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Abstract—The current standard cosmological model is based on the normalized Friedmann equation
1 = ΩM + ΩΛ + ΩK, where ΩM is the mass density of dark and baryonic matter, ΩΛ the vacuum energy
density, and ΩK is the curvature parameter. We show that the Friedmann equation was derived under
excessive extrapolations from Einstein’s equations, which are not scale invariant and are “verified” on
much smaller scales. We explain why these extrapolations are incorrect, why the unrestricted use of the
term “verified” is questionable, and why dark matter may exist only by definition.
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1. INTRODUCTION

In 1922 Alexander Friedmann [19] derived from
Einstein’s equations for a perfectly symmetric space,
which is homogeneous and isotropic at each fixed
time instant, a nonlinear differential equation of the
first order for an unknown expansion function a =
a(t) > 0 describing the expansion of the universe,

ȧ2

a2
=

8πGρ

3
+

Λc2

3
− kc2

a2
, (1)

where the dot stands for the time derivative, ρ =
ρ(t) > 0 denotes the mean mass density of the uni-
verse at time t, G = 6.674 × 10−11 m3 kg−1 s−2 is
the gravitational constant, Λ is the cosmological con-
stant, c = 299 792 458 m/s is the speed of light, k/a2

is the space curvature, and k = {−1, 0, 1} is the cur-
vature index (normalized curvature). Equation (1)
is called the Friedmann equation. The value k = 1
corresponds to the hypersphere

S
3
a = {(x, y, z, w) ∈ E

4 | x2+y2+z2+w2 = a2} (2)

with variable radius a = a(t), where E
n stands for

the Euclidean space of dimension n. The case k =
0, which was not considered by Friedmann in [19],
corresponds to E

3. In 1924, Friedmann also derived
Eq. (1) for the pseudosphere H

3 with the negative
curvature index k = −1 and for a negative density of
mass (see [20, p. 2006]). It is not clear how to satisfy
such a paradoxical assumption. Fortunately, Eq. (1)
may also be formally investigated for k = −1 and
ρ ≥ 0. It is very difficult to imagine the manifold H

3
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(see [9]), since it cannot be isometrically embedded
into E

4 contrary to the hypersphere (2). According
to [8], it can be isometrically embedded into E

12.
The term “universe” is used in cosmology with

various meanings: true spacetime, true space (i.e.
spacetime at fixed time), and the observable universe.
These are three different objects. Their mathematical
models are also three completely different manifolds
(see Fig. 1). Thus altogether we have six meanings
of the problematic notion “universe.” In accordance
with Einstein’s cosmological principle (that the uni-
verse at large scales is homogeneous and isotropic at
fixed time), we shall use the term universe for a cross-
section of spacetime at a fixed time instant t.

In 1922 astronomers had no idea about the real
size of our universe because other galaxies were only
discovered later by Edwin Hubble [23]. Their typi-
cal size is about 1010 au (astronomical units), and
the size of the whole universe is at least five orders
of magnitude higher. In spite of that, Alexander
Friedmann applied Einstein’s equations to the whole
universe (see Section 2), even though these equations
are not scale-invariant, and they are “verified” on
much smaller scales than is the size of the whole
universe (perihelion advance of Mercury’s orbit, grav-
itational redshift, bending of light in the gravitational
field of the Sun, slowdown of electromagnetic waves
near the Sun—the Shapiro effect, the Lense-Thirring
precession effect, and so on).

2. FORBIDDEN EXTRAPOLATIONS

The question of whether the Friedmann equa-
tion (1) sufficiently exactly describes the expansion of
the real universe is entirely essential. If it is not so,
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Fig. 1. Three different manifolds corresponding to the
curvature index k = 1. For simplicity, the hypersphere (2)
is replaced by only its great circle S

1
a(t) for z = w = 0 and

for a fixed time instant t. This is a model of space (uni-
verse). A model of spacetime can be obtained by rotation
of the graph of the expansion function a = a(t) about the
time axis t. The observable universe is marked by a light
cone. The space dimensions are reduced by two.

then cosmologists solve by various means the same
incorrect equation. We will support our questioning
of the unrestricted use of the Friedmann equation by
several arguments.

Phenomena in our universe are usually modeled
by equations of mathematical physics, such as lin-
ear elasticity equations, Maxwell’s equations, semi-
conductor equations, Einstein’s equations, and so
on. However, no such equation describes reality
absolutely exactly. Thus we always get a nonzero
modeling error with respect to some criterion (max-
imum surface temperature, mean velocity, minimum
pressure, and so on). Each equation has certain
restrictions on the size of investigated objects where
reality is modeled well and, on the other hand, where
its description fails, i.e., the modeling error essentially
depends on the size of these objects. We will demon-
strate this by a few examples.

Example 1. Consider a unit homogeneous and
isotropic iron cube with edge e = 1 m and solve a
steady-state heat conduction problem −Δu = f with
some boundary conditions, where u is the temper-
ature and f is proportional to the density of heat
sources. This elliptic problem approximates very well
the true temperature in homogeneous isotropic solids
that can be verified by direct measurements (see,
e.g., [30]). However, in applying the heat equation
on the atomic level in a cube with edge e = 10−10 m,
we get nonsensical numbers, since it is not clear how
to define the temperature on such a small scale. We
also obtain nonsensical numbers for e = 1010 m (see
the left part of Fig. 2). Such a large homogeneous
and isotropic solid cube would immediately collapse
into a black hole, since the diameter of this cube
is about ten times larger than the diameter of the

Sun. We can, of course, solve the above steady-state
heat conduction problem on an arbitrarily large cube.
However, the question is for which e do we still get ac-
ceptable results, and when the resulting temperatures
have nothing to do with reality. The used criterion
can be, e.g., E = E(e) = |Umax − umax|/Umax, where
Umax (resp., umax) is the maximum real (resp., theo-
retical) surface temperature on the cube.

Example 2. The use of the Schrödinger equation
is justified on scales of the hydrogen atom, i.e., on
the scale 10−10 m. Nevertheless, we get nonsen-
sical numbers on scales of 10−20 m which are less
than the cross-section of a quark. Application of the
Schrödinger equation to objects of size 1 m will also
not produce reliable results.

The validity of other equations of mathematical
physics with respect to a given criterion is subject
to analogous restrictions, even though we get dif-
ferent graphs of the left part of Fig. 2, in general.
Einstein’s gravity field equations do not describe well
processes on the atomic level, since there act other
much stronger fundamental physical interactions that
cannot be ignored (see the right-hand part of Fig. 2).
Also, the time scales cannot be arbitrary. To see this,
we present two more examples.

Example 3. The classical N-body problem yields
very good predictions of the positions of the planets in
the Solar system after one year. However, it produces
nonsensical numbers for the period of 1010 years.
Also, backward integration to the past has no sense,
since the Solar system did not exist 1010 years ago.
Therefore, long-term extrapolations in time are not
reliable as well.

Example 4. Current mathematical models of
weather forecast yield quite acceptable results for
several days in advance. But we cannot predict the
weather forecast for 1010 days in advance, and so on.

Thus, in any calculation we have to take care of
the modeling error which is small, for example, only
in the flat part of the left-hand graph in Fig. 2. For all
that, Friedmann when deriving (1) applied Einstein’s
equations on cosmological scales even though they
are “verified” only on much smaller scales than is the
size of the whole universe. As mentioned in the In-
troduction, galaxies have diameters of order 1010 au,
and the size of our universe is at least five orders of
magnitude larger. Let us emphasize that Einstein’s
equations (see (14) below) are not scale-invariant
since they are nonlinear and contain the fundamental
constants G and c, and it is assumed that the speed of
gravity is just c < ∞. Moreover, different structures
are observed on different scales of the universe.

All this suggests that Eq. (1) was obtained by
incorrect extrapolations from the Solar system scales
to cosmological scales (see the right-hand part of
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Fig. 2. Left: Schematic illustration of a general behavior of the relative modeling error E for equations of mathematical physics.
The horizontal axis (in appropriate units) has a logarithmic scale, and p is the exponent yielding the smallest relative modeling
error. Right: Enforced behavior of relative modeling (extrapolation) error in the case of Einstein’s equations.

Fig. 2), even though (1) was derived by correct math-
ematical operations involving Einstein’s equations on
the maximally symmetric manifolds S

3, E
3, and H

3.
The current cosmological model is thus based on a
questionable Friedmann equation. Below we present
further arguments to support this conjecture.

3. STRANGE BEHAVIOR
OF COSMOLOGICAL PARAMETERS

First recall the definition of the Hubble parameter

H(t) :=
ȧ(t)
a(t)

(3)

and divide Eq. (1) by the square H2 = (ȧ/a)2 ≥ 0. In
literature on cosmology this is usually done without
any preliminary warning that we may possibly divide
by zero that may lead to various paradoxes. Then for
all t we get the normalized Friedmann equation for
three dimensionless parameters

1 = ΩM(t) + ΩΛ(t) + ΩK(t) (4)

which are defined as follows:

ΩM(t) :=
8πGρ(t)
3H2(t)

> 0, ΩΛ(t) :=
Λc2

3H2(t)
,

ΩK(t) := − kc2

ȧ2(t)
, (5)

ΩM is called the mass density of dark and baryonic
matter, ΩΛ the vacuum energy density, and ΩK is
the curvature parameter, see [43, 45].

In 1917, Albert Einstein [12] added the positive
cosmological constant to his equation of general rel-
ativity (see (14) below) to avoid gravitational collapse
and save his model S

3
a (a = const) of the stationary

universe (see also [51]). Note that the resulting solu-
tion of Eq. (1) is not stable, i.e., any small deviation
from constant a will cause either a gravitational col-
lapse or expansion [39, p. 746]. For a = const, we
find that ȧ(t) ≡ 0 for all t (see the top left-hand part of

Fig. 3), and by (3) we have H(t) ≡ 0. Even though
nothing dramatic happens, by (5) the mass density
and vacuum density parameters ΩM(t) = ΩΛ(t) = ∞
for all t. We should write more precisely that they are
not well defined.

For a cyclic (i.e. pulsating or oscillating) universe
there exists the time t2 (see the top right-hand part
of Fig. 3) such that ȧ(t2) = 0. So we again divide
by zero in (5) and get a very strange behavior of the
cosmological parameters. In particular, the density of
baryonic and dark matter is infinite, even though the
density of true baryonic matter is surely finite. The
vacuum energy density is also infinite for t = t2, al-
though the universe starts to collapse. Even in a small
neighborhood of the point t2, where we do not divide
by zero, the behavior of the cosmological parameters
is bizarre, since their values rapidly grow beyond all
bounds. We also see that the curvature parameter
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Fig. 3. The expansion function for the stationary universe,
the cyclic universe, the universe with zero cosmological
constant, and for the currently accepted expansion of the
universe with a positive cosmological constant.
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ΩK(t2) = ∞ provided k �= 0. However, reasonably
defined physical quantities should not attain infinite
values.

In the model with a zero cosmological constant
and k = −1 it is derived that the expansion function
tends to infinity as t → ∞ and is strictly concave for
t > t3 > 0 (see the bottom left-hand part of Fig. 3
and [39, p. 735]). Hence, the derivative ȧ and also its
square are decreasing functions. By (5) the curvature
parameter ΩK > 0 increases as t → ∞, whereas the
spatial curvature k/a2 tends to zero. From the above
paragraphs we observe that all three cosmological
density parameters (5) do not have suitable names or
they are wrongly defined (cf. also [22, p. 66]).

A somewhat more curious behavior of the param-
eter ΩK is obtained for the currently accepted expan-
sion function. Similarly to the previous paragraph,
we shall consider only t > t4 > 0, where t4 denotes
the time instant of the origin of the cosmic microwave
background radiation. According to [49], the expan-
sion function a(t) is strictly concave over the interval
circa (t4, 9) Gyr and then changes to a strictly convex
function on the interval (9, 14) Gyr. In other words,
the function ȧ is first decreasing and then increasing
(see the bottom right-hand part of Fig. 3). From this
it follows by (5) that the curvature parameter ΩK(t)
is not a monotone function, even though the universe
expands continually. The absolute value of the cur-
vature parameter |ΩK| > 0 on the interval (t4, 9) Gyr
increases for k �= 0, but the spatial curvature tends to
zero with increasing time. We again see that the name
for ΩK was not appropriately selected.

Let us further note that by the theory of inflation,
the universe expanded exponentially during a very
short time instant after the Big Bang, i.e., the ex-
pansion function a = a(t) was strictly convex. Then
it was strictly concave and then surprisingly it was
again strictly convex.

According to the data measured by the Planck
satellite, the Planck Collaboration concluded
that [45–48]

ΩM ≈ 0.3175, ΩΛ ≈ 0.6825, ΩK ≈ 0. (6)

These values were obtained by a combination of the
methods of Baryonic Acoustic Oscillations (BAO),
Cosmic Microwave Background (CMB), and Super-
novae type Ia explosions (SNe), see Fig. 4. Similar
pictures can be found, e.g., in [2] and [43]. It is argued
that these three methods are independent and that
the corresponding sets of admissible cosmological
parameters intersect in a small region whose coordi-
nates are close to (6). However, we should keep in
mind that all three methods originated from the same
normalized Friedmann equation (4) that was derived
by inordinate extrapolations, and thus these methods
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Fig. 4. Admissible values of the cosmological parameters,
obtained by three different methods: BAO, CMB, and
SNe, intersect in a small region containing the parame-
ters (6). Nevertheless, these methods are not independent
since all of them use the Friedmann equation derived by
forbidden extrapolations.

are not independent. In other words, the amount
of exotic dark matter and dark energy was obtained
from an incorrect equation that was solved by three
different methods up to four significant digits, see (6).

Concerning SNe, no extinction by the host galaxy
was considered. The measured luminosity essentially
depends on the position of SNe in the host galaxy,
i.e., if it is in the interior or on the edge. Therefore,
supernova type Ia explosions are not standard can-
dles as required. Moreover, the measured data were
taken from the observable universe which is modeled
by a completely different manifold than the universe
described by the expansion function as illustrated in
Fig. 1.

From the relations (6) we observe that the sum of
the measured values of ΩM(t0) and ΩΛ(t0) is approx-
imately equal to 1. Nevertheless, this does not allow
us to claim that from (4) and (5) it follows with high
probability that k = 0 and that the true universe is flat
(i.e. infinite Euclidean) as is often stated at present.
Arguments for a vanishing curvature are also shown
to be weak in [17]. Even though the sum would be

ΩM(t0) + ΩΛ(t0) = 1.000000000000000001,

we still have a bounded universe that can be de-
scribed by the sphere (2) with an incredibly large ra-
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dius. Moreover, the sphere S
3
a has an entirely different

topology than the proclaimed flat space E
3.

There are several other arguments against E
3 be-

ing the correct model of our universe. By Einstein’s
theory of general relativity, matter curves space. Nev-
ertheless, the curvature of E

3 is independent of the
decreasing mean mass density ρ = ρ(t) > 0.

The manifolds E
3 and H

3 have an infinite volume.
However, the actual space could not first be finite
after its origin and then change to infinite. More-
over, we can hardly imagine that the actual infinite
universe would have everywhere on large scales the
same density, temperature, pressure, and so on, at
a given time instant after the Big Bang, as required
by the Einstein cosmological principle. In this case,
information would have to be transmitted at infinite
speed. Therefore, the most probable model of our
universe seems to be the sphere S

3
a defined by (2).

Since the product ρ(t)a3(t) is constant during the
time period when matter dominates over radiation, the
Friedmann equation (1) takes the equivalent form

ȧ2 = Aa2 + B +
C

a
(7)

with time-independent constant coefficients A =
Λc2/3, B = −kc2, and C > 0 which are not exactly
known. However, since the ratio (cf. [37, p. 56])

ȧ(t)
a(t)

= H0 = H(t0) ≈ 70 km/(s Mpc)

is known, where t0 is the present time, we may calcu-
late from (7) the terminal condition a(t0) for k �= 0.
Thus we can solve equation (7) backward and also
forward in time for given constants A, B, C. From
such a simple ordinary differential equation we should
not make any categorical conclusions about the deep
past and the future of the universe as is often done.
For the time period when radiation dominates over
matter, the term D/a2 is added to the right-hand side
of Eq. (7).

In applying the standard cosmological model, var-
ious “delicate” limits are sometimes performed: a →
0, t → 0, a → ∞, t → ∞, · · · (see, e.g., [2, 36, 42]).
In this way, the age of the universe is derived up to
four significant digits as t0 = 13.82 Gyr (see [45]).
We should rightly say: According to the Friedmann
equation with the parameters (6) the estimated age of
the universe could be t0 ≈ 13.82 Gyr. The real age
might be quite different.

Furthermore, we have to emphasize that the
Friedmann equation (1) was derived only for the
gravitational interaction. However, shortly after the
Big Bang, electromagnetic forces that are many
orders of magnitude higher played an important role.

Before that, also even stronger nuclear forces surely
had an influence on the initial values of the true ex-
pansion function. Although non-gravitational forces
are investigated at large accelerators, their behavior in
an extremely strong gravitational field right after the
Big Bang is not known. Moreover, at that time many
points of the universe receded from each other by
highly superluminar speeds, and thus the application
of Einstein’s equations is questionable.

For the time being. only two coefficients H0 and
q0 = q(t0) ≈ −0.6 (see [49]) were measured in the
Taylor expansion

a(t) = a(t0) + ȧ(t0)(t−t0)

+ 1
2 ä(t0)(t−t0)2 + · · · = a(t0)(1 + H0(t−t0)

− 1
2q0H

2
0 (t−t0)2 + . . . ), (8)

where the deceleration parameter q = −äa/(ȧ)2
depends on the second derivative of the expansion
function. Let us emphasize that calculation of the
second derivatives from biased supernova data is a
very ill-conditioned problem. It is evident that the
first three terms of the Taylor expansion at the point
t0 cannot well describe the behavior of the expansion
function in the far past. Therefore, e.g., the Hubble
time 1/H0 = 13.6 Gyr corresponding to the linear
term in (8) need not well approximate the real age of
the universe.

4. DARK MATTER CAN BE ONLY
A MODELING ERROR

Dark matter is a hypothetical kind of matter that
does not interact with electromagnetic waves, and
its properties are inferred only from its gravitational
effects on visible matter. At present there exist a large
number of articles on dark matter and dark energy
that categorically state:

The universe consists of 27% dark matter, 5%
baryonic matter, and 68% dark energy.

Rightly they should again claim:
According to the standard cosmological model

based on the Friedmann equation, the universe
could consist of 27% dark matter, 5% baryonic
matter, and 68% dark energy.

It is important to understand the difference be-
tween the above two assertions. According to the
interpretation of measurements of the Planck satel-
lite [45, 46], the parameter of the mass density (cf. (6))
in the standard cosmological model is equal to

ΩM = ΩDM + ΩBM ≈ 0.32, ΩDM ≈ 0.27,
ΩBM ≈ 0.05, (9)

i.e., 27% consist of dark matter (DM) and 5% con-
sists of baryonic (BM), from which less than 1% is
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made up of luminous matter. Although the model
arose by forbidden extrapolations, and thus is prob-
ably not correct, some dark matter may exist. Sci-
entific results should be independently checked. We
suspect that the proposed ratio 27 : 5 of dark matter
to baryonic matter is highly exaggerated.

Now let us briefly recall other approaches from [28]
and [32] that are independent of the Friedmann equa-
tion (1). The existence of dark matter was postulated
in 1933 by Fritz Zwicky [59] after discovering large
velocities of galaxies in the Coma cluster A1656. But
his data were not relevant. With the help of classical
Newtonian mechanics he derived a very simple rela-
tion for the virial mass of the cluster

M =
5Rv2

3G
. (10)

Here R = 4.58 × 1022 m is its radius and ν =
1686 km/s is the weighted root-mean-square speed
of all galaxies with respect to the center of mass of
the cluster for currently available data [1, 6]. The
relation (10) yields ten times more of virial mass,

M = 3.25 × 1045 kg, (11)

than the luminous mass

M ≈ 3.3 × 1044 kg (12)

estimated from the Pogson equation, see [28]. Zwicky
in [59] and [60] even obtained a more than two orders
of magnitude larger value of M than M. However,
can we claim on the basis of such a trivial algebraic
relation as (10) that dark matter in the Coma clus-
ter really exists? Zwicky became well aware that
he needed to make many simplifications; otherwise
he could not calculate anything. For instance, he
assumed that galaxies are distributed uniformly, that
the Virial Theorem holds exactly, and that gravitation
has an infinite speed of propagation. He substituted a
spacetime curved by more than one thousand galaxies
by Euclidean space. He replaced galaxies of diameter
about 1010 au by mass points. Such approximations
do not allow one to consider angular momenta of
rotating galaxies that surely contribute to the total
angular momentum. Tidal forces among galaxies
were not included as well. Further simplifications are
listed in [28].

In [28] we found that the virial mass (11) can
be considerably reduced by taking into account the
gravitational self-lensing effect of the Coma cluster,
the relativistic effects of the observed high velocities,
gravitational redshift, nonuniformity of mass distribu-
tion, gravitational aberration, dark energy, decreas-
ing value of the Hubble parameter (3), and so on.
Recently Tutukov and Fedorova [55] found that the
intergalactic medium of galaxy clusters contains 30
to 50% of the total number of stars in the cluster.

Moreover, clusters of galaxies contain five times more
non-luminous baryonic matter in the form of a hot
gas producing X-rays than baryonic matter contained
in galaxies (see, e.g., [7, 23]). At the end of the
last century, astronomers believed that only 3% of all
stars are red dwarfs (see [5, p. 93]), at present we
know that more than 80% of all stars are red and
brown dwarfs of the spectral classes M, L, T, Y that
are hardly detectable even in our close neighborhood.
Consequently, the large velocities of galaxies in the
Coma cluster observed by Zwicky have a natural ex-
planation, and the proposed ratio 27 : 5 of dark matter
to baryonic matter is considerably overestimated.

In [32] we give a detailed analysis of the dark
matter problem proposed by Vera Rubin [50]. Her
greatest discovery was the fact that spiral galaxies
have “flat” rotational curves that do not correspond
to Keplerian orbits of stars. However, it is important
to realize that spiral galaxies do not have a central
force field except within a close neighborhood of the
central black hole whose mass is usually much less
than 0.1% of the total galactic mass. In the So-
lar system, on the contrary, 99.85% of the mass is
concentrated at the Sun. The planets barely interact
gravitationally among themselves, and their motion
is mainly determined by the central force of the Sun.
On the other hand, trajectories of stars in a galactic
disk are substantially influenced by neighboring stars
because the central bulge usually contains only about
10% of all mass of a spiral galaxy.

Example 5. The radius of the visible part of the
disk of our Galaxy is about r = 16 kpc = 4.938 ×
1020 m. By Hipparcos’ data taken from our neigh-
borhood up to a distance of several hundred parsec,
the baryonic mass inside the ball of radius r can be
estimated by M = 3.85× 1041 kg (see [29, p. 128] for
details). The Harvard Spectral Classification yields
a similar value. Now let us concentrate all baryonic
matter inside the ball of radius r to one central point.
The Shell theorem indicates that the outside matter
(including possible dark matter) has no effect on the
motion of stars, provided the mass distribution be-
yond r is spherically symmetric. Then we find that the
orbital velocity of stars on the radius r of the visible
disk is

v =

√
GM

r
= 228 km/s.

However, this value is comparable to the measured
speed. Although this relation is only approximate, to
postulate the existence of 6 times more dark matter
than baryonic matter to hold the Milky Way together
by gravity seems to be somewhat overestimated.

In [32] we moreover prove the following statement,
which supports flat rotational curves without dark
matter.
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Fig. 5. A ball with symmetrically distributed mass with
respect to the horizontal plane acts on a test particle by a
smaller force than the mass projected perpendicularly to
the horizontal plane of the disk—dashed.

A particle orbiting a central mass point along
a circular trajectory of radius R has a smaller
speed than if it were to orbit a flat disk with
radius R and the same mass with an arbitrary
rotationally symmetric density distribution.

To be convinced of this assertion, just consider two
arbitrary mass points with masses m1 = m2 located
inside a ball placed symmetrically with respect to the
horizontal plane (see Fig. 5). Then the total force F
of both mass points acting on the test particle of mass
m will be less than the force F of both mass points
projected perpendicularly to the disk and acting on m.
Let d be the distance between m1 and m. Denoting by
b its orthogonal projection onto the horizontal plane,
we find that F = (d/b)3F ≥ F . This cubic nonlin-
earity causes a greater attractive gravitational force
by the disk than by the ball, and thus also a higher
orbital speed of stars around the disk.

In [28] and [32] we have presented several further
arguments showing that dark matter can possibly
be only a modeling error. Notice that the density
parameter ΩM of dark and baryonic matter exists by
definition (5). Furthermore, Pavel Kroupa in [34]
and [36] gives several other arguments that point to
the absence of dark matter around our Galaxy. For
instance, all dwarf galaxies orbit around the Milky
Way (and also M31) in almost one plane which would
be very unlikely if the amount of halo dark matter
would be six times larger than the amount of baryonic
matter. A number of other works (see, e.g., [4, 18, 22,
28, 35, 41, 53]) also confirm that it is not necessary to
assume the existence of dark matter. Finally note that
the famous MOND (Modified Newtonian Dynamics)
assumes an infinite speed of gravity, which surely
contributes to the modeling error, too.

5. DARK ENERGY
AND THE COSMOLOGICAL CONSTANT
Generally speaking, the prevailing conviction says

that dark energy is some mysterious substance which

is responsible for the accelerated expansion of the
universe and this is attributed to the cosmological
constant Λ.

Why should a single constant Λ truly model the
accelerated expansion of the real universe? Is this
not too great a simplification and too rough an ap-
proximation? Dark energy was introduced into the
standard cosmological model to explain the observed
accelerated expansion of the universe based on the
Friedmann equation and to eliminate the obvious vi-
olation of the energy conservation law. Nevertheless,
gravitational aberration (see [26]) also causes a re-
pulsive force and thus it may generate the sought-
for energy necessary for the accelerated expansion.
Antigravity (sometimes called a dark force) acts as a
hidden repulsive force between planets, stars, galax-
ies, and their clusters and thus influences the ex-
pansion of the universe [31]. However, the observed
local expansion (see [27, 33]) cannot be described by
a single constant, since it depends on position, time,
mass, and so on. Average values of this expansion are
not described by a fundamental constant. Therefore,
we should rather consider a time-dependent function
Λ = Λ(t) (like the Hubble parameter H(t) which also
depends on time). Fahr and Heyl in [15] present a list
of papers where variable Lambda cosmologies have
been discussed in detail. There exist many indications
that vacuum energy density should decay with the
expansion of the universe (see [15, p. 710]) and that
it could be proportional to mass density. By Fahr and
Sokaliwska [16, p. 382], the cosmological constant
excludes to be treated as an equivalent to a vacuum
energy density.

The standard cosmological model assumes that
the expansion of the universe is manifested only glob-
ally and not locally. Nevertheless, according to [10,
11, 33, 38, 58], the universe also expands locally with
a speed comparable with the Hubble constant.

There is a fundamental hypothesis (by Pavel
Kroupa [35], the so-called null hypothesis) that all
present-day matter was created as a relativistic fluid
during the hot Big Bang. However, in [29] and [33]
we show that the Solar system slightly expands, and
it is sufficiently isolated from the influence of other
stars. For instance, the gravitational force between
the Earth and Alpha Centauri is about one million
times smaller than the maximal gravitational force
between the Earth and Venus. Since the total energy
of the Solar system slightly increases, by the Einstein
relation E = mc2 its total mass also slightly in-
creases, i.e., the above null hypothesis need not hold,
and the energy conservation law is slightly disturbed.
On the other hand, the Friedmann equation assumes
that the total mass of all particles remains constant.
According to [21, p. 62], the vacuum energy density
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is nonphysical since it conflicts with the requirements
of cosmic thermodynamics (cf. also [14]).

6. FLUCTUATIONS IN COSMIC MICROWAVE
BACKGROUND

It would be a mistake to believe that the well-
known map of the cosmic background radiation
shows the entire universe, how it looked like 380,000
years after the Big Bang. This map shows only a two-
dimensional slice of a three-dimensional manifold
corresponding to the universe for the redshift z ≈
1089 (see [13]). For the normalized curvature k = 1
the radius of the universe was (z + 1) = 1090 times
smaller than it is at present.

Moreover, we observe this radiation only on the
projection to the celestial sphere. For example, the
relic radiation produced at that time in our neigh-
borhood is not on the map of the cosmic microwave
background radiation. There is also no relic radiation
from the places where we have found to date all 1012

galaxies in the observable universe. At each of these
galaxies we would observe at present completely dif-
ferent maps of the cosmic microwave background
fluctuations. So on the Earth, an observer may have
an idea about how only a tiny part of the early universe
looked like.

Since the Solar system is nonsymmetrically
placed in the gravitational lens called the Milky Way,
the CMB is very slightly deformed. Moreover, the
CMB has been biased by gravitational lensing of
billions of galaxies and their clusters for more than
13 Gyr. This phenomenon is called weak lensing.
However, it is weak only for a relatively small z, say
z < 1. On the other hand, we will illustrate in the next
example that it is relatively strong for z 	 1.

A large amount of noise in the CMB was thus pro-
duced especially from the distribution of protogalax-
ies and their clusters when our universe was young.
No relic photon traveled along an exactly straight
line, since the observable universe contains about
1012 galaxies. The bending of a photon trajectory is
given by the relativistic relation [40]

φ =
4GM

c2R
, (13)

where M is the mass of a given object, and R is the
distance of a photon from its center.

Example 6. Assume now that some relic pho-
ton was gravitationally bent at the distance z = 9
about the angle φ = 1′, which is by (10)–(13) or [28]
and [32] quite an acceptable value for galaxy clusters.
At that time, the universe was (z + 1)3 = 1000 times
more dense than it is at present, which makes bending
effects even larger than at present. According to [44],
a photon with z = 9 has travelled more than 13 Gyr. If

 

d

 

φ

Fig. 6. Bent trajectory of a photon in a nonexpanding
universe.

the universe had not expanded, then the distance d of
the photon from its original straight trajectory would
satisfy

d > tan φ · c · 13 × 109 yr = 3.78 × 106 ly,

as indicated in Fig. 6. However, since the uni-
verse expanded by z + 1 = 10 times in each direc-
tion (see [57, p. 453]), the relic photon will deviate
more than 37.8 million light years from its original
straight trajectory. For z > 9 such a magnification is,
of course, larger. Consequently, the larger z is, the
larger is the smearing.

Further, recall (see [45]) that the highest peak in
the temperature angular power spectrum of the CMB
is at about 1◦. In other words, the most typical diam-
eter of fluctuations in the CMB is about one angular
degree. The whole celestial sphere has 4π steradians
which is about 41.253 square degrees. Thus the area
of the sky with such a typical circular fluctuation
contains, on the average, (π/4)× 1012/41253 ≈ 19×
106 galaxies. Many of them have z > 9, and thus their
gravity produces a really large smearing in the CMB
radiation. This fact is not taken into account in [47].

Hence, a natural question arises concerning
whether CMB fluctuations are mostly random noise
due to gravitational lensing. Relic photons that
travelled along more curved trajectories have slightly
larger wavelength than those with straighter trajecto-
ries. Another a source of bias is the inverse Compton
scattering effect of the CMB, called the Sunyaev–
Zeldovich effect (see [48]). According to [17, p. 699],
fluctuations in CMB can also be understood as an
indication of different cosmological expansion dy-
namics seen in an anisotropically expanding universe
in different directions of the sky.

7. “VERIFICATION”
OF EINSTEIN’S EQUATIONS

Before explaining why we use the term “verifica-
tion” in quotation marks, we first recall the famous
nonlinear system of Einstein’s 10 equations (for de-
tails see, e.g., [39, 54])

Rμν − 1
2
Rgμν + Λgμν =

8πG

c4
Tμν , (14)

μ, ν ∈ {0, 1, 2, 3}, which contains on its left-hand
side several thousands of terms (partial derivatives
of scalar functions). The reason is that there are
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10 components of the unknown symmetric metric
tensor gμν , 20 components of the Riemann tensor,
40 components of the so-called Christoffel symbols,
and moreover, we have to calculate the inverse matrix
of gμν to evaluate the Christoffel symbols. For com-
parison, the Poisson equation −Δu = f from Exam-
ple 1 has only three terms ∂2u/∂x2, ∂2u/∂y2, and
∂2u/∂z2 on the left-hand side. Einstein’s equations
form a hyperbolic set of partial differential equations
of the second order. If the curvature of true spacetime
were to depend on the third or higher derivatives of
the metric tensor, then the right-hand graph in Fig. 2
would be not correct since (14) contains derivatives
only up to the second order, and thus a modeling error
would appear.

The system (14) is so complicated that its solution
for two mutually orbiting bodies is not known. There-
fore, many simplifications are made (see, e.g., [39,
p. 1076]). The most popular is the parametrized
post-Newtonian (PPN) formalism which is also an
approximation of several other theories of gravity in-
cluding general relativity. It assumes low velocities v
for which v 
 c. After many simplifications we get
only algebraic expressions that are tested. But we
should evaluate the modeling error between an actual
solution of system (14) and the measured quantities.
Most of the tests are based only on Solar-system
experiments (see Section 1 and, e.g., [39, 52]). For
instance, instead of solving the system (14), the true
perihelion advance of Mercury’s orbit after one revo-
lution is compared with the simple algebraic relation
ε = 24π3a2T 2c−2/(1− e2), where T is the orbital pe-
riod, a is the semi-major axis, and e is the eccentricity
of Mercury’s orbit [56]. Another simple tested formula
is, e.g., (13).

Now we will discuss verification of Einstein’s
equations in a distant stellar system. Concerning
the reduction of orbital periods and periastron shift
of very distant binary pulsars, we should keep in mind
that the distance of their components is usually about
0.01 au, i.e., it is again on the scale of the Solar
system. The detected gravitational redshift z = 0.4
of neutron stars arises only in a very close vicinity of
the star and is negligible several astronomical units
away. On the other hand, distant galaxies represent
very large gravitational lenses. However, they are so
inhomogeneous that the relation (13) can give only
a very rough approximation of the action of these
lenses. Moreover, the distribution of mass along the
trajectories of observed photons is not known. There-
fore, the often-proclaimed statement that Einstein’s
equations describe reality with precision better than
99% is questionable due to the above-mentioned
arguments.

8. CONCLUSIONS
According to the standard cosmological model,

it is categorically stated that our universe is flat,
13.82 Gyr old, and that it consists of 68% of dark
energy, 27% of dark matter, and only 5% of baryonic
matter. The main problem is that cosmological mod-
els are often identified with reality. We have shown
that dark matter and partly also dark energy can
possibly be explained as an extrapolation error of the
Friedmann equation.

If the Friedmann equation were to perfectly de-
scribe the rate of evolution of our universe, then the
standard cosmological model would not possess so
many problems and paradoxes, like, e.g., the exis-
tence of some mysterious dark matter and dark en-
ergy, the horizon problem, the problem of homogene-
ity and isotropy, the flatness problem, the problem
of exact setting of initial conditions, the problem of
hierarchical structures, the problem of the existence
of young stars orbiting the center of our Galaxy, the
problem of the existence of giant black holes in the
early universe, and the problem of Big Bang itself.
Some black holes (e.g., the one at the center of the
M87 galaxy) produce such large giant jets that it
seems to be impossible that these jets are supplied
only from accretion disks (cf. [15]).

At present it is very difficult to be familiar with the
huge amount of information concerning cosmology.
When reading literature on cosmology, it is often not
clear what is a definition, what is an assumption, what
is a statement, what is an experimentally verified fact,
what are measured values and which values follow
from some model, and what is an attractive numerical
simulation or artificially colored picture, and what is a
serious estimate. A number of definitions are vague,
modeling and extrapolation errors are ignored, con-
fusing notation is used, measured data are wrongly
interpreted, “serious” conclusions about the evolu-
tion of the universe are made from incorrectly derived
equations, and so on. We often do not know in which
way some statement was derived and then commu-
nicated by papers or lectures without any verification.
In this way a cosmological “folklore” arises.

For instance, in the current cosmology, we often
meet the following argumentation. Distances be-
tween galaxies increase, and thus the entire universe
was concentrated at one point in the past (see, e.g.,
[42, p. 70]). This implication is wrong from a math-
ematical point of view. As a counterexample, it is
enough to take the everywhere increasing non-Big-
Bang expansion function,

a(t) = C1 + C2eC3t, t ∈ (−∞,∞)

(where C1, C2, C3 are positive constants), which is
not zero—nor arbitrarily close to zero as t approaches
±∞.
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We should not be surprised why the difference be-
tween the measured and theoretically derived density
of vacuum energy is over 120 orders of magnitude
(see [3, pp. 3, 109]), since the standard cosmological
model is questionable. From this it is evident that
the vacuum energy is not the main reason for the ac-
celerated expansion of the universe, as convincingly
explained in [21, p. 71].
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30. M. Křı́žek and P. Neittaanmäki, Mathematical
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