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Abstract. An arbitrarily small positive value of the gravitational aberration slightly
increases the angular momentum of a two-body and multiple body system. This could
potentially contribute to the accelerated expansion of the whole Universe. We present
some geometrical, physical, geophysical, heliophysical, climatological, cosmological,
and astronomical observational arguments, and also numerical tests to support this
conjecture. We found a remarkable coincidence between the Hubble constant and the
increasing distance of the Moon from the Earth, that is not only due to tidal forces.
Numerical examples illustrating the expansion caused by the gravitational aberration
are given. This will be modeled by a nonautonomous system of ordinary differential
equations with delay.
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1 Introduction

Gravitational waves were predicted already by Henri Poincaré. In 1905 he conjectured
that their speed is the same as the speed of light c (see [1, p. 1507]), i.e., before the same
result was postulated by Albert Einstein. If these speeds differ (cf. [2, 3]), then it would
be difficult to identify a source of gravitational waves with its optical counterpart, e.g.,
during (asymmetric) explosions of supernovae. At present, several large projects (GEO,
LIGO, VIRGO, LISA,···) are being developed to measure the speed of gravitational waves
and determine the direction, from which they come. However, for the time being these
waves have not yet been detected.

First of all, we will focus our attention on the following classical geometrical example
inspired by Sir A. Eddington (see [4, pp. 94 and 204]). Let A and B be two bodies of
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equal masses. Assume for a moment that their orbits are circular about their common
centre of gravity. If A attracts B at its instantaneous position and also B attracts A at its
instantaneous position (i.e., the speed of their mutual gravitational interaction is infinite),
then by Newtonian mechanics these forces are in the same line and in balance.

γ B

B’

A

A’

Figure 1: Schematic illustration of two interacting bodies of equal masses. The gravitational aberration angle
γ=∠ABA′ is extremely small.

On the other hand, suppose now that the speed of their mutual gravitational interac-
tion is finite, i.e., B is attracted by A towards its previous position A′ (see Fig. 1). Similarly
A is attracted by B in the direction of its previous position B′. Then a couple of nonequi-
librium forces arises which acts permanently and thus, increases the angular momentum
and total energy of this system (see [5]). By the Thales theorem the triangle AA′B is right
and

|A′B|< |AB|. (1.1)

Hence, the attractive forces (in this postnewtonian mechanics) are sightly larger than if
they would act along the hypotenuse AB.

Let us point out that Fig. 1 is slightly imprecise. Since (1.1) is valid, the attractive force
is larger than that from the Newtonian theory. Consequently, an arbitrarily small positive
value of the gravitational aberration γ of the considered binary system increases not only
its angular momentum, but also prolongs the orbital period. Thus, the corresponding
trajectories constitute two very slowly expanding spirals (see Fig. 2).

The value γ≤ 0 evidently contradicts to causality. For instance, if one of the bodies
(asymmetrically) explodes, then the second body has to orbit for some time along the
unchanged trajectory, because the speed of gravitation is finite and the associated gravi-
tational fields need a time interval of positive length to change.

In 2000, Steven Carlip [6] showed that in general relativity the gravitational aberration
is almost cancelled out up to the order v3/c3 by velocity-dependent interactions, where
v is the speed of an observed object. Thus, the real value of gravitational aberration is
probably also much smaller than the aberration of light v/c. Due to this property the
orbit of two bodies is seemingly very stable. Also sunrays arriving at the Earth are not
parallel with the vector of the attractive gravitational force of the Sun. How to interpret
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Figure 2: Trajectories corresponding to two interacting bodies of equal masses constitute a double spiral. In
this case, inequality (1.1) holds all the more so.

such a paradoxical phenomenon and find that it does not contradict the general relativity
is discussed in [3, 6, 7].

Slowly expanding spiral trajectories are observed also numerically for a general n-
body problem with delays due to the finite speed of gravitational interaction (see Section
5). Thus, an arbitrarily small positive value of gravitational aberration contributes to an
expansion of any binary or multiple body system and it should be taken into account
when dealing with the expansion of the whole Universe (see [5]). In this paper, we
present other geophysical, heliophysical, climatological, cosmological, computational,
and astronomical observational arguments supporting this conjecture. We shall consider
only small nonrelativistic speeds and weak gravitational fields. We shall see that gravi-
tational aberration effects are visible on small and also large time and space scales.

Finally note that there exist close binary pulsars whose orbits do not expand with
time, but decay. In this case, strong magnetic and gravitational fields are present, the
system loses energy due to electromagnetic and gravitational waves, and these effects
are much stronger than very weak effects coming from the gravitational aberration.

2 A remarkable coincidence

By laser retroreflectors installed on the Moon by Apollo 11, 14, 15, and Lunokhod 2, we
know that the mean distance

D=384400km (2.1)

between the Earth and the Moon increases about

∆=3.84cm peryear. (2.2)
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Hence, the mean observed secular increase of D is given by

(dD

dt

)

observed
=

∆

T
=1.2×10−9m/s, (2.3)

where T =31558149.54 s (=365.25636 days) is the sidereal year.
It is said that this value is mainly due to tidal forces caused by the Moon and the Sun.

Nevertheless, in Section 3 we show that only cca 55−60 % of ∆ can be explained by these
forces.

In Section 1 we declared that the finite speed of gravitational interaction contributes
not only to the value ∆, but also to the expansion of the whole Universe. This expansion
is given by the Hubble constant

H0 =20kms−1(Mly)−1.

Note that H0 = c/(15Gyr), where 15 Gyr is an approximate value of the age of Universe
13.7 Gyr.

Now let us relate the value of the Hubble constant to the distance D given by (2.1)
during one year,

H0 =20kms−1(Mly)−1 =2cms−1ly−1 =
2

c
cms−1yr−1

=
2

0.78×D
cmyr−1 =2.56cmyr−1D−1. (2.4)

We observe that this value is surprisingly very close to the measured value ∆ in (2.2),
i.e., the speed of expansion of the Universe is very similar and thus comparable with the
mean receding speed of the Moon from the Earth. We do not know yet, what portion of
H0 is due to the initial explosion (Big Bang) and subsequent gravitational interaction that
slows down the expansion, and what portion is due to the gravitational aberration and
other effects. In the sequel, we try to estimate these relative contributions.

During the last 7×109 years the expansion of the Universe accelerates. This obser-
vation is based on measurements of the satellite WMAP and the fact that the luminosity
of very distant supernovae of type Ia is up to 15 % smaller than it should be (see [8]). It
is said that the observed acceleration is due to dark energy, whose nature is unknown.
However, gravitational aberration, which also has a repulsive character, could be an alter-
native candidate to explain this acceleration. From Section 1 we know that an arbitrarily
small positive value of the gravitational aberration slightly (but permanently) increases
the angular momentum of a two-body or n-body system, and also its potential and total
energy. Such a system can be formed by planets, stars, galaxies, clusters of galaxies, etc.
This could eventually lead to the accelerated expansion of the whole Universe.

An idealized time behavior of the Hubble constant H = H(t) is depicted in Fig. 3. By
(2.4) its current value is approximately equal to H(14×109)

.
= H0. The distance of two

sufficiently distant galaxies (in simple cosmological models) increases as t2/3, provided
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Figure 3: Time behavior of the Hubble constant. All data are only approximate. The time t is given in Gyr.

the speed of expansion is driven only by gravitational forces (see [9, p. 735]). Hence,
the receding speed of the considered galaxies behaves like t−1/3 and the corresponding
part of the Hubble constant is of the form H1(t) = Ct−1/3/t2/3 = Ct−1, where C > 0 is
a multiplicative constant. Set H2(t) := H(t)−H1(t), i.e.,

H = H1+H2, (2.5)

where H1 corresponds to the gravitational interaction that slows down the expansion
and H2 is the remaining part of H that is not due to attractive gravitational forces and
that increases with time. Both the parts H1 and H2 have an “averaged” character, i.e., all
local irregularities are ignored.

Gravitational aberration thus contributes only to the part H2 of the entire value of the
Hubble constant. The model proposed in this paper explains, from where we perma-
nently get the energy necessary for an accelerated expansion of the Universe. Moreover,
the increasing character of the function H2 shows why the slowing expansion turned into
an accelerating one.

3 Influence of a deceleration of the Earth’s rotation to ∆

Let us estimate the contribution of tidal friction to the value ∆ (see (2.2)). Consider the
binary system Earth-Moon with masses

m1 =5.976×1024 kg, m2 =7.350×1022 kg, (3.1)

and assume, for simplicity, that their orbits are circular. Then the corresponding distance
(see (2.1)) can be expressed as

D= R1+R2, (3.2)

where

R1 =
Dm2

m1+m2
and R2 =

Dm1

m1+m2
(3.3)
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are distances of the Earth and the Moon from the Newtonian centre of gravity, respec-
tively.

By the conservation of the total momentum of this system, the value

M= I1ω1+ I2ω2+m1R1v1+m2R2v2 (3.4)

has to be constant. Here v1 and v2 are the speeds of the Earth and Moon, respectively,
relative to their centre of gravity,

I1 =8.036±0.008×1037 kgm2 (3.5)

is the inertia moment of the Earth (see [10]), ω1 =2π/T1 =7.292×10−5s−1 is the angular
frequency of the Earth, T1 =86164.1 s is the sidereal day,

ω2 =
2π

T2
=2.669×10−6s−1 (3.6)

is the angular frequency of the Moon, and T2=27.322T1. Moreover, using the formula for
the moment of inertia of a homogeneous ball [11, p. 109], we find for the inertia moment
of the Moon (whose density ρ increases towards its center) that

I2 <
8

15
πr5

2×ρ2 =8.849×1034 kgm2, (3.7)

where ρ2 = 3340 kg/m3 denotes the mean density of the Moon and r2 = 1737 km is its
radius. (Note that the term I2ω2<2.36×1029 kg m2s−1 corresponding to the Moon is much
smaller than I1ω1 =5.86×1033 kgm2s−1, but we have to compare their time derivatives.)

According to [12], the Earth’s rotation slows down mainly due to tidal forces of the
Moon (cca 68.5 %), but also of the Sun (cca 31.5 %). It is also known that the length of a
day increases by τ1 =1.7×10−5s per year during the last 2700 years (see, e.g., [13, p. 270],
[14, p. 62]). Therefore, the increase τ = 0.685τ1 corresponds to the Moon and 0.315τ1 to
the Sun. Let us set

ω1 =
2π

T1+τ
.

We see by (3.5) that the decrease of the Earth’s angular momentum caused by the tidal
forces of the Moon is

dω1

dt
=

ω1−ω1

T
=−2π

T

τ

T1(T1+τ)
=−3.123×10−22s−2,

i.e.,

I1
dω1

dt
=−2.509×1016 kgm2s−2, (3.8)

where T is the sidereal year.
The Moon also reduces its angular momentum due to (2.2) and the 1:1 resonance

between the orbital period T2 and the Moon’s rotation. Since m2 ≪ m1, we can apply
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Kepler’s third law which states that D3/T2
2 is constant. Hence, the product ω2

2D3 is by
(3.6) also constant. Differentiating ω2

2D3 with respect to time, we obtain

2ω2
dω2

dt
D3+3ω

2
2D2 dD

dt
=0,

i.e.,
dω2

dt
=−3

2

ω2

D

dD

dt
. (3.9)

From this, (2.1), (2.3), (3.6), and (3.7) we get

∣

∣

∣
I2

dω2

dt

∣

∣

∣
<1.1×108 kgm2s−2,

i.e., the decrease of the Moon’s angular momentum is negligible with respect to the value
given in (3.8). Therefore, the decrease of the rotational momentum in (3.8) must be com-
pensated by the increase of the orbital momentum m1R1v1+m2R2v2 in (3.4). Since the
angular frequency of the Moon is the same as the angular speed of the Earth about their
common center of gravity, we have ω2 =v2/R2 =v1/R1. By the momentum conservation
law m1v1 =m2v2, (3.2), and (3.3) we find that

m1R1v1+m2R2v2 =(R1+R2)m1v1 = Dm1v1

= Dm1R1ω2 = D2 m1m2

m1+m2
ω2.

From this and (3.9), we get by differentiating (3.4) with respect to time that

I1
dω1

dt
=− m1m2

m1+m2

(dω2

dt
D2+2ω2D

dD

dt

)

=− m1m2

m1+m2

ω2D

2

dD

dt
.

Substituting from (2.1), (3.1), (3.6), and (3.8) yields

dD

dt
=0.674×10−9 m/s, (3.10)

which is only 56% of the observed value in (2.3). To explain this discrepancy, Novotný
[14] considers a time dependent angular momentum I1 = I1(t) which yields that −dI1/dt
is of order 1020−1021 kg m2/s. However, this would require that a large transport of mass
toward the Earth’s center must exist for at least 2700 years.

We are, of course, not able to take into account all nongravitational forces that have
an influence on ∆ such as the solar wind, thermal radiation of the Earth and Moon, the
Yarkovsky effect, collision with interplanetary dust and meteorites, presence of magnetic
fields, etc. Nevertheless, their effect is almost negligible when compared with (3.10). Also
the gravitational influence of the other bodies of the Solar system, gravitational radiation,
etc., have only a very small influence on the measured value ∆.
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Geophysicists admit (see, e.g., [14, p. 67]) that it is not easy to explain the large dis-
crepancy between the observed value in (2.3) and the value derived from the tidal forces
(3.10). The distance between the Earth and the Moon should increase by (3.10) about

∆tidal =
dD

dt
T≈2.13cm peryear. (3.11)

We observe that the difference

∆nontidal≈1.71cm peryear (3.12)

between the measured value ∆ in (2.2) and the value (3.11) corresponding to tidal forces
is slightly less than H0 given by (2.4). However, the gravitational aberration contributes
only to the part H2 of H0 (see (2.5)). This enables us to state a hypothesis:

The gravitational aberration caused by the finite speed of gravity not only contributes to the
increase of the distance Earth-Moon, but also to the expansion of the whole Universe.

4 Further arguments

Denote by E(t1) the energy of an isolated system of space objects at time t1 and by E(t2)
its energy one year later. From the energy conservation law, we have

∣

∣

∣

E(t2)

E(t1)
−1

∣

∣

∣
= ε,

for ε = 0. However, what would happen if the gravitational aberration, caused by the
finite speed of gravitational interaction, would give, for example, that ε≈ 10−10? Then
it would be very difficult to detect this weak energy source. For instance, the energy
required to move the Moon 1 cm away from the Earth equals 1018 J, whereas the kinetic
energy of the Moon itself is 3.7×1028 J. Therefore, it is necessary to consider very long
time scales to show that ε>0. We will illustrate this by further examples.

4.1 Was the Earth closer to the Sun?

It is known that the radius of Earth’s orbit may be at most 5% larger or 2% smaller than
1 AU to guarantee a suitable climate for photosynthesis and the existence of life at the
present time. Such a ring is called the ecosphere. Shortly after the origin of the solar
system (4.5 Gyr ago), the luminosity of the Sun was only 70% of its current value. Since
the Sun is a star of the main sequence, by evolution models its luminosity increased
approximately linearly (see Fig. 4). Thus, during the origin of life on the Earth 3.5 Gyr
ago, the luminosity of Sun was about 77% of its actual value. However, if the Earth were
150 million farther away from the Sun at that time, life could not arise, since the surface of
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Figure 4: Relative luminosity of the Sun from the origin of the Solar system up to today. The time t is given
in Gyr.

the Earth would be frozen, even though there was a different composition of atmosphere,
higher radioactivity, vulcanism, etc.

To guarantee a suitable climate for the origin of life, the Earth had to be many millions
of kilometers closer to the Sun. If the Earth would be, for instance, 10 million km closer,
then the averaged receding speed from the Sun would be almost 3 meters per year. By
Kepler’s third law we find that the orbital period would change only by less than 1 ms.
Unfortunately, such small changes of orbital parameters can be verified neither by direct
measurements of the Earth-Sun distance nor from the change of the Earth’s orbital period
T. Using the fact that the Sun’s luminosity increases approximately linearly, we find that
the receding speed of the Earth from the Sun

v=
150×109(1−

√
0.77)

3.5×109

.
=5.25myr−1

during the time period starting from the origin of life up to today corresponds to almost
constant energy absorbed by 1 m2 per second that is equal to the solar constant

L=1.36 kWm−2.

For comparison note that the current value of the Hubble constant related to 1 astronom-
ical unit (cf. Fig. 3 and (2.4)) is

H0 =10myr−1(AU)−1.

Note that tidal forces from the Sun, solar wind, and the decreasing mass of the Sun can
explain a receding speed of only less than 1 cm per year.

4.2 Was Mars closer to the Sun?

The current averaged temperature on Mars is −63◦C. Thus, Mars also must have been
much nearer to the Sun to have liquid water on its surface 3-4 Gyr years ago. Its averaged
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temperature and atmospheric pressure were higher. Otherwise, we could not observe
there dried-up channels, especially when the luminosity of Sun was smaller, about 73-
80 % of its current value (see Fig. 4). If Mars in the past were to be on the same orbit as
at present, then the solar energy related to 1 m2 per second perpendicular to the sun rays
would be approximately 3 times smaller than the solar constant L. Moreover, the albedo
of Mars was higher than the current value 0.25, since there were water clouds feeding
many rivers (see http://www.google.com/mars). Ice and snow were not only at polar
ice caps, but also at other regions, which also increased albedo. These indirect arguments
show that the receding speed of Mars from the Sun must have been several meters per
year. It is perhaps again the gravitational aberration that contributes to the expansion of
Mars’ trajectory.

4.3 Fast satellites

In the solar system we know of about 20 satellites that are below the corresponding sta-
tionary orbit. Their orbital periods around their mother planet are less than the period
associated to the planet’s rotation along its axis. We will call them fast satellites. Mars
has such a satellite Phobos (9 378) and Jupiter has Metis (127 960) and Adrastea (128 980);
the numbers in parentheses determine their radii in kilometers. Around Uranus there
are at least eleven fast satellites: Cordelia (49 752), Ophelia (53 764), Bianca (59 165), Cres-
sida (61 777), Desdemona (62 659), Juliet (64 358), Portia (66 097), Rosalind (69 927), Cupid
(74 392), Belinda (75 255), Perdita (76 416), and around Neptune five: Naiad (48 227), Tha-
lassa (50 075), Despina (52 526), Galatea (61 953), and Larissa (73 550).

The tidal bulges continuously reduce potential energy and orbital periods of the satel-
lites. Since the inertia moment is constant (as in (3.4)), their speed slowly increases, and
also the planets’ rotations slightly speed up during this process. Thus, all these fast satel-
lites approach their planets along spiral trajectories. From a statistical point of view it is
very unlikely that all these satellites were captured, since all of them orbit in the same
direction in circular trajectories and their inclinations are very small. Consequently, they
have been mostly in their orbits approximately 4.6 Gyr (even though they could be parts
of larger disintegrating satellites).

Denoting by m the mass of a planet and by Ts its sidereal rotation, the radius of sta-
tionary orbit (see Table 1) is given by

rstac =
3

√

GmT2
s

4π2
,

where G=6.673×10−11 m3 kg−1s−2 is the gravitational constant.
Tidal forces are proportional to m/r3, where m is again the mass of a planet and r

is the radius of a given satellite orbit. For all the above-mentioned satellites the value
m/r3 is of the same order as for Phobos (for some larger, for some smaller). Moreover,
all of them are bigger than Phobos. It can be estimated (like in Section 3) that tidal forces
reduce the radius of Phobos’ orbit 1.8 cm per year. Assuming a similar speed also for the
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Table 1: The mass, sidereal rotation and the radius of stationary orbit.

Planet m×10−24 [kg] Ts [hour] rstac [km] No. of fast satellites

Mars 0.642 24.6229 20,427 1

Jupiter 1898.6 9.925 159,988 2

Uranus 86.83 17.24 82,675 11

Neptune 102.43 16.11 83,496 5

other fast satellites, we find that during the last 4.6 Gyr they would be 82 800 km closer to
their mother planet. How is it possible that these fast satellites have not fallen down onto
their mother planet due to tidal forces? All of them (except for Phobos) stay on relatively
high orbits of radii 0.58-0.92 rstac. It is perhaps again the gravitational aberration that acts
in the opposite direction than the tidal forces and thus protects these satellites against
crashing onto their mother planets.

4.4 Does our Galaxy expand as well?

The diameter of our Galaxy is about d = 105 ly. By (2.4) the current value of the Hubble
constant on this distance is

H0 =2 kms−1d−1.

Let us make the following very rough estimate. Suppose that our Galaxy expanded from
some small protogalaxy by the averaged speed 2 km/s for 13 Gyr. Then its size would be

2kms−1×13·109 yr
.
= c×9·104 yr=9·104 ly,

which is in a good agreement with the real diameter d.
Assume to the contrary that galaxies do not change their sizes. Then 10−13 Gyr ago

their density would be much larger. For instance, for the red shift z = 2 (corresponding
roughly to the Hubble Field South), when space was (z+1) times smaller, we should
observe a three times higher density of galaxies. Since protogalaxies at that time were
smaller, the higher density is not observed.

4.5 Aberration of gravitational waves

The finite speed of light c combined with the speed v>0 of an observer causes a positive
light aberration angle α

.
= v/c in the observed position of a star (see Fig. 5). Consider

now the following situation. Suppose that the star explodes (asymmetrically) and that
electromagnetic and gravitational waves have exactly the same speed of propagation as
the general theory of relativity states. Assume further that the telescope in Fig. 5 is re-
placed by an instrument that can detect the direction from which the gravitational waves
come from. They will come from the same direction as light. However, the gravitational
aberration angle γ corresponding to the gravitational force will be much smaller than the
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Figure 5: The light aberration angle α appears due to the movement of an observer.

aberration of gravitational waves α (cf. [6]). The Newtonian theory assumes that γ = 0,
but causality dictates that γ>0.

5 Numerical tests with gravitational aberration

Now let us verify our conjecture on expansion numerically. Consider two mass points
m1 and m2 in the two- or three-dimensional space equipped with the Euclidean norm |·|.
Denote by cg the real “Newtonian” speed of gravity. Introducing a delay into gravita-
tional interactions, the classical autonomous Newtonian system of ordinary differential
equations can be rewritten as the following nonautonomous system for two trajectories
r1 and r2:

r′′1 (t)=G
m2(r2(t−d2(t))−r1(t))

|r2(t−d2(t))−r1(t)|3 , (5.1)

r′′2 (t)=G
m1(r1(t−d1(t))−r2(t))

|r1(t−d1(t))−r2(t)|3 (5.2)

with two variable delays d1 and d2 satisfying (5.4). Consider the initial conditions:

ri(t)= pi(t), r′i(t)=vi(t), t∈ [τ,0], i=1,2, (5.3)

where τ ≤ 0 is an appropriate given number and pi and vi are given functions charac-
terizing previous positions and velocities. This postnewtonian model does not take into
account gravitational waves, but it involves the gravitational aberration.

If cg = ∞ then τ = d1 = d2 = γ1 = γ2 = 0 and system (5.1)-(5.2) reduces to the classical
Newton two-body problem. For cg<∞ the delay functions satisfy the relations (cf. Fig. 6)

d1(t)=
|r1(t−d1(t))−r2(t)|

cg
, d2(t)=

|r2(t−d2(t))−r1(t)|
cg

, (5.4)
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i.e., each di has to be calculated iteratively using the classical Banach fixed-point theorem.
For the theory of ordinary delay differential equations we refer to [16, 17, 18].

Assume now that
m1R1 =m2R2, (5.5)

where R1 and R2 are distances from the Newtonian centre of gravity. Let us define

p1 =(R1,0), p2 =(−R2,0), v1 =
(

0,

√
Gm2R1

R1+R2

)

, v2 =
(

0,−
√

Gm1R2

R1+R2

)

.

These values yield exactly circular orbits for τ=0 in (5.3) and cg =∞. They are employed
to establish initial conditions (5.3) for cg <∞. This, of course, requires to store old values
of r1 and r2 throughout the computation due to initial conditions (5.3). A big advantage of
computer simulations is that we can easily perform many tests for various parameters appearing
in (5.1)-(5.4).

Example 5.1. If m1 >m2 =0, the second body orbits around the first one in its stationary
gravitational field. In this case, no expansion of the trajectory of the second body was
obtained (neither analytically, nor numerically). Its orbit is perfectly circular. Indeed, if
m2 =0, then by (5.1) and (5.5), we get

r′′1 =0, R1 = r1 =v1 =0, r′′2 =−Gm1r2/|r2|3, γ=0,

i.e., no positive gravitational aberration appears.

Example 5.2. The analytical solution of problem (5.1)-(5.4) is not known for cg <∞. Nu-
merically calculated trajectories r1 and r2 for m1 =m2 >0 and cg≤ c are depicted in Fig. 2.
We see that they are quite unrealistic, since they form two quickly expanding spirals,
which does not correspond to astronomical observations. However, model (5.1)-(5.4)
yields quite satisfactory results for cg ≫ c.

Example 5.3. The largest value of gravitational aberration is obtained when m1 ≈m2 (cf.
Fig. 1 and 2). However, in the Solar system such objects do not exist. For the Earth and
Moon the ratio m1 : m2 equals 81 : 1. So let us again consider this close binary system
Earth-Moon with masses given by (3.1) and the corresponding distance (2.1) and (3.2).
To get the receding speed derived in (3.12), we have to take cg =4.287×1015 m/s for the
considered postnewtonian model. In this case the gravitational aberration angle at the
point B representing the Moon in Fig. 6 is

γ=
v

cg

.
=0.5×10−7 arcseconds,

where v = r′2
.
= 1 km/s, and the two trajectories form two very slowly expanding spi-

rals. Note that the light aberration angle of the Moon is α = v/c = 0.7′′ and of the Earth
(observed from the Moon) is 81 times smaller.
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B
B’

A
A’

Figure 6: Illustration of gravitational interaction between two bodies of unequal masses m1 > m2. If m2 → 0
then the aberration angle ∠ABA′ vanishes.

Example 5.4. We observed numerically expanding trajectories for three bodies of equal
masses that are at the vertices of an equilateral triangle and that orbit at the same speed
about their centre of gravity. A similar phenomenon was achieved for the case marked in
Fig. 2, where the third body lies at the midpoint of AB. Expanding trajectories were also
obtained for a system consisting of two double stars of equal masses.

All calculations were done in extended 10 byte precision by the standard fourth order
explicit Runge-Kutta method (see [19]) which gives a surprisingly small discretization er-
ror when the orbits are circular [5, 20]. For instance, the time step ∆t=100s, that produces
practically the same results as ∆t/2, yields for cg = ∞ a total numerical error after 1000
revolutions of only 17 mm which is almost negligible.

6 Conclusions

We showed that the energy needed for the accelerated expansion of the Universe may
come from a finite speed of gravitational interaction that causes a positive value of grav-
itational aberration. Although this value is much smaller than the aberration of light,
it makes “elliptic” trajectories of two bodies very slowly expanding, in general. This
phenomenon is observed analytically, numerically, and has a lot of consequences. For
instance, it explains a relatively large receding speed of the Moon from the Earth that
cannot be explained by tidal forces. Also the magnitude of the receding speed of the
Earth from the Sun seems to be just right for an almost constant influx of solar energy
during the last 3.5 Gyr.
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