of conservation of mass-energy in the scale
invariant cosmology. For a constant λ, we evidently recognize the usual conservation
law. We now write the equation of state in the general form, P = w %, with c2 = 1,
where w is taken here as a constant. The equation of conservation (35) becomes
3 dR

R
+ d%

%
+ dλ

λ
+ 3w dR

R
+ 3w dλ

λ
= 0, with the following simple integral,

%R3(w+1) λ(3w+1) = const. (37)

For w = 0, this is the case of ordinary matter of density %m without pressure,

%m λR
3 = const. (38)

which means that the inertial and gravitational mass (respecting the Equivalence
principle) within a covolume should both slowly increase over the ages. For an empty
model, the change of λ is enormous from ∞ at t = 0 to 1 at t0. In a flat model with
Ωm = 0.30, λ varies from 1.4938 to 1 (see Table 2). We do not expect any matter
creation as in Dirac’s Large Number Hypothesis [9] and thus the number of baryons
should be a constant. However, since an additional fundamental invariance has been
accounted for, some changes in the conservation laws are unavoidably resulting.
A change of the inertial and gravitational mass is not a new fact, it is well known
in Special Relativity, where the masses change as a function of their velocity. In
the standard model of particle physics, the constant masses of elementary particles
originate from the interaction of the Higgs field [20, 14] in the vacuum with originally
massless particles. The assumption of scale invariance of the vacuum (at large scales)
and of the gravitation field does not let the masses invariant and make them to slowly
slip over the ages, however by a very limited amount in realistic models. We may
check that the above expression (38) is fully consistent with the hypotheses made.
According to (9), we have %′λ2 = %, where we recall that the prime refers to the
value in General Relativity. Thus expression (38) becomes, also accounting for the
scale transformation λR = R′, %m λR

3 = %′ λ3R3 = %′R′3 = const. This is just the
usual mass conservation law in General Relativity.

Let us go on with the conservation law for relativistic particles and in particular
for radiation with density %γ. We have w = 1/3. From (37), we get

%γ λ
2R4 = const. (39)

A term λ2 intervenes. As for the mass conservation, we may check its consis-
tency with General Relativity. Expression (39) becomes %′γ λ

4R4 = const. and thus
%′γ R

′4 = const. in the Einstein framework. Another case is that of the vacuum
with density %v. It obeys to the equation of state p = −% with c = 1. Thus, we
have w = −1 and from (37), %vλ

−2 = const. indicating a decrease of the vacuum
energy with time. With %′vλ

2 = %v, this gives %′v = const. in the Einstein framework,
in agreement with the standard result.
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5. Scale invariant cosmological models

We now construct scale invariant cosmological models and examine their dynam-
ical properties. The solutions of the equations are searched for the case of ordinary
matter with density %m and w = 0. We may write the first equation of (18),

8 πG%mR
3λ

3
= k Rλ+ Ṙ2Rλ+ 2 ṘR2λ̇ . (40)

The first member is a constant. With λ = t0/t and the present time t0 = 1, we have

Ṙ2R t− 2 Ṙ R2 + k R t− C t2 = 0 , with C =
8πG%m R

3λ

3
. (41)

At time t0 = 1, we also assume R0 = 1. The origin, the Big Bang if any one, occurs
when R(t) = 0 at time tin, which is not necessarily 0. To integrate (41), we need
numerical values of C, corresponding to different densities.

5.1. Cosmological models with a flat space (k = 0)

In view of the results of the space missions investigating the Cosmic Microwave
Background (CMB) radiation with Boomerang, WMAP and the Planck Collabora-
tion [32], this case is the most interesting one. Equation (41) becomes

Ṙ2R t− 2 Ṙ R2 − C t2 = 0 . (42)

At t0=1 and R0=1, with the Hubble constant H0 = Ṙ0/R0, we have

H2
0 − 2H0 = C which gives H0 = 1±

√
1 + C , (43)

where we take the sign +, since H0 is always positive.

We now relate C to Ωm at time t0. We have Ωm = 1 − Ωλ and thus from (24)
H0 = 2

1−Ωm
. This gives H0 (in unit of t0) from Ωm. We obtain C as a function of Ωm

at t0 with the help of (43),

C =
4

(1− Ωm)2
− 4

(1− Ωm)
=

4 Ωm

(1− Ωm)2
, (44)

which allows us to integrate (42) for a chosen Ωm.

The scale invariant cosmology with k = 0, like the ΛCDM, permits a variety of
models with different Ωm. This is an interesting property in view of the results of
the CMB which support a flat Universe [32]. The parameter Ωm is less than 1, since
Ωλ > 0 and (24) must be satisfied. Equation (44) shows that for Ωm ranging from
0→ 1, C covers the range from 0 to infinity.
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Ωm C H0(t0) tin q0 τ τGyr H0(τ) t(q) R(q) Ωλ H0 obs

0.001 0.0040 2.0020 0.0999 - 0.50 0.9001 37.6 1.802 0.126 0.010 0.999 127.7

0.010 0.0408 2.0202 0.2154 -0.49 0.7846 32.7 1.585 0.271 0.047 0.990 112.3

0.100 0.4938 2.2222 0.4641 - 0.40 0.5359 22.4 1.191 0.585 0.231 0.900 84.4

0.180 1.0708 2.4390 0.5645 - 0.32 0.4355 18.2 1.062 0.711 0.364 0.820 75.3

0.246 1.7308 2.6525 0.6265 - 0.25 0.3735 15.6 0.991 0.789 0.474 0.754 70.2

0.300 2.4490 2.8571 0.6694 -0.20 0.3306 13.8 0.945 0.843 0.568 0.700 67.0

0.400 4.4444 3.3333 0.7367 -0.10 0.2633 11.0 0.878 0.928 0.763 0.600 62.2

0.500 8.0000 4.0000 0.7936 0.00 0.2064 8.6 0.826 1.000 1.000 0.500 58.5

0.800 80 10 0.9282 0.30 0.0718 3.0 0.718 1.170 2.520 0.200 50.9

0.990 39600 200 0.9967 0.49 .00335 0.14 0.669 1.256 21.40 0.010 47.4

Table 1: Cosmological parameters of some models with k = 0 and different Ωm < 1.
The symbol H0(t0) stands for the values of the Hubble constant at t0 = 1, tin is the
time when R(t) = 0, τ = t0 − tin is the age of the Universe in units of t0 = 1, τGyr is
the age in Gyr, H0(τ) is the H-value in the unit of τ , t(q) and R(q) are the values
of t and R at the inflexion point, “H0 obs” is the value of H0 in km s−1 Mpc−1.

0.2             0.4             0.6             0.8             1.0             1.2      t

0.4

0

0.8

1.2

1.6

R(t)

k = 0

EdS

Figure 1: Some solutions of R(t) for k = 0. The curves are labeled by the values
of Ωm at t0. The Einstein-de Sitter model (EdS) is indicated by a thin broken line.
The small circles on the curves show the transition point between braking (q > 0)
and acceleration (q < 0); for Ωm = 0.80, this point is at R = 2.52. The two red
curves indicate models corresponding to the observational values of Ωm = 0.246 by
Frieman et al. [18] and of Ωm = 0.30, cf. the Planck Collaboration [32].
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z R/R0 t/t0 τ/t0 age (yr) H(t0) H(z) λ

km s−1 Mpc−1

0.00 1 1 .3306 13.8 E+09 2.857 67.0 1.000

0.10 .9091 .9679 .2985 12.5 E+09 3.088 72.4 1.033

0.20 .8333 .9407 .2713 11.3 E+09 3.324 77.9 1.063

0.40 .7143 .8974 .2280 9.5 E+09 3.810 89.4 1.114

0.60 .6250 .8644 .1950 8.1 E+09 4.321 101.3 1.157

1.00 .5000 .8181 .1487 6.2 E+09 5.408 126.8 1.222

1.50 .4000 .7814 .1120 4.7 E+09 6.895 161.7 1.280

2.00 .3333 .7575 .0881 3.7 E+09 8.522 199.9 1.320

3.00 .2500 .7290 .0596 2.5 E+09 12.16 285.1 1.372

4.00 .2000 .7131 .0437 1.8 E+09 16.24 381 1.402

9.00 .1000 .68550 .0161 6.7 E+08 42.46 996 1.4588

9999 .0001 .66943 5.0 E-07 2.1 E+04 1.27 E+06 3.0 E+07 1.4938

Table 2: Data as a function of the redshift z for the reference model with k = 0
and Ωm = 0.30. Column 2 gives R(t) vs. time t/t0 (column 3). Column 4 contains
the age τ = t − tin. The age in year is in column 5 for a present value of 13.8 Gyr.
Column 6 gives the Hubble parameter H(t0) in the scale t0 = 1, while the Hubble
parameter H(z) in km s−1 Mpc−1 is in column 7 for the same assumptions as in
Table 1. In column 8, the scale factor λ is given with λ = 1 at present.

To integrate (42) numerically, we choose a present value for Ωm, which deter-
mines C according to (44) and we proceed to the integration backwards and for-
wards in time starting from t0 = 1 and R0 = 1. Table 1 provides some model data
for different Ωm. In practice to get H0 in km s−1 Mpc−1, we proceed as follows. The
inverse of the age of 13.8 Gyr is 2.296 · 10−18 s−1, which in the units currently used
is equal to 70.86 km s−1 Mpc−1. This value of H0 corresponds to H0(τ) = 1.000 in
column 8 of Table 1. On the basis of this correspondence, we multiply all values
of H0(τ) of column 8 by 70.86 km s−1 Mpc−1 to get the values of H0 in the last col-
umn. The Hubble constant H0 = 67 km s−1 Mpc−1 is predicted for Ωm = 0.30 in
agreement with the Planck Collaboration 2015, see [32]. This agreement indicates
that the expansion rate is correctly predicted by the scale invariant models for the
given age of the Universe.

In Table 2, we give some basic data for the reference model with k = 0 and
Ωm = 0.30 as a function of the redshift z. Fig. 1 shows the R(t) curves for models
with k = 0 and different Ωm.

The models show that after an initial phase of braking, there is an accelerated
expansion, which goes on all the way. No curve R(t) starts with an horizontal
tangent, except the case of zero density. All models with matter start explosively
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Figure 2: The scale factor λ at the origin R(t) = 0 for models with k = 0 and
different Ωm. At present time t0, λ = 1 for all models. This curve shows that for
increasing densities, the amplitudes of the variations of the scale factor λ are very
much reduced.

with very high values of H = Ṙ/R and a positive value of q, indicating braking. The
locations of the inflexion points, where q changes sign, are indicated for the models
of different Ωm by a small open circle in Fig. 1. The expansion is faster for Ωm → 1.
This suggests that for Ωm = 1 the model inflates explosively all the way since the
origin. Whether this has some implications at the origin is an open question. Models
with k = ±1 have been studied in [24]. Their behaviors are not so different from
that for k = 0, indicating curvature is not a dominant effect with respect to scale
invariance.

The behavior of λ(t) is interesting (see Fig. 2). For an empty space, the factor λ
varies between ∞ at the origin to 1 at present. If matter is present, the λ-variations
fall dramatically. For Ωm = 0.30, λ varies only from 1.4938 to 1.0 between the
origin and present. The presence of less than 1 H-atom per cubic meter is sufficient
to dramatically reduce the variations of λ. For Ωm → 1, the scale factor λ tends
towards 1. Thus, the domain of λ-values is consistently determined by the matter
content or in other words by the departures from the scale invariant empty space.

6. Comparisons of scale invariant models and observations

Comparisons with observations are essential to invalidate or validate theories.
The studies of the CMB support more and more the flatness k = 0 of the Universe:
the last Planck results [32] give Ωk = 0.00 ± 0.005 at a 95 % confidence limit. Frie-
man et al. [18] found average values of Ωm = 0.246± 0.028 and ΩΛ = 0.757± 0.021,
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Figure 3: The constraints from the data collected by Reid et al. [34], from WMAP5,
from the Union SN sample and the halo density field of luminous red galaxies of the
SDSS DR7. The results of the scale invariant models are shown by black lines for
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Figure 4: The ΩΛ vs. Ωm from data by Betoule et al. [4], cf. their Fig. 15. The
SN sample from JLA is in blue, the Planck temperature and WMAP polarization
measurements in green. The most stringent constraint (red) accounts for the BAO
results. Scale invariant models are shown.

based on the magnitude-redshift data for supernovae, the CMB radiation measured
by WMAP, the age constraints and the baryon acoustic oscillations (BAO). Reid
et al. [34] examine the constraints from the clustering of luminous red galaxies in the
SDSS DR7. They find Ωm = 0.289±0.019. The gas mass fraction in clusters of galax-
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ies provides another interesting constraint on the density parameters. Allen et al. [1]
found Ωm = 0.275±0.015 and ΩΛ = 0.725±0.016. A study by Betoule et al. [4] with
the project Joint Light-curve Analysis (JLA) together with CMB data from Planck
and WMAP, including also the constraints from BAO, gives stringent conditions as
illustrated by Fig. 4 and favors a value Ωm = 0.295± 0.034. Figs. 3 and 4 show the
comparison of the observed density parameters Ωm and ΩΛ with the results of our
models. The flat model with k = 0 and Ωm = 0.30 well fits the various constraints.
The two sets of models with non-zero curvature do not agree with observations.

6.1. The value of H0

The models provide the Hubble constant H0(τ) as a function of the age τ of the
Universe. To get H0 in km s−1 Mpc−1 from the models, we need both H0(τ) and
the age, taken to be 13.8 Gyr (Sect. 5.1). Among recent determinations, a value
H0 = 72±5 in km s−1 Mpc−1 is given by Frieman et al. [18], 73±4 by Freedman and
Madore [17], 69.4± 1.6 by Reid et al. [34], 70.2± 1.4 by Allen et al. [1], 67.8± 0.9 by
the Planck collaboration [32].

For values between Ωm = 0.246 and 0.308 according to [18] and [32], we get H0

between 70.2 and 66.5 km s−1 Mpc−1, a range consistent with the observed one. For
an age of 13.7 Gyr, these values would have been 67.0 and 70.7 and for an age of
13.9 Gyr, 66.0 and 69.7 respectively, which would not change the conclusions. This
shows that the models correctly predict the observed expansion rate.

7. Observational dynamical tests for past epochs

7.1. The expansion history

The determination of the expansion rate H(z) vs. redshift z represents a direct
test on the expansion R(t) over the ages. For performing valid tests, the observa-
tional data must be independent on the cosmological models. The method of the
“cosmic chronometer” is based on the simple relation, H(z) = − 1

1+z
dz
dt

, obtained

from R0/R = 1 + z and the definition of H = Ṙ/R. The ratio dz/dt is estimated
from of a sample of passive galaxies (with ideally no active star formation) of dif-
ferent z and ages by Melia and McClintock [29] and Moresco [30]. The method,
however, depends on the models of spectral evolution of galaxies.

The model data are given in column 7 of Table 2. The observations are indicated
in the caption of Fig. 5. We have reported the ΛCDM model and a model Rh = c t by
Melia and McClintock [29]. According to them, this last model is better supported,
a claim challenged by Moresco [31]. Without entering this debate, we note the model
differences at high z. Delubac et al. [8] find a 2.5 σ difference of the BAO at z = 2.34
with the predictions of a flat ΛCDM model. The predictions of the scale invariant
model are intermediate between the ΛCDM and Rh = c t models. They well match
the observations of the expansion history H(z) vs. z from cosmic chronometers.
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Figure 5: The H(z) vs. redshift plot, with H in km s−1 Mpc−1. The observations
are the model-independent data collected by Melia et al. [29]. The filled red point
at z = 2.34 is from Delubac et al. [8], that at z = 0.57 is from Anderson et al. [2],
the two open and connected red points at z = 0.43 are from Moresco et al. [31],
interpreted with two different sets of models of spectral evolution. The curves for
the ΛCDM and Rh = c t models are by Melia et al. [29]. The yellow squares indicate
the predictions of the scale invariant model for k = 0 and Ωm = 0.30.

7.2. The values of q0 in the ΛCDM and scale invariant models

Parameter q0 depends on the change of the expansion rate H over recent times.
The ΛCDM and the scale invariant models predict different values of q0. For k = 0
and Ωm = 0.30, these are respectively −0.55 and −0.20, both corresponding to an
acceleration. We have q = − R̈R

Ṙ2 = −dH
dt

R2

Ṙ2 − 1 = −dH
dz

dz
dt

1
H2 − 1. In the limit z → 0,

we have −dz/dt = H0, thus we get

(
dH

dz

)
0

= (q0 + 1)H0 , (45)

which relates q0 and the derivative (dH/dz)0 at the present time.

Fig. 6 shows the slopes (dH/dz)0 for four different q0-values. These slopes have
to be considered in the zone near the origin z = 0. The differences between them
are quite significant. For q0 = 1 (strong braking), the expansion factor H was much
larger in the past, thus the much steeper slope. Both the ΛCDM and scale invariant
models for Ωm = 0.30 are within the scatter of the observations. We may conclude
that the scale invariant model shows no disagreement for this test.
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Figure 6: Lower left part of Fig. 5 with the lines indicating the slope (dH/dz)0 for
4 different q0-values. The value q0 = −0.55 corresponds to the flat ΛCDM, while
q0 = −0.20 for the flat scale invariant model. For all models, a value Ωm = 0.30 is
assumed.

7.3. The transition from braking to acceleration

For the scale invariant model with k = 0, the transition (q = 0) from braking
to acceleration occurs when Ωλ = Ωm = 1

2
. For Ωm = 0.30, it occurs at R/R0 =

0.568 (cf. Table 1) corresponding to a transition redshift ztrans = 0.76. In the flat

ΛCDM model, the transition lies at 1 + ztrans =
(

2 ΩΛ

Ωm

)1/3

[36]. For the same Ωm,

this gives ztrans = 0.67. Fig. 7 shows as a function of Ωm the values ztrans for both
kinds of models. Several authors have tried to estimate the value of ztrans. The
estimates are often not model independent and this may introduce a bias in the
comparisons. Shapiro and Turner [35] suggested ztrans ≈ 0.3 for Ωm = 0.30, a value
of the matter-density adopted in most studies. Melchiorri et al. [28] obtained ztrans

between 0.76± 0.10 and 0.81±0.12. The two values are connected by a thin broken
line in Fig. 7. Ishida et al. [21] found 0.88 (+.12,−.10). Blake et al. [5] gave ≈ 0.7 for
Ωm = 0.27. Sutherland and Rothnie [36] suggested ∼ 0.7. Rani et al. [33] supported
a value around 0.7. The best fit by Vitenti and Penna-Lima [37] gave ≈ 0.65.
Moresco [31] found 0.4 ± 0.1 for a model of spectral evolution, while for another
model they got 0.75± 0.15 (Fig. 7). Most of the estimates support a transition near
ztrans = 0.75, except two. The observations are in good agreement with the flat
scale invariant models. However, the differences between the ΛCDM and the scale
invariant model are small and not sufficient to discriminate between the two models.
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the flat ΛCDM and scale invariant models. The “observational” values are shown
by small green rectangles.

8. A brief look on the matter and thermal history

We may wonder how much different may be the past evolution of the matter and
radiation densities ρm and ργ, as well of the temperature T in the scale invariant
model compared to standard models. This evolution is given by (37), which implies

T Rλ
1
2 = const. for the temperature. Fig. 8 shows the past evolution of these

quantities versus redshift z with the scale log(1 + z). For the present values, we take
log %m = −29.585 (Ωm = 0.30 and H0 = 67.8 km s−1 Mpc−1). The present T0 = 2.726
by Fixsen [16] leads to log %γ = −33.768. The λ-values are obtained from Table 2.
On the upper side of Fig. 8, a few values of the cosmic time are given.

Amazingly, the differences in Fig. 8 are very small. As shown by Fig. 2, the
variations of the λ are limited to values between 1.5 at the Big Bang and 1 at
present for k = 0 and Ωm = 0.30. On the whole, the evolution of matter and
radiation densities is very similar, although not strictly identical, to the result of the
standard case given by the classical conservation laws. Further results are discussed
by [24].
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frame, some ages τ = t(z)−tin given by the flat scale invariant model with Ωm = 0.30
are indicated.

9. “Local” effects of the scale invariance of the field equations

Although very small, there are “local” effects resulting from scale invariance.

9.1. The equivalent to Newton’s law

An analysis of the “local” effects of a scale invariance has been made long ago by
Maeder [25] and Maeder and Bouvier [27]. We derived the scale invariant geodesics.
The following equation was obtained (cf. their equation (38))

du%

ds
+ Γ%µ ν u

µ uν − κµuµu% + κ% = 0 , (46)

where Γ%µ ν is the ordinary Christoffel symbol. For a constant λ value, this gives the
usual expression of the geodesics. The coefficient of metrical connexion κν is related
to the scale factor λ by (4). This equation has been applied to a weak stationary
field, for a metric differing only slightly from Minkowski’s,

gii ≈ −1 for i = 1, 2, 3 and g00 = 1 +
2 Φ

c2
, (47)
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where Φ is a potential created by a spherical mass M of radius r. The Christoffel
symbol Γ%µ ν vanishes, except for

Γi00 = ∂iΦ , with ∂i = giα
∂

∂xα
(48)

and c = 1. For slow motions, ui ≈ vi = dxi/dt, u0 ≈ 1 and ds ≈ c dt. We consider
the equivalent to the Newtonian level of approximation. In addition, we have the
coefficient of metrical connexion κµ. Accounting for (4) and (15), we get from the
remaining components of the geodesic equation,

dvi

dt
+ ∂i Φ +

λ̇

λ
vi = 0 . (49)

Here, we slightly differ from [25] and [27], because in the past we identified (−λ̇/λ)
with the Hubble constant H. It is true that the order of magnitude is the same, since
−λ̇/λ = 1/t, but not the meaning. The Hubble parameter H expresses the overall
expansion resulting from the initial conditions, the matter content and the scale

invariance. We now keep κ0 = − λ̇
λ

= 1
t

in (49). In the Newtonian approximation of
General Relativity, the potential is GM ′/r′. From the scale invariance of the energy-
momentum tensor (cf. (9)), we have GM = r3

r′3
GM ′ λ2 = GM ′

λ
. Since r = λ r′, the

potential can be written, GM ′

r′
= GM

λr′
= GM

r
. The geodesic (49) becomes,

d2~r

dt2
= −GM

r2

~r

r
+ κ0

d~r

dt
, (50)

which is equivalent to Newton’s law in the scale invariant framework [25, 27]. The
additional term expresses an outwards acceleration opposed to gravitation. Its order
of magnitude is in general very small. This equation is equivalent to (19) in a
spherically symmetrical geometry for a medium with p = 0. We rewrite (19) as
r̈ = −4πG

3
% r + κ0 ṙ. The density % associated to the mass M in a spherically

symmetric system

r̈ = −GM
r2

+ κ0 ṙ . (51)

Both derivations consistently predict an acceleration opposed to gravity.

9.2. Order of magnitude of the expansion term

Let us examine the order of magnitude of the additional expansion term. The
ratio x of the absolute values of the two terms on the right-hand side of (50) is

x = κ0 v r2

GM
. Numerically, we have κ0 = 1/(13.8 Gyr) = 70.86 km s−1 Mpc−1. We may

write κ0 in term of the Hubble constant H0 for a given Ωm, κ0 = f H0. According
to Table 1, for Ωm = 0.30, we have H0 = 67.0 km s−1 Mpc−1. Thus, κ0 = 1.058H0,
(for H0=71, κ0 = H0). We write x with the help of the critical density (23)

x =

(
f 2 8π%cv

2r4

3GM2

)1/2

=

(
2 f 2 %c

%

[
v2

GM/r

])1/2

, (52)
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where % is the mean density of the spherical configuration of mass M and radius r.
For equilibrium systems with non-relativistic velocities and a relatively small expan-
sion term, the square bracket parenthesis is ∼ 1 according to the Virial theorem.
This means that

x ≈
(

2 f 2 %c

%

)1/2

, (53)

a conclusion obtained by [25]. For the motion of the Earth around the Sun,
x ≈ 6 · 10−12, while for the Earth-Moon system x ≈ 5 · 10−13. The effects may be
large at the level of clusters of galaxies, because there %/%c tends towards 1.

9.3. Dynamical masses of clusters of galaxies

The estimate of the dynamical mass of a cluster from the standard Virial theorem
(without expansion term) is known to lead to large overestimates [19]. The equivalent
of the Virial theorem based on the modified Newton’s equation (50) is [26],

1

2
v2

rad

(
1− 2 p′

κR

| vrad |

)
= p

GM

R
, (54)

where vrad is the radial velocity of a galaxy in the cluster, κ = 1/t for the cluster
redshift z, R is the cluster radius and M the mass, p = 1/3 and p′ = 1/2 for isotropic
motions. The ratio of the masses M from (54) and the standard Virial theorem is

M

Mstand

=

(
1− 2 p′

κR

| vrad |

)
. (55)

An application of this expression to the Coma cluster leads to a ratio Mstand/M = 3.5
to 10 depending on the source data. Thus, we get a M/L ratio (in scale invariant
theory) of ∼30 (the standard value for elliptical galaxies), instead of 100 to 300 as
derived from the standard Virial theorem [19]. The masses estimated from the X-
ray luminosity show a smaller amount of “hidden matter”, while the masses from
lensing measurements are free from internal dynamical effects within the cluster [1].
The large excesses obtained with the dynamical masses may be a signature of the
additional expansion term in the modified Newton’s law [26].

9.4. The Earth-Moon and planetary distances

The two-body problem in the scale invariant context was studied by [25, 27], to
which we refer for the details. The main conclusion was that the motion of a planet
around the Sun follows trajectories similar to the Keplerian orbits, however “with
a very slight outwards superposed motion of expansion, which makes the orbits to
progressively spiraling outwards”. In the expressions given at that time, we must
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replace H0 by κ0. The increases of the semi-major axis a and of the period P of the
orbital motion are

ȧ

a
=
Ṗ

P
=

1

t
. (56)

The increases of a and P are linear in time. For a small interval of time ∆t, one has
an increase ∆a = a ∆t

t
. For the Earth-Sun distance, the predicted recession would be

about 10.8 m per year. In this respect, it is interesting to point out that Kř́ıžek [22]
supports from various arguments a recession equal to 5.3 m/yr, see also [23, 12].
Although, there is a factor of 2 between these figures, the similar trend and order of
magnitude are interesting. At the time of the first bacteria on Earth, 3.5 Gyr ago,
the Earth would have been about 25 % closer to the Sun than at present.

For the Earth-Moon distance, the predicted recession is 2.8 cm per year. This
figure is consistent with the value of 2.2 ± 0.3 cm/yr that Dumin [10, 11] estimates
from the study of the difference between the measure of the Earth-Moon distance
by lunar ranging and the value estimated from the tidal deceleration of the Earth
rotation. He attributes this recession to the “local” Hubble expansion produced
by dark energy. Such comparisons are encouraging. They involve many complex
interactions and thus need to be further studied.

10. Conclusions

Following the discovery of the accelerated expansion, the situation in cosmology is
like if an interaction of an unknown nature opposes the gravitation. The hypotheses
we have made about the scale invariance of the empty space at large scales together
with the scale invariant cosmology seem to open a window on possible interesting
cosmological models, well meeting the observational constraints. The various careful
comparisons of models and observations made so far are positive and need to be
pursued. In view of further tests, a point about methodology is to be strongly
emphasized: to be valid, a test must be coherent and make no use of properties or
inferences from the framework of other cosmological models.

A. Appendix: derivation of the basic equations

We derive here the scale invariant equations in a straightforward way. Instead
of applying the Robertson-Walker metric to the scale invariant field equation, we
directly apply the scale transformations to the differential equations of cosmologies
obtained with the Robertson-Walker metric. These equations are

8πG%′

3
=

k

R′2
+
Ṙ′2

R′2
− ΛE

3
, (57)

−8 πGp′ =
k

R′2
+ 2

R̈′

R′
+
Ṙ′2

R′2
− ΛE . (58)
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There, ΛE is the Einstein cosmological constant, G is the gravitational constant, k is
the curvature parameter which may take values 0 and ±1, p′ and %′ are the pressure
and density in the system of General Relativity. Now, we make the transformations

R′ = λR and dt′ = λ dt . (59)

We get

Ṙ′ =
dR′

dt′
=
λ̇ R + λ Ṙ

λ
, (60)

where the dots indicate the time derivative in the considered system. Then, we have

Ṙ′

R′
=

1

λ

(
λ̇

λ
+
Ṙ

R

)
. (61)

The second derivative R̈′ becomes

R̈′ =
d(dR

′

dt′
)

dt
=

1

λ2
(λ̈R + 2λ̇Ṙ + λR̈)− (λ̇ R + λ Ṙ)

λ2

λ̇

λ
, (62)

and
R̈′

R′
=

1

λ2

(
λ̈

λ
+
λ̇ Ṙ

λR
+
R̈

R
− λ̇2

λ2

)
. (63)

Thus, by replacing in (57) we obtain

8πG%

3
=

k

R2
+
Ṙ2

R2
+ 2

λ̇ Ṙ

λR
+
λ̇2

λ2
− ΛEλ

2

3
(64)

and from (58) after simplifications,

−8πGp =
k

R2
+ 2

R̈

R
+ 2

λ̈

λ
+
Ṙ

R

2

+ 4
Ṙ λ̇

R λ
− λ̇2

λ2
− ΛE λ

2 . (65)

These equations are expressed in the general system where scale invariance is a
property. There, we have used the relations (9) imposed by the scale invariance of the
energy-momentum tensor. Equations (64) and (65) correspond to the results by [7].
At this stage, these relations do not account for the relations (13) and (14) expressing
the scale invariance of the empty space, which lead to essential simplifications.
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Abstract: We claim that a local expansion of the universe, whose rate is

comparable with the Hubble constant H0, had an essential influence on the

development of intelligent life on the Earth. We present more than 10 exam-

ples showing that some antigravitational effects of the cosmological constant

are observable locally in the Solar system.

It is known that the luminosity of the Sun increased approximately linearly

within the last 4.5Gyr starting at 70% of its present value. We give several

independent arguments showing that the average Earth-Sun distance increases

about 5m/yr due to antigravitational forces and such a large recession speed

cannot be explained by solar wind, tidal forces, plasma outbursts from the

Sun, or by the decrease of the Solar mass due to nuclear reactions. Mod-

els based on Newtonian mechanics can explain only a few cm per year. The

speed 5m/yr/au≈ 0.5H0 guarantees that the expansion of the Earth’s orbit is

just right for an almost constant influx of solar energy during the last 3.5Gyr

supporting the appearance of mankind and thus also the Anthropic Principle.

The measured average increase in the Earth-Moon distance is 3.84 cm/yr,

whereas Newtonian mechanics is able to explain only 2.1 cm/yr. We claim

that this difference is also caused by a local expansion of order 0.66H0. Mars

was much closer to the Sun as well, otherwise it could not have had rivers

3.5Gyr ago, when the Sun’s luminosity was only 75% of its present value.

The local Hubble expansion can again explain such a discrepancy and many

other paradoxes in the Solar system as well as at cosmological distances.

Keywords: Antigravity, habitable zone, law of conservation of energy, DNA

PACS: 04.20.-q; 04.25.-g

1. Introduction

In 1973 the Australian mathematician and theoretical physicist Brandon Carter

introduced the term “Anthropic Principle” [7]. This term was later developed and
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extended in the 1986 book The Anthropic Cosmological Principle [2] by John Barrow

and Frank Tipler. The so-called weak formulation of this principle states that all

fundamental physical constants have just such values that they enabled the origin

of life. Similarly, the strong formulation of this principle postulates that evolution

necessarily leads to the origin of humans (= Anthropos in Greek).

However, no physical constant should be considered as a standard mathematical

constant. For instance, the irrational numbers

π = 3.1415926535 . . . (Ludolf number),

e = 2.7182818284 . . . (Euler number),
√

2 = 1.4142135623 . . .

have infinitely many digits. On the other hand, the third decimal digit of the Newton

gravitational constant

G ≈ 6.674 · 10−11 m3kg−1s−2 (1)

is probably close to four, but the other digits are not known. In the future it will

be impossible to find e.g. one million digits of G, since physical constants have

a completely different character from real numbers. Physical constants should be

rather treated as “fuzzy numbers” or “interval arithmetic numbers” or the “density

of some probabilistic distribution function”.

Note that the Newtonian gravitational law represents only a certain idealization

of reality, since G is well defined only purely theoretically between two mass points

and no mass points exist in the real world. Therefore, the gravitational constant can

never be measured and stated with absolute exactness. The product GM , whereM is

the mass of a star, is proportional to the pressure inside the star. Hence, the value G
has an influence on the central temperature, luminosity of the star, its age, and many

other parameters. If G were to be only one part per million smaller or larger than its

current value, then all stars and also galaxies would evolve in a completely different

way, and hence the Earth could not come into being as it is.

The same is true also for other physical constants like the speed of light, mass of

the proton, charge of the electron, Planck’s constant, the dimensionless constant of

fine structure α ≈ 137−1, etc. The expansion rate of our Universe is also an important

parameter in the Anthropic principle. If this rate would be too large, galaxies and

stars would not arise. It it would be too small, the Universe would collapse and life

would not have enough time to appear. In this paper we will concentrate on the

Hubble constant H0 that described the expansion rate of the Universe and we show

how its value contributed to the origin and evolution of life on our Earth.

When Albert Einstein established his theory of general relativity, he assumed

that our Universe is stationary. He did not believe that it could expand. To avoid

a gravitational collapse of the Universe, in 1917 he introduced a positive cosmo-

logical constant Λ into his system of ten nonlinear hyperbolic partial differential

equations for gravitational potentials (see [13]). Its repulsive character enabled him
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to consider a stationary Universe. However, when the expansion of the Universe was

demonstrated by Vesto Mevlin Slipher, Gustav Strömberg, Georges E. Lemâıtre, and

Edwin Powell Hubble (see [44], [47], [29], [19]), Einstein admitted around 1929 that

the cosmological constant was the biggest blunder of his scientific career.

Nevertheless, in the seventies of the last century it was found by Beatrice Tins-

ley that Λ > 0 and that the expansion of the Universe is accelerating [49] (see

also [17]). Later this fact was confirmed by examining supernovae of type Ia (see

e.g. [37], [39], [40]) and a positive value of the cosmological constant was considered

again.

2. The standard cosmological model

2.1. The Hubble parameter

Giordano Bruno in his treatise De l’Infinito, Universo e Mondi (1584) stated that

our Universe is infinite, which is often considered as the origin of modern cosmology.

However, in 1900 Karl Schwarzschild [43] predicted that the Universe has a finite

volume and that it can be described by a large three-dimensional hypersphere

S
3
r =

{
(x, y, z, w) ∈ E

4
| x2 + y2 + z2 + w2 = r2

}
(2)

whose radius satisfies r > 100 000 000 au, where au is the astronomical unit and E
4 is

the four-dimensional Euclidean space.

According to Einstein’s cosmological principle, the Universe on large scales is

homogeneous and isotropic. Thus the above manifold (2) could be a good model of

the Universe, since it has at all points and in all principal directions the same constant

curvature kj = 1/r for j = 1, 2, 3, and thus also the Gauss-Kronecker curvature

k1k2k3 = 1/r3 is constant. There are other two maximally symmetric manifolds: the

three-dimensional Euclidean space E3 and the pseudosphere H
3
r (see [27] for details).

In this paper the Universe is modeled by a three-dimensional manifold that cor-

responds to some fixed time after the Big Bang (i.e. isochrone) in a four-dimensional

spacetime. Another manifold with a different curvature is the observable universe,

which can be seen only as a projection on the celestial sphere. Therefore, it is

necessary to distinguish very carefully between Universe, observable universe, and

spacetime, and also between model and physical reality (altogether 2×3 = 6 different

entities).

The expansion of the Universe is modeled by an expanding manifold (2) with

increasing radius r = r(t). The expansion rate is given by the Hubble parameter

H = H(t) whose present measured value is

H0 = H(t0) ≈ 70 km s−1Mpc−1 =
70

3.086 · 1019
s−1 = 2.27 · 10−18 s−1, (3)

where 1 pc= 3.086 · 1013 km and

t0 = 13.8 Gyr = 4.355 · 1017 s (4)
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is an approximate age of the Universe. In the standard cosmological model, the

Hubble parameter is defined as follows:

H(t) =
ȧ(t)

a(t)
, (5)

where a is the expansion function (sometimes called the scaling parameter) and the

dot stands for the time derivative. If the Universe is modeled by (2), then the

expansion function is equal to the radius, i.e., a(t) ≡ r(t).

2.2. Cosmological parameters

In 1922, Alexander A. Friedmann in footnote 11 of his groundbreaking paper [14]

proposed that the radius of the Universe is increasing from zero (the creation of the

world) to its present value. A similar observation was made by Lemâıtre [29] five

years later. Friedmann in [14], moreover, derived from the system of ten Einstein’s

equations for a perfectly symmetric space, which is for any fixed time homogeneous

and isotropic (cf. (2)), the nonlinear differential equation for the expansion rate of

the Universe
ȧ2

a2
=

8πGρ

3
+

Λc2

3
−

kc2

a2
, (6)

where a = a(t) is the unknown expansion function from (5), ρ = ρ(t) is the mean

mass density, Λ is the cosmological constant (see [32], [36]), c is the speed of light

in vacuum, k/a2 is the space curvature with k ∈ {−1, 0, 1} corresponding to the

pseudosphere H
3
r , the Euclidean space E

3, and the hypersphere S
3
r, respectively.

Dividing the above differential equation (6) by H2 > 0, we get from (5) for any

time instant t the equation for three dimensionless parameters

1 = ΩM(t) + ΩΛ(t) + ΩK(t), (7)

where ΩM is the density of dark and baryonic matter, ΩΛ is the density of dark

energy, ΩK is the density of spatial curvature, and

ΩM(t) :=
8πGρ(t)

3H2(t)
, ΩΛ(t) :=

Λc2

3H2(t)
, ΩK(t) := −

kc2

H2(t)a2(t)
. (8)

Equation (7) thus determines the relation between the density of mass, density of

energy and space curvature. According to the measurements reported in [39] and [40],

we have ΩM ≈ 0.3 and ΩΛ ≈ 0.71 at present which means that the Universe is nicely

balanced between gravity and antigravitational forces due to dark energy, and could

have a positive curvature k = 1 which follows from (7) and (8), see [42], i.e.,

ΩK(t0) = 1− ΩM(t0)− ΩΛ(t0) ≈ −0.01, (9)

where a(t0) is the present radius of the Universe. From this and (8) we find that the

radius is unimaginably large,

a(t0) ≈
10c

H0

≈ 1.3 · 1027 m ≈ 140 Gly.
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By (8) and (3) we find that (cf. coefficients in the Taylor expansion (40))

Λ ≈ 0.71 · 3H2
0/c

2 = 1.22 · 10−52m−2. (10)

For k = 0 we would get ΩM + ΩΛ = 1. However, this equality cannot be proved

by any measurements which always show some error. Finally note that for k = −1

the pseudosphere H
3
r can be isometrically imbedded into the Euclidean space E

12,

see [4], [27, p. 279], but it is not known whether the dimension 12 can be reduced.

3. Global and local expansion of the Universe

3.1. A possible source of the overall expansion

An extremely small deviation ε > 0 of the real position of some body (comet,

planet, star, etc.) from Newtonian mechanics during one year may cause after one

billion years a quite large and detectable value of 109ε. All small deviations from

Newtonian mechanics are usually not cancelled, but accumulated and then possibly

observed. We show that a substantial portion of these accumulated deviations can

be interpreted as dark energy.

Therefore, it seems that the conservation of energy law in reality does not hold,

since we must introduce dark energy [1] in order to explain a number of surprising

phenomena including the accelerated expansion of our Universe. In [25] we showed

that gravitational aberration caused by the finite speed of gravitational interaction

could produce the sought source for dark energy. The accelerated expansion of our

Universe is then due to repulsive antigravitational forces of dark energy [15]. In this

paper we survey some results on this topic from [23]–[27].

Dark energy is spread almost uniformly everywhere in the Universe. Thus it has

an essential influence on the Hubble parameter H = H(t) which characterizes the

speed of the expansion for a given time t. In the classical monograph [32, p. 735]

which appeared when dark energy was not known, it is assumed that the Hubble

parameter behaves as follows

H̃(t) =
2

3t
, (11)

in the matter-dominated era. We see that the function H̃ = H̃(t) is decreasing with

time due to the Big Bang and subsequent gravitational interaction that slows down

the expansion due to baryonic (and other mass particles) matter and (possible) dark

matter. However, by astronomical observations (see [37], [38], [39]) we know that

the expansion of the Universe has accelerated for the last 5Gyr. It is said that the

energy needed for the accelerated expansion is dark energy.

Substituting t0 from (4) into (11), we get H̃(t0) = 1.53 · 10−18 s−1. From this

and (3), we find that

H(t0)− H̃(t0) = 0.74 · 10−18 s−1.

Note that this difference is very roughly of the same order as H̃(t0).

Remark 3.1. Several real-world examples below (see e.g. (17), (26), (32), (36))

indicate the local influence of H(t0) in the Solar system.
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3.2. The Hubble constant rescaled to one astronomical unit

At present the astronomical unit is defined as follows

1 au = 149 597 870 700 m ≈ 150 · 109 m (12)

and it is almost equal to the semimajor axis of the Earth’s elliptic orbit. Now we will

recalibrate H0 to 1 au. We claim that an equivalent value of the Hubble constant (3)

is approximately

H0 = 10 myr−1au−1. (13)

To see this we note that one sidereal year has about 31 558 150 s and 1 pc= 206 265 au.

Then by (3) we find that

H0 ≈ 70 km s−1Mpc−1 = 70 m s−1kpc−1 =
70 · 31 558 150

206 265 000
myr−1au−1.

Now from (12) and (13) we observe that 1m3 of the space expands on average

0.2mm3 per year, namely

(
1 +

10

150 · 109

)3

≈ 1 + 3
10

150 · 109
= 1 + 0.2 · 10−9. (14)

The numbers stated above are so large that manifestations of dark energy should

be detected within our own Solar system (see [26]). We will demonstrate this in

Sections 4–6. In particular, the average recession speed of the Earth from the Sun

is about five meters per year. This together with (13) gives the following local

expansion rate

H
(loc)
0 ≈ 0.5H0. (15)

Remark 3.2. Each cubic meter of the space t = 4.5 · 109 years ago has increased

on average at least twice its volume up to now. To see this, we take q in the interval

[0.16 · 10−9, 0.2 · 10−9] (cf. (14)). Then

(1 + q)t = exp(t log(1 + q)) ≈ eqt ∈ [2, 2.5].

Remark 3.3. Let us point out that the Solar system can be assumed to be

sufficiently isolated from the influence of other stars. For instance, the gravitational

force of the nearest star α-Centauri on Earth is one million times smaller than the

gravitational force of Venus.

We give more than 10 examples showing that some repulsive antigravitational

forces can be detected in the Solar system by means of a wide interdisciplinary

approach. We present several geophysical, heliophysical, climatological, geochrono-

metrical, paleontological, astrobiological, mathematical, computational, geometrical,

and astronomical observational arguments to support this conjecture that enables us

to explain a number of classical paradoxes such as the Faint Young Sun Paradox, the

very large orbital momentum of our Moon, the formation of Neptune and the Kuiper
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belt, an unexplained residual in the orbit of Neptune and migration of other planets,

rivers on Mars, the Tidal Catastrophe Paradox of the Moon, the synchronous rota-

tion of Iapetus, the Cosmological Constant Problem, the Accelerated Expansion of

the Universe, Dark Energy Mystery, etc.

4. Slowly expanding habitable zone around the Sun and the Anthropic

Principle

In this section we present three independent arguments showing that the average

recession speed of the Earth from the Sun is roughly about 5m/yr. The fourth

argument is given in the end of Subsection 6.2. Dark energy is distributed almost

uniformly in the Universe. There is no reason to assume that dark energy would

somehow avoid the Solar system. Thus, it should also be present around the Sun. In

Subsection 7.1 we show where the other authors have underestimated its existence

in our neighborhood.

4.1. Stabilization of the habitable zone by dark energy

Life on Earth has existed continually for at least 3.5Gyr and this requires rela-

tively stable conditions during this very long time period. The constant solar flux

thus would guarantee suitable conditions for life on the Earth. However, since the

Sun is a star on the main sequence of the HR diagram, its luminosity increased

approximately linearly within the last 4.5Gyr (see Figure 1). The initial value of

the luminosity was only 70% of its present value. This leads to the paradox which

is usually referred as the Faint Young Sun, see e.g. [16] and [28]. The mean tem-

perature on the surface of Earth would have been much below the freezing point,

in contrast with the absence of glaciation in the first 2.7Gyr (see [3, p. 177]). It is

believed that the greenhouse effect, higher level of radioactivity, impacts of comets,

and more volcanism 3.5Gyr ago are not able to explain this paradox.

100%
90%
80%
70%

L / L 0

birth
Sun’s

−3 −1.5 0
t

−4.5
Today

Figure 1: Relative luminosity L/L0 of the Sun from the origin of the Solar system

up to the present. The time t is given in Gyr.

71



Anyway, the Faint Young Sun paradox can be easily explained by dark energy,

see [26]. Assume for a moment that the average recession speed of the Earth from

the Sun during the last 3.5Gyr was

v = 5.2 m/yr (16)

which by (13) gives

H
(loc)
0 ≈ 0.52H0 (17)

for the expansion of the Earth-Sun system. We claim that in this case the Earth

would receive an almost constant flux density of energy comparable with the solar

constant1

L0 = 1.36 kWm−2 (18)

over a very long period of the last 3.5Gyr.

To see this we put τ = −3.5Gyr. Since the luminosity of the Sun increases

approximately linearly with time and it was only about 77% of its present value for

t = τ (see Figure 1), we set

L(t) =
(
1− 0.23

t

τ

)
L0 for all t ∈ [τ, 0].

From now on, 0 will stand for the present time, i.e. L(0) = L0 and we observe

that L(τ) = 0.77L0. Since the luminosity decreases with the square of the distance,

we get for

Lopt(t) =
L(t)R2

(R + vt)2
, t ∈ [τ, 0], (19)

where R = 1 au and v is given by (16), that

Lopt(t) ≈ 1.36± 0.005 kWm−2 for all t ∈ [τ, 0]. (20)

The very small interval on the right-hand side of formula (20) can be easily

derived analytically by investigating the rational function Lopt(t), see [27, p. 214].

This would, of course, guarantee very stable conditions for the development of

intelligent life on Earth over a very long period of 3.5Gyr. In particular, the amount

of dark energy seems to be just right for an almost constant influx of solar energy

and thus also for the appearance of mankind.

Dark energy thus presents further support for the (weak) Anthropic Principle,

which states that basic physical constants are favorable for the emergence of life only

if they are in very narrow intervals [26]. Moreover, the speed in (16) is optimal in

the sense that any other slightly different speed would not yield an almost constant

flux of the rational function in (19) on the time interval 3.5Gyr. Thus it is probable

1The total solar power incident per unit perpendicularly to rays at the top of the Earth’s

atmosphere (corrected to 1 au given by (12)) is equal to the solar constant.
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Figure 2: Schematic illustration of the expansion of the ecosphere during the last

3.5 billion years.

that the real average recession speed of the Earth from the Sun was close to the

value 5.2m/yr (see (15), (20), and Remarks 4.1–4.2 below).

The real average speed of the Earth from the Sun could be even slightly higher

than (16), since the temperature of oceans 3.5Gyr ago was about 80 ◦C, see [30]. It is

known that a decrease of luminosity of only a few percent caused ice ages in the past.

A decrease larger than 5% would cause total glaciation of the whole planet. On the

other hand, since DNA of multicellular organisms decays at temperature over 57 ◦C,

there was not too high a temperature on the Earth during the last 500 Myr. This

follows from paleontological finding over the whole surface of Earth.

A decrease or increase of the solar constant (18) up to 5% corresponds to a ring

— popularly called the ecosphere (habitable zone) — with radii (0.95)1/2 au and

(1.05)1/2 au that represents a very narrow interval 145.8–153.3 million km (see Fig-

ure 2).

Remark 4.1. The recession speed (16) guarantees very stable conditions for seve-

ral Gyr also in the future. For instance, during the next 3.5Gyr from now on the

luminosity of the Sun will be in the interval 1.32–1.36 kWm−2 if it behaves as in (19).

Remark 4.2. The linear function L(t) = (1− 0.23t/τ)L0 (cf. Figure 1) is in some

models replaced by the rational function (see e.g. [3, p. 177])

L̂(t) =
L0

1 + 0.3t/τ0
, t ∈ [τ, 0],

where τ0 = −4.5Gyr. In this case the optimal average recession speed (guaranteeing

an almost constant luminosity) is v = 4.36m/yr.

Remark 4.3. By [22], the present recession speed is only v = 0.15m/yr if it is

derived from classical mechanics without taking into account dark energy. However,

for such a small speed v the luminosity of the Sun would very be far from being

almost constant. All oceans would evaporate within less than 1Gyr. We will return

to this problem in Subsection 7.1.
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4.2. Analysis of growth patterns on fossil corals from solar data

In this section we recall the method proposed by Weijia Zhang et al. [56]. The

present value of the sidereal year is

Y = Y (0) = 365.25636 · 24 · 3600 s = 31 558 149.54 s. (21)

However, the length of the sidereal year in seconds in ancient time was

Y (t) = n(t)(24 · 3600− f(t)t), t ≤ 0, (22)

where (−t) is the geological age in years, t = 0 corresponds to the present time,

f = f(t) > 0 characterizes the slowdown of the Earth’s rotation, more precisely,

f(t) is the average increase of the length of the day per year during the last (−t) years.
Finally, n(t) is the number of ancient days per year which is known from paleonto-

logical data by means of calculating the number of layers deposited during one year

in fossil corals. Namely, each coral increases during one day by a few microns, more

in summer and less in winter. Examining data for several consecutive years (e.g. lay-

ers that arose during twelve years are investigated in [35]), allows us to minimize

the error in determining the number of days in a year. Hundreds of patterns were

examined by microscope e.g. in [56, pp. 4013–4014].

One should have at least four consecutive years of data (e.g. twelve years as

in [35]) to reduce the error in the calculations. In particular, for the Devonian era

Zhang et al. [56], [57] found that n(τ) ≈ 405 days for τ = −370 · 106 years ago.

A similar value of about 400 days can be found in the classic paper by Wells [54]

from the seventies. Due to larger tidal forces when the Moon was closer to the Earth

and the Earth was closer to the Sun, the function f is decreasing. Note that tidal

forces decrease cubically with distance, see [3, p. 96]. According to [56, p. 4014],

f(τ) = 2.6 · 10−5 s per year, whereas the current value is

f(0) = 1.7 · 10−5 s/yr. (23)

It was measured with respect to some fixed quasars at cosmological distances.

Another method uses the Babylonian timings of solar eclipses (see Figure 3),

∆t ≈ f(0)Y (1 + 2 + · · ·+N),

where ∆t is the measured value between the Ephemeris Time ET and the Universal

Time UT, N is the corresponding number of years, and Y ≈ 365.25 days is the

sidereal year, i.e., f(0) ≈ 2∆t/(Y N(N + 1)) ≈ 1.5 · 10−5 s/yr which is close to the

value given in (23). The Earth’s rotational history (paleorotation) is examined e.g.

in [35], [55]. Substituting the above data into (22), we get

Y (τ) = 405(24 · 3600− 2.6 · 10−5
· 370 · 106) s = 405 · 76780 s = 31 095 900 s,

i.e., the day in the Devonian era had about 76 780 seconds (≈ 21.327 hours), cf. (21).
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Figure 3: Secular slow-down of Earth’s rotation according to [46, pp. 518–523]. The

vertical axis indicates the behavior of the difference ∆t = ET − UT between the

Ephemeris Time ET and the Universal Time UT in seconds. The horizontal axis

shows the corresponding year. Babylonian timings of solar eclipses are marked by ×,

Greek by ◦, Arab by o, and Chinese by +.

Denote by R(t) the Earth’s semimajor axis at time t. For a very short time period

Kepler’s third law

R3(t)

Y 2(t)
=

GM
⊙

4π2
(24)

describes reality quite well. Here

M
⊙
= 1.989 · 1030 kg (25)

is the Sun’s mass which can be assumed to be constant as we shall derive in Sub-

section 5.4. Note that Kepler’s laws are not reliable over long time periods, since

planets migrate. Thus, applying (22)–(25) for t = τ , we get

R(τ) =
(Y 2(τ)GM

⊙

4π2

)1/3

= 148.1 · 109 m.
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This together with (12) yields the following average recession speed which has the

same order of magnitude as that in (16) or Remark 4.2,

v =
R(τ)− R(0)

τ
=

(149.6− 148.1) · 109

370 · 106
= 4.01 (m/yr)

which leads by (13) to the local Hubble expansion (cf. also [48, p. 72])

H
(loc)
0 = 0.4H0. (26)

A drawback of this method is that v is sensitive to the particular choice of n(τ)
and f(τ). Therefore, Zhang et al. [56, p. 4016] used hundreds of paleontological data

from various epochs starting from the Cambrian era. They derived somewhat higher

average recession speed

H
(loc)
0 = 0.57H0,

which is again in good agreement with (16). From their Figure 4 of [56] we find that

during the last 500Myr the Earth-Sun distance increased about 3 million km. This

implies an average recession speed of 6m/yr leading to H
(loc)
0 = 0.6H0.

Remark 4.4. By (16) the semimajor axis R = 1 au of Earth’s orbit increases on

average about ∆R = 5.2m per sidereal year. However, such a small change cannot

be reliably detected, since the Newtonian barycenter of the Solar system travels

hundreds of thousands km per year due to the influence of large planets [27, p. 192].

From Kepler’s third law
(R +∆R)3

(Y +∆Y )2
=

R3

Y 2

we can easily find that the increase of the orbital period of the Earth after one year

would be only ∆Y = 1.6ms. In particular,

Y 2(R3 + 3R2∆R + · · · ) = R3(Y 2 + 2Y∆Y + · · · ).

Neglecting higher order terms, we get by (21) and (12) that

∆Y ≈

3Y

2R
∆R = 0.0016 s. (27)

Such a small time change also cannot be reliably detected, since one or two ad-

ditional leap-seconds are usually added every year to compensate for the slowing of

Earth’s rotation. The increase of the orbital period by about ∆Y = 1.6ms would re-

quire one additional second after 34 years, since after two years we have to add 2∆Y ,

after 3 years 3∆Y , etc. From this we get

(1 + 2 + · · ·+ 35)∆Y = (1 + 35)
35

2
· 0.0016 s ≈ 1 s.

This makes the evidence of a slightly increasing orbital period very difficult to obtain.

Remark 4.5. Secular variations in the ancient Earth-Sun distance were not uni-

form (see [57]). We believe that some nonuniformity may arise e.g. by passage of

the Solar system through Galaxy arms that represent large potential holes.
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4.3. Analysis of growth patterns on fossil corals from lunar data

Let P = P (t) be the length of the sidereal month and s = s(t) the number of

sidereal months per year. At present it is P (0) = 27.322 days and s(0) = 13.368.
The number s(t) is known from paleontological data for many negative t′s, since
s equals one plus the number of lunar months. The number of lunar months can be

manually calculated from many growth patterns on coral fossils (see [54, p. 4012]).

Note that in the Cambrian era, the Moon was about 20 000 km closer to the Earth

than it is now, so its angular area was more than 10% larger than it is now and

thus lunar patterns are better visible on fossil corals. In particular, s(τ) ≈ 14.2 for

τ = −5 · 108 years according to [56, p. 4013].

Using the generalized Kepler’s third law for the Earth-Moon system, we obtain

the length of the year

Y (t) = s(t)P (t) = s(t)
(
(D + w(t)t)3

4π2

G(M +m)

)1/2

, (28)

where

D = 384.402 · 106m (29)

is the present mean distance between the Earth and the Moon,

M = 5.9736 · 1024 kg, m = 7.349 · 1022 kg (30)

are their masses, and w(t) is the recession speed of the Moon from the Earth. Due to

larger tidal forces when the Moon was closer to the Earth, the function w is slowly

decreasing from the past to the present time. By laser retroreflectors installed by the

Apollo missions 11, 14, 15, and Lunokhod 2 on the Moon more than 40 years ago

it has been found that the present mean distance D between the Earth and Moon

increases at the present time by about

w(0) = 3.84 cm/yr. (31)

From this, (24), (28), (1), (30), and (29) we get for t = τ = −5 · 108 yr the following

upper estimate

R(τ) =
(
Y 2(τ)

GM
⊙

4π2

)1/3

= s(τ)2/3
( M

⊙

M +m

)1/3

(384.402 · 106 + w(τ)τ)

< 14.22/33289191/3(384.402 · 106 + w(0)τ) = 147.8 · 109 (m).

This yields the following lower bound for the average recession speed of the Earth

from the Sun

v =
R(τ)− R(0)

τ
>

(149.6− 147.8) · 109

5 · 108
= 3.6 (m/yr),

i.e.

H
(loc)
0 > 0.36H0. (32)
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By a thorough analysis of growth patterns on fossil corals from lunar data (which

are independent of solar data) Zhang et al. [56, pp. 4013–4016] got further values

of s(t) for other time epochs t leading to the expansion rate H
(loc)
0 ≈ 0.57H0. Note

that Pannella [35] derived that the synodic month was 36–39 days 1.75Gyr ago.

5. Elimination of other possibilities for the large recession speed

5.1. Solar radiation

First we show that solar radiation is not able to explain a large speed similar

to (16). The area of the cross section of our Earth is S = π(6.378 · 106)2m2 =

1.277964 · 1014m2. From this and (21), the total energy coming from the Sun during

one year is

E = SY L0 = 5.4 · 1024 J, (33)

where L0 is given by (18).

Now denote Ei, λi, νi, and pi to be respectively the energy, wave length, frequency,

and force impulse of the ith photon. Then we have

pi =
h

λi

=
hνi
c

=
Ei

c
,

where h is Planck’s constant and

c
.
= 3 · 108 m/s

the speed of light in vacuum. Summing this equation over all photons coming to the

Earth from the Sun during one year, we get by (33) that

p =
∑

i

pi =
E

c
=

5.4 · 1024

3 · 108
= 1.8 · 1016 (kgm/s).

However, by (30) and (21) we find that

v =
p

M
= 9.5 cm/yr,

which is a much smaller speed than that given in (16).

5.2. Tidal forces

TheEarth’s rotation slows downmainly due to tidal forces of theMoon (cca 68.5%),

but also of the Sun (cca 31.5%), see [5]. Note that tidal forces (per 1 kg of the Earth)

are equal to 2GM
⊙
r/R3, where the mass M

⊙
of the Sun is given by (25), R = 1au,

and r is the Earth’s radius. By the above arguments, the Earth-Sun distance in-

creases by about only a few cm per year due to tidal forces (see [34] and [3, p. 606]).
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5.3. Decrease of the Solar mass due to nuclear reactions

One atom of helium is 0.7% lighter than 4 atoms of hydrogen. This means that at

most 0.7% of the Sun’s mass changes into energy during 10Gyr (the life period of the

Sun). When the Sun was born, it already contained about 30% helium. Hydrogen

changes into helium only in central parts of the Sun and by the end of the time on

the main sequence, the Sun will still contain a lot of hydrogen. Since only about

10% of the hydrogen is converted to helium over the lifetime of the Sun, we may

assume that only 0.07% of the Sun’s mass will change into energy. In this way the

Sun loses 0.0007M
⊙
/(1010 · π107) = 4.46 · 109 kg per second due to (25) and (21).

This is an essential part of the total mass losses collected in the next Subsection 5.4.

5.4. Plasma outbursts from the Sun

If the speed of a solar plasma outburst is larger than 613 (resp. 434) km/s, then

plasma can escape the Solar system (resp. Sun) which reduces the Sun’s mass as

well. For smaller speeds plasma falls back down to the Sun.

By Noerdlinger [33] the Sun loses every second altogether 5.75 ·109 kg of its mass

due to solar wind, electromagnetic radiation, neutrino losses, and large eruptions.

Taking into account that mass losses during one year (see (21)) are 1.815 ·1017 kg/yr,
we find by (25) that

Ṁ
⊙
(t)

M
⊙
(t)

= C with C = −9.13 · 10−14 yr−1,

where M
⊙
(0) = M

⊙
is given by (25). Since the orbits of the planets expand at

the same rate [33], we find by (12) that the average recession speed of the Earth

from the Sun due to the radiative and particle loss of Sun’s mass is approximately

9.13 · 10−14 yr−1
· 149.6 · 1011 cm

.
= 1.4 cm/yr.

Since M
⊙
(t) = M

⊙
eCt, changes of the Sun’s mass are negligible. For instance, if

t = −370 · 106 yr (which corresponds to the Devonian era), we find that M
⊙
(t) =

1.989067 · 1030 kg (cf. (25)).

5.5. How much dark energy is generated by the Earth-Sun system per

year?

Contributions to the recession speed of the Earth from the Sun as given in Sub-

sections 5.1–5.4 are so small that they are not able to explain a large speed close

to (16) by classical physics. So let us estimate the amount of dark energy that our

Earth-Sun system continuously generates.

For simplicity first assume that the Earth has a circular orbit with ra-

dius R = 149.6 · 109m around the Sun (cf. (12)). According to Kepler’s third law

R3/Y 2 = GM
⊙
/4π2, where Y is the period of one year (see (21)), the total mechanical

energy (kinetic + potential) can be expressed as

E(R) =
M

2

(2πR
Y

)2

−

GMM
⊙

R
= −

GMM
⊙

2R
. (34)
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Second assume that the Earth’s trajectory is a spiral so that (16) holds. Then

from (34), (1), (30), (25), and (12) the annual increase of total energy is

E(R +∆R)−E(R) =
1

2
GMM

⊙

( 1

R
−

1

R +∆R

)
= 9.4 · 1022 J,

where ∆R = 5.2m (cf. (16)). This large value corresponds by (21) to a continuous

power of

η = 2975TW

of dark energy that would shift the Earth 5.2m per year further from the Sun. Such

a natural perpetuum mobile produces, in fact, potential energy for free. Its amount is

much larger than the total production of electricity on Earth. For another recession

speed ṽ (different from (16)) the associated power is clearly equal to 2975 · ṽ/vTW.

6. Further testable hypotheses of the slow expansion of the Solar system

6.1. The Earth-Moon distance increases more than can be explained by

tidal forces

The first observed discordance between the acceleration of the Moon’s mean lon-

gitude utilizing Ephemeris Time and Atomic Time has been reported in van Flan-

dern [50] in 1975. By laser measurements we know that the present mean distance

D = 384 402 km

between the Earth and Moon increases by about 3.8 cm per year, see (31). Tidal

forces can explain only 55% of this value, i.e., 2.1 cm per year as we shall se below.

This lunar orbital anomaly is usually referred to as the Tidal Catastrophe Paradox

(see [51]). However, the remaining part

δ = 0.45 · 3.8 = 1.7 cm/yr (35)

could be due to dark energy that is determined by the local Hubble constant H
(loc)
0 .

In [56, p. 4016] a very similar averaged value δ ≈ 1.6 cm/yr during the last

500Myr is independently obtained by measurements of growth patterns on fossil

corals. This method uses geochronometrical techniques introduced in Wells [54].

The large value in (35) is derived from the following facts. Earth’s rotation slows

down mainly due to tidal forces of the Moon (cca 68.5%), see Subsection 5.2. By

a thorough analysis of the Ancient Babylonians’ records of solar eclipses [41] we know

that the length of a day increases by 1.7 · 10−5 s per year during the last 2700 years

(see (23)). By the conservation of the total momentumM of the Earth-Moon system,

the value

M = I1ω1 + I2ω2 +m1R1v1 +m2R2v2

has to be constant. Here I1 and I2 are the inertial moments of the Earth and Moon,

ω1 = 2π/Y and ω2 are their angular frequencies, m1 = M and m2 = m (see (30)),
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v1 and v2 are the speeds of the Earth and Moon, respectively, relative to their

center of gravity, and the corresponding distances satisfy D = R1 + R2. Since the

decrease of the Moon’s angular momentum is negligible, we can derive from (23) that

that dD/dt = 0.674 · 10−9m/s (for a detailed calculation see [25, pp. 1034–1037]).

However, the observed value corresponding to the real recession speed of 3.8 cm/yr

is much higher, namely dD/dt = 1.2 · 10−9m/s. Putting these values together, we

obtain by (31) that 1.7 ≈ 3.8(1.2−0.674)/1.2 cm/yr which is the speed given in (35).

Recalibrating H0 to the Earth-Moon distance D, we easily get by (13) and (12)

that H0 = 2.57 cmyr−1D−1 and thus for the expansion of the Earth-Moon system

we get by (35)

H
(loc)
0 ≈

1.7H0

2.57
= 0.66H0 (36)

which is in a good agreement with (15).

In 2003, Y. Dumin (see [10, p. 2463]) derived from astrometric measurements

corrected to ancient eclipses the local expansion rate of

H
(loc)
0 ≈ 0.5H0

for the Earth–Moon system. In his paper [11] from 2008 this value was increased to

H
(loc)
0 ≈ 0.85H0 for the data from the last three centuries (cf. (36)). His method is

further developed in [12]. See also [48, p. 66].

6.2. Mars was much closer to the Sun when there were rivers

The present mean Mars-Sun distance is about r = 225 · 109m. Mars had liquid

water on its surface 3–4Gyr ago which was deduced from the number of craters

in its dry riverbeds (see Figure 4). Neither wind nor lava can create such sinuous

formations. At that time the Sun’s luminosity was about 75% of its current value.

The bold interval on the time axis of Figure 1 indicates the period when Mars had

liquid water on its surface. Since the solar power decreases with the square of the

distance from the Sun, the corresponding luminosity would be by (12) only

LMars = 0.75L0
1502

2252
=

L0

3
,

which corresponds to a 67%-decrease of the solar constant L0 (see (18)). In this

case the existence of rivers on Mars would be impossible. Note that a decrease

of L0 by only 2% causes ice ages on the Earth, even though there is the greenhouse

effect. An ancient atmosphere on Mars 3–4Gyr ago had one-third to two-thirds of

the surface atmospheric pressure as Earth has today (for details see [18]). Higher

concentration of CO2 (as suggested by [3, p. 177]) surely contributed to a higher

surface temperature on Mars, but cannot fully explain liquid water there because
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Figure 4: Dry riverbeds on Mars tending to the ancient sea at the bottom right. The

center of the image (whose dimensions are 175× 125 km2) is at 42.3◦ south Martian

latitude and 92.7◦ west longitude (photo NASA).

of the huge 67%-decrease of the luminosity. Therefore, Mars must have been much

closer to the Sun to account for liquid water.2

According to Google Mars Maps (see also Figure 4) there were many lakes and

hundreds of large rivers whose dry riverbeds are now between −50◦ and 50◦ of Mar-

tian latitude. Due to measurements of the missions Viking I and II, Pathfinder,

Spirit, etc., we know that the current annual average temperature (about −60◦C ne-

glecting the greenhouse effect) on Mars is very much below the freezing point of

water.

By the Stefan-Boltzmann law, the equilibrium temperature Teq at the distance r
from the Sun satisfies σT4

eq = L
⊙
/(4πr2), where L

⊙
= 3.846 · 1026W is the present

value of the total Solar luminosity and σ = 5.669 · 10−8 Wm−2K−4 is the Stefan-

Boltzmann constant. Since Mars’ surface area is four times larger than the area of

its maximal cross-section, the current overall average surface temperature can be

estimated by the Stefan-Boltzmann law as follows:

TMars =
1

2

((1−A)L
⊙

πσr2

)1/4

= 211 K, (37)

where A = 0.25 is the present value of the Bond albedo. We see that TMars is really

very close to the yearly planetwide mean measured temperature ≈ −60◦C. When the

Sun’s luminosity was 75% of the present value (see Figure 1), we get from (37) only

TMars = 196K. For such a low temperature the greenhouse effect cannot explain the

existence of rivers on Mars. Note that if the temperature of water is 273.16K and

2Johannes Kepler inspired by Mars’ elliptic trajectory formulated his famous three laws on

planetary motion. We were also inspired by Mars to state that there exist antigravitational forces

which very slowly push Mars away from the Sun along a spiral trajectory.
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Figure 5: The triple point in the phase diagram of water. The average temperature

and pressure on the Earth and Mars is indicated by a small bullet. Boxes show

approximate ranges of temperature and pressure that can be achieved on the Earth

and Mars. The vertical axis has the logarithmic scale.

the pressure 611.7Pa, then water can exist simultaneously in gaseous, liquid, and

solid state. This is called a triple point (see Figure 5). As a consequence we must

conclude that Mars has been moving away from the Sun with an average speed of at

least several meters per year as in (16).

When the Sun’s luminosity was only 0.75L
⊙
, then similarly we would get r =

116.782 · 106 km to reach the freezing point of water TMars = 273.15K. However, this

distance is more than 100 million km smaller than the current radius r = 225·106 km.

The infrared emissivity does not change these values too much.

The above arguments show that Mars must have been closer to the Sun by several

tens of million km when it had liquid water (Figure 6). By (15) and (13) recalculated

to the Mars-Sun distance, we find that Mars could move further from the Sun by an

amount of at least 30 (= 4 · 5 · 225/150) million km during the last 4Gyr. Therefore,

the Earth also had to be closer to the Sun. Otherwise orbits of the Earth and Mars

would be unstable.

6.3. Neptune was formed much closer to the Sun than it is now

It is an open problem how Neptune could be formed as far away as r = 30 au

from the Sun, where all movements are very slow [3]. By Kepler’s third law its

mean velocity is
√
GM

⊙
/r = 5.43 km/s. To reach Neptune’s mass of about 1026 kg

during its first 100milion years of existence, the proto-Neptune would have had to

pick up an average of 30 billion kilograms of material per second in a very sparse

environment.

Standish in [45] observed a small anomalous delay in Neptune position. The
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Figure 6: Sediments in the Gale crater taken by the Curiosity mission represent

a further proof of liquid water on Mars during a long time period. An open problem

is why all layers have almost the same thickness and which physical mechanism could

produce such a perfect periodicity (photo NASA).

subsequent searches for Planet X have been unsuccessful, but antigravity can again

explain this paradox.

Assuming (15), Neptune could be formed more than 4.5 au closer to the Sun than

it is now. Indeed, the increase d of its distance from the Sun can be bounded from

below as follows:

d > (4.5 · 109 yr) · (5m/(yr au)) · 30 au = 4.5 · 150 · 109m = 4.5 au.

Similarly to (27) we obtain that

∆P ≈

3P

2r
∆r,

where P = 164.79 yr is the orbital period of Neptune around the Sun. Thus, after

one period P , Neptune will be delayed by about the angle α for which

tanα ≈

∆P

r

2πr

P
=

2π∆P

P
=

3π∆r

r
.

From this and (16) we find that

α ≈

∆P

R

2πR

P
=

2π∆P

P
≈

3π∆R

R
= 0.01′′.

Note that such small anomalous unexplained delays on the order of several milliarc-

seconds per century have already been observed [45].
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Figure 7: Eleven fast satellites of Uranus and their three neighbors (Miranda, Mab,

Puck) above the stationary orbit. Below this orbit the tidal forces and antigravi-

tational forces are subtracted, since they have opposite directions, whereas above

this orbit they are summed coherently. The distances between neighboring satellites

above the stationary orbit are substantially greater than below it.

To keep energy conserved, the famous Nice model assumes a breakneck exchange

of large planets, but does not explain how the rich families of their moons could

survive such an exchange. Also backward integration does not give initial conditions

for the Nice model (see [27, p. 234] for details).

6.4. Fast satellites

In the Solar system we know of 19 satellites of Mars, Jupiter, Uranus (see Fig-

ure 7), and Neptune that are below the corresponding stationary orbit with radius

(cf. Kepler’s third law (24))

ri =
(GmiP

2
i

4π2

)1/3

, (38)

where mi is the mass of the ith planet and Pi is its sidereal rotation. We call them

fast, since their orbital period is smaller than Pi. From a statistical point of view it

is very unlikely that all these satellites would have been captured, since all of them

move in the same direction on circular orbits with almost zero inclination. Therefore,

they have been mostly in their orbits for approximately 4.5Gyr even though some

may be parts of larger disintegrating satellites.

By Newtonian mechanics tidal bulges continuously reduce potential energy and

orbital periods of these fast satellites to keep the total orbital momentum constant.
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Due to tidal forces they should approach their mother planets along spiral trajecto-

ries. Assuming their approaching speeds of 1–2 cm per year, we find that they should

be 45 000–90 000 km closer to their mother planets during the 4.5Gyr of their exis-

tence. However, this contradicts the fact that the radii of the respective stationary or-

bits of Uranus or Neptune are r7 = 82 675 km and r8 = 83 496 km. For the time being,

their fast satellites are on very high orbits with radii cca 50 000–76 000km. Moreover,

by (38) the radii of stationary orbits were much smaller in the past (cf. [3, p. 440]),

since the rotations of the planets were faster.

It is again antigravity which acts in the opposite direction than gravity and thus

protects the fast satellites against crashing onto their mother planet (see Figure 7

and also [25] and [26] for details).

6.5. Mercury and Venus

The influence of antigravity over such a long duration left further footprints in

the Solar system. They are recorded in the physical characteristics of planets. For

instance, the rotation of Mercury is very slow (59 days) due to larger tidal forces

when the planet was closer to the Sun. We know that tidal forces decrease cubically

with distance. Thus, if Mercury were, e.g. 10 million km closer to the Sun 4.5Gyr

ago, then the tidal forces would be twice as large as today. This could essentially

slow down the rotation of Mercury.

Since the Earth probably was 25 million km closer to the Sun 4.5Gyr ago due

to (16), leading to a distance of 125 million km from the Sun, Venus (whose present

mean distance from the Sun is 108 million km) also had to be closer to the Sun.

Otherwise their orbits would be unstable.

Moreover, Mercury and also Venus have no moons, since the corresponding lunar

orbits would be unstable when they were closer to the Sun.

According to H. Spencer Jones [20], the measured secular accelerations of Mercury

and Venus are proportional to their mean motions (see also [9]). Secular long term

trends in the mean longitudes ℓ = ℓ(t) of these planets during the last 250 years are

analyzed in [21, p. 884]. The mean longitudes satisfy3

ℓ(t) ≈ ℓ0 + ωt+ 1
2
ωH loc

0 t2,

where ℓ0 is the initial planet longitude, ω = 2π/P is the mean planetary motion,

P is the orbital period, and H loc
0 = 2ω̇/ω. From this and measured longitudes Igor

N. Taganov [48, p. 72] derived the following local expansion rates

H loc
0 ≈ 0.85H0 for Mercury

and

H loc
0 ≈ 0.82H0 for Venus.

3The local linear Hubble expansion in radial directions produces a quadratic term in the tan-

gential direction.
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6.6. Kuiper belt

There are further arguments for the influence of antigravitational forces in the

Solar system. According to [3, p. 534], there is strong evidence that the Kuiper belt

of comets had been formed much closer to the Sun in a region with larger velocities.

Relation (15) can explain a shift of at least 10 au during the last 4.5Gyr due to

antigravity.

6.7. Large orbital momentum of our Moon

A paradoxically very large orbital momentum of the Earth-Moon system

(see [3, p. 534]) can also be explained by antigravity which causes an additional

shift (35) in the recession speed of the Moon from the Earth that is not due to tidal

forces.

6.8. Neptune-Triton system

The enormously large orbital angular momentum of the Neptune-Triton system

is a deep mystery. Triton is probably a trapped moon (due to some N -body gravita-

tional collision or a crash with another body), because it orbits around Neptune in

the opposite direction than Neptune rotates about its axis. Such an orbit is called

retrograde. Triton slows Neptune’s rotation (as our Moon reduces Earth’s rotation).

However, since it circulates in the opposite direction, the tidal forces cause it to fall

onto lower tracks. The spin angular momentum of Neptune takes the opposite sign

than the orbital angular momentum of the Neptune-Triton system. According to the

law of total angular momentum conservation, the Neptune-Triton distance should

decrease.

Nevertheless, there is a natural question how such a huge body with a diameter

of 2705 km could be captured at a distance greater than the radius 354 760 km of

its current orbit. Triton has probably orbited Neptune for a very long time, because

the eccentricity of its orbit is almost zero:

e = 0.000 016.

This is the smallest eccentricity of all known bodies in the Solar system. When

Triton was captured, its orbit was almost certainly an elongated ellipse and it took

billions of years for Triton to reach a circular orbit.

There is again a quite simple explanation. Repulsive antigravitational forces

continually act on Triton and, moreover, it is conceivable that at present they are

even larger than the tidal forces that push Triton to Neptune, depending on initial

sizes of tidal and antigravitational forces. In this way, the Neptune-Triton system

could obtain its huge observed orbital angular momentum.
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7. Negligible local effects of the cosmological constant

7.1. Why the other authors got much smaller values of recession speeds?

G.A. Krasinsky and V.A. Brumberg [22] derived that the present recession speed

of the Earth from the Sun is equal to v = 15 cm/yr. Their calculation is based on

the assumption that the Newtonian theory of gravitation describes all motions in

the Solar system absolutely exactly. They solve an algebraic system for 62 unknown

Keplerian parameters of all planets and some large asteroids and do not take into

account small antigravitational forces. In other words they implicitly assume that

modeling, discretization, and rounding errors are negligible. However, classical New-

tonian theory assumes an infinite speed of gravitational interaction, whereas the real

speed is surely finite. Hence, the modeling error is surely not zero.

Cooperstock et al. [8, p. 62] derive a tiny outward acceleration of the Earth of

3.17 · 10−47m/s2, but the large value of the Hubble constant itself H0 = H(0) =

10myr−1au−1 (see (13)) is not taken into account. The time derivative Ḣ(0) is, of

course, extremely small. By (5) we get

Ḣ =
ä

a
−H2 = −qH2

−H2, (39)

where q := −äa/ȧ2 is the dimensionless deceleration parameter which characterizes

deceleration or acceleration of the expansion of the universe. Expressing the expan-

sion function a = a(t) as a Taylor series in time t0 = 0, which corresponds to the

present time, we have by (5) and (8)

a(t) = a(0) + ȧ(0)t+
1

2
ä(0)t2 + · · · = a(0)

(
1 +H0t−

1

2
q0H

2
0 t

2 + . . .

)
(40)

= a(0)

(
1 +H0t−

1

2
Λq0

c2

3ΩΛ(0)
t2 + . . .

)
,

where H0 = H(0) and q0 = q(0) = −0.6 is the usually accepted value of the de-

celeration parameter (see [40, p. 110]) which is negative, since the expansion of the

universe accelerates.

M. Carrera and D. Giulini [6, p. 175] correctly derive that at the distance of Pluto

(i.e. about 40 au) the acceleration of the expansion of the universe is only 2·10−23m/s2

which is indeed an entirely negligible quantity. A similar tiny value was derived by

B. Mashhoon et al. [31, p. 5041]. However, all these authors concentrated only on

the single quadratic term in expansion (40) and did not consider the large value of

the Hubble constant (13) which stands at the linear term in (40). In other words,

an accelerated expansion does not manifest itself on scales of the Solar system, but

the expansion itself is observable. In particular, we have

|H0t| ≫
1

2
|q0|H

2
0 t

2 =
1

2
|q0|

Λc2

3ΩΛ(0)
t2
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for t close to 0. Consequently, the accelerated expansion given by the quadratic term

only appears at cosmological distances. In spite of that, the single quadratic term is

so small that the linear term |H0t| from (40) essentially dominates not only in the

neighborhood of 0, but for all t in the whole interval (−1/H0, 0), since we have

0.3 · |H0t| >
1

2
|q0|H

2
0 t

2,

where 1
2
|q0| = 0.3.

Without dark energy the expansion of our universe would slow down due to

gravity (see (11)). Therefore, not only the quadratic term in (40), but also the linear

term depends on dark energy.

7.2. Is the cosmological constant a fundamental physical constant?

In the standard cosmological model, the last term in (6) containing the cosmolog-

ical constant Λ plays the principal role for t → ∞, since the density ρ(t) is propor-
tional to a−3(t). However, if gravitational aberration [25] has a continual influence

on the expansion rate of our Universe (at least partly), as shown in previous sections,

then Λ has to depend on time, i.e., Λ = Λ(t). It should also depend locally on many

other quantities (mass distribution, velocities, distances, etc.). In another words, Λ is

probably not a fundamental physical constant like the gravitational constant G, but

it represents only some averaged value due to gravitational aberration effects of all

free bodies in the Universe. Its present value Λ(t0) is of order 10
−52m−2 (see (10)),

but in the future it can became smaller. Note that the Hubble constant H = H(t)
depends on time, too.

The cosmological constant Λ thus could depend on particular masses and their

positions and velocities in every system of free bodies that gravitationally interact.

An “anthropic” upper bound on Λ is given in [52] and [53].

8. Conclusions

We have shown that antigravity acts not only on large scales but also on small

scales. It essentially contributes to the migration of planets and their moons, it also

causes many star clusters to dissipate, it helps to reduce the frequency of collisions

of galaxies and stars. It has also created suitable habitable conditions on the Earth

for several billion years.

Let us emphasize that the evolution of life is not a deterministic process, but very

chaotic. It does not have any prescribed direction of its future development. For

instance, if the asteroid, which caused the extinction of dinosaurs 65 million years

ago, would closely miss the Earth, then man would have not appeared, even though

all physical constants would be the same. This means that fundamental constants

were not designed just for man to appear. But their values enabled the rise and

evolution of life under natural selection which led to intelligent life. The Anthropic

Principle should be considered in this way. Evolution of living organisms is chaotic.

It has no prescribed goal.
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Figure 8: An illustration that the universe has to expand somewhere locally.

The local Hubble expansion certainly had a great impact on the origin of life. To

demonstrate the influence of antigravity in the Solar system we must either measure

very precisely (e.g. the Earth-Moon distance), or we have to consider very long time

intervals, where small deviations from Newtonian mechanics are not canceled, but

accumulated and then possibly observed (see [9], [10], [20], [21], [27], [48], [56]). An

extremely small deviation ε > 0 during one year may cause after one billion

years a quite large and detectable value of 109ε which is then interpreted as

dark energy. Thus we should never identify any mathematical model with reality,

since the above argument can be applied to any non-Newtonian model as well.

Newtonian mechanics is formulated so that the laws of conservation of energy

and momentum hold. However, the Universe is designed so that these laws do not

hold, since its expansion is accelerating. We gave more than 10 other examples

showing that something is wrong with classical fundamental conservation laws in the

Universe, since dark energy is slightly but continually generated by any system of

two or more free bodies.

Note that there exist close binary pulsars whose orbits do not expand with time,

but decay. In this case, strong magnetic and gravitational fields are present and the

system loses energy due to electromagnetic and gravitational waves. These effects are

much stronger than weak effects coming from antigravitational forces. Also various

resonances may be significantly larger than antigravity and tidal forces.

The unknown source of dark energy that is needed for the accelerated expansion

of the Universe may come partly from a finite speed of gravitational influence [24]

that causes gravitational aberration which is much smaller than the aberration of

light, but positive due to causality [25].

Another source of dark energy could be time-varying fundamental constants.

Note that the observed accelerating expansion of the Universe is sometimes explained

by the so-called energy of the vacuum. However, to get the observed values of

acceleration, the density of vacuum energy should be 2 · 10110 erg/cm3, whereas its

measurement gives only a smaller value of 2 · 10−10 erg/cm3, which is smaller by

120 orders of magnitude (where 1 erg = 10−7 J). From this it is evident that the

vacuum energy is not the main reason of the accelerated expansion of the Universe.
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It seems that a single gravitational force is not able to keep the Universe together.

Most cosmologists believe that the universe expands globally, but not locally. How-

ever, this immediately leads to a mathematical contradiction. If the universe expands

globally, then it has to expand in its left or right half (see Fig. 8). If it expands in the

right half, for example, then it must expand in the upper or lower quarter. Let us

therefore assume that it expands in the lower quarter, for instance. Then we again

halve it. In this way, we can proceed as shown in Fig. 8 and obtain that the universe

must expand somewhere locally.
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[23] Kř́ıžek, M.: Numerical experience with the three-body problem. J. Comput.

Appl. Math. 63 (1995), 403–409.
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[26] Kř́ıžek, M.: Dark energy and the Anthropic principle. New Astronomy 17

(2012), 1–7.

92
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Abstract: The cosmological constant is one of the most controversial con-

stants of nature. Many scientists would prefer to see its value to be zero and

its effect replaced by some other mechanism. The reason for this disliking is

partly historical and partly based on some unpleasant features of the cosmo-

logical constant Λ. In spite of its problems we take here a pragmatic point of

view that Λ is still the simplest theory to account for the acceleration of the

expansion. Taking it more seriously implies that we should probe also into

possible local effects of this constant i.e., at astrophysical scales. A priori,

this is possible since Λ is part of the Einstein tensor and the question arises

as to how large its effects are. We will argue that the effects can either be

numerically sizable due to a combination of two scales (one connected to Λ,

the other to the Newtonian constant) or they are theoretically interesting.
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1. Introduction

Nature has provided us with many constants, some more fundamental like Planck’s

constant ~ and the speed of light c (which we will put to one here), some connected

with the strength of an interaction like the fine structure constant α or Newton’s

gravitational constant GN . We accept the numerical values of these quantities found

by experiment and we agree that up to date we do not have a convincing theory

to explain why these constants have the particular values found in our universe (we

also agree that universes with other set of constants are, in principle, consistent and

possible). There is, however, one constant which has had a more turbulent history

than all others and is still a matter of debate. This is the cosmological constant Λ

which has started as a theoretical possibility (indeed, a most general Einstein tensor

has to contain this constant), among others to allow Einstein’s static universe [20],

has been disfavored for decades and partly made an unexpected return when the ac-

celerated expansion of the universe was discovered [47]. The adjective “partly” has
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a deeper meaning here since not everybody is ready to accept this re-entry of Λ into

the gravitational theory. The reasons are manifold, but one of the most frequently

quoted one is the fact that Λ can be re-cast into a constant density ρvac which in-

terpreted as vacuum energy density will receive other contributions, e.g., from the

zero-point energy in quantum field theory. The latter is a divergent quantity and the

argument that ρvac should be governed by the Planck mass relies on a cut-off at the

Planck scale. Hence, there is a huge mismatch of scales between what is expected

and what we would like to have to explain the accelerated expansion. This argument

is often used to discard the cosmological constant, but it does not provide us with an

explanation. Indeed, the epistemological status of Λ will be the same if we discard

it (which normally amounts to putting its value to zero) or accept a non-zero but

small value of ρvac of the order of the critical density. The argument of the mismatch

applies to both cases. Of course, there might be a natural mechanism why its value

has to be zero, but in spite of many years of looking for a such a mechanism none has

been found (or at least, none is generally accepted). Moreover, explicit examples ex-

ist where the use of a hadronic energy-momentum tensor in the early universe implies

that the bound on the cosmological constant comes from the low energy hadronic

particles [13] which is rather an unexpected result and could lead to a shift in the

cosmological constant controversy. We therefore take here the point of view that

the cosmological constant whose values we infer from cosmology could be a physical

reality. This in turn calls for a more detailed investigation of the effects of Λ apart

from the obvious cosmological implication. In other words we are looking for fin-

gerprints of Λ in an astrophysical setting. Making a connection between cosmology

and astrophysics is not new. For instance, the question if the expansion of space

has an impact on astrophysical matter has been put forward already by Einstein

and Strauss [21] and pursued till now [10, 16, 33, 34]. We will follow another path

here and make use of the fact that Λ is part of the Einstein tensor and as such its

presence will be felt in any general relativistic phenomenon (see however [17]). The

question is, however, how big and how relevant the effects are. In the first part of the

paper we will briefly introduce the cosmological constant via the Einstein equation

and cosmology. Here the relevant scales of Λ will also be touched upon. In the next

section we will probe if Λ has an impact in the astrophysical concepts of equilibrium

like the virial or hydrostatic equilibrium. This will be followed by a discussion on the

geodesic equation of motion. We will address the question regarding how Λ changes

the motion of a test particle at large astrophysical distances. The strong gravity

aspect will be covered in Section 5 where we use a Generalized Uncertainty Principle

to derive limits on the black hole temperature. Finally, in Section 6 we will linearize

the Einstein equation with Λ to examine the effect of this constant on gravitational

waves. In the last Section we will draw our conclusions.

There exists a number of very good reviews [14, 15, 18, 30, 41, 42, 45, 46, 50, 51]

on the cosmological constant, describing the problem from different angles. We

adopt here yet another point of view and, as mentioned above, look for signals of

this constant outside its normal habitat which is cosmology.
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2. Cosmological preliminaries: Λ in cosmology

Cosmology has a long scientific tradition where observations have either matched

or contradicted theoretical predictions. Alone the fact that galaxies on the average

move away from each other is measurable and was probably the first step of a scien-

tific tradition of cosmology based on general relativity (today we also have another

tool which is the cosmic microwave background radiation). Indeed, the accelerated

expansion of space is one possible prediction of general relativity and it was the dis-

covery of the acceleration of the expansion which in the new century changed our

picture of the universe.

2.1. Einstein equations

Einstein equations have the general form

Gµν(gαβ , gαβ,σ, gαβ,σρ) = κTµν , κ = 8πGN , (1)

where the indices after the commas indicate derivatives and GN is the Newtonian

constant. The geometrical left-hand side, known as the Einstein tensor, has to be

constructed under some minimal assumptions. The right-hand side is the energy-

momentum tensor usually taken from relativistic hydrodynamics or derived from

the matter Lagrangian (like, e.g., the Lagrangian for electrodynamics resulting in

the energy-momentum tensor of the Maxwell theory). There is a theorem proved

by Lovelock in a series of papers [27, 28, 29] which assures the most general form

of Gµν . The assumptions of the theorem are based on physical requirements: (i) as

any other field theory we allow the equations to contain the field itself and the first

as well as the second derivatives of the field, (ii) since Tµν is symmetric, Gµν should

enjoy the same property and (iii) since Tµν is conserved, i.e., the total divergence is

zero we demand the same for the Einstein tensor. In four space-time dimensions on

a pseudo-Riemannian manifold the full theorem reads:

Theorem (Lovelock’s Theorem). In a four-dimensional space the only tensor whose
components Gµν satisfy the conditions (a) Gµν = Gνµ, (b) ∇

µgµν = 0 (metricity),
(c) it contains the metric, its first and second derivatives, is

Gµν = Rµν −
1

2
Rgµν + Λgµν . (2)

This theorem assures that a general Einstein tensor has a cosmological constant Λ.

Its value is a priori not known (indeed, the sign of Λ is also crucial in cosmological

considerations) and, in principle, nature could have chosen Λ = 0 which however

would call for an explanation. Although the final result of the theorem looks sim-

ple, the proof is long and complicated partly due to the fact that it starts with few

assumptions, for instance, one drops any requirement on linearity. In the light of

Loevlock’s theorem, should we be surprised if observationally we find a non-zero

value for this constant? Theoretically many mechanisms have been tried to put

the cosmological constant to zero in a natural way (say, by invoking a symmetry).
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None of them has been successful and yet very often scientists view a non-zero Λ

as something unnatural. They do so, because Λ, as we will see later, can receive

contributions outside the realm of General Relativity and these contributions seem

to give a wrong scale for this constant (see below). In any case, apart from different

contributions, Lovelock’s theorem assures the existence of a bare cosmological con-

stant Λ0. The final Λ would be a sum of this bare value plus other contributions.

We will come back to this point at the end of this section.

One point is worthwhile mentioning. The cosmological constant is part of the

Einstein tensor and not the energy-momentum tensor. This means that it will appear

everywhere where General Relativity is used, in the cosmological solutions as well as

in the local metrics. The name “cosmological constant” might have been a misnomer

were it not for the actual value of Λ (provided the accelerated expansion of the

universe, which we will discuss below, is attributed to this constant) whose value

is such that its most prominent effects are in the cosmological realm. But we will

see later that mixing of scales can happen with the effect that Λ can be “felt” at

astrophysical distances.

Two solutions of the Einstein equations will be of importance for us. The first one,

the cosmological one (Friedmann equations) and the other is the local Schwarzschild

metric (here Λ = 0) or Schwarzschild-de Sitter metric when the cosmological constant

is positive (in the opposite case when it is negative it is called Schwarzschild-anti

de Sitter). Based on isotropy and homogeneity the Friedmann-Robertson-Walker

metric is

ds2 = −dt2 + a2(t)R2
0

[
dr2

1− kr2
+ r2dΩ

]
, (3)

where a = R/R0, R0 is the value today, and k denotes the spatial curvature which is

zero in our universe. The Einstein equations are now reduced to differential equations

(Friedmann equations) for a and the conservation of the energy-momentum tensor

gives an equation for the energy density ρ. More explicitly involving the Hubble

parameter H , we have,

H2
≡

(
ȧ

a

)2

=
8πGN

3
ρ+

Λ

3
−

k

a2R2
0

, k = ±1, 0 , (4)

and a second differential equation of the form

ä

a
= −

4πGN

3
(ρ+ 3p(ρ)) +

Λ

3
. (5)

The conservation law reads

ρ̇ = −(ρ+ p(ρ))
ȧ

a
. (6)

These equations are not fully independent of each other. The first one is often written

in a convenient form (from which the sign of k can also be deduced)

Ωm0 + ΩΛ0 + Ωk0 = 1 → k = sgn(Ωm0 + ΩΛ0 − 1) , (7)
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where the 0 denotes the time today, but (7) is valid at any time. The definitions

entering this equation are as follows

Ωm0 =
ρ0
ρcrit

, ρcrit =
3H2

0

8πGN

,

Ωk = −

k

R2
0H

2
0

,

ΩΛ0 =
ρvac
ρcrit

, Λ = 8πGNρvac . (8)

In ρvac we encounter the first scale set by the cosmological constant in the form

of a constant density. It is this scale which cosmologists interpret as vacuum den-

sity (being defined everywhere in space) and which can receive contributions from

elsewhere.

An intuitive and fast understanding of the cosmological effect of Λ is provided by

the Newtonian limit. For a spherically symmetric object with mass M we can use

the Schwarzschild-de Sitter metric whose line element is

ds2 = −eν(r)dt2 + e−ν(r)dr2 + r2dθ2 + r2 sin2 θdφ2 , (9)

with

g00 = eν(r) = 1−
2rs
r

−

r2

3(rΛ)2
, rs ≡ GNM, rΛ ≡

1
√

Λ
. (10)

Two length scales appear: the Schwarzschild radius 2rs and rΛ. With the connection

of the 00 component of the metric to the gravitational potential, i.e.,

g00 ≃ −(1 + 2Φ) , (11)

we obtain the Newtonian limit in the form

Φ(r) = −

rs
r
−

1

6

r2

(rΛ)2
. (12)

The first term is the standard Newtonian potential. Its form will change when we

consider a non-spherically symmetric mass distribution. But the second term will

remain as it is. Indeed, it is an external force which for a positive cosmological

constant plays the role of a repulsive external force with the interpretation that two

points in space separate. The Galilean spacetime gets replaced by Newton-Hooke

spacetime [6] in which two space points go apart due to the cosmological constant

(this is the part of the cosmological expansion which survives the Newtonian limit).

2.2. Accelerated expansion

Observation of standard candles like type II Supernovae led us to conclude that

the expansion of the Universe as compared to the standard Friedmann model is ac-

celerated [44, 43]. The Supernovae are dimer than expected in a standard Friedmann
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Figure 1: Two fates of matter-filled Universes. The present epoch is at τ = 0.

model, hence they have to be further away than expected. The universe must have

expanded faster than expected. Of course there could be other explanations also,

like dust and dimming due to photon-axion conversion in the presence of magnetic

fields. But by now this fact is fairly established and corroborated by other observa-

tions [48]. Indeed, the discovery won a Nobel Prize in 2013. It is easy to understand

what this accelerated expansion means. The Friedmann equations (4)–(7) tell us

that an acceleration simply means ä > 0 and this as such cannot happen if Λ = 0.

Indeed, a non-zero positive cosmological constant leads to an accelerated expansion

as depicted in Figure 1 and already inferred from the Newtonian limit. For the case

of dust (p = 0) and spatial flatness which describes our epoch, the relevant Fried-

mann equation ä/a = −4πGN/3[ρ − 2ρvac] tells us that in order to have a cosmic

acceleration we have to insist on ρ < 2ρvac. Since Ωm +ΩΛ = 1 we obtain the limits:

Ωm ≤ 2/3 and ΩΛ ≥ 1/3. If by ρ we mean the total energy density, i.e., ρ = ρm+ρvac
then we can retain the Friedmann equation in the form ä/a = −4πGN/3[ρ+3p] with
p = −ρvac playing the role of an equation of state. Of course, many other explana-

tions are possible. What they all have in common is that they go beyond standard

General Relativity as defined by the Einstein tensor. They either postulate new

Einstein equations based on a more complicated Lagrangian (modified gravity) or

invoke a scalar field (quintessence model) [24] or modify the standard equation of

state which reads p = (γ− 1)ρ (Chaplygin gas model [26]) or use an even more com-

plicated set-up. In some of these extensions the Einstein tensor will still appear and

the question we have to face then is what do we do with value of the cosmological

constant in such models? Normally it is put to zero by hand.

If we hold Λ responsible for the accelerated stage then a recent measurement tells

us that ΩΛ0 = 0.6.
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The cosmological constant bears more theoretical surprises. In non-spatially flat

universes there exists a Λcrit expressed in terms of H0 and Ωm0 such that for Λ = Λcrit

the universe is semi-static and “coasting” whereas for Λ > Λcrit there is no Big Bang,

i.e., the universe contracts coming form minus infinity (in time), hits a minimum

scale and starts expanding [22].

2.3. Scales of Λ

All our numerical predictions are based on two scales: the parameters entering the

theory and the initial values we choose. A combination of constants and parameters

yields different physical scales. For instance, as we all know ~, c and GN combine to

give Planck length lpl, time tpl, and mass mpl. Similarly, Λ alone or in conjunction

with other constants sets certain scales which will appear in any calculation. We

already came across the density parameter ρvac.
In the following context two definitions turn out to be useful

ρcrit =
3H2

0

8πGN

=
3

8π
H2

0m
2
pl , (13)

which is the critical density of the universe where H0 is the present value of the

Hubble parameter, and

ρvac =
Λ

8πGN

, (14)

which is a combination of Λ and GN . Using the two equations we are able to write

a useful relation

Λ = 3

(
ρvac
ρcrit

)
H2

0 . (15)

In the following we will briefly introduce the different scales of Λ [39]:

• Length

It is convenient to define

rΛ =
1

√

Λ
=

1
√

3

(
ρvac
ρcrit

)
−1/2

H−1
0 . (16)

This equation tells us that rΛ is practically the Hubble length. This is a coincidence,

since neither was it so in the past nor will it be the same in the future. The same

applies to the coincidence ρvac ∼ ρcrit. Let us now compare the two constants entering

Einstein gravity. To this end recall that the Planck length is given by (~ = c = 1)

lpl = G
1/2
N ∼ 1.5× 10−33 cm . (17)

Hence, this gives
rΛ
lpl

∼ 1061 . (18)
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• (Small) Mass

We define

mΛ ≡

√

Λ ∼ 3× 10−42GeV , (19)

which is strangely close to the inverse of the Dirac large number (Dirac’s large num-

bers appear, for instance, in the expression 1
GNmpme

∼ 1041). An even better approx-

imation to the Dirac large number is the ratio

mp

mΛ

∼ 1041 , (20)

where mp is the mass of proton. On the other hand, we also have:

mpl

mΛ
∼ 1060 , (21)

using the Planck mass mpl.

• (Large) Mass

A quantity of dimensions of mass (apart from mpl and mΛ) can be also defined

as a combination of Λ and GN

MΛ ≡

1

GN

√

Λ
= 3.6× 1022h−1

o

(
ρvac
ρcrit

)
−4

M
⊙
, (22)

where as usual M
⊙
is the solar mass. This gives the comparison

MΛ

mpl
∼ 1060 . (23)

From these simple considerations it is clear that GN and Λ lie far apart from each

other (indeed, some sixty orders of magnitude). It is a priori not clear why the Dirac

large number appears and why we encounter the strange coincidences at the present

epoch. In the subsequent section we will see how useful the definition of the different

scales is. We can appreciate it by taking an example of the Newtonian limit for a

general mass distribution given by [35]

∇
2Φ = 4πGNρ− Λ . (24)

This limit holds if the potential is weak, i.e.,

|Φ(r)| ≪ 1 → rs ≪ d(r) ≡ r −
1

6

r3

(rΛ)2
. (25)

The function d(r) has a local maximum at r+ =
√

2rΛ. Hence, we conclude

2
√

2

3
MΛ ≫ M . (26)
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On the other hand, solving

rs = d(r) , (27)

we conclude that
√

6rΛ ≫ r ≫ rs . (28)

Since r has now a maximum value, we have a problem to put the Dirichlet boundary

condition at infinity as we are used to do when Λ = 0. Although we will devote

a section to astrophysical equilibria, we can have a glimpse already here of how the

scales enter a spherically symmetric object under hydrostatic equilibrium. To this

end we use the Buchdahl inequalities which are based on the existence of a global

solution (general relativistic spherically symmetric object in hydrostatic equilibrium).

For the case of a non-zero cosmological constant one has [7]

3rs ≤
2

3
R +R

√
4

9
−

1

3

R2

(rΛ)2
. (29)

Evidently, we have to satisfy

R ≤

√
4

3
rΛ ∼ Rmax . (30)

Hence, we also get

Mmax ∼
2

3

√
4

9
MΛ ≥ M . (31)

We have mentioned above that one of the undesired features of the cosmologi-

cal constant is the fact that if we interpret ρvac as the energy density of vacuum,

there might be different contributions to this quantity. One of them is the zero-point

vacuum energy from quantum field theory which per se is divergent and needs regu-

larization. From
∫
d4k(ωkN̂k +

1
2
ωk), (N̂k is the number operator) we retain only the

vacuum energy of quantized fields, i.e,
∫
d3k 1

2
ωk [14]. Since ωk = k at large energies

the integrand is divergent. The standard wisdom is to introduce a cut-off kmax, so

that

〈ρ〉 = 2π

∫ kmax

0

dkk3 =
2π

4
k4
max =

π

2
k4
max . (32)

It might be dangerous to base arguments on a cut-off scale in a fundamental theory.

Indeed, a recent result [13] seems to confirm this. Be it as it may it is often argued

that the only natural scale for kmax is mpl. In such a scenario the contribution to ρvac
would be much too large!

As already mentioned, the above argument is strongly cut-off dependent and

based only on arguments of scales. Therefore, we might be entering here a realm

of physics which we do not really understand. Indeed, according to the Lovelock’s

theorem, a ‘bare’ scale Λ0 (i.e. the value of Λ without any outside contribution)

exists. The true value of ρvac (and hence also of Λ) would then be

ρvac = ρ0vac + βk4
max , (33)
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where β ∼ O(1) (e.g. π
2
) and ρ0vac = Λ0

8πGN
. Now we still have two universal gravi-

tational constants: GN and Λ0. Why then should we choose kmax containing only

GN = m−2
pl ? We could also try a combination of scales such as kmax ∼

√

Λ0 or
√

mΛ0
mpl, where mΛ0

=
√

Λ0. In the latter case we would end up with

Λ0

8πGN

+ βΛ2
0 = ρvac = 0.6ρcrit , (34)

whereas the first choice gives

Λ0

8πGN

+ βm2
Λ0
m2

pl =
Λ0

8π
m2

pl + βΛ0m
2
pl = ρvac =

3

8π
H2

0m
2
pl . (35)

Solving the linear equation, we obtain

Λ0 = m2
Λ0

=
3H2

0

1 + 8πβ
, (36)

which is roughly of the same order as Λ = 3
(

ρvac
ρcrit

)
H2

0 and therefore the above

solution avoids the tuning problem (i.e. the difference between the actual value of Λ

and the induced contribution of the end-point energies). The quadratic equation has

the solution:

Λ0 = −

1

2

1

8πβ

√

ρpl ±
1

2

1

8πβ

√

ρpl

√
Λ +

ρvac
ρpl

(8πβ)2 , (37)

with ρpl being the Planck density. Since ρpl ≫ ρvac we can approximate

Λ0 ≃ −

1

16πβ

√

ρpl ±
1

16πβ

√

ρpl

(
1 +

1

2
(8πβ)2

ρvac
ρpl

)
. (38)

If we allow for the case Λ0 < 0 (anti-de Sitter case) we can choose the negative sign

in the solution

Λ0 ≃ −

1

4
8πβ

ρvac
√

ρpl
= −2πβ

3H2
0

8π
= −

3

4
H2

0 . (39)

Now |Λ0| ∼ O(Λ), but it is negative, i.e., we go from anti-de Sitter case (in the case

of the pure Λ0) to the de Sitter case when adding to Λ0 the end-point energies of vac-

uum energies from quantum field theory. Those two examples relying on Lovelock’s

theorem, demonstrate in reality that we have a poor understanding of the induced

contributions to Λ.

3. Equilibria Concepts: Λ in the local universe

If the cosmological constant sets only cosmological scales, can it happen that it

is of some relevance at astrophysical scales [9, 11, 36, 37]. In case of the equilibria
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concepts this happens for non-spherical objects with at least two length scales as we

will see below.

Let us first consider the non-relativistic gravitational equilibrium via the virial

equations. The standard non-relativistic virial theorem reads

d2Ijk
dt2

= 4Kjk + 2Wjk , (40)

where Ijk is the inertial tensor defined by

Ijk =

∫
ρxjxkd

3x , (41)

Kjk is the kinetic tensor

Kjk =
1

2

∫
ρv̄j v̄kd

3x , (42)

assuming for simplicity no dispersion, and Wjk is the gravitational potential tensor

given by

Wjk = −

1

2

∫ ∫
ρ(r)ρ(r′)

(x′

j − xj)(x
′

k − xk)

|r′ − r|3|
d3x′d3x . (43)

If an external force is exerted on the object, we have to add to the right-hand side

of the equation the term [12]

Vjk = −

1

2

∫
ρ

(
xk

∂Φext

∂xj

+ xj

∂Φext

∂xk

)
d3x , (44)

where Φext is the external potential and in the case of a cosmological constant it

corresponds to

Φext = −

1

6
Λr2 . (45)

Therefore, the new virial theorem which accounts for the cosmological constant takes

the form [36]
d2Ijk
dt2

= 4Kjk + 2Wjk +
2

3
IjkΛ . (46)

This equation (and the rest of the equations derived below) does not include pressure

or magnetic fields. Formally, it looks like a differential equation for the inertial tensor.

It is very often more convenient to consider a less demanding task by simply noting

that the trace W of Wjk is negative whereas the trace K of Kjk is positive definite.

Then the gravitational equilibrium, i.e., d2Ijk/dt
2 = 0 leads to the inequality

−

1

3
ΛI + |W | ≥ 0 , (47)

where I denotes the trace of the inertial tensor Ijk. To appreciate the meaning of

this inequality we specialize to the case of constant density. It is then easy to show

that

8πGNρ ≥ AΛ, ρ ≥ Aρvac , (48)
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where the quantity A depends only on the geometry of the object under considera-

tion, i.e.,

A =
16π

3

∫
r2d3x

∫
|ΦN|

ρ
d3x

, (49)

where ΦN is the Newtonian part of the non-relativistic gravitational potential. For

spherically symmetric objects one easily calculates A = 2 and therefore the virial

inequality is simply

4πGNρ ≥ Λ, ρ ≥ 2 ρvac . (50)

Let us consider a non-spherical object. Instead of the inequality we can also calculate

from the virial theorem the mean velocity of the ingredient of the object

〈v2〉 =
|W |

M
−

8π

3

ρvac
M

I . (51)

To estimate the effect of Λ we assume a constant density and the shape of the

astrophysical object to be an ellipsoid. The mean velocity can be now written as

〈v2〉ellipsoid =
32π

45M
ρρvaca1a2a3

(
a21 + a22 + a23

)

×

(
3

4

ρ

ρvac
Γellipsoid − 1

)
. (52)

The prolate case (a1 = a2 < a3, ē =
√
1− a21/a

2
3) gives

Γprolate =

(
a1
a3

)3

1 + 2
(

a1
a3

)2
ln
(
1+ē
1−ē

)

ē
. (53)

Notice that for a flattened prolate ellipsoid we can approximate

Γprolate ≃

(
a1
a3

)3

ln

(
1 + ē

1− ē

)
. (54)

Since the nowadays preferred value of ρvac is 0.6ρcrit, we can say that if the constant

ρ/ρcrit is, say, 10
3, it suffices for the ellipsoid to have the ratio a1/a3 ∼ 10−1 in order

that the mean velocity of its components approaches zero. This is valid always under

the assumption that the object is in gravitational equilibrium. This effect is due to

the cosmological constant. In general, we can say that in flattened astrophysical

systems in gravitational equilibrium, the mean velocity gets affected by the cosmo-

logical constant. The denser the system, the bigger should be the deviation from

spherical symmetry to have a sizable effect.

Next we probe the same scales in a hydrostatic equilibrium for spherically sym-

metric objects [7]. Note that in the virial equations used above no pressure appeared
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(indeed, with pressure the virial equations change), but the non-relativistic hydro-

static equilibrium is defined by

∇P = −ρ∇Φ, ∇
2Φ = 4πGNρ− Λ . (55)

This condition applied for the spherically symmetric case reads

P ′(r) = −rρ(r)

(
GN

m(r)

r3
−

Λ

3

)
, (56)

which is sometimes called the “fundamental equation of Newtonian astrophysics”.

The mass function is as usual defined by

m(r) =

∫ r

0

4πρ(s)s2ds . (57)

Furthermore, let the mean density be defined by

ρ̄(r) =
3

4π

m(r)

r3
. (58)

Then

P ′(r) = −r
ρ(r)

3

(
4πGN ρ̄(r)− Λ

)
. (59)

For any physically reasonable astrophysical object, the pressure and density must be

monotonically decreasing functions of the object’s radius. Hence, negativity of the

derivative of the pressure implies

Λ < 4πGN ρ̄b , (60)

where the index b denotes that we are evaluating the density at the boundary. In its

form the above inequality is similar to what we obtained in the virial case. One can

arrive at the same result via the general relativistic Tolman–Oppenheimer–Volkoff

equation

P ′(r) = −r
ρ(r)

3

(
1 +

P (r)

ρ(r)

)(12πP (r) + 4πGN ρ̄(r)− Λ

1− 8π
3
GN ρ̄(r)r2 −

Λ
3
r2

)
. (61)

This equation is well defined if the denominator is positive definite and we impose

the boundary condition Pboundary = 0.

At the end of this section let me quote from a book “The measure of the Universe:

A History of Modern Cosmology” by John David North:

The essential difficulty with a relativistic theory in which λ [the Cosmo-

logical Constant] is positive is that of accounting for the formation and

condensation in terms of gravitational instability; for, to use the ‘force’

metaphor, the present expansion indicates that the force of cosmic repul-

sion exceeds those of gravitational attraction. This is not likely to disturb

the stability of systems (such as the galaxy) of high average density, but

it is likely to prevent new condensation in regions of low density.

Of course, this picture will not be true if the cosmological constant is not too

large (as it happens in our universe).
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4. Λ in the local universe: equation of motion

In a theory with two scales a physically relevant combination of them can occur

even if the two scales lie numerically apart [8]. Below we show that this happens

also in Einstein gravity in a local Schwarzschild–de Sitter metric where rΛ combines

with a smaller length scale rs to give a meaningful quantity.

Consider the motion of test particles in a spherically symmetric and static space-

time with a cosmological constant. The Schwarzschild–de Sitter metric takes the

form

ds2 = −eν(r)dt2 + e−ν(r)dr2 + r2dθ2 + r2 sin2 θdφ2,

eν(r) = 1−
2rs
r

−

r2

3(rΛ)2
. (62)

The equation of motion for a massive particle with proper time τ in the Schwarzschild–

de Sitter metric can be written elegantly as

1

2

(
dr

dτ

)2

+ Ueff =
1

2

(
E
2 +

L2Λ

3
− 1

)
≡ C = constant , (63)

where E and L are conserved quantities (the analogs of energy and angular momen-

tum in classical mechanics) defined by

E = eν(r)
dt

dτ
, L = r2

dΦ

dτ
, (64)

where Φ is the azimuthal angle and Ueff is defined by [8]

Ueff(r) = −

rs
r
−

1

6

r2

(rΛ)2
+

L2

2r2
−

rsL
2

2r3
, (65)

which is the analog of an effective potential in classical mechanics. This form of the

equation of motion is, of course, equivalent to the geodesic equation of motion from

which it has been derived.

We now consider radial motion with L = 0. From the definition of C we obtain

the inequality

C ≥ −

1

2
, (66)

which will play a crucial role later in the derivation. For the limiting value C = −
1
2
,

we have E = 0 which signals an artifact of the Schwarzschild coordinates. Indeed,

E = 0 means that g00 = 0 and this equation determines the horizons. More specif-

ically, in the Schwarzschild–de Sitter metric the equation for the horizons is the

cubic

0 = y3 − 3y + 6x ,

y =
r⋆
rΛ

,

x ≃

rs
rΛ

= 1.94× 10−23

(
M

M
⊙

)(
ρvac
ρcrit

)1/2

≪ 1 . (67)
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The two positive roots corresponding to the Schwarzschild radius (here with correc-

tions) and the cosmological one are

r(1)⋆ =
√

3rΛ − rs, r(2)⋆ = 2rs

(
1−

1

6

(
rs
rΛ

)2
)

. (68)

In other words, the condition C = −1/2 is satisfied at the Schwarzschild radius and

at the edge of the universe. With this limiting value, we have |Ueff(r⋆)| =
1
2
. The

motion with |Ueff(r)| ≥
1
2
becomes unphysical, since it corresponds to allowing the

trajectory of test particles inside the Schwarzschild radius and beyond the observed

universe. The latter is a result of the coincidence in the sense that rΛ sets the scale

of the horizon of the universe. Hence, the particles are allowed to be at some r such

that

Rmin ≃ rs < r <
√

3rΛ ≃ Rmax (69)

with

|C| < |Ueff(r)| <
1

2
(70)

for negative C and Ueff . It is clear that at certain distance, the terms −rs/r
and r2/(rΛ)

2 will become comparable (see Figure 2) leading to a local maximum

located at

rmax ≃
(
3rsr

2
Λ

)1/3
≃ 10−4

(
M

M
⊙

)1/3(
ρcrit
ρvac

)1/3

Mpc . (71)

The value of the effective potential at this point is given by

Ueff(rmax) ≃ −7.51× 10−16

(
M

M
⊙

)2/3(
ρvac
ρcrit

)1/3

. (72)

Beyond rmax, Ueff is a continuously decreasing function. This implies that rmax is

the maximum value within which we can find bound solutions for the orbit of a test

body.

Consider now the following chain of matter conglomeration of astrophysical ob-

jects: the smallest are star clusters (globular and open) with stars as members

(i.e., we can set M = M
⊙
) and a total mass of roughly 106M

⊙
. We proceed to

galaxies and galactic clusters. Within this chain, we find for rmax the following

values as a function of mass:

M/M
⊙

rmax/α (pc)

1 75

106 7.5× 103

1011 3.5× 105

1013 1.6× 106
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Figure 2: The effective potential drawn schematically, i.e, not to scale.

with α ≃ (ρvac/ρcrit)
−1/3

. The value of rmax/α in the first line is of the order of

magnitude of the tidal radius of globular clusters. The value in the second line is

only one order of magnitude below the extension of an average galaxy including the

Dark Matter halo. The reason could be that unlike the other three ones, where

the argument M of rmax has been taken to be the mass of the average members of

the astrophysical object, we have used in this case the mass of a globular cluster.

It might appear unjustified to take the mass of the globular cluster to obtain the

extension of the galaxy. However, in view of the fact that globular clusters are very

old objects and are thought to be of importance in the formation of the galaxy, this

choice seems to be justified. In principle, we could interpret M = 106M
⊙
also as the

black hole mass at the center of a galaxy.

The next two values of rmax are about the size of a galaxy cluster. The value 10
13M

⊙

corresponds to a giant elliptic galaxy encountered often at the center of the clusters.

In conclusion, rΛ in combination with rs gives us surprisingly good estimates of

astrophysical scales. The combination rmax = (3rs(rΛ)
2)1/3 from which these scales

where calculated is not an arbitrary combination with length dimension, but it is

the distance beyond which we cannot find bound orbits. Therefore, we would indeed

expect that rmax sets a relevant astrophysical scale. Of course, we are talking here

about scales neglecting angular momentum and dynamical aspects of many body

interactions, but no doubt rmax is roughly the scale to be set for bound systems.

A generalization of our theory is presented in [33].

It is justified to ask what happens in the case of non-zero rl ≡ L 6= 0? The

polynomial equations will become of higher order and it is not always easy to arrive

at an analytical result. We will make an approximate estimate by determining first
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a limiting value of rl and using it in the Newtonian theory. To this end we look first

for a saddle point, i.e.,
dUeff

dr
=

d2Ueff

dt2
= 0 . (73)

The two conditions lead to the position of the saddle point and a condition on one

parameter, say for xl ≡
r2
l

(rΛ)2
in the form

x4
l −

(
3rs
4rΛ

)4

xl − 12

(
3rs
4rΛ

)6

= 0 . (74)

To solve this fourth order equation we have to solve the associated third order equa-

tion, handle hyperbolic functions and their inverses, going through complex numbers

and their roots. In the end we obtain the approximate simple expression

rmax
l = 0.9(r2srΛ)

1/3 , (75)

provided rs/rΛ ≪ 1. For rl ≥ rcritl the local minimum and the second local maximum

fall together and there are no more bound orbits. Taking now from non-relativistic

mechanics the expression for the order of magnitude of a bound orbit, we conclude

that

Rorbit ∼
r2l
rs

→ Rmax
orbit ∼ 0.55rmax , (76)

which is a very satisfying result as it does not change the order of magnitude of the

estimate with zero angular momentum and confirms our previous result.

A small note is in order here. To ensure the existence of the first local maximum

and minimum of Ueff one has to require [23]

rmin
l = 2

√

3rs . (77)

4.1. Velocity bounds

In connection with the geodesic equation of motion it is also possible to set a lower

and upper bound on the radial velocity (assuming rl = 0) v0 at a distance r0 [8, 5].

Starting with the obvious inequality

2e2ν(r)|Ueff(rmax)|(2|Ueff(r)| − 1) < 0 , (78)

we arrive at

Ξ(r) < 2e2ν(r)|Ueff(r)| < e2ν(r) , (79)

with

Ξ(r) ≡ 2e2ν(r)
[
|Ueff(r)| − |Ueff(rmax)|

1− 2|Ueff(rmax)|

]
. (80)

The next step is to write the constant C as a function of the radial velocity (central

in-fall) v0 and r0. This gives us

C = C(v0, r0) =
v20 + 2e2ν(r0)Ueff(r0)

2 (e2ν(r0) − v20)
. (81)
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Recall that satisfying

r(2)⋆ < r < r(1)⋆ , (82)

is equivalent to

|Ueff(r)| ≤ 1/2 . (83)

Suppose now that we insist on a value v0 such that

v0 > eν(r0) , (84)

then we will violate the fundamental inequality i.e. C ≥ −1/2. For, choosing C > 0

we automatically get

v20 < 2e2ν(r0)|Ueff(r0)| < e2ν(r0) , (85)

violating the assumption. If C < 0, then |C| ≤ 1/2 leads to |Ueff(r0)| ≥ 1/2 violating

again one of the restrictions. Hence, for any r0 which we parametrize as r0 = ζrmax

we are led to

vmax(ζ) = eν(r0) = 1−

(
8

3

)1/3

x2/3f(ζ)

= 1− 1× 10−15

(
M

M
⊙

)2/3(
ρvac
ρcrit

)1/3

f(ζ) , (86)

with f(ζ) ≡ (2 + ζ3)/2ζ . This represents the maximal value of the initial velocity

at any r0. The expression consists of a 1 (velocity of light) minus some corrections

which are proportional ρvac manifesting another effect of the cosmological constant.

Let us turn our attention to the lower bound. Particles starting beyond the

astrophysical scale rmax with velocity v0 and at the position r0 such that

C(v0, r0) < Ueff(rmax) < 0 , (87)

do not reach our Galaxy due to the potential barrier beyond rmax. To determine

what this exactly means, let us resolve the above inequality in terms of the velocity

in dependence of the position. We obtain an inequality of the form

v20 < Ξ(r0) < 2e2ν(r0)|Ueff(r0)| < e2ν(r0) , (88)

which means that particles whose velocity is smaller than

vmin(ζ > 1) =
√
Ξ(r0) = x1/3

(
1

3

)1/6

×

[
1−

(
8

3

)1/3

x2/3f(ζ)

]√
2f(ζ)− 3

1− (3x)2/3
, (89)

do not reach the central object with mass M due to the potential barrier caused

by Λ.
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Figure 3: vmax and vmin against ζ . The window between vmax and vmin is the allowed

region for initial velocities to reach the central object with mass M . The mass ratio

is 1012.

The results are summarized in Figures 3 and 4. Due to the restriction C ≥ −1/2
the region v20 > e2ν(r0) is not accessible. Only, if the velocity lies in the range√
Ξ(r0) < v0 < eν(r0), it can reach the origin. If

√
Ξ(r0) > v0 the test particle does

not reach the central object. In our estimate, we neglect the fact that e.g. many

galaxies are of spiral type and not spherically symmetric. This however, does not

play a role, since r0 is of the order of magnitude of Mpc. We do not consider here

the details of what happens close to the galaxy.

5. The strong gravity scenario: Λ in black hole physics

So far we have explored different local aspects of the cosmological constant in the

weak regime of gravity. We now turn to black holes and probe the effects of Λ via

a Generalized Uncertainty Principle (GUP) [39, 4]. The keywords will be:

• black hole remnant with a minimum mass connected to a maximum tempera-

ture

• deformation of the standard (Hawking) dispersion relation T (M) near the hori-

zon 2rs

• maximum possible mass related to a minimum temperature which is an effect

of Λ.
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Let us start with the GUP for the case of zero cosmological constant. This review

will be brief and we refer the reader to the literature for more details [2, 3]. With

E = p we could tentatively write

aG =
GNE

r2
. (90)

As an order of magnitude estimate one sets

∆xG ≃

GNE

r2
L2

≃ GNE = GNp , (91)

where we used r ∼ L. Further, using ∆p ∼ p we arrive at a new uncertainty

relation (GUP) in the form

∆x ≥

1

2∆p
+

GN∆p

2
. (92)

Identifying ∆x ∼ 2rs = 2GNM and ∆p ∼ E ∼ T , we obtain via the GUP relation

2GNM = 2
M

mpl

=
1

2T
+

T

mpl

. (93)

Solving this equation for T = T (M) and introducing a calibration factor (2π)−1 gives

T (M) =
1

2π

(
M −

√
M2

−m2
pl/2

)
. (94)

This short and intuitive road to Hawking’s theory of black hole evaporation has

several distinct features worth mentioning:
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• The T (M) dispersion relation reduces to Hawking’s formula for large M , i.e.,

T (M) =
m2

pl

8πM
.

• However, it differs from the standard result for small masses. Indeed, we find

a black hole remnant as

M > Mmin =
mpl

2
. (95)

This corresponds to Tmax = mpl/4π. We might expect such a result if the

scales of the Newtonian constant set limiting values on physical parameters.

We could also re-write the dispersion relation to obtain

T =
1

π

rs
l2pl



1−

√

1−
1

4

(
lpl
rs

)2


 . (96)

Hence, we again find a limit, this time on the the length scale, i.e., Lmin = lpl/2.

As a check of the black hole remnant we could also use a different approach [31, 32].

Starting with

0 < g00 = 1−
2GNM

R
= 1− (8π/3)GNρR

2 , (97)

we easily arrive at

ρ <
3

8π

1

GNR2
. (98)

Using the Stefan-Boltzmann law, ρ = σT 4, leads to a limiting value on the temper-

ature, namely,

T 4 <
3

8π

1

σGNR2
. (99)

It is argued in [31, 32] that we necessarily have to have R > 1/T which finally gives

T < T ′

max =

√
45

8π2
mpl . (100)

Inserting into Hawking’s formula yields another minimum mass (but the order of

magnitude is the same as before)

M ′

min =

(
2

5

1

8π

)
mpl . (101)

Yet, another derivation of the same result has been done by Sakharov who also found

a black hole remnant of the order of Planck mass.

Repeating the above steps with Λ 6= 0, we first assure that

0 < g00 = 1−
2rs
R

−

R2

3r2Λ
. (102)
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This can be paraphrased as

0 < ρ <
3

8π

m2
pl

R2
−

1

3

3

8π
m2

plm
2
Λ . (103)

Finally, using again R > 1/T , we obtain

1
√

3
mΛ = T ′

min < T < T ′

max . (104)

It is amazing how the two scales in gravitation, GN and Λ, conspire to set a maximum

and minimum value of a physical parameter. With Λ = 0 we had at least two

independent ways to arrive at one and the same result (at least, viewing it as an

order of magnitude estimate). Therefore, it is worthwhile to check if the same is

possible for Λ 6= 0 confirming in this way the minimum temperature result and

looking for maximum mass connected to the minimum temperature. To this end we

will attempt a GUP which involves the cosmological constant. In doing so we will

repeat many steps used in the derivation above.

The gravitational potential Φ for a spherically symmetric mass distribution with Λ

Φ = −

rs
r
−

1

6

r2

r2Λ
. (105)

Then following the arguments from above the gravitational force per mass attributed

to Λ is
|
~FΛ|

m
= 1

3
ΛL where L is again a typical length scale in the problem under

consideration. The corresponding displacement is ∆xΛ ∼
1
3
m2

ΛL
3. We now use the

additional assumption L ∼
1
∆p

. This assumption is equivalent to saying that the

precision of the momentum is inversely proportional to the typical length scale and

can be found e.g. in textbooks in connection with wave packets. It is analogous

to similar assumptions like ∆t ∼ E−1 in the context of estimating the pion mass

in Yukawa’s theory or ∆x ∼ p−1 in case we want to estimate the precision of the

position. The proposed relation for GUP with the inclusion of the cosmological

constant emerges then as [4]

∆x ∼

1

2∆p
+

∆p

2m2
pl

−

γ

3

m2
Λ

∆p3
, (106)

where we have taken into account the relative sign difference between the cosmologi-

cal constant contribution and the standard Newtonian part. We also include a factor

γ ∼ O(1) which accounts for the fact that we are dealing with orders of magnitude

estimates. As before in the context of Hawking radiation the uncertainty in position

is associated with the event horizon. Then the Generalized Uncertainty Principle

applied to black hole evaporation gives the equation

2M

m2
pl

=
1

2T
∗

+
T
∗

2m2
pl

−

γ

3

m2
Λ

T 3
∗

. (107)
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It is worth noting that for high temperatures, the previous results for Λ = 0 are

recovered. Therefore, Tmax in conjunction with Mmin also follows from the above

equation. For small temperatures, GUP can be approximated to

2M

m2
pl

≈

1

2T
∗

−

γ

3

m2
Λ

T 3
∗

, (108)

which amounts to solving a third order polynomial equation of the form

T 3
∗

−

(
m2

pl

4M

)
T 2
∗

+
γ

6

m2
Λm

2
pl

M
= 0 . (109)

In order to extract some physically relevant information we have to solve this third

order polynomial. We skip all the technical steps and concentrate on the main

aspects.

The crucial parameters in solving the third order equations turn out to be

p = −

m4
pl

48M2
< 0,

q =
m4

pl

M

(
−

1

864

m2
pl

M2
+

γ

6

m2
Λ

m2
pl

)
,

D =
1

4

m6
plm

2
Λ

M2

(
γ2

36

(
m2

Λ

m2
pl

)
−

γ

3(864)

(
m2

pl

M2

))
, (110)

where D is the discriminant of the system. It can be demonstrated that for D > 0

there are no physical solutions and only D < 0 is of interest to us. A limit on the

value of M is set by putting D = 0. We find

M∗

max =
1

6
√

2γ

m2
pl

mΛ
. (111)

The explicit solutions are classified according to the sign of q. We introduce M =
M∗

max

ζ
where ζ = 1 corresponds to M∗

max. For the branch q > 0 (1 < ζ <
√

2), i.e.,

large masses we find

T (ζ) = −

√

2γmΛ

2πζ

(
cos

(
1

3

(
cos−1

(
−1 +

2

ζ2

)
+ 2π

))
−

1

2

)
(112)

which is a monotonically decreasing function of ζ . This implies

T (1) = Tmin =

√

2γ

2π
mΛ ∼ T ′

min . (113)

For completeness, we quote also the explicit solution for the branch q < 0 (ζ >
√

2)

which is valid for smaller masses

T (ζ) =

√

2γmΛ

2π
ζ

(
cos

(
1

3
cos−1

(
1−

2

ζ2

))
+

1

2

)
. (114)
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In conclusion, we have ascertained the existence of the following limiting values in

the evaporation of a black hole

Tmin ∼ mΛ ↔ Mmax ∼
m2

pl

mΛ
∼ MΛ

Tmax ∼ mpl ↔ Mmin ∼ mpl . (115)

We draw the attention of the reader to the dual nature of the Newtonian and cos-

mological constant. If one sets a maximum (minimum) value, the other does the

opposite, i.e., it defines the minimum quantity.

6. Λ and the gravitational waves

In testing Einstein’s theory of gravity, its modifications and ramifications, two

important sub-areas (among others) of research can be explored and explained in

more detail. The first one has to do with cosmology and goes back to the discov-

ery of dark energy which drives the acceleration of the universe. The second one is

the possibility to detect gravitational waves directly. We all heard the news about

the discovery of gravitational waves in 2016 [1] predicted by Einstein in 1916 [19].

Although we already had an indirect evidence through the Hulse–Taylor binaries

in 1974 [25] (awarded Nobel Prize in 1993) we can still say that it took hundred

years to confirm a prediction directly. We are interested in knowing if the cosmo-

logical constant has any effect on the propagation of the gravitational waves or,

equivalently, if the length scale rΛ will appear in the solutions of the linearized Ein-

stein equations. The question does not address the cosmological aspect of Λ (the

fact that the cosmological constant is part of the Friedmann equations) where the

wave is interpreted as a ripple on the cosmological background. Since Λ is part of

the Einstein tensor, it will also play a role in the linearized Einstein equations.

With the usual split of the metric

gµν = ηµν + hµν , (116)

where ηµν is the Minkowski metric the Einstein’s equations in first order read

R(1)
µν = −8πGSµν − Ληµν . (117)

In this equation we have used the trace-reversed part of the energy-momentum tensor

Sµν ≡ Tµν −
1

2
ηµνT . (118)

The linearized expression of the Ricci tensor reads

R(1)
µν ≡

1

2
(�hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ∂µ∂νh) , (119)

118



such that the linearized equations take the form

�hµν − ∂λ∂µhλν − ∂λ∂νhλµ + ∂µ∂νh = −16πGSµν − 2Ληµν . (120)

Without the cosmological constant this equation is known as the Fierz–Pauli equation

for a massless spin-2 object. The constant Λ does not play the role of a mass term

in this equation as several other terms which could make it a mass term m2
Λ are

missing.

This equation is clearly covariant under the local gauge transformation

hµν → hµν + ∂µǫν + ∂νǫµ , (121)

as imposed by the general diffeomorphic covariance of the Einstein’s equations with Λ.

Any attempt to make the cosmological constant more dynamical by replacing Ληµν →

Λgµν would spoil this gauge convariance. The gauge freedom allows us to fix the

gauge which we choose to be the de Donder condition:

∂µhµν =
1

2
∂νh. (122)

The equation to be solved now becomes a wave equation with two kinds of inhomo-

geneities: one the standard source Sµν(x) and the other a constant term proportional

to the cosmological constant, i.e., [40]

�hµν = −16GSµν − 2Ληµν . (123)

A small check via the Veltmann Lagrangian

Lh = −2Λ

(
1 +

1

2
h

)
−

1

4
∂νhαβ∂

νhαβ+
1

4
∂µh∂

µh−
1

2
∂βh∂µh

βµ+
1

2
∂αhνβ∂

νhαβ (124)

is in order. Veltmann while deriving Feynman rules for graviton scattering derived

the above Lagrangian which is invariant under gauge transformations. We use it to

show that the Euler–Lagrange equations give the same linearized equation as above.

Since the equation is linear, we can split its solution in two parts

hµν = γµν + ξµν , (125)

where

γµν = eµν(r, ω)e
ikαx

α

+ c.c. , (126)

is the standard retarded solution written here for a monochromatic source at a dis-

tance far away from the source. The tensor ξµν solves

�ξµν = −2Ληµν (127)
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and should satisfy the de Donder gauge. In addition, we demand that up to a diffeo-

morphism its asymptotic form is of the de Sitter metric. Such a solution satisfying

these conditions is given by [40]

ξ00 = −Λt2,

ξ0i =
2

3
Λtxi,

ξij = Λt2δij +
1

3
Λǫij , (128)

where, ǫij = xixj for i 6= j and 0 for i = j. This solution is to be used in the energy

momentum pseudo–tensor t̂µν for the gravitational waves. This pseudo-tensor tµν
leading to the gravitational Poynting vector is well known to be [49]

(Gµν −G(1)
µν )/8πG , (129)

where, again, the index 1 indicates that we expand the tensor in the order of O(h)

and Gµν needs to be expanded up to second order in O(h). After this expansion the

tensor takes the form

t̂µν = tµν −
1

8πG
Λhµν , (130)

where tµν is the standard part defined by

tµν =
1

8πG

(
−

1

2
hµνR

(1) +
1

2
ηµνh

σρR(1)
σρ +R(2)

µν −

1

2
ηµνη

σρR(2)
σρ

)
+O(h3) . (131)

It remains to calculate the averaged gravitational Poynting vector. We quote the

final result

〈t̂03〉wave = 〈t03〉wave =
ω2ĥ2

8πG
, 〈t̂03〉Λ = −

1

8πG

5

18

1

r4Λ
L2 , (132)

where ĥ is either |e11| or |e12| and L is the scale over which we average. Notice that

due to Λ, the power
dP

dΩ
= r2

xi

r
〈t̂0i〉 (133)

receives a negative contribution. The power is only well defined, i.e., positive definite

below a certain critical distance Lcrit below which the oscillatory character of the

solution dominates. To calculate this critical distance it suffices to compare the

magnitudes of the two contributions to 〈t̂03〉. The result is [40]

Lcrit =
6
√

2πfĥ
√

5
r2Λ , (134)

where f is the frequency. Notice that what we are really comparing is the averaged

solution proportional to Λ with the averaged wave component of the solution. We
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then say that the wave character of the solution is lost when both are comparable.

For a neutron star- neutron star (black hole-black hole) binary with a frequency

of 100Hz and ĥ = 10−23 (10−22) at a distance of 108 pc (28 pc) we get 0.13× 108 pc

(1.3×108 pc) which is smaller than the distance from the objects and hence the wave

character would be lost at our position.

One might argue that a better approach to the problem is to expand the solution

around the de Sitter background and not the Minkowski one as we have done above.

In such a case Λ is part of the background and not part of the solution as in our case.

If we do that, we consider the de Sitter spacetime as the tangential one. Then we

should ask ourselves the question if being consistent we should not do the same for all

other problems, especially in the framework of quantum field theory (replacing the

Poincaré group by the de Sitter group). One of the consequences would be a change

in the Casimir operators, i.e., the way we classify the elementary particles according

to mass and spin. Be it as it may, I would like to close with a quote of Isaac Asimov

The most exciting phrase to hear in science, the one that heralds new

discoveries, is not Eureka! (I found it!), but rather, hmm, thats funny.

7. Conclusions

The cosmological constant is still a controversial quantity, but it has gained some

popularity since the discovery of the accelerated expansion of the universe. Its main

effect remains within the realm of cosmology, but since it is part of the Einstein

tensor it affects also local physics. The most prominent local effects are:

• The existence of a last bound orbit due to a meaningful combination of large

scales and small scales e.g. rmax ∼ (rsr
2
Λ)

(1/3) which enters the geodesic equation

of motion and is of astrophysical orders of magnitude.

• The cosmological constant will change the equilibria concepts, especially for

astrophysical objects far away from spherical symmetry. This is manifest in

the inequality for constant density ρ > Aρvac where A is purely of geometrical

nature.

• If we linearize Einstein gravity around the Minkowski spacetime, Λ will change

our understanding of the propagation of gravitational waves at large distances

We derived a condition for the distance, i.e., r < Lcrit(Λ) in order for the ’wavy’

character to dominate and the power to be positive-definite.

Even in black hole physics Λ leaves its fingerprints, not as a sizeable effect, but rather

by setting certain limiting values. Since this happens also elsewhere in connection

with the cosmological constant we give a brief summary below

• The Newtonian limit demands

Rmin ∼ 2rs ≪ r ≪ Rmax ∼ rΛ . (135)

121



• Demaning the existence of a bound orbit leads to

Lmin ∼ rs ≪ L ≪ Lmax ∼ (r2srΛ)
(1/3) , (136)

where we can see the combination of different scales at work.

• Finally, via a Generalized Uncertainty Principle one can establish limits on the

temperature and mass, namely

Tmax ∼ mpl ↔ Tmin ∼ mΛ

Mmin ∼ mpl ↔ Mmax ∼ m2
pl/mΛ . (137)

One cannot help but see the dual role of the Newtonian and cosmological

constant in these limiting values.

Let me end this small review by quoting D. Adams in ‘The Hitch-hiker’s guide to

the Galaxy’:

“There is a theory which states that if ever anyone discovers exactly what

the Universe is for and why it is there, it will instantly disappear and be

replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.”

This fits the theory and history of the cosmological constant: Einstein has introduced

it to construct his static universe which after all decided to be more dynamical and

expand. After this the cosmological constant fell from grace so much so that people

were looking for explanations why it should be zero. Another twist in the story (the

discovery of the accelerated expansion) forced us to re-consider the status of this

constant and we are now trying to explain why it is non-zero (or replace it by other

more complicated theories).
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Abstract: Applying metrological interpretation of the Hubble constant is
possible using “metaphysical” principles – the Principle of least action and
the Principle of measurement relativity to obtain a theoretical estimate of its
value:

H = 9G~/16c2r3e = 1.97 · 10−18 s−1(≈ 61.6 km/s/Mpc), re = e2/mec
2

Metrological interpretation also makes it possible obtaining estimates of the
value of the Hubble constant from astronomical observations of motion de-
viations of the Earth, the Moon, Mercury and Venus: Ha = (2.08 ± 0.24) ·
10−18 s−1(65 ± 7.5 km/s/Mpc), as well as from statistics of isotopic estimates
of the age of rocks from the Earth and the Moon: HI = (2.15 ± 0.2) ·

10−18 c−1(67.2 ± 6 km/s/Mpc). The proposed methodology allows develop-
ing of the Metaphysical cosmology (MC), in which the key parameters of the
Universe are determined by the metaphysical principles — the Principle of
least action and the Principle of measurement relativity, and their values are
defined by laconic functions of the fundamental physical constants.

Keywords: Metaphysical cosmology, Hubble constant, redshift, Solar system

PACS: 04.20.Gz, 98.80.-k, 96.15.De, 05.30.Ch

In the modern methodology of Natural sciences the Metrological doctrine is de-

fined by the Principle of the measurement relativity, which asserts that the essence

of laws of nature do not depend on the standards used in the measurements of phys-

ical characteristics that are included in these laws. One of the consequences of the

Principle of the measurement relativity is the constancy of the ratio of two absolute

values of a physical quantity when the standards used in the measurements change.

The Principle of measurement relativity unambiguously determines the functional

structure of the dimensions of physical quantities [F ] in the form of power mono-

mials: [F ] = LaM bT c of basic, primary dimensions, such as the fundamental triad
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– “space L – mass M – time T” (e.g. the dimension of energy in the CGS system

is g cm2 s−2).

Mathematical operations with dimensional quantities are only possible in the

case when the permanent relations for the basic, primary dimensions are known.

For example, it is necessarily to know two independent relations for three basic

dimensions. In the modern dimensional analysis such relations are: Newton’s law of

gravity with standardized value of the Earth gravitational acceleration 9.80665m/s2,
which are necessary for using the international standard of mass — the platinum-

iridium weight, stored at the International Board of Weights and Measures in Sevres

(France). Second “canonized” relation for the base units is the postulate of the

universal constancy of the speed of light: c = const = 299 792 458m/s, which has

been adopted for the creation of modern international standards of length (“meter”)

and time (“atomic second”).

The existence of “canonized” fundamental constants as a part of the modern

systems of units provides the possibility of reducing the number of independent basic

units of measurement and dimensions. For example, the principle of the constancy of

the speed of light makes it possible to introduce the relation between units of length

and time: 1 s = 2.998 · 1010 cm, and the gravitational constant defines the relation:

1 g = 1.347 · 1028 cm.

Since the dimensions of the physical quantities used in the Natural sciences are

determined by power monomials of the form [F ] = LaM bT c, the application of two

independent relations between the basic primary units of the fundamental triad al-

lows one to select any of the basic units as a single, “unitary” basic dimension for

all physical quantities: [F ] ∝ Ln or Mn or T n with n = 0,±1,±2 . . . In particular,

the permanent relations between the basic units allow the dimensions of all physical

quantities to be reduced to a “geometrical” form: [F ] = LaM bT c
∝ Ln=a+b+c. For

example, using the relations between the basic units, one can determine the geomet-

ric dimension of the elementary electric charge from the constant of fine structure

α = e2/hc = 7.297 · 10−3:

e = 1.86 · 10−6 cm, e/me = 1.516 · 10−7. (1)

An important consequence of the Principle of measurement relativity is the in-

dependence of scale-factors ai on the physical nature of the standards used for the

basic units. For example, it is assumed that any length can be measured as by finite

macroscopic intervals of length ri and with the help of microscopic, quantum charac-

teristics, for example, using the wavelengths of photon λi. With independence of the

basic units on the physical nature of standards used for scales R0, λ0 the following

relation for the scale-factor holds:

a = r/R0 = λ/λ0 = 1 + z, z = λ/λ0 − 1, (2)

where z is called the redshift.
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Relations (2) allow the use of the selected basic system of units for measuring

physical characteristics of objects, regardless of their size. For example, in the SI sys-

tem, we define the radius of the Earth and the radius of the proton in “meters”. Belief

in the independence of the reference values of the basic units on physical nature of

the used material standards embodied in modern metrology justifying the use of

microscopic quantum devices, as standards of international macroscopic basic units

— “meter” and “second”.

The use of kinematic relation between the wavelength of a photon λ0 and the

period δt0 associated with the photon oscillations: λ0 = c ·δt0 enables us to represent

the scale-factor in the form of: a = r/R0 = λ/cδt0. When we measure macroscopic

distances r >> λ using light pulses, as it occurs in the modern standard of “meter”,

this ratio can be approximated: λ ≈ dr; δt0 ≈ dt and then the relation (2) becomes:

a = c/R0 · r = dr/dt = 1 + z. (3)

In 1933–1944, developing the “Kinematic cosmology”, Edward Milne and Arthur

Walker proved [2] that the central relation in (3): dr/dt ∝ r is one of the possible form
of the condition of isotropy of spherically symmetric volume of space, which explores

an observer. Earlier, in 1910, Vladimir Ignatovsky demonstrated the possibility of

an axiomatic formulation of the Special theory of relativity (STR), based on the

following assumptions [1]:

1. Principle of relativity, asserting the equivalence and equality of inertial refer-

ence systems.

2. The assumption of the linear form of coordinate transformations between in-

ertial reference frames.

3. The assumption of space isotropy.

In axiomatic STR, the Poincaré-Einstein postulate of independence of speed of

light from the motion of its source is not used as the initial assumption, and the

relativistic velocity addition rule becomes one of results of the Ignatowsky’s axiomatic

STR. The assertion that a photon moving at the speed of light in one reference frame,

will move with the same speed in any other frame of reference has lost the status of

a postulate, becoming the proven theorem in the axiomatic STR.

In (2), (3) the equality of the second and fourth terms: c/R0· = 1 + z is the

“Hubble law”: cz = Hr in the coordinate system corresponding to the condition:

r = 0 : z = 0 with the “Hubble constant” H = c/R0. In the approximate formula-

tion of the Principle of measurement relativity (3) V = dr/dt defines the “apparent”
velocity of the Universe expansion. Consequently, the redshift phenomenon not at

all indicates expansion of the Universe, but is a result of the universal application of

the Principle of measurement relativity for measuring both the microscopic charac-

teristics of photons (λ) and giant cosmic distances (r).
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The basis of modern theoretical cosmology is the definition of a 4-dimensional

radial interval in a spherically symmetric “flat” spacetime by the Robertson-Walker

metric with Newtonian time (t):

ds2 = c2dt2 − a2(t) · dr2. (4)

Cosmological models studied in cosmology differ only in the form of the depen-

dence of the scale–factor on time a(t), which in the doctrine of the expanding Universe

is often interpreted as a change of the observable Universe radius: a(t) = R(t)/R0.

As was already noticed in 1930s by Richard Tolman the non-static metric with

interval (4) does not provide the constancy of the speed of light — for a photon

trajectory (ds=0) from (4) it follows a variable speed of light: dr/dt=c/a(t) 6=const.
The variability of the speed of light in (4) is a serious drawback of many cosmo-

logical models, since, firstly, it contradicts to the relativistic physics of photons and

disagrees with the Metrological doctrine of modern Natural sciences, which presup-

poses the universal constancy of the speed of light. Secondly, it makes the cosmo-

logical research of the past of the Universe misleading, since most of the important

physical equations cannot be used with variable speed of light.

It is reasonable to use a generalization of the interval (4) changing the reversible

Newtonian time (t), by more general irreversible “physical” time (τ):

ds2 = c2dτ 2 − a2(τ) · dr2. (5)

The equations for the derivatives of scale-factor a = r/R0 : da/dt = ȧ and

da/dτ = á may be obtained from (5) using the condition of the universal constancy

of the speed of light on the all trajectories of photons (ds = 0) : dr/dt = adr/dτ =

c = const. Hence:

dτ/dt = a, ȧ = á · a (6)

The Principle of least action: dS/dτ = 0 → S = const can be represented, in

particular, as the constancy of the product of momentum p, per unit mass of the

moving body by its radial path: S = pr · r = r′ · r = const. From this definition of

constant action for the moving body with the scale-factor: a = r/R0;R0 = const it

follows the equation: a′ · a = A = const. The solution of this equation for the initial

condition: τ = 0 : a = 1 is the function: a = (1+2Aτ)1/2. Substituting this function

into (6), we obtain the equation: dτ/dt = (1+2Aτ)1/2, the solution of which for the

initial condition: t = 0 : τ = 0 leads to relations:

τ = t+ At2/2, a = (1 + 2Aτ)1/2,

t = A−1[(1 + 2Aτ)1/2 − 1], a = (1 + At). (7)

Visual representations of physical processes with the use of potentials play an

important role in physics, allowing the wide use of general equation: q̄ = ∇φ, in
which the vector characteristic of a process – “flux” or “flow” q̄ is determined by the
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gradient of potential φ. This representation is used, for example, in electrodynamics,

hydrodynamics, and thermodynamics to describe physical “flows”. With the help

of (7) the “flow” of physical time can be presented in the same visual form:

qτ = dτ/dt = ∇tτ = (1 + 2Aτ)1/2 = 1 + At. (8)

The flow of physical time is directed from the past with smaller characteristic

intervals into the future with larger characteristic intervals.

To determine the constant A in (7), (8) we can use the formulation of the Principle

of measurement relativity (3), which corresponds to Milne–Walker postulate about

isotropy of spherically symmetric volume of space: dr/dt = ν ∝ r and to the empir-

ical Hubble law: H = ȧ/a = const. For (7) this relation is: H = ȧ/a = A/(1 + At)
and for cosmologically short-term observations (1 + At ≈ 1) it determines the ap-

proximate estimate: A ≈ H .

Equations (7) demonstrate a progressive increase of physical time intervals com-

paring to the scale of constant intervals of Newtonian time, which is a kind of “ex-

pansion” or “acceleration” (dτ/dt = a > 0) of the physical time. Modern cosmology

often uses the term “expansion of space”. However, instead of rather tongue-tied

words “expansion of time” seems appropriate to use the more precise term “deceler-

ation of the pace of time”. Poincaré, Einstein, and Minkowski have already started

to apply the term “time pace” already during development of the STR. The pace

(or “rate”, “course”, or “flow”) of physical time ∆τ−1(s−1) having dimension of fre-

quency is defined as the parameter inverse with respect to some characteristic time

interval ∆τ . Increase of the characteristic time intervals as is the case in (7) and (8)

corresponds to decrease of magnitude of the time pace, that is, corresponds to the

“deceleration of physical time pace”.

Direction of the “Arrow of time” and “flow of time” is defined by the pace of time.

There is no direction of the reversible Newtonian time: t + (−t) = 0. Orientations

of the “Arrow of physical time”: τ(t) + τ(−t) > 0 and the “time flow” (8) define

an objective difference between the future and the past. In accordance with (7)

for A ≈ H the use of the “present” standard of time interval leads to a linear

decrease of the physical and Newtonian intervals ratio in the past (negative t and τ):
τ/t = 1 −H/2 · t. On the contrary, this ratio linearly increases for time intervals in

the future (positive t and τ):τ/t = 1 +H/2 · t.
The phenomenon of pace deceleration of irreversible physical time is consistent

with the general concept of relativistic time dilation. In STR, time dilation is defined

by Lorentz transformations for two inertial reference systems. More generally, the

time dilation is defined by the coordinate transformations that take into consideration

the relative acceleration of reference systems. In the concept of equivalence of inertial

and gravitational masses (in General theory of relativity — GTR) time dilation

is determined by the difference in gravitational potentials of compared frames of

reference. The phenomenon of the cosmological deceleration of time pace is result

of comparing the reference systems of different scales — the microscopic frame of
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reference with quantum kinematics and the macroscopic one used, for example, in

cosmology.

Hubble law in the form: r = c/H ·(λ−λ0)/λ0 can be regarded as a transformation

of the spatial coordinate of the line of sight in the microscopic quantum system of

reference for sole photon into macroscopic system of reference. In the complete

transformation of the coordinate system, the appropriate transformation of time

should be defined in addition to the transformation of the spatial coordinate. The

relation (7) for A ≈ H : τ = t +H/2 · t2 complements the Hubble law, determining

the appropriate transformation of time, when comparing the microscopic quantum

systems of reference with macroscopic ones.

The physical nature of observed manifestations of the cosmological deceleration

of the pace of time is rooted in the fact that all uniform motions in decelerating

physical time analyzed with the use of invariable uniform Newtonian time scale look

as accelerating under influence of virtual forces (Taganov, Saari [4, 5]).

Most impressively cosmological phenomenon of time pace deceleration is man-

ifested in the apparent secular growth of the Earth’s rotation. Recently, the in-

ternational services of exact time started quite accurately measuring of the secular

acceleration of the Earth’s rotation, which appeared should lead to a decrease in

the average Length of day (LOD) after exclusion of all tidal influences by about:

1.7 − 2.3 = −0.6ms/century. For the standard length of the day 86 400 s and

36 525 days of Julian century, the average rate of this LOD decrease can be esti-

mated as: d∆/dt; [(1.7− 2.3) · 10−3
· 36525]/(86400 · 36525) = −6.94 · 10−9.

This apparent Earth acceleration is the manifestation of the cosmological deceler-

ation of time for which from (7) with A ≈ H follows: ∆t = t−τ = −H/2·t2. This re-
lation and the Hubble constant value (e.g. the estimationH0 = (2.17±0.02)·10−18s−1

by the international research project “Planck” in 2013) allow for the theoretical es-

timation of the potential LOD decrease rate: d∆t/dt = −Ht = 2.17 · 10−18
· 86400 ·

36525 = −6.85 · 10−9. Comparing these two estimations one sees that theoretical

estimate differs from observational one less than in 2%, which is significantly less

than the mean uncertainty of the observational data.

Astronomical observations of the Moon, the Earth, Venus and Mercury revealed

unexplained accelerations of planet movements that are proportional to their average

orbital motions, see references in [4, pp. 115, 118, 119] or [5, pp. 126, 130, 131]. In

accordance with Kepler and Newton laws the longitude of a planet is described by

equation: Lt = L0 + nTc where n is the mean motion of the planet in arc seconds

per century (as/cy) and Tc is the time measured in Julian centuries. However, the

use of (7) with A ≈ H for decelerating physical time leads to another equation:

Lτ = L0 + nTc +n ·Hc/2 · T
2
c (here Hc = 6.217 · 10−9 1/year, corresponding to (25)).

The last term in the right-hand side of this equation describes “accelerations” of

planets which astronomers observe.

The value of a planet longitude deviation from Kepler and Newton laws is esti-

mated in astronomy by the longitude correction δL , which is equal to the difference

between the theoretical longitude: Lt = L0+nTc and observed longitude. Using this
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equation and (7) with A ≈ H , which determines the deceleration of physical time

pace, we can get an estimate of the “cosmological correction” for the longitude of

a planet:

δL = Lt − Lτ = −n ·Hc/2 · T
2
c . (9)

The comparison of the theoretical values of cosmological corrections (9) for the

planet motions with their observational estimations shows that the discrepancy be-

tween them does not exceed the statistical observation uncertainties.

The Moon (n = 1.74 · 109 as/cy). Cosmological correction (9): 5.41 as/cy2. Average
correction in accordance with observations: 〈δL〉 = 6.2 ± 0.7 as/cy2, see references

in [4, p. 115] or [5, p. 126].

The Mercury (n = 5.4 ·108 as/cy). Cosmological correction (9): 1.68 as/cy2. Average
correction in accordance with observations: 〈δL〉 = 1.62± 0.26 as/cy2, see references
in [4, pp. 118–119] or [5, pp. 130–131].

The Venus (n = 2.1 · 108 as/cy). Cosmological correction (9): 0.66 as/cy2. Average

correction in accordance with observations: 〈δL〉 = 0.61± 0.1 as/cy2, see references

in [4, pp. 118–119] or [5, pp. 130–131].

The Earth (n = 1.296 · 108 as/cy). Cosmological correction (9): 0.4 as/cy2. Average
correction in accordance with observations: 〈δL〉 = 0.47±0.23 as/cy2, see references
in [4, p. 115] or [5, p. 126].

The phenomenon of cosmological deceleration of time pace gives a unique op-

portunity to estimate the value of the Hubble constant not from the redshifts of

distant galaxies, but from the observations of orbital motion of the Earth, the Moon,

Venus, and Mercury. From (9) for Tc = 1 cy we can get the formula for the ob-

servational estimation of the Hubble constant: Hc(obs) = 2〈δL〉/n. This formula

with average observational values of 〈δL〉 for planets gives the following average ob-

servational estimation of the Hubble constant: Hobs = (6.55 ± 0.75) · 10−9 cy−1 =

(2.08 ± 0.24) · 10−18 s−1(65 ± 7.5 km/s/Mpc). This estimation is close to the the-

oretical value of the Hubble constant (25): H = 1.97 · 10−18 s−1(61.6 km/s/Mpc)

and corresponds well to the recent estimation of Hubble constant by international

astrophysical project “Planck”: (2.17± 0.02) · 10−18 s−1(67.8± 0.77 km/s/Mpc).

Manifestations of the phenomenon of the cosmological deceleration of time pace

can be observed not only in the grand scale of the Universe or the Solar system, but

also in microcosm. In particular, the deceleration of physical time pace with respect

to the uniform invariable Newtonian time scale reveals itself in the analysis of the

radioactive decay data (Taganov 2003–2013 [3, 4]).

In accordance with (7) for A ≈ H the radioactive isotope decay in physical time

is described by the modified Rutherford law:

N I
τ = N I

0 exp(−λI
ττ) = N I

0 exp[−λI
τ (t +Ht2/2)].
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In order that for a shorter interval of physical time disintegrated the same amount

of isotope atoms as for larger interval of Newtonian time the physical decay con-

stant λI
τ should be larger than the Newtonian decay constant λI

t , and therefore in

the retrospective analysis of isotope decay always: λI
τ > λI

t .

From this analysis follows that simultaneous estimation of the sample age in

Newtonian time scale with two isotopes with different decay rate constants gives two

different values with the difference:

t(1)e − t(2)e = t(1)e · [1− (λ
(1)
t λ(2)

τ )/(λ(1)
τ λ

(2)
t )], λ

(1)
t > λ

(2)
t . (10)

The estimations of sample’s Newtonian age made with isotope with larger lifetime

will give the smaller age estimation.

Analysis of publications with evaluations of geological sample ages performed

using simultaneously (U/Pb), (Rb/Sr), and (Sm/Nd) isotopic methods reliably con-

firms the predicted discrepancy of isotope age estimations [3]– [6].

Using the statistics of differences in isotopic estimations of the age of geological

samples we can calculate the estimate of the Hubble constant: HI = (2.15 ± 0.2) ·
10−18 s−1(67.2 ± 6 km/s/Mpc). This estimation is close to the theoretical value of

the Hubble constant (25): H = 61.6 km/s/Mpc; (1.97 · 10−18 s−1) and correspond to

the commonly used in astrophysics interval: H0 = 60− 75 km/s/Mpc.

The model of physical time with decelerating pace provides basic formulae of

cosmography, which can be compared with observations. From (7) with A ≈ H it is

possible to derive the analogue of the Hubble law for decelerating physical time and

the definition of the metric distance:

z = (1+2Hτ)1/2−1 ⇒ z = (1+2H/c·rτ)
1/2

−1 ⇒ rτ (z) = c/2H · [(1+z)2−1]. (11)

1. In contrast to the non–relativistic cosmological models, in relativistic models

photometric distance coincides with the metric distance, and the equation for

the radiation flux is: F = L0/4πr
2
τ(z). The formula for the distance module

(distances rτ in Mpc) is:

µτ = 51g[rτ(z)] + 25. (12)

2. As in the “standard” cosmological model of GRT the dependence of the angular

size of the extended space object on the redshift is given by relation:

θ ∝ (1 + z)/rτ (z). (13)

3. For estimation of the average surface brightness of a space object 〈sb〉 = F/θ2

in contrast with “standard” cosmological model GRT, where 〈sb〉t = F/θ2 ∝

(1 + z)−4 the formulae (12,13) lead to the relations:

〈sb〉τ ∝ (1 + z)−2, 〈sbm〉τ = 〈sbm〉0τ + 2.5 · lg[(1 + z)2], (14)

where lg x = log10 x.
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Analysis of cosmographical calculations using formulae (12)–(14) convincingly

demonstrates the superiority of the cosmological model of the Universe with deceler-

ating physical time, which has the lowest standard deviations (RMS) of theoretical

formulae from observational data in all classical cosmological tests. If we estimate

the mean ratios of RMS of cosmographical formulae to the average uncertainties of

corresponding observations, it appears that the “standard” ΛCDM-model of GRT

has these ratios in the range 0.8 ÷ 2.7 and in average about 1.8. The same ratios

for the cosmography of the Universe with decelerating physical time are in the range

0.4÷ 1.35 and in average about 1.0 (see details in [4]).

Apart from the cosmographical formulae that determine the basic geometrical

characteristics of observable part of the Universe, a complete cosmology must use

certain thermodynamic equation of state for the Universe. From the Principle of

least action: ∂S/∂τ = 0 ⇒ S = Eτ = const for constant volume V = const and

energy density: ρE = E/V follows the relation: ρE = const/τ . The form of Principle

of least action: S = pr · r ∝ r′ · r = const can be considered as a differential equation

that has a solution: r2 = const · τ . With this solution, the relation ρE = const/τ
may be represented in the form:

ρEτ = const, ρE = const/r2. (15)

This equation, which is one of the possible forms of the Principle of least action,

is used in the Metaphysical cosmology (MC) with decelerating physical time as the

equation of state for the Universe.

The finite volume of Universe is considered as relativistic object with the total

energy equal to zero: E = 0, and gravitational energy: EG = −3Gm2/2r. The total

energy is: E = mc2+EU − (3Gm2/2r) = 0 where EU is an internal energy, including

the kinetic energy of the non–relativistic subsystems, which can be estimated as

EU = −UG/2 = 3Gm2/4r in accordance with the non-relativistic virial theorem.

With these assumptions, the total energy of the finite volume of Universe is

mc2 − (3Gm2/4rτ) = 0. (16)

Substituting into (16) the transformed relation (7) with A ≈ H : R = R0(1 +

2Hτ)1/2 one can get an estimate for the process of growth of the Universe mass:

m = 4c2R0/3G · (1 + 2Hτ)1/2. (17)

In contrast to the cosmology of the GRT with the Big Bang, in which the whole

matter of the Universe was born in the process of inflation almost instantly (during

10−36
− 10−34 seconds), MC of the Universe with decelerating physical time predicts

a gradual increase of the mass of the Universe (17), that is, the existence of the

processes of synthesis of new matter. The average rate of synthesis of new matter

can be estimated by cosmological scales (20)–(22): QH = MH/THVH = 8H3/27π ≈

10−47 g s−1cm−3. This rate of mass growth means, for instance, that in the whole
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volume of the Earth during all its history could appear no more than 2 · 10−3 gram

of hydrogen, not enough to fill a child’s balloon. Yet in the whole Universe this mass

growth means the birth of new cosmic objects with the total mass of more than

105 solar masses, i.e. of the same order as masses of new globular star cluster or

a dwarf galaxy, emerging every second.

The estimated characteristics of the Universe mass growth discussed above by no

means suggest uniform matter synthesis across the Universe. It seems rather that

high-energy processes of matter synthesis occur in relatively few centers, like quasars

or active nuclei of massive galaxies.

From the energy balance (16) we can obtain the relations for the mass and the

mass density ρm = m/V = 3m/4πr3τ , defined as extensive parameters of the finite

volumes and masses of the relativistic matter:

m = 4c2rτ/3G, ρm = (c2/πG) · r−2
τ 〈m〉 ∝ 〈rτ 〉 〈ρm〉 ∝ 〈rτ 〉

−2. (18)

In Metaphysical cosmology of the Universe with decelerating physical time we

use a new doctrine.

The integrity of the Universe as an interconnected system consisting of two major

subsystems — the micro world and the mega world is provided by system–forming

relations between key characteristics of the micro world and the mega world.

The important feature of the methodology of Natural sciences is the definition

and use of the characteristic scales of the objects and physical processes. The “cos-

mological scales” can also be introduced for the observable part of the Universe.

Estimates of the cosmological scales of time (the “age of the Universe”) and distance

(the “radius of the Universe”) can be obtained using the relation (7) with A ≈ H .

The estimate of the Newtonian age of the Universe can be determined from the con-

dition τ = 0 for which the equation (7) has the form: τ = 0 = −t+H/2 · t2. Hence:
−1 +H/2 · t = 0 and respectively:

tp = 2/H = 32.15Gyr. (19)

The velocity of the apparent Universe expansion V = cz reaches the limit of the

speed of light at z = 1. For this value of redshift the relation (7) has the form:

r = cτ = c/2H · [(1 + z)2 − 1] from which for z = 1 follows: τ = 1/2H · [(1 + 1)2 − 1]

and then:

τ = TH = 3/2H = 7.618 · 1017 s (≈ 24.15Gyr). (20)

In (19), (20), and henceforth in the calculations of the numerical values of cos-

mological scales we use the theoretical value of Hubble constant (25) derived a half

page below.

The relationRH = cTH together with (20) gives the estimation of the cosmological

distance scale (“radius of the Universe”):

RH = cTH = 3c/2H = 2.283 · 1028 cm. (21)
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From the first relation in (18) it can be obtained the estimate for mass of the

Universe with r = RH :

MH = 4c2RH/3G = 2c3/GH = 4.099 · 1056 g. (22)

For cosmological scales (20)–(22) with the help of (18) we can estimate the average

density of action:

ρs = ρETH = ρmc
2TH = 2c2H/3πG = 5.627 · 109 erg s cm−3. (23)

From the Principle of least action: S = Eτ = const for constant volume VH =

const from (23) follows the relation: ρSH = 2c2H/3πG = const defining constancy

of action density in mega world. Planck equation εδt = h/2 = const can also be

represented as an assertion of constancy of action density in the micro world, if we

assume the existence of a finite volume νPL = const for the quantum of action:

εδt/νP l = const. We may also assume that the quantum of action is defined in the

same volume as the elementary charge that is in the spherical volume: νP l = 4πr3e/3
with the classical electron radius: re = e2/mec

2. Corresponding action density in the

micro world will be: ρSP l = ~/2νP l = 3~/8πr3e = const. Universality of the Principle

of least action allows us to formulate the conditions of dynamic unity of the micro

world and the mega world in the form of a condition of universal constancy of action

density:

ρSH = ρSP l −→ Kτ = 2c2H/3G = 3~/8r3e = 1.768 · 1010 erg s cm−3. (24)

This relation allows representing the Hubble constant and many other key pa-

rameters of the Universe as simple functions of fundamental constants:

H = 9G~/16c2r3e = 1.97 · 10−18 s−1(≈ 61.6 km/s/Mpc), re = e2/mec
2. (25)

Application of the Principle of least action and relations (24) in the MC of the

Universe with decelerating physical time allows determination of the interdepen-

dence of key parameters of the Universe and the basic processes of the microcosm

represented by fundamental constants (for details, see [3, 4]).

1. The relations (21), (22), and (25) lead to the estimation of the average mass

density of the Universe:

ρm = MH/VH = 4H2/9πG = 9~2G/64πc4r6e = 8.227 · 10−30 g cm−3. (26)

Estimates of average mass density by astrophysical observations correspond to

the range: ρm = (5÷ 10) · 10−30 g cm−3.

2. Equation (15) ρEτ = const with invariant equation of state of relativistic mat-

ter (16) must be true for any time and, in particular, for the cosmological scale
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of physical time (20): τ = TH = 3/2H . Using this relation and the theoretical

formula (25) one can define a constant in (15) and present it in the form:

ρEτ = kτ , kτ = 2c2H/3πG = 3~/8πr3e = 5.629 · 109 erg s cm−3. (27)

If we define the characteristic time in the equation (27), using the relation:

τ = r/c and taking into account that ρE = ρmc
2, the equation for mass density

takes the form:

ρm = (2cH/3πG) · r−1 = (kτ/c) · r
−1 = 1.878 · 10−1

· r−1 g cm−3. (28)

For the fractals there can be defined with the help of the relation m ∝ rD

the Hausdorff dimension D, which is connected with the mass density by the

relation: ρm ∝ r−(3−D). Comparing this formula with (28) we arrive to the

conclusion that the relation (28) should generate the fractal distribution of

matter in the Universe with the fractal dimension D = 2. Therefore, statisti-

cal methods for analyzing the 3D–distribution of galaxies in space, which use

the Hubble’s law to determine the one of galaxy’s coordinates, shall, in accor-

dance with the equation (28) to detect the fractal dimension of the large–scale

structure of the Universe of about D = 2. This prediction is well confirmed by

observations up to distances about 1 000 Mpc.

3. Application of quantum scaling in the MC of the Universe with decelerating

physical time allows evaluating of the energy density and the temperature of

the cosmic microwave background:

ρCMB = ρm · e4/~2
· (1 +me/mp) = 3.931 · 10−13 erg cm−3,

TCMB = (ρCMB/σ)
1/4 = 2.685K. (29)

The most impressive manifestation of cosmological deceleration of time in distant

cosmos is the illusion of accelerating expansion of the Universe. Recently, the sci-

entific community lively discussed the possible evidence of “accelerating expansion”

of the Universe, discovered independently by two teams of researchers (Perlmutter

et al., Riess et al.). In order to detect the phenomenon of “accelerating expan-

sion” scientists used estimates of the so–called cosmological parameters ΩM , ΩΛ in

the “standard” model of GRT cosmology, obtained by processing the results of the

study of supernovae SNe Ia explosions. These research projects evaluated the follow-

ing estimates of the cosmological parameters: ΩMe = 0.28+0.09
−0.08 and ΩMe = 0.29+0.05

−0.03.

Relation ΩM + ΩΛ ≈ 1 allows for a standard “flat” cosmological model to esti-

mate the value of ΩΛ and then using the formula: qt =
1
2
ΩM − ΩΛ to calculate the

“deceleration parameter” for Newtonian time: qte = −0.56 ± 0.11. This negative

deceleration parameter allowed concluding that in our epoch the Universe expands

with acceleration.
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In the concept of decelerating physical time, the apparent evidence of “acceler-

ating expansion” of the Universe has an ordinary explanation (Taganov 2005 [3, 4]).

In accordance with the equations (6) the relation between the cosmological deceler-

ation parameter for physical time: qτ = −aa′′/a
′2 and the deceleration parameter

qt = −aä/ȧ2 for Newtonian time is: qt = qτ − 1. From this relation follows that the

moderate (qτ < +1) deceleration of the Universe expansion in physical time seems

an accelerating expansion (qt < 0) in the Newtonian time.

Using relation qt = qτ −1 we can estimate the deceleration parameter in physical

time corresponding to observations of supernovae: qτe = qte+1 = (−0.56±0.11)+1 =

+0.44± 0.11. Hence, in physical time, which is actually governs the real astrophys-

ical observations, the “expansion” of the Universe is not accelerating, but rather

decelerating.

Hence, the illusion of “accelerating expansion” of the Universe aroused from

the fact that for the interpretation of the observations of astrophysical processes

developing in decelerating physical time, researchers used the cosmological model

with invariable uniform scale of Newtonian time.

The cause of discovered “accelerating expansion” of the Universe, some theorists

associate with non-zero Einstein’s cosmological constant, which, in turn, is explained

by assumption of an existence of the mysterious “dark energy”. Dark energy is

a hypothetical form of energy that invisible fills space and is responsible for the

accelerating expansion of our Universe. In the “standard” ΛCDM–model of GRT

cosmology, this mysterious dark energy composes nearly three-quarters of the mass–

energy of the Universe! Since the “dark energy” is included in the “standard” model

of classical cosmology only to explain the accelerating expansion of the Universe,

this gloom ghost will not be slow to disappear as soon as the illusory nature of the

“accelerating expansion” of the Universe will be recognized.

In formulae of this presentation the following fundamental constants are used:

gravitational constant G = 6.674 · 10−8 cm3 g−1 s−2; Planck constant ~ = h/2π =

1.055 · 10−27 erg s; the speed of light in vacuum c = 2.998 · 1010 cm s−1; elementary

electrical charge e(e2 = 2.307 · 10−19 g cm3 s−2); classical radius of electron re =

e2/mec
2 = 2.818 · 10−13 cm; mass of electron me = 9.110 · 10−28 g, mass of proton

mp = 1.673 · 10−24 g; the Stefan–Boltzmann constant σ = 7.566 · 10−15 erg cm−3K−4.
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Abstract: The Larson scaling relations of Giant Molecular Clouds (GMC)
in the Galaxy (Larson 1981 [9]) were re-examined in a seminal paper by Heyer
et al. (2009) [6]. They have used the more accurate data of Galactic Ring
Survey (GRS) [7] and found that the scaling relations actually depend on the
cloud surface mass density.
Here we take a step further and examine the observed velocity dispersion, nor-
malized by virial value of the velocity dispersion, as function of the surface
mass density. The data does suggest that the above ratio is a function the
surface mass density. For low surface mass densities the ratio is about twice
the value corresponding to large surface mass densities. The transition surface
mass density corresponds to a self acceleration of the cloud being∼ 10−8 cm/s2.
This is the value which characterizes within the modified Newtonian Dynam-
ics (MOND) the transition from the Newtonian to the MOND regime.
Next, we test the normalized velocity dispersion as function of the volume
mass density. We find a transition from a value of ∼ 1 to a value of ∼ 2 when
the mass density decreases below a value of ρ = 2.22 × 10−22 g cm−3. Such
a behaviour is in accord with Chameleon gravity models.
We note that within both the MOND and Chameleon frameworks, all GMC are
gravitationally bound, in contrast with Newtonian gravity for which only the
high mass density GMCs are bound. Thus, in the modified gravity frameworks
one expects a higher efficiency of star formation.

Keywords: Giant molecular clouds, modified gravity, astronomy

PACS: 95.55.Jz, 95.30.Sf, 98.58.Db, 95.85.Bh, 95.85.-e

1. Introduction

Giant molecular clouds (GMC) are the largest structures in the Galaxy. They are
the sites of star formation and therefore attracted observational and theoretical at-
tention. More than thirty years ago Larson (1981) [9] published the famous relations
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between parameters of the GMC. Among them was the relation between the veloc-
ity dispersion and the cloud size σv ∝ R0.38. Subsequent observation (e.g. Solomon
et al. 1987 [12] (SRBY)) pointed to a relation of the form σv ∝ Rm with m ≈ 0.5.
The velocity dispersions are supersonic. There were various attempts to explain the
scaling relations as resulting from supersonic turbulence and/or from quasi-static
configuration involving magnetic fields in addition to gravity (see e.g. Fleck 1983 [3],
Canuto and Battaglia 1985 [1], Heyer et al. 2001 [4], Heyer & Brunt 2004 [5]).

Heyer et al. (2009) [6] employed the more accurate data of the Boston University
Galactic Ring Survey (GRS) [7] and found that the velocity dispersion-radius scaling
relation depends on the cloud surface mass density. The GRS data span almost
3 orders of magnitude in the value of the the surface mass density: a substantial
improvement on the previous data span which allowed them to quantify the above
dependence via

σv ∝ R0.5Σ0.5 (1)

with Σ the surface mass density

Σ =
M

πR2
. (2)

Figure 1: Figure 7 of Heyer et al. (2009)
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Figure 1 displays Figure 7 of Heyer et al. (2009) [6]. For each cloud they have
used two separate approaches: in the first A1, they used the criteria of SRBY to
determine the cloud radius. In the second A2, they used the better defined radius
of the half-power isophot of the peak column density value within the cloud. The
figure presents both data sets (derived from one observational data set).

In effect (2) implies that

σv ≈
√
GM

R
(3)

suggesting that the clouds are in a self gravitating equilibrium rather than a mani-
festation of turbulent hierarchical structure.

2. The normalized velocity dispersion dependence on the surface mass
density and MOND

The results of Heyer et al. (2009) [6] imply that the normalized velocity dispersion

σn =
σv√
GM
5R

(4)

is constant regardless of the value of the surface mass density was made. In this paper
we use the same data in order to examine whether σn is indeed constant. Figure 2
displays σn versus Σ. The second data set A2 of Heyer et al. (2009) [6], was used
because of its higher precision.

Figure 2: The normalized velocity dispersion as function of the surface mass density
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Figure 3: Figure 1 corrected by the present results

The scatter in the data is quite large but the general trend is obvious: for small
surface mass densities the mean value of the ratio is ∼ 2 while for large values it
is ∼ 1. The fit function:

σn =
σv
σvir

= 1 + 0.9× e−Σ/260 (5)

has a value of χ2 = 2.52; implying a good fit to the data. To reach this value a rather
conservative assumption (Heyer et al. (2009) [6]) that

∆σn = 0.2σn (6)

was made.
The self gravitational acceleration of the cloud is related to the surface mass

density by

aself =
GM

R2
= πGΣ. (7)

The value of Σ = 260M� pc−2 corresponds to aself = 1.19× 108 cm s−2. This is very
close to a0 of MOND – Milgrom’s Modified Newtonian Dynamics [10]. Interestingly
Milgrom (1989) [11] noted that the then available GMC data were centered on a Σ
of the order of a0. Here, we show the transition between the Newtonian and the
MOND regimes.

Figure 3 shows how would Figure 1 have looked with the present results taken
into account.
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3. The normalized velocity dispersion dependence on the volume mass
density and Chameleon gravity

The previous result provides a motivation to check whether the data can be rel-
evant with regard to Chameleon gravity models (see review by Khoury 2013 [8]).
In these models a massive scalar or vector field of gravity strength acts in addition
to gravity. The mass of the field (or the inverse of the field screening range) are
proportional to a positive power of the environment volume mass density. So the
field is effective in low density environments and is screened out in high density envi-
ronments, hence the name of the models. We use here an example where m ∝ ρ1/2.
The best fit function to the data is

σn = 1 + 1.2e−
√
ρ/30 , ρ =

4πM

3R3
. (8)

The value of 30M� pc−3 corresponds to 2.22 × 10−22 g cm−3 or an equivalent value
of hydrogen atoms of nH = 133 cm−3. We see indeed a transition of the normalized
velocity dispersion from a value close to 2 to a value close to 1, as the mass density
increases. This is in line with the Chameleon models.

The fit function (8) yields a value χ2 = 2.95 implying a good fit but slightly worse
than that of (5).

Figure 4: The normalized velocity dispersion as function of the volume mass density.
The curve is the fit function of (8).
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4. Discussion

We obtained the normalized velocity dispersion as function of the surface mass
density and as a function of the volume mass density. The data shows a transition of
the normalized velocity dispersion from ∼ 1 to ∼ 2 for surface mass densities much
larger/smaller than 260M� pc−2 corresponding to an acceleration equal the MOND
acceleration. The values of the normalized velocity dispersion for the lowest surface
mass density observational value is equal to that predicted by MOND.

The normalized velocity dispersion changes from ∼ 1 to ∼ 2 for mass densities
much larger/smaller than 2.2×10−22 g cm−3. This is in accord with what is expected
from Chameleon gravity.

Dobbs et al. (2011) [2] showed that most GMC are not bound gravitationally,
since for many clouds σn > 1. They explained the higher velocity dispersion as
due to stellar feedback and cloud-cloud collisions. However, both in MOND and
the Chameleon approaches, the clouds are gravitationally bound even for the low
surface mass densities and volume mass densities. The implication is that within
these frameworks star formation should be more efficient than in Newtonian gravity,
since the clouds are bound even when the mass density is low.
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Abstract: The spatial arrangement of galaxies (of satellites on a scale

of 100 kpc) as well as their three-dimensional distribution in galaxy groups

such as the Local Group (on a scale of 1Mpc), the distribution of galaxies in

the nearby volume of galaxies (on a scale of 8Mpc) and in the nearby Universe

(on a scale of 1Gpc) is considered. There is further evidence that the CMB

shows irregularities and anisotropic cosmic expansion. The overall impression

one obtains, given the best data we have, is matter to be arranged as not ex-

pected in the dark-matter based standard model of cosmology (SMoC). There

appears to be too much structure, regularity and organisation. Dynamical

friction on the dark matter halos is a strong direct test for the presence of

dark matter particles, but this process does not appear to be operative in the

real Universe. This evidence suggests strongly that dynamically relevant dark

matter does not exist and therefore cosmology remains largely not understood

theoretically. More-accepted awareness of this case would by itself constitute a

major advance in research providing fabulous opportunities for bright minds,

and the observational data strongly suggest that gravitation must be effectively

Milgromian, corresponding to a generalized Poisson equation in the classical

limit. Thus, physical cosmology offers a significant historically relevant oppor-

tunity for ground-breaking work, at least for those daring to do so.

Keywords: Dark matter, cosmology, Milky Way, CMB
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1. Introduction

The direct searches for dark matter particles, which the vast majority of re-

searchers believe dominate the matter density of the Universe, have been coming up
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empty handed despite a huge effort to find these particles with various elaborate,

large and expensive experiments on Earth and in space. But the astronomical ev-

idence has already been showing that dark matter particles cannot be there. This

seems to be a contradictory statement, because astronomical evidence has been used

to argue for the existence of dark matter particles which must be new particles not

contained in the standard model of particle physics (SMoPP), which is otherwise

a well tested theory.

The argument is as follows: If it is assumed that the Universe is described by

Einstein’s field equation1 such that Newtonian gravitation is valid in the classical

regime and if all the matter was produced in the Big Bang, then the rate with which

structures form as cosmic time progresses, and also the motions of stars and gas

in the emerging galaxies when compared to observations, shows conclusively that

gravity must be stronger than provided by the matter we know. One hypothesis

is that much more gravitating matter, that is dark matter which cannot interact

electromagnetically with normal matter and which is not described by the standard

model of particle physics (SMoPP), is required to yield, roughly, the observed effects.

Given this result, the researcher can now assume this model (Einstein plus dark

matter, lets call it the null hypothesis) to be valid and perform detailed calculations of

galactic systems to further test the hypothesis. Additional assumptions (inflation and

dark energy) are also needed and together comprise the dark-matter-based standard

model of cosmology (SMoC). A discussion of the current status of the SMoC can be

found in [12] and a critical discussion is also provided by [32].

This model can then be tested on various astronomical data, as outlined below.

The argument followed here is to proceed testing the SMoC using the relative spatial

distribution and, when available, the relative motions of galaxies. The tests then

become very robust, that is, do not depend on the details of baryonic physics, since

the tests apply largely to the presence of galaxies within their dark matter halos.

Thus, if dark matter halos exist, their spatial arrangements relative to each other

and their motions relative to each other are being tested, rather than the detailed

“sub-grid” properties of individual galaxies. Baryonic processes then only play a role

in determining if a dark matter halo hosts a galaxy or not, and arguably, dark matter

halos more massive than 109M
⊙
are understood to host galaxies with initial mass >

107M
⊙
. This text is a short summary pointing to the relevant literature, rather than

providing the detailed analysis of each problem. More detailed discussions of these

issues, which this text is also based on, are available in [34, 35, 36, 37, 38].

The analysis of the distribution of galaxies in the Local Group can be split into

two parts: the distribution of satellite galaxies (Section 2), the distribution of non-

satellite galaxies (Section 3). The distribution of galaxies in the Local Volume (Sec-

tion 4) and the variation of the mean matter density in the Local Universe provide

1As emphasized in [35, 38] this is an extrapolation by many orders of magnitude in scale and

gradient of the potential of an empirically derived law, strictly valid only on the scale of the Solar-

system. See footnote 2 for an analogy.
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further tests, in particular also of the Cosmological Principle. This question is ad-

dressed independently by probing evidence for isotropic cosmic expansion (Section 7).

A direct test for the presence of dynamically relevant dark matter particles is pro-

vided by observable consequences of dynamical friction (Section 6).

2. The 100kpc scale

It is by now well established that the satellite galaxies around the Milky Way

are highly significantly distributed anisotropically in a rotational disk-like structure

with radius of about 250 kpc and thickness of about 30 kpc [33, 46, 47, 55, 63]. The

Andromeda galaxy has a richer population of satellite galaxies with perhaps a number

of planar structures [45], but one planar structure which contains 50 per cent of all

satellites is even more pronounced and thinner than that of the Milky Way [21]. Both

disks-of-satellites are correlated [57]. Other major galaxies show significant evidence

that such satellite planes are common [22, 24]. The dwarf spheroidal galaxies in the

M81 group, which is the nearest Local-Group analogue (distance about 3.6Mpc),

are in a flattened distribution [15] and the satellite galaxies of Cen A (distance

about 3.66Mpc) are likewise in a plane, which is perpendicular to the dust lane of

Cen A [52]. The observational results are thus rather clear: disks of satellites are

common, and in fact they seem to be the rule rather than the exception. This is

impossible to be the case in the SMoC.

It has been shown that just to find the one Milky Way satellite system in a dark-

matter universe is very unlikely. To have such structures around many hosts, let

alone that the Milky Way and Andromeda systems are correlated, essentially leads to

a combined probability of zero, assuming the SMoC to be valid and the dwarf galaxies

in the Local Group to be in their own dark matter halos [35, 59]. Basically, this single

observational result falsifies the SMoC, as has been realized early-on already [33].

Claims that the disks of satellites can be accounted for readily within the SMoC

such that they do not constitute a serious problem have been found to be

flawed [23, 59, 61, 24]. SMoC simulations show that rotating disks of satellites

are as unlikely within pairs of dark matter halos (resembling the pair Milky Way–

Andromeda) as in isolated halos [60].

The physical reason for this discrepancy between observation and the SMoC is

that the SMoC necessitates all Milky-Way-type dark matter halos to form from

numerous stochastic mergers of smaller halos such that the result is that the distri-

bution of dark-matter-dominated satellite galaxies is spheroidal. Although the dark

matter sub-halos fall-in from cosmic filaments, these have widths larger than the

virial radii of the dark matter halos, such that the infall of satellite galaxies, even if

being anisotropic to some degree, remains in significant disagreement with the thin

disks-of-satellites, since the Rosetta-orbits phase-mix and shrink through dynami-

cal friction [48, 56]. Indeed, the observed positions and velocities of those satellite

galaxies for which such data exist show that infall-solutions do not exist, because

dynamical friction on the extended dark matter halos is too efficient [1].
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The only known physical process which can lead to such rotating disk of satellites

is that the dSph satellite galaxies are ancient tidal dwarf galaxies (TDGs). How such

populations can form has been demonstrated [74, 54]. Such low-mass dwarf galaxies

cannot capture significant amounts of dark matter and their putative dark matter

content would then be explainable by Milgromian gravitation [43, 44, 16].

For future tests, [58, 62] predict the proper motions of the Milky Way satellite

galaxies based on the argument that they need to orbit within the disk-of satellites

as otherwise the chance of having such a vast polar structure for randomly moving

satellites would be negligibly small. And, if dSph satellites are ancient TDGs, then

their number is expected to correlate with other indicators for past galaxy–galaxy

encounters, such as the bulge mass [34, 42]. This opens a possibility for further testing

this notion (i.e. that dSph satellite galaxies are mostly if not exclusively old TDGs)

through observational campaigns using small (also amateur) telescopes [26].

3. The 1Mpc scale

The dwarf galaxies in the Local Group which are not satellites are distributed

in a very organized manner, namely in two ≈ 50 kpc thin planes of about 1.5Mpc

extension, whereby each is nearly equidistant from the line joining the Milky Way

and Andromeda [57]. These structures suggest the Milky Way and Andromeda to be

causally connected, and this poses an important constraint on models of the forma-

tion of the Local Group. The physically best-motivated cause for this entire struc-

ture, including the correlated disks of satellite systems around the Milky Way and

Andromeda, is for the two major galaxies to have had an encounter about 9–11Gyr

ago [78, 2]. This is only possible if they do not have dark matter halos, as they would

otherwise have merged by now (e.g. [3] for similar cases). The structure of the Local

Group is indeed not explainable within the dark matter framework.

The next group of galaxies beyond the Local Group is the M81 system at a dis-

tance of about 3.6Mpc. Here we already do not have such good three-dimensional

coordinate information, but the system of dwarf galaxies in it is known to be highly

anisotropic [15] as noted in Section 2. The highly significant anisotropy in the Cen A

group [52] at a distance of approximately 3.66Mpc has been noted above.

Furthermore, the major galaxies in the M81 group have been encountering each

other at least once, because the system is filled with tidal HI gas. This provides cru-

cial information on the existence of dark matter halos because solutions do not seem

to exist which explain the matter distribution as well as the present-day positions

and line-of-sight velocities [71, 77]. Essentially, if dark matter halos exist, then this

system ought to have already merged. The probability that all three major inner

galaxies of the M81 system have just met in the very recent (less than 1Gyr) past

after forming independently is remotely small [53].

The same argument applies to compact groups of galaxies [69]. Too many com-

pact groups are observed with a constancy in number density with redshift such

that they appear to be largely non-merging in contradiction to the expectation in
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the SMoC. That the compact groups have just assembled in the past 1Gyr of their

observation with the member galaxies having formed independently of each other

constitutes a negligible physical possibility, especially given the large number of such

systems. The only viable physical explanation for the existence of so many compact

groups is that the galaxies in them interact for many Gyr without merging. This is

not possible in a dark-matter-based cosmological model.

4. The 8Mpc scale

Cosmological structure is evident in the galaxy distribution within the Local Vol-

ume which is a sphere with a radius of about 8Mpc around the Local Group. This

volume contains galaxies within the local sheet and also the local void. At least two

fundamental problems with the observed distribution of galaxies have been empha-

sized [64]: (i) the local void is too empty and (ii) massive galaxies are too far from the

sheet within the outer regions of the void. Each problem individually they describe

as being about 1 per cent or less probable within the SMoC, such that the com-

bined probability that the observed distribution can arise in the SMoC approaches

zero. Consequently, structure formation appears to have proceeded differently to

the SMoC.

5. The 1Gpc scale

The Local Universe on a scale of about 1Gpc around the Local Group should

have small fluctuations in the density of galaxy counts, but within about 300Mpc of

us the density decreases significantly with decreasing distance to about 50 per cent its

global cosmological value posing serious tension with the SMoC [28, 29, 10, 75]. The

under-density on a sale of 300Mpc and less is significantly more pronounced than

allowed by the SMoC (Fig. 1 in [38]). This has bearing on the deduced acceleration

of cosmic expansion, because photons arriving from larger distances are redshifted

more than in a homogenous universe. This may be partially or entirely responsible

for the dark-energy effect [76, 11], and this needs to be studied further.

6. The lack-of-dynamical friction and lack-of-merging problems

It has been noted by [68] that the observed galaxy population does not support

the profusion of mergers that are expected in the SMoC such that these authors

argue that dynamical friction must be less efficient. This is consistent with the

deficit of galaxies with bulges compared to SMoC predictions and the survival of

pure disk galaxies since 8Gyr [73, 31, 19, 67] and with the absence of the evolution

of the ratio of the co-moving number density of the most massive galaxies relative

to less-massive galaxies [14]. The absence of an evolution of the number density

of elliptical galaxies [17] and the lack of recoiled super-massive black holes [39] are

furthermore also consistent with this general lack of evidence for mergers being an

important process in the evolution of galaxies, in contrast to the expectations from

the SMoC.
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But this is only possible if the dynamical influence of dark matter is much below

that in the SMoC (which would by itself be a violation of the SMoC), or if dark matter

does not exist, as otherwise the massive and expansive dark matter halos around each

galaxy are dictated by the theory. That is, it is not possible to arbitrarily reduce the

process of dynamical friction to fit the data but keeping the dark matter halos as

obtained from the SMoC. Consistent with this problem is the lack of merging already

observed in the M81 group of galaxies and in the compact galaxy groups (Section 3).

7. Discussion

Given the statements in the Introduction, it is apparent that in order to save the

model we have two possibilities:

1. We can shrug the problems away by arguing that we simply know the model

to be right anyway. Such a statement is rather popular and is based on the

main-stream understanding that the CMB is extremely well represented by the

SMoC as evident with the Planck results. Any irregularities in the non-linear

structure-formation regime (galaxy clusters, galaxies) are then not to be taken

too seriously. But there are tensions between the CMB and the SMoC (see

Section 17.3.1 in [35] and also [25] and e.g. [20]). For example, there is tenta-

tive evidence for an unexpected alignment of various independent measures

of anisotropy in the CMB, SN1a-based cosmological expansion and galaxy

morphology possibly raising questions concerning the Cosmological Princi-

ple [25, 27]. There is also tension between the locally-measured Hubble con-

stant and the Hubble constant as derived from the CMB [66, 4]. Ignoring such

tensions and claiming excellent fits of the SMoC to the CMB as proving the

dark-matter models to be correct may serve the short-term aims of a famous-

few but undermines the very principle of natural scientific research, as such

claims are based on belief rather than comprehensive evidence, remembering

that no theory can ever be proven, but merely tested and if necessary discarded.

Thus, this avenue of thinking is not convincing.

2. It may be speculated that baryonic physics, which is described by perhaps the

best model of physics we have (the SMoPP), conspires on every studied scale

to annul the discrepancies in the sense that what we observed does not seem

to match, but what we cannot see is an excellent account of reality.

Such an argument rests on speculation of unverifiable processes and needs to

be discarded.

3. The more scientific approach is to accept the failures and to seek an entirely

different model. Such a model would need to be dark-matter free in order

to test if baryonic structures alone, which are described by the best model

of physics we currently have (the SMoPP), may be able to account for the

observations, but in a different gravitational framework. Gravitation remains

150



the least well understood force, if it is a force at all, and thus this ansatz appears

to be the most promising avenue. Our work in Bonn and Strasbourg, using the

Phantom of Ramses (PoR) computer code ([41], see also [13]), developed with

sparse funding from Bonn, is now allowing us to perform exactly this work in

the Milgromian-gravitational framework [49, 51, 18]. The results so far appear

highly promising [65, 70].

8. Conclusion

The above discussion suggests that the real Universe appears to produce more

structure, which is at least partially more ordered and organized than the SMoC, and

that the observed galaxy population neither matches nor does it evolve as expected

by the SMoC. The explicit tests for the presence of dark matter via dynamical

friction suggest this process not to be acting. All of this is consistent with the null

results in the searches for dark matter particles. Here I would wish to emphasize the

incredible consistency of the tests amongst each other: none of the tests performed

yield positive results concerning the SMoC, and all appear to suggest more structure

and organisation. This is important to note, because we do not have the situation

where a test yields excellent agreement while another one does not. They are all

consistently problematical for the SMoC. In [35, 37, 38] the theory confidence graph

lists the many individual tests performed such that, if each failed test decreases the

confidence by 50 per cent then the remaining confidence in the SMoC remains today

at less than 10−5 per cent.

We are left with inferring that the important hypothesis that dark matter par-

ticles exist needs to be rejected by astronomical data. Gravitation must therefore

be effectively2 stronger on scales relevant for galaxies. Mordehai Milgrom [49] has

conceptualized a generalized gravity known as MOND, or as Milgromian gravitation.

This finding can be seen as constituting the greatest advance in gravitational physics

since Newton and Einstein and it is based on a generalized Poisson equation and a La-

grangian [8] and can also be embedded in a general-relativistic theory, as discovered

by Jacob Bekenstein [5] with notable reviews [6, 7] with alternatives [9, 72, 30].

The observed deviations from Newtonian gravitation at the very weak accelerations,

which are described by Milgromian gravity, may be a result of vacuum processes,

perhaps as discussed for Minkowski space by Milgrom [50]. Milgromian dynamics

has proven to be extraordinarily successful [18] and is now being used in numerical

experiments to study galaxy formation and evolution [41, 70, 65]. These numerical

experiments appear to be showing an incredible amount of success in reproducing all

major issues in the astrophysics of galaxies, as our work at the Universities of Stras-

2Effectively, because it may still be Einsteinian but with additional but non-exotic physics

possibly playing a role in Minkowski space [50]. This is nicely visualized by an analogy by Indranil

Banik: consider a trampoline. One can measure its depth-extension s = s(w) as a function of

weight w. These measurements can be fitted by an empirical law for macroscopic weights

(e.g. w > 1 kg). We would then not expect this same law s = s(w) to hold in an extrapolation to

w < 10−5 g, for instance, because molecular forces will begin to play a role for very small w.
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bourg and Bonn is demonstrating. Further work will be published in due course,

subject to the availability of funding.

As to the issue of a more structured universe which may also be more orga-

nized [40], it appears that a Milgromian universe may provide the former, and self-

regulatory growth processes may provide the latter which may be related to the

fundamental assumption of conservation of matter.

Closing this critical discussion, one of the currently most fundamental problems

in theoretical physics is the origin of Milgromian dynamics rather the nature of

(non-existing) dark matter particles. This is likely to be an immense opportunity

for talented young researchers. Concerning the theory of galactic astrophysics, un-

derstanding the formation and evolution of galaxies in Milgromian gravity provides

a great opportunity for talented young researchers interested in performing numerical

astrophysics experiments.
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Abstract: The present standard cosmological model of the evolution of our

universe, is based on the Friedmann equation, which was published by Alexan-

der Friedmann in 1922. He applied Einstein’s equations to an expanding three-

dimensional sphere which enabled him to avoid boundary conditions. However,

his description was very brief. Therefore, the main objective of this article is

to detailed a derivation of the Friedmann equation for an unknown expansion

function a = a(t) representing the radius of the universe. Furthermore, we

present serious arguments showing why the validity of Einstein’s equations

should not be extrapolated to the entire universe.
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1. How to imagine the sphere S
3 ?

In accordance with the original article [5] by Friedmann, we assume that for each

fixed time t, the universe1 can be modeled by a three-dimensional sphere (hyper-

sphere)2

S
3
a = {(x, y, z, w) ∈ E

4
| x2 + y2 + z2 + w2 = a2}

with radius a = a(t) > 0, where E
4 is the Euclidean space. It is actually a three-

dimensional surface of a four-dimensional ball. The manifold S
3
a is maximally sym-

1The universe will be an isochrone in spacetime for constant t. It is often called the space.
2In 1900 Karl Schwarzschild already conjectured [25] that the universe can be described as a huge

three-dimensional hypersphere. Albert Einstein also assumed that the gravitational interaction of

mass causes a positive curvature and that the universe can be modeled by a three-dimensional

hypersphere with unchanging radius, see [4, p. 152].
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Figure 1: The unit circle on the left is the sphere S1 = {(x, y) ∈ E
2
| x2+y2 = 1}. The

surface of the unit ball on the right is the sphere S2 = {(x, y, z) ∈ E
3
| x2+y2+z2 = 1}.

It can be expressed using the polar coordinates as follows: x = r cosφ, y = r sin φ,
and the remaining third coordinate will be, by the Pythagoras theorem, equal to

z = ±

√

1− r2, where r ∈ [0, 1] and φ ∈ [0, 2π).

metric3 which expresses the fact that our universe is homogeneous and isotropic on

large scales. If a = 1 we will, for simplicity, omit the subscript a.
Contrary to e.g. a cylindrical surface, a two-dimensional sphere (see the right

part of Fig. 1)

S
2 = {(x, y, z) ∈ E

3
| x2 + y2 + z2 = 1}

cannot be isometrically unrolled into the Euclidean plane E2. Therefore, all maps of

the Earth’s surface are more or less distorted. Similarly, the curved hypersphere S
3

cannot be mapped into the flat space E3 without any distortion of distances. There-

fore, we will further present five independent manners of how to imagine the unit

hypersphere S
3.

1. The first manner uses parallel cuts. In the Euclidean space E4 consider a point

with coordinates

x = r sin θ cosφ,

y = r sin θ sin φ, (1)

z = r cos θ,

w = ±

√

1− r2,

where r ∈ [0, 1], θ ∈ [0, π], and φ ∈ [0, 2π). Then we easily find that

x2 + y2 + z2 + w2 = 1, (2)

and thus (x, y, z, w) ∈ S
3. For clarity, we now cut4 the hypersphere S

3 by parallel

planes w =const. for |w| < 1. This yields two-dimensional spheres with radii

3The corresponding group of symmetries is the orthogonal group O(4).
4If we similarly cut the unit sphere S

2 by parallel planes z =const. for |z| < 1, we get circles

with radii r =
√

1− z2 and centers (0, 0, z), see the parallels in the right part of Fig. 1.
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r =
√

1− w2 and centers (0, 0, 0, w). Their union5 is the hypersphere S3. The points

(x, y, z) ∈ S
2
r are then expressed in standard spherical coordinates defined by the

first three equations of (1). The angle θ = 0 corresponds to the North Pole6 and to

the degenerated radius r = 0 (cf. Figs. 1 and 3).

2. The second manner uses the following hyperspherical coordinates

x = sinχ sin θ cosφ,

y = sinχ sin θ sinφ,

z = sinχ cos θ,

w = cosχ,

where χ, θ ∈ [0, π] and φ ∈ [0, 2π). We observe that these coordinates are a natural

generalization of the standard spherical coordinates for the unit sphere S
2 (cf. (1))

and that the equality (2) holds again.

Note that the manifold S
3 with radius 1 can be divided into infinitely many

spherical shells with radii sinχ for χ ∈ [0, π]. The corresponding surface areas are

4π sin2 χ. Using the hyperspherical coordinates, we find that

vol(S3) = 4π

∫ π

0

sin2 χ dχ = 2π[χ−

1

2
sin 2χ]π0 = 2π2,

which leads to vol(S3
a) = 2π2a3 for an arbitrary radius a > 0 (cf. [4, p. 152]).

3. The third manner relies on local orthogonal projections. For simplicity, we

first investigate the sphere S
2. On S

2 consider a small curved “square neighbor-

hood” whose center is at the point (0, 1, 0) and its sides are parts of great circles

passing through the poles (0, 0,±1) and the points (±1, 0, 0) on the equator. The left

part of Fig. 2 shows the orthogonal projection of this neighborhood to the tangent

plane y = 1. E.g. meridians are projected to converging vertical arcs.

Similarly, on the sphere S
3 we may consider a small curved cube, whose edges

are parts of great circles. The right part of Fig. 2 shows the orthogonal projection

of this cube to the hyperplane E
3 tangent to S

3 at the center of the curved cube.

4. The fourth manner is the well-known stereographic projection. First, we again

consider only the sphere S2. We will project from the North Pole N = (0, 0, 1) all the
remaining points of S2 onto the plane tangential to the South Pole S = (0, 0,−1).

Then the meridians of the sphere (see Fig. 1 right) are mapped to lines passing

through S and the parallels are mapped on circles.7 This projection is a one-to-one

mapping from S
2
\N onto E

2.

5Similarly, the union of all parallels (circles) from the right part of Fig. 1 is the sphere S
2.

6For r ∈ [0, 1], θ ∈ [−π/2, π/2], and φ ∈ [0, 2π) we may also consider the coordinates

x = r cos θ cosφ, y = r cos θ sinφ, and z = r sin θ, where θ = 0 corresponds to the equator.
7Such a stereographic projection was used in the construction of the astronomical dial repre-

senting the celestial sphere at the Prague Astronomical Clock (Horologe).
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Figure 2: Local orthogonal projection of a part of the sphere S
n into the tangent

hyperplane E
n for n = 2 and n = 3. All broken lines are parts of ellipses whose

semimajor axes are equal to 1.

Similarly, for the hypersphere S
3 we select two opposite poles N = (0, 0, 0, 1) and

S = (0, 0, 0,−1). Then all points from S
3
\N are projected from the North Pole N

into a three-dimensional hyperplane tangent to S
3 at the South Pole S. Great circles

passing through N and S will be again mapped on lines passing through S, etc.

5. Finally, the best of all. The last manner uses the Gaussian plane of complex

numbers C. Setting

x = x+ iy, z = z + iw ∈ C,

the hypersphere

S
3 = {(x, y, z, w) ∈ E

4
| |x|2 + |y|2 + |z|2 + |w|2 = 1}

can be expressed as a manifold resembling the unit circle in complex variables

S
3 ∼= {(x, z) ∈ C

2
| |x|

2 + |z|
2 = 1}.

Moreover, we clearly have |x|
2 = |x

2
| and |z|

2 = |z
2
|.

2. Metric tensor for a positive curvature index

The metric tensor of the spacetime has in general 10 independent entries. It is the

solution of Einstein’s equations of general relativity (see (20) below). Now we show

that due to the high symmetry of the hypersphere S
3
a all the non-diagonal entries of

the metric tensor vanish.
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The unit hypersphere S
3 is actually a three-dimensional hypersurface in four-

dimensional Euclidean space E
4. Therefore, according to (1) and [21, p. 253], the

components of local coordinate vectors for r < 1 are

p1(r, θ, φ) =
∂

∂r
p(r, θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ,−r(1− r2)−1/2),

p2(r, θ, φ) =
∂

∂θ
p(r, θ, φ) = (r cos θ cosφ, r cos θ sinφ,−r sin θ, 0),

p3(r, θ, φ) =
∂

∂φ
p(r, θ, φ) = (−r sin θ sinφ, r sin θ cosφ, 0, 0),

where the vector p with components p1, p2, p3 lies in the hyperplane tangent at the

point (x, y, z, w) ∈ S
3 (cf. Fig. 3 for a two-dimensional sphere).

Figure 3: Local coordinate orthogonal vectors p1 and p2 in the plane tangent at the

point (x, y, z) ∈ S
2 given in the standard spherical coordinates (r, φ, θ), cf. (1).

The covariant coordinates of the symmetric metric tensor corresponding to the

unit hypersphere S
3 are given by the relations

g̃αβ = pα · pβ for α, β = 1, 2, 3,

where · denotes the scalar product. Hence, it follows that

g̃11 = sin2 θ cos2 φ+ sin2 θ sin2 φ+ cos2 θ +
r2

1− r2
= 1 +

r2

1− r2
=

1

1− r2
,

g̃22 = r2 cos2 θ cos2 φ+ r2 cos2 θ sin2 φ+ r2 sin2 θ = r2,

g̃33 = r2 sin2 θ sin2 φ+ r2 sin2 θ cos2 φ = r2 sin2 θ,
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and the other entries vanish, because p1 ·p2 = p1 ·p3 = p2 ·p3 = 0 due to the symmetry

of S3. The metric tensor corresponding to the unit sphere S
3 is therefore given by

the diagonal matrix

g̃αβ =





1

1− r2
0 0

0 r2 0

0 0 r2 sin2 θ



 , α, β = 1, 2, 3, (3)

where r ∈ [0, 1), θ ∈ [0, π], and φ ∈ [0, 2π).
The metric tensor associated to the the whole space-time manifold is then also

given by the diagonal matrix

gij =





1 0 0 0

0
−a2

1− r2
0 0

0 0 −a2r2 0

0 0 0 −a2r2 sin2 θ




, i, j = 0, 1, 2, 3. (4)

The zero index corresponds to the time coordinate and the remaining three indices

correspond to spatial coordinates. In the sequel, the Greek indices will run through

the set {1, 2, 3}, while the Latin indices through the set {0, 1, 2, 3}.

A historical note. In the theory of relativity, the metric associated to (4) is

usually written using infinitesimally small quantities8 as follows:

ds2 = c2dt2 − a2(t)
[ dr2

1− r2
+ r2(dθ2 + sin2 θ dφ2)

]
, (5)

where the time coordinate fulfills

x0 = ct

and r ∈ [0, 1) is dimensionless. The metric (5) of the space-time manifold modeling

the evolution of the universe for a special expansion function a = a(t) first appeared
in the article by Howard Percy Robertson [23, p. 826] in 1929. The same formula

was also published by Arthur Geoffrey Walker [28, p. 121] in 1936. Therefore, the

metric (5) is called the Robertson-Walker metric.9 However, Walker does not cite

Robertson’s article [23], but only some Robertson’s later works from Astrophys. J. 82

(1935), 284–301; 83 (1936), 187–201, 257–271. Consequently, the priority definitely

belongs to Robertson.

For the entries of the covariant metric tensor (4) we thus have

g00 = 1, g0α = 0, gαβ = −a2(t)g̃αβ for α, β = 1, 2, 3, (6)

8Throughout this text, we will deliberately avoid the use of ill-defined infinitesimally small

quantities ds, dt, dr, etc.
9The metric (5) is sometimes also called the Friedmann-Lemâıtre-Robertson-Walker metric or

just FLRW-metric due to the pioneering papers [5] and [16].
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where g̃αβ is the metric tensor of the unit sphere S
3,

g̃11 =
1

1− r2
, g̃22 = r2, g̃33 = r2 sin2 θ, and g̃αβ = 0 for α 6= β

(i.e. the tilde actually corresponds only to the expression in brackets in relation (5)).

Since the inverse matrix to (4) is also diagonal, for the entries of the contravariant

symmetric metric tensor we have

g00 = 1, g0α = 0, gαβ = −

1

a2
g̃αβ, (7)

where

g̃11 = 1− r2, g̃22 =
1

r2
, g̃33 =

1

r2 sin2 θ
, g̃αβ = 0 for α 6= β,

r 6= 0, and θ 6= 0.

3. Calculation of the Christoffel symbols

Entries of the Ricci tensor which appears in Einstein’s equations (20) are defined

by means of the Christoffel symbols (cf. (17) below). In the covariant form (i.e. only

with lower indices) the Christoffel symbols are defined as follows

Γijk =
1

2
(gij,k + gki,j − gjk,i), (8)

where the index after the comma indicates, for simplicity, the ordered number of

a variable according to which we differentiate. From this and the symmetry of the

metric tensor gij we immediately obtain also the symmetry of the Christoffel symbols

in the second and third index,

Γijk = Γikj for i, j, k = 0, 1, 2, 3. (9)

Therefore, there are not 4 × 4 × 4 = 64 different Christoffel symbols, but generally

only 4× (1 + 2 + 3 + 4) = 40. Now let us calculate all of them.

From (8) and (4) we see that

Γ000 =
1

2
g00,0 = 0.

Since the off-diagonal entries in (4) vanish and the derivative of a constant function

is zero, we obtain by (8) for α = 1, 2, 3

Γ0α0 = Γ00α =
1

2
(g0α,0 + g00,α − gα0,0) = 0.

165



Similarly, we get

Γα00 =
1

2
(gα0,0 + g0α,0 − g00,α) = 0. (10)

All 7 Christoffel symbols, in which at least two indices are zeros, and thus equal to 0.

Next, assume that just one index is zero. Then, according to (6) for α, β = 1, 2, 3
we get only 6 Christoffel symbols due to the symmetry (9),

Γ0αβ =
1

2
(g0α,β + gβ0,α − gαβ,0) = −

1

2
gαβ,0 = aa,0g̃αβ ,

where

a,0 =
∂a

∂x0
=

1

c

∂a

∂t
(11)

is a dimensionless quantity. For the additional 3×3 = 9 Christoffel symbols we have

by (6)

Γα0β = Γαβ0 =
1

2
(gαβ,0 + g0α,β − gβ0,α) =

1

2
gαβ,0 = −aa,0g̃αβ , (12)

since we again differentiate with respect to the time variable.

Finally, assume that all indices are nonzero, i.e., we will differentiate only with

respect to spatial coordinates. Then by (8) and (6), we have

Γαβγ =
1

2
(gαβ,γ + gγα,β − gβγ,α) = −

a2

2
(g̃αβ,γ + g̃γα,β − g̃βγ,α) = −a2Γ̃αβγ

and the number of these remaining Christoffel symbols is 3×6 = 18. Hence, we have

established in total 7 + (6 + 9) + 18 = 40 values of the Christoffel symbols (which

are generally different).

Next we’ll use the familiar Einstein’s summation convention for summation over

repeating upper and lower index. To get once contravariant and twice covariant

Christoffel symbol (i.e. with one upper and two lower indices) that appears in the

definition of the Ricci tensor (17), we use the following relation10 [17, p. 340]

Γi
jk = giℓΓℓjk

with summation over ℓ = 0, 1, 2, 3, i.e. giℓΓℓjk =
∑3

ℓ=0 g
iℓΓℓjk. In particular, we find

that

Γ0
jk = g0ℓΓℓjk = g00Γ0jk = Γ0jk,

since by (7) the off-diagonal entries of the contravariant metric tensor vanish and

g00 = 1. Similarly for α, β = 1, 2, 3 we have by (6)

Γα
jk = gαiΓijk = gαβΓβjk = −

1

a2
g̃αβΓβjk,

10Using (8), we get Γi
jk = 1

2
giℓ(gℓj,k + gkℓ,j − gjk,ℓ).
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as gα0 = 0. Furthermore, from the equality (10) we have

Γα
00 = 0

and by (12) we obtain

Γα
0β = −

1

a2
g̃αγΓγ0β = −

1

a2
g̃αγ(−aa,0)g̃βγ = δαβ

a,0
a
, (13)

where δαγ is the well-known Kronecker delta (i.e. δ11 = δ22 = δ33 = 1 and δαβ = 0 for

α 6= β). From relations (7) it follows that

Γ0
00 = 0, Γ0

0α = 0, Γα
00 = gαiΓi00 = 0, Γ0

αβ = aa,0g̃αβ (14)

and

Γα
βγ = gαjΓjβγ = gαεΓεβγ = −

1

a2
g̃αε(−a2G̃εβγ) = g̃αεΓ̃εβγ = Γ̃α

βγ. (15)

We see that in calculating the mixed Christoffel symbol, the expansion function a is

cancelled out.

4. Calculation of the Ricci tensor

First note that

g̃αβ g̃βγ = δαγ for α, β, γ = 1, 2, 3.

Using Einstein’s summation convention, we thus have

δαα = 3 and δαβδ
β
α = 3, (16)

which can be seen by a step-by-step substitution for α, β = 1, 2, 3.
Further recall the definition of the Ricci tensor

Rij = Rji = Rk
ikj = Γk

ij,k − Γk
ik,j + Γℓ

ijΓ
k
ℓk − Γℓ

ikΓ
k
jℓ , (17)

where Rk
iℓj is the Riemann tensor11. From this and (13)–(16) we come to

R00 = Γk
00,k − Γk

0k,0 + Γℓ
00Γ

k
ℓk − Γℓ

0kΓ
k
0ℓ = −Γα

0α,0 − Γα
0βΓ

β
0α

= −

(a,0
a
δαα

)

,0
−

(a,0
a
δαβ

)(a,0
a
δβα

)

= −3(a,0/a),0 − 3(a,0/a)
2 = −3

a,00
a

, (18)

where a,00 denotes the second derivative with respect to time variable x0, and

R0α = Γk
0α,k − Γk

0k,α + Γℓ
0αΓ

k
ℓk − Γℓ

0kΓ
k
αℓ

= Γ
β
0α,β − Γ

β
0β,α + Γ

β
0αΓ

γ
βγ − Γ

β
0γΓ

γ
αβ

= Γ
β
0αΓ

γ
βγ − Γ

β
0γΓ

γ
αβ =

a,0
a
δβγΓ̃

γ
βγ −

a,0
a
δβγΓ̃

γ
αβ

=
a,0
a

(
Γ̃γ

αγ − Γ̃
β
αβ

)
= 0,

11The Riemann tensor is defined by Rk
imj = Γk

ij,m − Γk
im,j + Γℓ

ijΓ
k
ℓm − Γℓ

imΓk
jℓ.
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where we used the fact that Γ
β
0α,β = Γ

β
0β,α = 0, because derivatives with respect to

spatial coordinates vanish due to (13). However, we will not employ the equality of

R0α = 0 to derive the Friedmann equations.

Finally, according to (13)–(17) for α, β = 1, 2, 3 we have

Rαβ = Γk
αβ,k − Γk

αk,β + Γℓ
αβΓ

k
ℓk − Γℓ

αkΓ
k
βℓ

= Γ0
αβ,0 + Γ̃

γ
αβ,γ − Γ̃

γ
αγ,β + Γ0

αβΓ
γ
0γ

+ Γ̃
γ
αβΓ̃

ε
γε − Γ0

αγΓ
γ
β0 − Γ

γ
α0Γ

0
βγ − Γ̃γ

αεΓ̃
ε
βγ

= R̃αβ + (a,00a+ a2,0)g̃0β + 3a2,0g̃αβ − a2,0g̃αβ − a2,0g̃αβ

= R̃αβ + (a,00a+ 2a2,0)g̃αβ = (a,00a+ 2a2,0 + 2)g̃αβ, (19)

where the sum of the underlined terms defines the Ricci tensor R̃αβ = 2g̃αβ
(see [29, p. 383]), which has nonzero entries only on the diagonal due to the maximal

symmetry of the manifold S
3, see (3).

Remark. We see that the Ricci tensor contains no spatial derivatives of the

metric tensor, although according to (17) it is defined by the first derivatives of the

Christoffel symbols and these are by (8) defined by the first derivatives of the metric

tensor. The reason is a very high symmetry of the sphere S
3 (see [29]).

5. Derivation of the Friedmann equations from Einstein’s equations

For simplicity, suppose first that the cosmological constant in Einstein’s equations

is Λ = 0. Then Einstein’s equations have the form

Rij −
1

2
Rgij =

8πG

c4
Tij , (20)

where the left-hand side is called the Einstein tensor, R = gijRij is the Ricci scalar,

the entries of the metric tensor gij are unknown gravitational potentials, which are

via relations (8) and (17) contained also in the Ricci tensor, and Tij is the tensor of

density of energy and momentum. Since S
3
a is maximally symmetric, all the tensors

in (20) are diagonal and

T00 = T 0
0 = T 00 = ρc2, T 1

1 = T 2
2 = T 3

3 = −p,

where the mass density ρ = ρ(t) and the pressure p = p(t) are independent of the

space coordinates [17, p. 728]. From this we have (see [29, pp. 342, 472])

Rij =
8πG

c4
(
Tij −

1

2
Tgij

)
, (21)

where

T = T 0
0 + T α

α = ρc2 − 3p
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is the trace and R = −8πGT/c4. The 00-entry of these specially modified Einstein’s

equations (21) takes by (18) and (6) the form

−3
a,00
a

=
8πG

c4

(
ρc2 −

1

2
g00(ρc

2
− 3p)

)
=

4πG

c2

(
ρ+

3p

c2

)
.

From this and (20), we get the linear differential equation of the 2nd order12

ä

a
= −

4πG

3

(
ρ+

3p

c2

)
, (22)

where the dot denotes the time derivative. Einstein’s equations (20) are nonlinear,

in general, due to (17). Notice how the nonlinearity elegantly disappears in (18) for

the hypersphere S
3
a.

Note that the other three equations R0α=8πGc−4
(
T0α−

1
2
Tg0α

)
= 0 for α=1, 2, 3

do not give us any useful relationship for the unknown functions a, ρ, p.
Finally, according to (19), (7), and (21), we have

(a,00a+ 2a2,0 + 2)g̃αβ = Rαβ =
8πG

c4

(
−pgαβ −

1

2
gαβ(ρc

2
− 3p)

)

=
4πG

c4
gαβ(p− ρc2) =

4πG

c4
(−a2g̃αβ)(p− ρc2).

Thus from (11) we obtain

(aä+ 2ȧ2 + 2c2)g̃αβ =
4πGa2

c2
(ρc2 − p)g̃αβ.

This is altogether six equations, but the three corresponding to the diagonal entries

are the same and the remaining three non-diagonal entries vanish and lead to the

unusable identity 0 = 0. So we obtain only one equation

aä + 2ȧ2 + 2c2 = 4πGa2
(
ρ−

p

c2

)
. (23)

Hence, together with (22), we get two equations for three unknowns a, ρ, p. As the

third equation we may consider, e.g., the state equation p = p(ρ).
Now multiply the equation (22) by the function a2 and subtract it from (23).

Then we find that

2ȧ2 + 2c2 = 4πGa2
(
ρ−

p

c2

)
+

4πGa2

3

(
ρ+

3p

c2

)
,

which after a simple adjustment leads to the sought nonlinear Friedmann equation

of the first order

ȧ2

a2
+

c2

a2
=

8πGρ

3
. (24)

12This equation is sometimes called the linear Friedmann equation, even though it does not

appear in the original paper [5] by Friedmann.
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Note that (22)–(24) are three equations, but only two of them are independent.

Alan Guth [7, p. 348] calls the Friedmann equations (22) and (24) the Einstein

equations, since they in fact arose by applying (20) to the very special manifold S
3
a.

Remark. The case of a nonzero cosmological constant Λ 6= 0 can be formally

rewritten by appropriate transformations (25) to the case Λ = 0. For Λ 6= 0 let us

set

p := p−
Λc4

8πG
and ρ := ρ+

Λc2

8πG
, (25)

i.e., the pressure p can also attain negative values. We see that p + ρc2 = p + ρc2

and that the equation

Rij −
1

2
Rgij − Λgij =

8πG

c4
Tij =

8πG

c4
((p+ ρc2)UiUj − pgij),

where Ui = (1, 0, 0, 0), changes into the form (20) without the cosmological constant

Rij −
1

2
Rgij =

8πG

c4
((p+ ρc2)UiUj − pgij).

Then we obtain like in (22)

ä

a
= −

4πG

3

(
ρ+

3p

c2

)
= −

4πG

3

(
ρ+

3p

c2
−

Λc2

4πG

)

and instead of the Friedmann equation (24) we get

ȧ2

a2
+

c2

a2
=

8πGρ

3
=

8πGρ

3
+

Λc2

3
. (26)

The corresponding graph of the expansion function a = a(t) is given in [14, p. 70].

6. Cosmological parameters

First, recall the definition of the Hubble parameter

H(t) :=
ȧ(t)

a(t)
(27)

and divide the Friedmann equation (26) by the square H2
≥ 0 as it is usually done in

the literature on cosmology, i.e., without a preliminary warning that we may possibly

divide by zero, which can lead to various paradoxes (see [13], [15]). Then we get the

so-called normalized Friedmann equation

1 = ΩM(t) + ΩΛ(t) + ΩK(t) (28)

for three cosmological parameters, which are defined as follows

ΩM(t) :=
8πGρ(t)

3H2(t)
> 0, ΩΛ(t) :=

Λc2

3H2(t)
, ΩK(t) := −

c2

ȧ2(t)
. (29)
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Saul Perlmutter calls the parameter ΩM the mass density and ΩΛ the vacuum energy

density (see [20]). The parameter ΩK is called the curvature parameter in [19].

Notice that for Einstein’s stationary universe13 with ȧ(t) ≡ 0 the mass density

parameter ΩM attains by (27) and (29) an infinite value, even though nothing unusual

happens. We should properly say that this parameter is not well defined as its

denominator is zero. We divide by zero also in the case of the other two parameters

from (29).

Similarly, we divide by zero in the case of the so-called oscillating universe, where

the expansion function repeatedly increases and then decreases [27]. The reason is

that the derivative ȧ vanishes at the point of maximum.

Let us emphasize that the measured density of baryonic matter is always finite.

This shows that the Friedmann model is strange, since the ratio between dark and

baryonic matter may attain arbitrarily large values. Cosmological parameters have

a strange behavior also in other cases [13].

At present there is a large number of papers on the so-called precise cosmology

that categorically state (see Fig. 4):

The universe is composed of 26.8 % of dark matter, 4.9 % of baryonic matter,

and 68.3 % of dark energy.

Dark

energy

Dark matter

Baryonic matter

Figure 4: Results of the Planck satellite [19] are interpreted in such a way that

our universe consists of about 26.8% of dark matter, 4.9% of baryonic matter, and

68.3% of dark energy. However, they are based on the normalized Friedmann equa-

tion (28), which was derived using excessive extrapolations by many orders of mag-

nitude. Cosmological parameters are searched so that the solution of (28) is as close

as possible to the measured data. The amount of baryonic matter is estimated by

a luminous matter [30, p. 74].

13The value of the corresponding radius a follows directly from the Friedmann equation (26).

171



Rightly they should claim:

According to the standard FLRW cosmological model based on the Friedmann

equation, the universe could consist of about 27% of dark matter, 5% of baryonic

matter, and 68% of dark energy.14

It is important to realize the fundamental difference between these two state-

ments. Therefore, we will now look in more detail how the above percentages were

obtained.

The current values of cosmological parameters are determined, for example, by

very distant explosions of type Ia supernovae, which are treated as the so-called stan-

dard candles (for details see [20], [22]). Type Ia supernovae have about 10–15% less

luminosity15 than if the expansion of the universe would decelerate only by gravity.

From this it can be concluded that the supernova light spreads into a larger volume,

and therefore the expansion of the universe accelerates. To determine the distances

of supernovae (see [8], [22, p. 1021]) the following formula from [3, p. 511] derived

from the Friedmann equation for the so-called luminosity distance is used

dL =
c(1 + z)

H0

√
|ΩK|

sin
(√

|ΩK|

∫ z

0

dz√
(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ

)
. (30)

HereH0 = H(t0) ≈ 70 km s−1Mpc−1 is the current value of the Hubble parameter [26]

at time t = t0 which corresponds to the present, and ΩK = 1 − ΩM − ΩΛ by (28),

where for brevity the actual values of the cosmological parameters are denoted by

ΩM = ΩM(t0), ΩΛ = ΩΛ(t0), and ΩK = ΩK(t0).

From this, the measured values of the redshift z of absorption spectral lines of silicon,

and the luminosity of type Ia supernovae we can determine particular values of

cosmological parameters (29) by χ2 test [22, p. 1021]. In the case of an oscillating

(or stationary) universe, the Hubble parameter vanishes and in (30) we again divide

by zero. The resulting set of admissible values of cosmological parameters is marked

by SNe in Fig. 5.

For admissible values of cosmological parameters ΩM = 0.01, ΩΛ = 1.1 (cf. Fig. 5),
and z = 3, the expression under the square root in (30) is negative, because

(1 + z)2(1 + ΩMz)− z(2 + z)ΩΛ = 42(1 + 0.03)− 3 · 5 · 1.1 = −0.02.

14By Jan Maršák, the terms dark matter and dark energy from Fig. 4 are inconsistent, i.e., they

are not on the same meaning level. Energy is consistent with the term mass through the relation

E = mc2. In this case, the physical quantities energy and mass are real numbers with appropriate

physical dimensions, while matter is neither a real number nor a physical quantity. Energy is not

a particular substance as material objects. The statement that dark energy is a part of our universe

is therefore confusing.
15According to [1] and [24], it is necessary to consider the extinction of light by host galaxies.

The measured luminosity depends considerably on whether the supernova lies inside or on the edge

of the galaxy, what direction has its rotation axis, etc. Hence, type Ia supernovae are standard

candles only roughly.
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Figure 5: Admissible values of the cosmological parameters ΩM and ΩΛ, obtained

by three different methods BAO (Baryonic Acoustic Oscillations), CMB (Cosmic

Microwave Background), and SNe (Supernova explosions). However, these methods

are not independent, because they are all based on the Friedmann equation (26)

derived by questionable extrapolations. Moreover, the measured data were taken

from the observable universe which is modeled by a completely different manifold

than the universe described by the hypersphere S
3
a, where the expansion function

satisfies (26).

In spite of that, the standard cosmological calculator (Ned Wright’s Cosmological

Calculator) gives a quite acceptable value dL = 164.1Gly.

The sum of the measured values ΩM and ΩΛ is approximately equal to 1 (see (28)

and Fig. 4). However, this does not allow us to claim that the true space is flat

(i.e. infinite Euclidean) as it is often stated at present. Even if the sum were to be

ΩM + ΩΛ = 1.0000000000001,

we would still have a bounded hyperspherical (i.e. elliptic Riemannian) universe that

can be described by the sphere S
3
r with an incredibly large radius r. Such a space

is locally almost Euclidean, but finite. There is a big difference between a bounded

and unbounded space. Moreover, the sphere S
3
r has an entirely different topology
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than the flat space E
3 which is promulgated by cosmologists at present. Testing the

equatity ΩM+ΩΛ = 1 remainds an inconvenient and incorrect computer test X = Y
in single-precision arithmetic (4 bytes), where X and Y are declared to be real (not

integer).

Generally speaking, the prevailing conviction says that dark energy is some mys-

terious substance which is responsible for the accelerated expansion of the universe

and this is attributed to the cosmological constant Λ. Its physical dimension is m−2,

since the left-hand side of (26) has dimension s−2. In spite of that, cosmologists

describe it as the density of energy which has another physical dimension in the

SI units (International System of Units), namely kgm−1s−2. From the relation (29)

defining the parameter ΩΛ(t) it is obvious that the kilogram (kg) does not appear

there. Can we thus talk about density of energy?

In the system c = 1, meters and seconds can be arbitrarily exchanged using

a suitable multiplicative constant. However, the physical dimension of Λ again does

not correspond to the density of energy, since kilograms still do not appear there.

We can easily verify that the physical dimension of the fraction (c4/G)·m−2 is the

same as the density of energy (cf. the right-hand side of (20)) in the units kgm−1s−2.

In the system c = 1 and G = 1 this is the same physical dimension as Λ has, since

we may arbitrarily exchange kilograms, seconds, and meters using some appropriate

multiplicative constants. In such a system, force, velocity, and power are dimension-

less and we may evaluate energy and also time in kilograms or meters. It is true that

many relations will be much simpler in these restricted units, but the constants c
and G in equation (26) are not actually equal to unity. Therefore, we should not

allow c and G to disappear in equation (26), and thus Λ should not be interpreted

as density of energy in the system SI.

7. Excessive extrapolations

From Sections 2–5 we observe that the Friedmann equation (26) for a positive

curvature of the universe was derived by a completely rigorous mathematical man-

ner. However, the contemporary cosmological model based on the equation (26) does

not give acceptable results not even for a nonpositive curvature (see [6], [11]). For in-

stance, it admits a division by zero in (29). It also leads to a wide range of paradoxes

and has other serious problems (e.g. the problem of the existence of a mysterious

invisible dark matter and even more mysterious dark energy, the horizon problem,

the problem of homogeneity and isotropy of the universe, the flatness problem, the

problem of setting up accurate initial conditions, the problem of hierarchical struc-

tures, the problem of the existence of giant black holes in the early universe, and

the Big Bang problem itself). Why this is so? The main reason is that the reality is

identified with a mathematical model ignoring the modeling error.

Now let us look at this fact in detail. Consider a unit cube with edge e = 1m

(see Fig. 6) and solve a steady-state heat conduction problem

−∆u = f
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Figure 6: A homogeneous isotropic cube with edge of length e

with some boundary conditions, where ∆ = ∂2/∂x2+∂2/∂y2+∂2/∂z2 is the Laplace
operator, u is the temperature, and f is proportional to the density of heat forces.

This elliptic problem approximates very well the true temperature in homogeneous

isotropic solids which can be verified by direct measurements. However, in applying

the heat equation on the atomic level in the cube with edge e = 10−10m, we get

nonsensical numbers, since it is not clear how to define the temperature on such

a small scale. We also obtain nonsensical numbers for e = 1010m. Such a large

cube would immediately collapse into a back hole, since the diameter of this cube is

about ten times larger than the diameter of the Sun. We can, of course, solve the

above steady-state heat conduction problem on an arbitrarily large cube. However,

the question is for which e do we still get acceptable results, and when the resulting

temperatures have nothing to do with reality.

Other equations of mathematical physics (such as supraconductivity equations,

Navier–Stokes equations for fluids, Korteweg-de Vries equations, linear elasticity

equations, Maxwell’s equations, semiconductor equations, magneto-hydro-dynamic

equations, and so on) are subjected to analogous restrictions.

In 1922, cosmologists had no idea about the real size of the universe, since other

galaxies were discovered later by Edwin Hubble. In spite of that, Alexander Fried-

mann [5] silently assumed that Einstein’s equations describe absolutely exactly the

behavior of gravity on cosmological scales. However, this assumption is highly

unrealistic, since Einstein’s equations16 “are tested” on the scales of astronomical

units and excessive extrapolations are made to the whole universe that is at least

1 000 000 000 000 000 = 1015 times larger than 1 au. Einstein’s equations are not

scale-invariant17 on a bounded expanding hypersphere S
3
a(t), since they do not trust-

worthily describe phenomena at atomic level or an extreme state just after the Big

Bang [7] when matter and antimatter collided, highly energetic photons appeared,

and the temperature thus shortly increased [2, p. 113]. Additionally, they are non-

linear and contain fixed fundamental physical constants c and G. The present state

16More precisely only the parametrized post-Newtonian (PPN) formalism is tested. The reason

is that Einstein’s equations are so complicated that their exact solution for two mutually orbiting

bodies is not known.
17In spite of that, the well-known relationship s = vt from Newtonian mechanics is scale-invariant

in the Euclidean space.
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of our universe depends on its history, whereas the Friedmann equation is reversible,

i.e., its solution depends only on the value of the expansion function at the present

time t0 and not on the history [11]. Since the terminal condition ȧ(t0)/a(t0) = H0 is

known, we may evaluate a(t0) from equation (26) and then integrate (26) backward.

From this we get t0 = 13.82 Gyr, see [15, p. 274]. Nevertheless, from such a simple

calculation we should not make any categorical conclusions about the age of the

universe as is often done.

Therefore, we have to study models that are independent of the Friedmann equa-

tion (see e.g. [10], [11], [12], [18, p. 299]) to check whether dark matter exists or not.

If it does not exist, then the relation (30) derived from the Friedmann equation can

hardly yield some reliable distance. The FLRW cosmological model thus resembles

the situation of the article Lemma 1, see [9], which can be characterized as follows:

Suppose that Lemma 1 implies Lemma 2, from which we further derive Lemma 3.

These auxiliary results imply a certain important mathematical theorem, which is

a basis of a new fascinating and beautiful theory. But after some time we find that

Lemma 1 is wrong, and therefore the theorem need not hold.

In contemporary cosmology such Lemma 1 is the statement that Einstein’s equa-

tions are valid for the whole universe. This assertion is just a hypothesis which has

not been verified by an experiment and was obtained by excessive extrapolations by

many orders of magnitude in pioneering articles [4] and [5]. Since the twenties, this

fault stretches through the entire cosmology.
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Abstract: The model of low-energy quantum gravity by the author is based

on the conjecture on the existence of the graviton background. An interaction

of photons and moving bodies with this background leads to small additional

effects having essential cosmological consequences. In the model, redshifts of

remote objects and the dimming of supernovae Ia may be interpreted without

any expansion of the Universe and without dark energy. Some of these con-

sequences are discussed and confronted with supernovae Ia, long GRBs, and

quasars observations in this paper. It is shown that the two-parametric theo-

retical luminosity distance of the model fits observations with high confidence

levels (100% for the SCP Union 2.1, 43% for JLA compilations, 99.81% for

long GRBs, and 13.73% for quasars), if all data sets are corrected for no time

dilation. These two parameters are computable in the model.
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1. Introduction

In contrast with classical electrodynamics in the XIX century or quantum elec-

trodynamics in the XX century, at present we have a complete lack of experimental

evidence to construct a theory of quantum gravity. From dimensional reasons only,

if one assumes that the Newton constant is universal for any scales, the effects of

quantum gravity are expected to be measurable over extremely small distances or

very high energies. There are proposals how to detect some effects in a laboratory —

for example, [21, 5], — or to observe a possible small violation of the Lorentz invari-

ance for remote sources, but we have not any results in a frame of current paradigms

which may pave us to the goal. Another constrain is, as I think, the common expec-

tation that the future theory should be some symbiosis of the geometrical theory of

general relativity and quantum mechanics. Geometry is useful for a description of
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the average motion of big bodies due to the universality of gravitation, but it is not

the fact that quantum effects may be described geometrically. It is also necessary

to keep in mind that the nature of gravity as well as the nature of quantum behav-

ior of microparticles are unknown — we have remarkable descriptions in different

languages but not understanding in both cases.

I describe here briefly some consequences of my approach to quantum grav-

ity [12, 13], in which the phenomenon is a very-low-energy one and is caused by

the background of super-strong interacting gravitons. The main quantum effect of

this approach is the Newtonian attraction; its small effects enforce us to look at the

known results of astrophysical observations from another point of view and give us

the reasons to doubt in the validity of the current standard cosmological model. This

paper contains the alternative ideas in cosmology, which differ essentially from the

mainstream paradigm based on the Big Bang conjecture.

2. The model of low-energy quantum gravity

The geometrical description of gravity in general relativity does not involve any

mechanism of interaction. It is similar to the Newtonian model: we don’t know how

it works. In my model of low-energy quantum gravity [12, 13], gravity is considered

as the screening effect. It is suggested that the background of super-strong inter-

acting gravitons exists in the universe. Its temperature should be equal to the one

of CMB. Screening this background creates for any pair of bodies both attraction and

repulsion forces due to pressure of gravitons. For single gravitons, these forces are

approximately balanced, but each of them is much bigger than a force of Newtonian

attraction. If single gravitons are pairing, an attraction force due to pressure of such

graviton pairs is twice exceeding a corresponding repulsion force if graviton pairs are

destructed by collisions with a body. This peculiarity of the quantum mechanism of

gravity leads to the difference of inertial and gravitational masses of a black hole.

In such the model, the Newton constant is connected with the Hubble constant that

gives a possibility to obtain a theoretical estimate of the last. We deal here with a flat

non-expanding universe fulfilled with super-strong interacting gravitons; it changes

the meaning of the Hubble constant which describes magnitudes of three small effects

of quantum gravity but not any expansion or an age of the universe.

3. Small effects of the model due to its quantum nature

There are two small effects for photons in the sea of super-strong interacting gravi-

tons [12]: average energy losses of a photon due to forehead collisions with gravitons

and an additional relaxation of a photonic flux due to non-forehead collisions of

photons with gravitons. The first effect leads to the geometrical distance/redshift

relation:

r(z) = ln(1 + z) · c/H0, (1)

180



where H0 is the Hubble constant and c is the velocity of light. The both effects lead

to the luminosity distance/redshift relation:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2
≡ c/H0 · f1(z), (2)

where f1(z)≡ ln(1+z)·(1+z)(1+b)/2; the “constant” b belongs to the range 0−2.137 [14]
(b = 2.137 for very soft radiation, and b → 0 for very hard one). For an arbitrary

source spectrum, a value of the factor b should be still computed. It is clear that

in a general case it should depend on a rest-frame spectrum and on a redshift. Be-

cause of this, the Hubble diagram should be a multivalued function of a redshift: for

a given z, b may have different values for different kinds of sources. Furthermore, the

Hubble diagram may depend on the used procedure of observations: different parts

of rest-frame spectrum will be characterized with different values of the parameter b.
Actually, the factor b describes an analog of the blurring effect of tired-light mod-

els. Due to the quantum nature of this effect in the model, non-forehead collisions

of photons with gravitons should lead to relatively big average angles of deviations

of photons of visible range:

∆ϕ ∼

10−3 eV

2.5 eV
= 4 · 10−4 rad,

where 10−3 eV and 2.5 eV are average graviton and photon energies. By multiple

collisions, deviated photons will not be recognized as emitted by a small-angle remote

object. But images of high-z objects may be partly blurred due to a fraction of low-

energy gravitons.

The third small effect of this model is the constant deceleration of massive bodies

due to forehead collisions with gravitons. It is an analog of the redshift in this model.

We get for the body acceleration w0 by a non-zero velocity v:

w0 = −ac2(1− v2/c2). (3)

For small velocities we have for it: w0 ≃ −H0c. If the Hubble constant H0 is equal

to 2.14 · 10−18 s−1 (it is the theoretical estimate of H0 in this approach), a modulus

of the acceleration will be equal to |w0| ≃ H0c = 6.419 · 10−10m/s2, that is of

the same order of magnitude as a value of the observed additional acceleration

(8.74± 1.33) · 10−10m/s2 for NASA probes Pioneer 10/11, see [3].

4. Advanced LIGO technologies may be partly used to verify the redshift

mechanism

The main conjecture of this approach about the quantum gravitational nature

of redshifts may be verified in a ground-based laser experiment. To do it, one

should compare spectra of laser radiation before and after passing some distance l
in a high-vacuum tube [11]. The temperature T of the graviton background coin-

cides in the model with the one of CMB. Assuming T = 2.7K, we have for the
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Figure 1: The main line and the expected red-shifted satellite line of a stable laser

radiation spectrum after a delay line. Satellite’s position should be fixed near ν−ǭ/h,
and its intensity should linear rise with a path of photons in a delay line, l. A center-

of-mass of both lines is expected to be approximately near ν − zν.

average graviton energy: ǭ = 8.98 eV. Because of the quantum nature of redshift,

the satellite of main laser line of frequency ν would appear after passing the tube

with a redshift of 10−3 eV/h, where h is the Planck constant, and its position should

be fixed (see Fig. 1, z is the redshift). It will be caused by the fact that on a very

small way in the tube only a small part of photons may collide with gravitons of

the background. The rest of them will have unchanged energies. The center-of-mass

of laser radiation spectrum should be shifted proportionally to a photon path. Due

to the quantum nature of shifting process, the ratio of satellite’s intensity to main

line’s intensity should have the order: ∼
hν
ǭ

H0

c
l. The theoretical value of H0 in the

model is: H0 = 2.14 · 10−18 s−1. An instability of a laser must be only much smaller

than 10−3 if a photon energy is equal to ∼ 1 eV. Given a very low signal photon

number frequency, one could use a single photon counter to measure the intensity

of the satellite line after a narrow-band filter with filter transmittance k. If q is

a quantum output of a photomultiplier cathode, fn is a frequency of its noise pulses,

and n is a desired signal-to-noise ratio, then an evaluated time duration t of data
acquisition would be equal to:

t =
(ǭcn)2fn
(H0qkP l)2

,

where P is a laser power. Assuming for example: n = 10, fn = 103 s−1, q = 0.3,
k = 0.1, P = 200W, l = 300 km, we have the estimate: t ≈ 3 · 103 s. Such the value

of l may be achieved if one forces a laser beam to whipsaw many times between

mirrors in the vacuum tube with the length of a few kilometers.

The advanced LIGO detectors [1], which were used to observe the gravitational-

wave event GW150914, have many technological achievements needed to do the de-
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scribed experiment: stable powerful lasers and input optics, high-vacuum tubes with

optical resonator that multiplies the physical length by the number of round-trips

of the light, mirror suspension systems with actuators. Some parameters of LIGO

systems are of the same order as in the considered example. If one constructs the fu-

ture LIGO detector with some additional equipment, the verification of the redshift

mechanism may be performed in parallel with the main task or during a calibration

stage of the detector.

5. Cosmological consequences of the model

There are the two circumstances introduced in the model to rich the needed

strength of gravitational attraction: 1) gravitons should be super-strongly interact-

ing, and 2) a part of gravitons should be paired and the pairs must be destructed by

interaction with bodies. It leads to the very unexpected consequence: in the model,

a black hole should have different gravitational and inertial masses, i.e., its possi-

ble existence contradicts to general relativity. Another unexpected feature of this

approach is a necessity of “an atomic structure” of matter, because the considered

mechanism does not work without it.

The property of asymptotic freedom of this model at very short distances leads

to the important consequences, too. First, a black hole mass threshold should exist.

A full mass of black hole should be restricted from the bottom with m0; the rough

estimate for it is: m0 ∼ 107M
⊙
. The range of transition to gravitational asymptotic

freedom for a pair of protons is between 10−11–10−13m, and for a pair of electrons

it is between 10−13–10−15m. This transition is non-universal; it means, second, that

a geometrical description of gravity on this or smaller scales, for example on the

Planck one, is not valid.

Any massive body moving relative to the graviton background should suffer in

the model the constant deceleration of the order of ∼ H0c, i.e. of the same order as an

anomalous acceleration of the NASA’s deep space probes (the Pioneer anomaly) [3].

Recently, it was shown by S. Turyshev et al. [26], that the thermal origin of the

Pioneer anomaly is very possible. From another side, the mass discrepancy in spiral

galaxies appears at very low accelerations less than some a0 and not much above a0
(see [9]), where the boundary acceleration a0 has the same order. The need for dark

matter in spiral galaxies appears at very low accelerations. A simple alternative to

dark matter is MOND by M. Milgrom [19], in which such the boundary acceleration

is introduced by hand. The main feature of MOND is the strengthening of gravi-

tational attraction in a case of low accelerations; I do not think that an exact form

of this strengthening has been guessed in MOND. But MOND gives us a clear hint

that general relativity may be not valid on galactic or bigger scales of distances, and

its application in cosmology is in doubt. In my model, the universal deceleration

of bodies should lead in any bound system to an additional acceleration of them

relative to the system’s center of inertia. Some additional strengthening of gravita-

tion on a periphery of galaxies may be caused in the model by the destruction of
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graviton pairs flying through their central parts whereas pairs flying to the center

are destructed in a less degree. The problem is open in this model.

The standard cosmological model is based on the assumption that redshifts of

remote objects arise due to an expansion of the Universe. The model was re-builded

a few times to save this base, the last innovation of it is an introduction of dark energy.

Many researchers are searching for dark energy now or plan to do it, for example,

with the help of large colliders. This basic cosmological assumption is considered

by the community as a dogma, an invioalable sanctuary of present cosmology. For

example, all observations of remote objects in the time domain are corrected for time

dilation — but this effect is an attribute only of the standard model. In my model

this assumption does not seem to be absolutely necessary. There exists a possibility

in the model to interpret observations in another manner, without any expansion of

the Universe.

5.1. The Hubble diagram of this model

In this model, the luminosity distance is given by equation (2). The theoretical

value of relaxation factor b for a soft radiation is b = 2.137. Let us begin with

this value of b, considering the Hubble constant as a single free parameter to fit

observations. The theoretical Hubble diagram of this model is compared with Su-

pernovae Ia observational data by Riess et al. [22] (corrected for no time dilation as:

µ(z) → µ(z) + 2.5 · lg(1 + z), where lg x ≡ log10 x) in Fig. 2. As you can see, the

theoretical diagram fits observations very well without any dark energy.

Figure 2: The theoretical Hubble diagram µ0(z) of this model (solid); Supernovae Ia

observational data (circles, 82 points) are taken from Table 5 of [22] and corrected

for no time dilation.
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Figure 3: The two theoretical Hubble diagrams: µ0(z) of this model with b = 1.137
taking into account the effect of time dilation of the standard model (solid); µc(z) for
a flat Universe with the concordance cosmology by ΩM = 0.27 and w = −1 (dash).

The luminosity distance in the concordance cosmology by w = −1 is:

DL(z) = c/H0 · (1 + z)
∫ z

0
[(1 + x)3ΩM + (1− ΩM)]−0.5dx ≡ c/H0 · f2(z), (4)

where f2(z) ≡ (1 + z)
∫ z
0 [(1 + x)3ΩM + (1 − ΩM)]−0.5, ΩM is the normalized matter

density. To demonstrate how similar are predictions about distance moduli as a func-

tion of redshift of this model and of the concordance cosmology, the two theoretical

Hubble diagrams are shown in Fig. 3: µ0(z) of this model with b = 1.137 taking into

account the effect of time dilation of the standard model (solid); and µc(z) for a flat

Universe with the concordance cosmology by ΩM = 0.27 and w = −1 (dash). You

can see a good accordance of this diagrams up to z ≈ 4.

At present, two big compilations of SN Ia observations are available: the SCP

Union 2.1 compilation (580 supernovae) [25] and the JLA compilation (740 super-

novae) [6]. These compilations may be used to evaluate the Hubble constant in this

approach. Using the definition of distance modulus: µ(z) = 5 lgDL(z)(Mpc) + 25,

we get from equation (2) for the theoretical distance modulus µ0(z): µ0(z) =

5 lg f1(z) + k, where the constant k is equal to:

k ≡ 5 lg(c/H0) + 25.

If the model fits observations, then we shall have for k(z):

k(z) = µ(z)− 5 lg f1(z), (5)
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Figure 4: The theoretical Hubble diagram µ0(z) of this model (solid); Supernovae Ia

observational data (580 points of the SCP Union 2.1 compilation) are taken from [25]

and corrected for no time dilation.

where µ(z) is an observational value of distance modulus. The weighted average

value of k(z) :

〈k(z)〉 =

∑
k(zi)/σ

2
i∑

1/σ2
i

, (6)

where σ2
i is a dispersion of µ(zi), will be the best estimate of k. Here, σ2

i is defined

as: σ2
i = σ2

i stat + σ2
i sys. The average value of the Hubble constant may be found as:

〈H0〉 =
c · 105

10〈k(z)〉/5 ·Mpc
. (7)

For a standard deviation of the Hubble constant we have:

σ0 =
ln 10 · 〈H0〉

5
· σk, (8)

where σ2
k is a weighted dispersion of k, which is calculated with the same weights

as 〈k(z)〉.
The theoretical Hubble diagram µ0(z) of this model with 〈k(z)〉 which is calcu-

lated using the SCP Union 2.1 compilation [25] is shown in Fig. 4 together with

observational points corrected for no time dilation. Values of k(z) (580 points) and

〈k(z)〉, 〈k(z)〉 + σk, 〈k(z)〉 − σk (lines) are shown in Fig. 5. For this compilation we

have: 〈k〉 ± σk = 43.216± 0.194. Calculating the χ2 value as:

χ2 =
∑ (k(zi)− 〈H0〉)

2

σ2
i

, (9)
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Figure 5: Values of k(z) (580 points) and 〈k(z)〉, 〈k(z)〉+ σk, 〈k(z)〉 − σk (lines) for

the SCP Union 2.1 compilation.

we get χ2 = 239.635. By 579 degrees of freedom of this data set, it means that the

hypothesis that k(z) = const. cannot be rejected with 100% C.L. Using equations (6)

and (7), we get for the Hubble constant from the fitting:

〈H0〉 ± σ0 = (2.211± 0.198) · 10−18 s−1 = (68.223± 6.097)
km

s ·Mpc
.

The theoretical value of the Hubble constant in the model: H0 = 2.14 · 10−18 s−1 =

66.875 km · s−1
· Mpc−1 belongs to this range. The traditional physical dimension

km · s−1
· Mpc−1 is not connected here with any expansion.

To repeat the above calculations for the JLA compilation, I have used 31 binned

points from Tables F.1 and F.2 of [6] (diagonal elements of the correlation matrix

in Table F.2 are dispersions of distance moduli). We have for this compilation by

b = 2.137: 〈k〉±σk = 43.174±0.049 with χ2 = 51.66. By 30 degrees of freedom of this

data set, it means that the hypothesis that k(z) = const. cannot be rejected only with

0.83% C.L. Varying the value of b, we find the best fitting value of this parameter:

b = 2.365 with χ2 = 30.71. It means that the hypothesis that k(z) = const. cannot
be rejected now with 43.03% C.L. This value of b is 1.107 times greater than the

theoretical one. For the Hubble constant we have in this case:

〈H0〉 ± σ0 = (2.254± 0.051) · 10−18 s−1 = (69.54± 1.58)
km

s ·Mpc
.

Results of the best fitting are shown in Figs. 6, 7.

If observations of long Gamma-Ray Bursts (GRBs) for small z are calibrated

using SNe Ia, observational points are fitted with this theoretical Hubble diagram,
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Figure 6: The theoretical Hubble diagram µ0(z) of this model with b = 2.365 (solid);

Supernovae Ia observational data (31 binned points of the JLA compilation) are

taken from Tables F.1 and F.2 of [6] and corrected for no time dilation.

Figure 7: Values of k(z) (31 binned points) and 〈k(z)〉, 〈k(z)〉+σk , 〈k(z)〉−σk (lines)

for the JLA compilation.

too [13]. But for hard radiation of GRBs, the factor b may be smaller, and the real

diagram for them may differ from the one for SNe Ia. With this limitation, the long

GRBs observational data (109 points) are taken from Tables 1, 2 of [27] and fitted

in the same manner with b = 2.137. In this case we have: 〈k〉 ± σk = 43.262± 8.447
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with χ2 = 70.39. By 108 degrees of freedom of this data set, it means that the

hypothesis that k(z) = const. cannot be rejected with 99.81% C.L. For the Hubble

constant we have in this case:

〈H0〉 ± σ0 = (2.162± 0.274) · 10−18 s−1 = (66.71± 8.45)
km

s ·Mpc
.

Results of the fitting are shown in Figs. 8 and 9.

Very recently, a new data set of 44 long Gamma-Ray Bursts was compiled with the

redshift range of [0.347; 9.4], see [16], in which two empirical luminosity correlations

(the Amati relation and Yonetoku relation) were used to calibrate observations.

Because the GRB Hubble diagram calibrated using luminosity correlations is almost

independent on the GRB spectra, as it has been shown by the authors, I use here

values of µ(zi) ± σi from columns 7 of Tables 2 and 3 of [16], based on the Band

function, but with both calibrations. If this data set is fitted in the same manner

with b = 2.137, we have for the Amati calibration: 〈k〉 ± σk = 43.168 ± 1.159 with

χ2 = 40.585. By 43 degrees of freedom of this data set, it means that the hypothesis

that k(z) = const. cannot be rejected with 57.66% C.L. For the Hubble constant we

have in this case:

〈H0〉 ± σ0 = (2.26± 1.206) · 10−18 s−1 = (69.732± 37.226)
km

s ·Mpc
.

By b = 2.137, we have for the Yonetoku calibration: 〈k〉 ± σk = 43.148± 1.197 with

Figure 8: The theoretical Hubble diagram µ0(z) of this model (solid); long GRBs

observational data (109 points) are taken from Tables 1, 2 of [27] and corrected for

no time dilation.
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Figure 9: Values of k(z) (109 points) and 〈k(z)〉, 〈k(z)〉+ σk, 〈k(z)〉 − σk (lines) for

long GRBs.

χ2 = 43.148. It means that the hypothesis that k(z) = const. cannot be rejected

with 46.5% C.L. For the Hubble constant we have in this case:

〈H0〉 ± σ0 = (2.281± 1.257) · 10−18 s−1 = (70.386± 38.793)
km

s ·Mpc
.

But best fitting values of b are less than 2.137 in both cases: b = 1.885 for the

Amati calibration (〈k〉 ± σk = 43.484 ± 1.15, χ2 = 39.92, with 60.57% C.L. and

〈H0〉±σ0 = (1.954± 1.035) · 10−18 s−1 = (60.309± 31.932) km/s/Mpc), and b = 1.11
for the Yonetoku one (〈k〉 ± σk = 44.439 ± 1.037, χ2 = 32.58, with 87.62% C.L.

and 〈H0〉 ± σ0 = (1.259± 0.601) · 10−18 s−1 = (38.841± 18.546) km/s/Mpc). Namely

smaller values of this parameter for bigger photon energies are expected in the model.

For best fitting values of b, values of distance moduli are overestimated in both

calibrations: on ∼ 0.225 for the Amati calibration, and on ∼ 1.18 for the Yonetoku

calibration, if we compare values of 〈k〉 with its theoretical value of 43.259. It leads
to the corresponding underestimation of the Hubble constant. Results of the best

fitting for the Yonetoku calibration are shown in Fig. 10.

Recently, a new method to test cosmological models was introduced, based on

the Hubble diagram for quasars [24]. The authors built a data set of 1 138 quasars

for this purpose. Some later, this method and the data set were used to compare

different models [17]. I have used here the binned quasar data set (18 binned points)

of the paper [17] to verify my model in the described above manner. This data set

contains the sum of observed distance modulus and an arbitrary constant A. To find

this unknown constant for the calibration of QSO observations, I have computed
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Figure 10: The theoretical Hubble diagram µ0(z) of this model with b = 1.11 (solid);

GRB observational data with the Yonetoku calibration (44 points) are taken from

Table 3 of [16] and corrected for no time dilation.

〈k′(z)〉 = 〈k(z)〉 + A and replaced 〈k(z)〉 by its value for the JLA compilation;

it gave: A = 50.248. This linking means that the average values of the Hubble

constant should be identical for the two data sets. Subtracting this value of A, we
get from the fitting of the quasar data by b = 2.137: 〈k〉 ± σk = 43.175± 0.340 with

χ2 = 23.378. By 17 degrees of freedom of this data set, it means that the hypothesis

that k(z) = const. cannot be rejected now with 13.73% C.L. For the Hubble constant

we have:

〈H0〉 ± σ0 = (2.253± 0.340) · 10−18 s−1 = (69.534± 10.873)
km

s ·Mpc
.

Results of the fitting are shown in Fig. 11.

5.2. Comparison with the LCDM cosmological model

To compare the above results of fitting with results for the LCDM cosmology, let

us replace f1(z) → f2(z) (see equation (4)) and repeat the calculations. Of course,

all data sets should remain now corrected for time dilation. The results of fitting are

presented in Table 1; for convenience, the main above results for the model of low-

energy quantum gravity are collected in the table, too. It is obvious, that confidence

levels for both models do not allow to reject any of them.

For me, it was a big surprise that the Einstein–de Sitter model (equation (4)

with ΩM = 1) cannot be rejected on a base of the full SCP Union 2.1 data set and

the χ2
−criterion. We get χ2 = 428.579 and 99.9999% C.L. The cause is in a big
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Figure 11: The theoretical Hubble diagram µ0(z) of this model (solid); quasar ob-

servational data (18 binned points) [17] are corrected for no time dilation.

number of small-z supernovae Ia in this set; it leads to a big number of degrees

of freedom, but to small differences of χ2 for models with similar values of DL(z)
in this range of z. But if one splits the data set in two subsets, for example with

z ≤ 0.5 and z > 0.5, and uses the first subset to evaluate 〈H0〉, then using this

〈H0〉 and the second subset to compute χ2 by much smaller number of degrees of

freedom, one can reject this model with high probability (when z > 0.5, we get

χ2 = 247.551 by 166 observations and 0.004% C.L.). Results for the model of

low-energy quantum gravity and the LCDM cosmological model are not essentially

changed by the splitting. But the Einstein–de Sitter model with ΩM = 1 bests the

LCDM cosmological model with any amount of dark energy for the 44 long GRBs

data set with the Yonetoku calibration.

5.3. The Hubble parameter H(z) of this model

If the geometrical distance is described by equation (1), for a remote region of

the universe we may introduce the Hubble parameter H(z) in the following manner:

dz = H(z) ·
dr

c
, (10)

to imitate the local Hubble law. Taking a derivative dr
dz
, we get in this model forH(z):

H(z) = H0 · (1 + z). (11)

It means that in the model:
H(z)

(1 + z)
= H0. (12)
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the model of low-energy quantum gravity

Data set b χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [25] 2.137 239.635 100 68.22± 6.10

JLA [6] 2.365 30.71 43.03 69.54± 1.58

109 long GRBs [27] 2.137 70.39 99.81 66.71± 8.45

44 long GRBs [16], 2.137 40.585 57.66 69.73± 37.23

the Amati calibration 1.885 39.92 60.57 60.31± 31.93

44 long GRBs [16], 2.137 43.148 46.5 70.39± 38.79

the Yonetoku calibration 1.11 32.58 87.62 38.84± 18.55

quasars [17] 2.137 23.378 13.73 69.53± 10.87

the LCDM cosmological model

Data set ΩM χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [25] 0.30 217.954 100 69.68± 5.94

JLA [6] 0.30 29.548 48.90 70.08± 1.56

109 long GRBs [27] 0.30 66.457 99.94 70.04± 8.62

44 long GRBs [16], 0.30 40.777 56.81 68.99± 36.92

the Amati calibration 0.49 40.596 57.61 60.75± 32.44

44 long GRBs [16], 0.30 38.456 66.85 69.59± 36.10

the Yonetoku calibration 1.0 34.556 81.72 49.51± 24.35

quasars [17] 0.30 21.368 21.03 69.68± 10.42

Table 1: Results of fitting the Hubble diagram with the model of low-energy quantum

gravity and the LCDM cosmological model. The best fitting values of b and ΩM for

44 long GRBs are marked by the bold typeface.

The last formula gives us a possibility to evaluate the Hubble constant using

observed values of the Hubble parameter H(z). To do it, I use here 28 points

of H(z) from [10] and one point for z < 0.1 from [23]. The last point is the result of

HST measurement of the Hubble constant obtained from observations of 256 low-z
supernovae Ia. Here I refer this point to the average redshift z = 0.05. Observed

values of the ratio H(z)/(1 + z) with ±σ error bars are shown in Fig. 12 (points).

The weighted average value of the Hubble constant is calculated by the formula:

〈H0〉 =

∑ H(zi)
1+zi

/σ2
i

∑
1/σ2

i

. (13)
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Figure 12: The ratio H(z)/(1+z)±σ and the weighted value of the Hubble constant

〈H0〉±σ0 (horizontal lines). Observed values of the Hubble parameter H(z) are taken
from Table 1 of [10] and one point for z < 0.1 is taken from [23].

The weighted dispersion of the Hubble constant is found with the same weights:

σ2
0 =

∑(
H(zi)
1+zi

− 〈H0〉

)2
/σ2

i
∑

1/σ2
i

. (14)

Calculations give for these quantities:

〈H0〉 ± σ0 = (64.40± 5.95) km s−1Mpc−1. (15)

The weighted average value of the Hubble constant with ±σ0 error bars are shown

in Fig. 12 as horizontal lines.

Calculating the χ2 value as:

χ2 =
∑

(
H(zi)
1+zi

− 〈H0〉

)2

σ2
i

, (16)

we get χ2 = 16.491. By 28 degrees of freedom of our data set, it means that the

hypothesis described by equation (11) cannot be rejected with 95% C.L.

If we use another set of 21 cosmological model-independent measurements ofH(z)
based on the differential age method [20], we get (see Fig. 13):

〈H0〉 ± σ0 = (63.37± 4.56) km s−1 Mpc−1. (17)
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Figure 13: The ratio H(z)/(1+z)±σ and the weighted value of the Hubble constant

〈H0〉±σ0 (horizontal lines). Observed values of the Hubble parameter H(z) are taken
from [20].

The value of χ2 in this case is smaller and equal to 3.948. By 21 degrees of freedom

of this new data set, it means that the hypothesis described by equation (11) cannot

be rejected with 99.998% C.L.

Some authors try in a frame of models of expanding universe to find deceleration-

acceleration transition redshifts using the same data set (for example, [10]). The

above conclusion that the ratio H(z)/(1 + z) remains statistically constant in the

available range of redshifts is model-independent. For the considered model, it is

an additional fact against dark energy as an admissible alternative to the graviton

background.

5.4. The Alcock-Paczynski test of this model

The Alcock-Paczynski cosmological test consists in an evaluation of the ratio of

observed angular size to radial/redshift size [2]. Recently, this test has been carried

out for a few cosmological models by Fulvio Melia and Martin Lopez-Corredoira [18].

They used new model-independent data on BAO peak positions from [4] and [8].

For two mean values of z (〈z〉 = 0.57 and 〈z〉 = 2.34), the measured angular-

diameter distance dA(z) and Hubble parameter H(z) give for the observed charac-
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teristic ratio yobs(z) of this test the values: yobs(0.57) = 1.264±0.056 and yobs(2.34) =
1.706 ± 0.076. In this model we have: dcom(z) = dA(z) = r(z), where dcom(z) is the
cosmological comoving distance. Because the Universe is static here, the ratio y(z)
for this model is defined as:

y(z) =
r(z)

z · d
dz
r(z)

=
r(z) ·H(z)

cz
=

(
1 +

1

z

)
· ln(1 + z), (18)

where H(z) is defined by equation (10). This function without free parameters

characterizes any tired light model (model 6 in [18]). We have only two observational

points to fit them with this function. Calculating the χ2 value as:

χ2 =
∑ (yobs(zi)− y(zi))

2

σ2
i

, (19)

we get χ2 = 0.189, that corresponds to the confidence level of 91% for two degrees

of freedom.

6. Conclusion

As it is shown above, the Hubble diagram of supernovae Ia, GRBs and quasars

being corrected for no time dilation, the Hubble parameter H(z) and the ratio of

observed angular size to radial/redshift size are well fitted in this model. The Hubble

diagram for GRBs may differ in the model from the diagram for SNe Ia, and some

signs of this difference are seen, perhaps, in the case of the 44 long GRBs data

set. In the model, space-time is flat, and the geometrical distance as a function

of the redshift coincides with the angular diameter distance. Given that a galaxy

number density is constant in the no-evolution scenario, theoretical predictions for

galaxy number counts in this model have been found using only the luminosity and

geometrical distances defined by equations (1) and (2), see [15]. The geometrical

distance r(z) of this model is very different from the one of the standard model; for

example, GRB 090429B with z = 9.4, see [7] took place 24.6Gyr ago in a frame of

this model; the age of the Universe of the standard model: ∼ 13.5Gyr corresponds

here to z ≃ 2.6.
At present this model is not a full cosmological one; it is necessary to develop

many open problems to bring it closer to the pursuable completeness. But even

now it has interesting advantages: the model’s parameters H0 and b are computable;

there is not any need in dark energy (and in the Bing Bang, inflation, expansion).

I am grateful to the authors of the paper [17] for the binned quasar data set

which I have received by my request.
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PROGRAM OF THE CONFERENCE

Wednesday, September 21

13:00–13:30 Registration

13:30–13:40 Opening

Chair: Yurii V. Dumin

13:40–14:30 Igor Karachentsev, Cosmography of the local universe

14:30–15:20 André Maeder, Scale invariance: Its cosmological and local effects

15:20–15:50 Coffee Break

Chair: Lawrence Somer

15:50–16:40 Yurii V. Dumin, Local Hubble expansion: Current state of the problem

16:40–17:30 Georg Feulner, The faint young Sun paradox

17:30–18:00 Michal Kř́ıžek, Anthropic principle and the local Hubble expansion
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Thursday, September 22

Chair: André Maeder

9:00–9:50 Pavel Kroupa, The observed spatial distribution of matter on scales
ranging from 100 kpc to 1Gpc is inconsistent with the standard dark-matter-based
cosmological models

9:50–10:40 Marek Nowakovski, A local portrait of the cosmological constant

10:40–11:10 Coffee Break

Chair: Igor Karachentsev

11:10–11:40 Lidia Makarova, Dwarf galaxies in the local volume of the Universe

11:40–12:10 Dmitry Makarov, Tully-Fisher relation of flat galaxies

12:10–14:00 Lunch Break

Chair: Pavel Kroupa

14:00–14:30 Itzhak Goldman, Do recent observations of giant molecular clouds
suggest modification of gravity?

14:30–15:00 Ilia V. Sokolov, Clustering of galaxies around the GBR 021004 sight-
line at z ∼ 0.5

15:00–15:30 Coffee Break

Chair: Yurii V. Dumin

15:30–16:00 Konstantin A. Tomilin, Gravitational constant: history and modern
status

16:00–16:50 Igor N. Taganov, Theoretical estimation of the Hubble constant

16:50–17:40 Yurij V. Baryshev, Two fundamental cosmological laws of the local
universe (remote presentation)
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Friday, September 23

Chair: Itzhak Goldman

9:00–9:30 Attila Mészáros, Anisotropies in the sky distributions of the gamma-ray
bursts and the cosmological principle

9:30–10:00 Rahul Prasad Nigam, Role of magnetic field in structure formation

10:00–10:30 Alessandro D. A. M. Spallicci, Non-Maxwellian electromagnetism
implications on astrophysical and cosmological scales

10:30–11:00 Coffee Break

Chair: Attila Mészáros

11:00–11:30 Alexander B. Balakin, Non-minimal coupling and a new small scale
in the cosmological landscape around a magnetic monopole

11:30–12:00 Aleksei Zaiats, Non-minimal coupling and a new small scale in the
cosmological landscape around an electric monopole

12:00–14:00 Lunch Break

Chair: Marek Nowakovski

14:00–14:30 Vladimir A. Popov, Perturbations in the superfluid Chaplygin gas
cosmology

14:30–15:00 Bivudutta Mishra, Anisotropic Bianchi type VIh cosmological models
in modified gravity

15:00–15:30 Michal Kř́ıžek, Attila Mészáros, On the Friedmann equation for the
three-dimensional hypersphere

15:30–16:00 Discussion
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Saturday, September 24

9:00–12:00 Excursion to the astronomical and cosmological sights of Prague

Map of the proposed walk through the astronomical and cosmological sightseeings
of the Old Town:

1. Powder Tower (Prašná brána) — King’s entrance to the Old Town

2. Memorial plaque of Bernard Bolzano

3. Vlastenecký sál, where Ch. Doppler presented his groundbreaking lecture

4. Painting of Giordano Bruno and the memorial plaque of Albert Einstein

5. Old Town City Hall with the Astronomical Clock — Prague’s Horologe

6. Prague’s Meridian

7. Tomb of Tycho Brahe

8. House no. 7/930, where the grandfather of Wolfgang Pauli lived

9. Memorial plaque of Christian Doppler

10. Jewish Clock

11. Jewish Cemetery

12. Bust of Jaroslav Heyrovský, the first Czech Nobel Prize Winner

13. Astronomical Tower – on its top there is a statue of Atlas supporting the Universe
which is represented by an armillary sphere (see the back cover of these Proceed-
ings).
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14. Cosmological model on the Old Town Tower of the Charles Bridge1

15. Kepler’s Museum

16. Original building of the Union of Czech Mathematicians and Physicists

17. Café Montmartre often visited by Albert Einstein

18. Memorial plaque of the Czech Technical University in Husova no. 5/240

19. Bethlehem Chapel

20. Bust of Jan Amos Komenský

21. Ancient astronomical instruments were constructed in Havelská no. 3/511

22. Memorial plaque of Jan Marek Marci

23. St. Michal Church, where Křǐsťan z Prachatic was a priest

24. Main building of Charles University founded in 1348

25. Bust of Ernst Mach

26. College of King Václav IV, where Johannes Kepler lived, no. 12/573

For more details see A. Šolcová and M. Kř́ıžek: Pokroky Mat. Fyz. Astronom. 51
(2006), 217–230, 52 (2007), 127–141, and 55 (2010), 215–230, available at www.dml.cz.

Stop 2. Memorial plaque of Bernard Bolzano (1781–1848). He wrote the mono-
graph Paradoxes of infinity which has important consequences in cosmology.

1Stop 14. The Tower is divided into three parts that represent Aristotle’s Cosmological model
of the Universe. Above is the fixed celestial sphere with stars, in the middle there is the supralunar
sphere, and below is the sublunar sphere. The foundation stone for the Charles Bridge was laid
down in 1357 on 9th July at 5 a.m. and 31 minutes. This date is connected with the palindrome
135797531 recommended by astrologers.
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A memorial plaque dedicated
to G. Bruno is placed at the en-
trance of the Prague Planetarium
(Královská obora no. 233).

Stop 4. Painting of the Italian astronomer Giordano Bruno (1548–1600) on the
house in the Old Town Square no. 16/552. In 1588, Bruno visited Prague. In his
treatise De l’Infinito, universo e mondi (1584) he conjectured that the universe is
infinite and that each star is similar to the Sun. Therefore, he is often considered to
be the founder of modern cosmology.
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Stop 4. Memorial plaque of Albert Einstein (1879–1955) in the Old Town
Square no. 17/551. Einstein taught physics at Prague University from 1911 to 1912
and learned the tensor calculus from Georg Pick. This helped him to develop the
main ideas of the general theory of relativity. During his stay in Prague, Einstein
published seven articles. He explained, e.g., why photons change the frequency in
a gravitational field and why their trajectories are bent. Another memorial plaque
of A. Einstein is at the entrance of the Faculty of Science of Charles University in
Viničná 7/1594, where he worked. He lived in Lesnická 7/1215, where his bust is
situated at present.
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Stop 5. Astronomical dial of the Prague horologe in the Old Town Square.
It represents a geocentric model of the Universe. The astronomical clock shows
the position of the Sun on the ecliptic, the motion of the Moon and its phases,
culmination and setting of the Sun, the Moon, and zodiac signs. The gilded solar
hand shows the Central-European Time (CET) in the ring of Roman numerals. The
difference between CET and the original Prague local time (see Stop 6) is only
138 seconds. The black circular area at the bottom of the dial-plate corresponds to
astronomical night, when the Sun is lower than 18◦ below horizon.
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The mathematical model of the astronomical clock was invented by Jan Ondřej̊uv,
called Šindel, and the clock was realized by the skilled clockmaker Mikuláš (Nicholas)
from Kadaň around 1410. The horologe uses the stereographic projection of the ce-
lestial sphere from its North Pole N onto the tangent plane passing through the
South Pole S which is at the center of the astronomical dial. The smallest interior
circle around the South Pole illustrates the Tropic of Capricorn, while the exterior
circle illustrates to the Tropic of Cancer. The concentric circle between them corre-
sponds to the equator of the celestial sphere. An important theorem on stereographic
projection (known already to Ptolemy) states:

Any circle on the sphere which does not pass through the North Pole is mapped
onto a circle as well.

Therefore, six important circles of the celestial sphere: equator, ecliptic, Prague’s
horizon, Tropic of Cancer, Tropic of Capricorn, and the circle of astronomical night
are mapped onto circles on the astronomical dial.

The astronomical clock is an astrolabe controlled by a sophisticated mechanism.
For more details see M. Kř́ıžek, A. Šolcová, and L. Somer: The mathematics behind
Prague’s horologe, Math. Culture 1 (2010), no. 2, 69–77, or Comment. Math. Univ.
Carolin. 48 (2007), 373–388, available at www.dml.cz.
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Memorial plaque of T. Brahe in Nový svět no. 1/76 (photo J. Žd’árská)

Stop 7. Marble tomb of Tycho Brahe
(1546–1601) in the Týn Church. Brahe’s
precise measurements of Mars’ positions
helped Johannes Kepler to discover the
three Kepler’s laws.
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Stop 9. Memorial plaque of Christian Doppler (1803–1853) in the street U Obec-
ńıho dvora no. 7/799, where he lived. In 1842, Doppler gave a groundbreaking lecture
On the color light of binary stars in Vlastenecký sál (= Patriotic Hall) of Charles
University in Ovocný trh no. 3/541 (Stop 24 and also Stop 3), where he first intro-
duced the effect later called the Doppler phenomenon. This phenomenon is the basis
of the so-called redshift frequently used in the current cosmology. Another memorial
plaque of Ch. Doppler is placed in the Charles Square (Karlovo náměst́ı) no. 20.
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Stop 15. Kepler’s Museum is located in Karlova street no. 4/177, where Jo-
hannes Kepler (1571–1630) lived from 1607 to 1612. During this period he discovered
the first two of his three laws about elliptic orbits of planets around the Sun. They
were published in Astronomia nova (1609). J. Kepler was already living in the city
since 1600.
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Stop 25. Bust of Ernst Mach (1838–1916) in Ovocný trh no. 7/562 who worked
in this building from 1867 to 1879 as Director of the University Physics Institute.
Here he started his groundbreaking research on shock waves. They are characterized
by the Mach number which is a dimensionless quatity representing the ratio of flow
velocity past a boundary to the local speed of sound. Einstein cited the so-called
Mach’s principle as one of the three principles underlying general relativity.
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Group of statues of Tycho Brahe and Johannes Kepler at the crossing of the
streets Keplerova and Parléřova
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