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Abstract. There is presented a necessary and sufficient condition for extending continuous
convexity preserving maps defined on some subsets of a topological convexity space and with
values into a compact topological median space. This result can be applied in topology to
the theory of superextensions as well as to the lattice theory.

1. Introduction

A classical theorem of Tăımanov [6] states that a map f defined on a dense subset of a
topological space X with values into a compact Hausdorff space Y can be extended to a
continuous map F : X → Y if and only if f satisfies the following condition: if A,B ⊂ Y are
closed and disjoint then cl f−1(A) ∩ cl f−1(B) = ∅, where ”cl” denotes the closure in X.

We present an analogue of Tăımanov’s Theorem for maps of topological convexity spaces. Let
us start with definitions.

By a convexity space we mean a pair (X,G) where G ⊂ P(X) is stable under intersections
and the unions of chains and ∅, X ∈ G (cf. [8, p. 3]). Elements of G are called convex sets,
its complements are called concave and G itself is called a convexity on X. By a topological
convexity space we understand any triple (X, T ,G) where T is a topology and G is a convexity
on X (we do not assert any compatibility conditions on T and G). We will use the following
notation:

convA =
∩

{G ∈ G : A ⊂ G} (the convex hull of A),

clcoA =
∩

{G ∈ G : A ⊂ G and G is closed} (the closed convex hull of A).

The convex hull of a two-element subset {a, b} is called the segment joining a, b and denoted
by [a, b]. Every convexity space can be viewed as a topological convexity space with discrete
topology and every topological space is a topological convexity space with discrete convexity
(consisting of all subsets). A topological convexity space X is normal provided one-point
subsets are closed and convex and for any two disjoint closed convex sets A,B ⊂ X there
exist closed convex sets A′, B′ with A ∩ B′ = ∅ = A′ ∩ B and A′ ∪ B′ = X. For convexity
spaces (with discrete topology) normality is called the Kakutani separation property S4 and is
equivalent to the fact that two disjoint convex sets can be separated by a halfspace (a convex
set with the convex complement), see [8, Theorem I.3.8]. Let X and Y be two convexity spaces.
We say that a map f : X → Y is convexity preserving (cp for short) provided f−1(G) is convex
in X for every convex set G ⊂ Y . This is equivalent to the condition f(convS) ⊂ conv f(S)
for every finite S ⊂ X (cf. [8, p. 15]).
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For a study of axiomatic convexity theory we refer to the monograph of van de Vel [8].

An important example of a convexity space is a lattice (L,∧,∨) with the convexity consisting
of all order-convex sublattices, i.e. a subset G ⊂ L is convex iff for every a, b ∈ G it holds
I(a, b) ⊂ G, where I(a, b) = {x ∈ L : a∧b ⩽ x ⩽ a∨b} (cf. [7]). It is easy to check that I(a, b)
equals the segment joining a, b. A lattice is a normal convexity space iff it is distributive (cf.
[7] or [8, Proposition I.3.12.3]).

2. Median spaces

A median space is a topological convexity space X with the following properties:

(M1) If a, b ∈ X are distinct then there exist closed convex sets A,B such that a /∈ B, b /∈ A
and A ∪B = X.

(M2) If A is a finite collection of convex subsets of X and
∩
A = ∅ then there exist A,B ∈ A

with A ∩B = ∅.
These conditions imply that for each a, b, c ∈ X there exists a unique element in [a, b] ∩
[a, c] ∩ [b, c], called the median of a, b, c (this explains the name ”median space”). Indeed, if
x1, x2 ∈ [a, b]∩[a, c]∩[b, c] then x1, x2 cannot be separated by two convex sets as in (M1) above.
Moreover, the condition (M2) is equivalent to [a, b]∩[a, c]∩[b, c] ̸= ∅ for each a, b, c ∈ X, see [8].
Note that, by (M1), every median space is a Hausdorff topological space (the condition (M1)
is a ”convex” analogue of the topological separation axiom T2). Our definition of a median
space is more restrictive than the one in [8] or [10].

Every distributive lattice is a median space (with discrete topology), see [8]. In a distributive
lattice, the median of its three points a, b, c is equal to (a∧ b)∨ (a∧ c)∨ (b∧ c). An important
example of a median space is a Hilbert cube [0, 1]κ with the product topology and with the
convexity of a lattice (with coordinate-wise order).

Proposition 2.1. Every compact median space is normal.

Proof. Let X be a compact median space. Using (M1) we see that one-point subsets are closed
and convex. Fix two disjoint closed convex sets A,B ⊂ X.

Suppose first that A = {a}. Using (M1) we can find for each b ∈ B two closed convex sets
Gb, Fb with a /∈ Fb, b /∈ Gb and Fb ∪ Gb = X. Now the collection of closed convex sets
{B} ∪ {Gb : b ∈ B} has empty intersection. By the compactness of X and (M2) there exists
a b0 ∈ B such that B ∩Gb0 = ∅, since a ∈ Gb for every b ∈ B. Setting F = Fb0 , G = Gb0 we
obtain two closed convex sets such that B ∩G = ∅ = {a} ∩ F and F ∪G = X.

Now let A be an arbitrary closed convex set. Using the first part of our proof we can find for
each a ∈ A two closed convex sets Ca, Da such that a /∈ Ca, B ∩Da = ∅ and Ca ∪Da = X.
The same argument as above gives us an a0 ∈ A with A ∩ Ca0 = ∅ and setting C = Ca0 ,
D = Da0 we get A ∩ C = ∅ = B ∩D and C ∪D = X. □

Using the same arguments as in [8, Proposition III.4.13.3] one can prove that every median
space with compact segments is normal. For our purpose only the normality of compact
median spaces will be needed. Let us also mention that every median space has the Kakutani
separation property (as a convexity space), see [10, Thm. I.2.14].

Lemma 2.2. Let X be a topological convexity space and let Y be a compact median space.
Then a map f : X → Y is continuous and convexity preserving if and only if for every x ∈ X
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and for every open concave set U ⊂ Y with f(x) ∈ U there exists an open concave set W ⊂ X
such that x ∈ W and f(W ) ⊂ U .

Proof. The ”only if” part is trivial. Suppose that f satisfies the above condition. Then the
pre-image under f of every convex closed set is convex and closed in X. Consider the collection
B of all closed convex subsets of Y . By (M1) B generates a Hausdorff topology on Y which
is weaker than its original one. Hence, by the compactness of Y , B is a closed subbase of the
topology of Y and consequently f is continuous. For the proof that f is cp we need only to
check that f−1(convS) is convex for every finite S ⊂ Y (see [8, Proposition I.1.12]). For this
purpose, we show that conv S is closed for arbitrary finite S ⊂ Y .

Fix a y ∈ Y \ convS, where S = {s1, . . . , sn}. By (M2), there exists a point

p ∈ convS ∩
i=n∩
i=1

[y, si].

Now, using (M1), we get two closed convex sets A,B with p /∈ B, y /∈ A and A ∪ B = Y . As
p ∈ [y, si], we see that si ∈ A. Hence conv S ⊂ A. It follows that conv S is closed. □

3. Main result

We first describe a condition for maps, an analogue to what has appeared in Tăımanov’s
Theorem.

Proposition 3.1. Let X,Y be two topological convexity spaces, M ⊂ X and let f : M → Y
be a map. The following conditions are equivalent:

(a) clco f(A) ∩ clco f(B) ̸= ∅ holds for each A,B ⊂ M with clcoA ∩ clcoB ̸= ∅.
(b) If C,D ⊂ Y are closed convex and disjoint then

clco f−1(C) ∩ clco f−1(D) = ∅.

Proof. (a) =⇒ (b) If clco f−1(C)∩ clco f−1(D) ̸= ∅ then by (a) we have ∅ ̸= clco f(f−1(C))∩
clco f(f−1(D)) ⊂ C ∩D.

(b) =⇒ (a) If clco f(A) ∩ clco f(B) = ∅ then by (b) we get ∅ = clco f−1(clco f(A)) ∩
clco f−1(clco f(B)) ⊃ clcoA ∩ clcoB. □

We say that a map f satisfies the condition (T) if f fullfills (a) (or (b)) above. Observe that
if X and Y are topological spaces considered with discrete convexity then the condition (T)
is exactly the condition of Tăımanov.

Let X be a topological convexity space (or, in particular, a median space). We say that a
subset M ⊂ X is median-stable provided for each a, b, c ∈ M , [a, b] ∩ [a, c] ∩ [b, c] ⊂ M (cf. [8,
p. 130] for the case of discrete convexity spaces). We define the median stabilization of A ⊂ X
as

medA =
∩

{G ⊂ X : A ⊂ G and G is closed median-stable}.

We say that a subset M ⊂ X is geometrically dense if medM = X. Observe that if M is
geometrically dense then for each two open concave sets U, V ⊂ X the following implication
holds true:

(*) U ∩ V ̸= ∅ =⇒ U ∩ V ∩M ̸= ∅.
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Indeed, if U ∩ V ∩ M = ∅ then M ⊂ (X \ U) ∪ (X \ V ) and the union of two convex sets
is median-stable. Notice that every topologically dense set is geometrically dense (see also [8,
Lemma I.6.20] for other examples).

We now can state our main result. The proof is quite similar to the proof of Tăımanov’s
Theorem in [1, p. 164].

Theorem 3.2. Let M be a geometrically dense subset of a topological convexity space X, let
Y be a compact median space and let f : M → Y be a map satisfying the condition (T). Then
there exists a unique continuous convexity preserving map F : X → Y such that F | M = f .

Proof. (i) For x ∈ X denote by nbd(x) the collection of all open concave sets containing x
and set

F(x) = {clco f(M ∩ U) : U ∈ nbd(x)}.

Since M is geometrically dense, if U1, U2 ∈ nbd(x) then, by the condition (*), U1∩U2∩M ̸= ∅.
Hence clco f(U1 ∩ M) ∩ clco f(U2 ∩ M) ⊃ clco f(U1 ∩ U2 ∩ M) ̸= ∅. The compactness of Y
together with the condition (M2) imply that

∩
F(x) ̸= ∅.

(ii) Suppose that there exist distinct y1, y2 ∈
∩
F(x). Since Y is normal (Proposition 2.1),

there exist two open concave sets U1, U2 ⊂ Y with yi ∈ Ui and clcoU1∩clcoU2 = ∅. Condition
(T) implies that clco f−1(U1) ∩ clco f−1(U2) = ∅. Assume that x /∈ clco f−1(U1). Setting
W = X \ clco f−1(U1) we have W ∈ nbd(x) and hence clco f(M ∩W ) ∈ F(x). On the other
hand

clco f(M ∩W ) = clco f(M \ clco f−1(U1))

⊂ clco f(M \ f−1(U1)) ⊂ clco(Y \ U1) = Y \ U1,

which gives a contradiction, since y1 ∈ clco f(M ∩W ).

(iii) Thus we have proved that |
∩
F(x)| = 1 for every x ∈ X. Define F : X → Y by letting

F (x) ∈
∩

F(x). If x ∈ M then f(x) ∈
∩
F(x), consequently F (x) = f(x). It remains to check

that F is continuous and cp.

(iv) Let U ∈ nbd(F (x)). As
∩
F(x) = {F (x)}, we have

(Y \ U) ∩
∩

F(x) = ∅.

Now (M2) and the compactness of Y give a W ∈ nbd(x) with clco f(M ∩W ) ∩ (Y \ U) = ∅.
It follows that for each x′ ∈ W we have F (x′) ∈ clco f(M ∩W ) ⊂ U . Hence F (W ) ⊂ U . In
view of Lemma 2.2, F is continuous and convexity preserving.

(v) If F1, F2 : X → Y are two continuous cp extensions of f then the set

G = {x ∈ X : F1(x) = F2(x)}

is closed median-stable and contains M ; hence G = X and F1 = F2. This completes the
proof. □

Remark . The condition (T) is necessary for the existence of a continuous cp extension.
Indeed, if f can be extended to a continuous cp map F : X → Y then for two disjoint closed
convex sets C,D ⊂ Y we have clco f−1(C) ∩ clco f−1(D) ⊂ F−1(C) ∩ F−1(D) = ∅.
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4. Applications

Proof of Tăımanov’s Theorem . Let f : M → Y be a map satisfying the condition of Tăıma-
nov, where M is a (topologically) dense subset of a topological space X and Y is a compact
Hausdorff space. Embed Y into a Hilbert cube H = [0, 1]κ and consider X as a topological
convexity space with discrete convexity. Now H is a compact median space and f : M → H
satisfies (T). Applying Theorem 3.2 we obtain a unique continuous map F : X → H which
extends f . Finally, F (X) = F (clM) ⊂ clF (M) = cl f(M) ⊂ Y , since Y is closed in H. □
We now give an application of Theorem 3.2 to the theory of superextensions.

A collection P is called a T1-subbase for a topological convexity space (X, T ,G) provided:
(i) P is a closed subbase for the topology T and P generates the convexity G (i.e. G is

the smallest convexity containing P);
(ii) for every x ∈ X there exists a P ∈ P with x /∈ P ;
(iii) if x /∈ P ∈ P then there exists a Q ∈ P with x ∈ Q and P ∩Q = ∅.

Let P be a T1-subbase of a space X. Then there exists a topological convexity space λ(X,P),
called the superextension of X with respect to P, with the following properties:

(1) X is continuously cp embedded into λ(X,P) and X is geometrically dense in λ(X,P).
(2) If P,Q ∈ P are disjoint then their closed convex hulls in λ(X,P) are disjoint as well.
(3) If A is any collection of closed convex subsets of λ(X,P) with

∩
A = ∅ then there

exist A,B ∈ A such that A ∩B = ∅.
The details one can find in [8, pp. 13, 279] or [3] (in a different language). Condition (3)
says that the collection of all closed convex subsets of λ(X,P) is binary. Topological spaces
having a binary closed subbase are called supercompact, see [3]. Notice that, by Alexander
Subbase Lemma, every supercompact space is compact. If a T1-subbase P is normal, that
is, for each two disjoint P,Q ∈ P there exist P ′, Q′ ∈ P with P ∩ Q′ = ∅ = P ′ ∩ Q and
P ′ ∪Q′ = X, then λ(X,P) satisfies (M1) and consequently it is a compact median space. In
[3] a topological space with normal binary T1-subbase is called normally supercompact; in our
language a topological space (X, T ) is normally supercompact iff there exists a convexity G
on X such that (X, T ,G) is a compact median space.

Applying Theorem 3.2 and condition (2) above, we obtain the following result due to Verbeek
[9] and van Mill, van de Vel [4] (see also [8, Corollary III.4.17]).

Theorem 4.1. Let P be a T1-subbase of a topological convexity space X, let Y be a compact
median space and let f : X → Y be such a map that f−1(G) ∈ P whenever G ⊂ Y is closed
convex. Then there exists a unique continuous convexity preserving map F : λ(X,P) → Y
such that F | X = f .

Remark . Let Y be a topological convexity space satisfying the condition (M1) and suppose
that Y fullfills the statement of Theorem 3.2. Then Y is a compact median space.

Indeed, taking the collection P(Y ) of all subsets of Y we see that P(Y ) is a normal T1-
subbase for the discrete topology and the discrete convexity on Y ; therefore, by Theorem 4.1,
the identity map idY : Y → Y can be extended to a continuous cp map F : λ(Y,P(Y )) → Y
which is onto. As λ(Y,P(Y )) is a compact median space and the condition (M2) is preserved
by images under cp maps, it follows that Y is a compact median space.

Let us now present a discrete version of Theorem 3.2. We need an auxiliary result on median
stabilization.
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Lemma 4.2. In every median space, the median stabilization of a finite set is finite.

Proof. Let Y be a median space. As we have already mentioned, Y has the Kakutani separation
property S4, i.e. two disjoint convex sets can be separated by a halfspace. Hence, there exists
a cp embedding j : Y → P(H), given by the formula j(y) = {H ∈ H : y ∈ H}, where H
is the collection of all halfspaces in Y and P(H) is the power set of H considered with the
lattice convexity (see [8, Lemma I.3.16] for the details). Thus, assuming that Y is a subspace
of P(H), we see that the median of a, b, c ∈ Y is precisely equal to (a ∩ b) ∪ (a ∩ c) ∪ (b ∩ c).
It follows that the median stabilization of a finite set S ⊂ Y is contained in the lattice of sets
generated by S and therefore is finite. □
Theorem 4.3 (cf. [2]). Let Y be a median convexity space and let f : M → Y be a map
defined on a geometrically dense subset of a convexity space X. If f satisfies the condition

(I) conv f(S) ∩ conv f(T ) ̸= ∅ whenever S, T ⊂ M are finite
and convS ∩ conv T ̸= ∅,

then there exists a unique convexity preserving map F : X → Y such that F | M = f .

Proof. Denote by F the collection of all finite subsets of M . If S ∈ F then, according to
Lemma 4.2, med f(S) is finite and can be viewed as a compact median space (with discrete
topology). Moreover f | S satisfies the condition (T). Applying Theorem 3.2 we obtain a
unique cp extension FS : medS → Y of f | S. By uniqueness we have FS ⊂ FT whenever
S ⊂ T . Then setting F =

∪
S∈F FS we obtain a convexity preserving map with the domain∪

S∈F medS = medM = X and F | M = f . □

Finally, we apply the last result to obtain an extension criterion for maps of lattices which,
in the case of Boolean algebras, is known as Sikorski Extension Criterion [5]; see also [2].

Theorem 4.4. Let L be a distributive lattice and let K be a lattice generated by its subset
M . If f : M → L is a map satisfying the implication

(S) a1 ∧ · · · ∧ an ⩽ b1 ∨ · · · ∨ bm =⇒ f(a1) ∧ · · · ∧ f(an) ⩽ f(b1) ∨ · · · ∨ f(bm).

for all a1, . . . , an, b1, . . . , bm ∈ M , then f can be uniquely extended to a lattice homomorphism
F : K → L.

Proof. First, add to K two elements 0K , 1K in such a way that 0K < x < 1K for all x ∈ K and
set K ′ = K∪{0K , 1K}. Let us make the same operation for L and set L′ = L∪{0L, 1L}. Then
K ′ is a lattice and L′ is a distributive lattice. Now set M ′ = M ∪ {0K , 1K} and extend f to
a map f ′ : M ′ → L′ by letting f ′(0K) = 0L, f

′(1K) = 1L. It is easy to see that f ′ satisfies the
condition (S) above. If G is a median-stable subset of K ′ containing M ′ then G is a sublattice,
since for x, y ∈ G we have x∧ y ∈ [x, y]∩ [x, 0K ]∩ [y, 0K ] and x∨ y ∈ [x, y]∩ [x, 1K ]∩ [y, 1K ].
It follows that M ′ is geometrically dense in K ′.

Observe that, in any lattice, the convex hull of a finite set P is equal to the segment
[inf P, supP ]. Let S, T be two finite subsets of M ′. If there exists a point x ∈ convS ∩ conv T
then inf S ⩽ x ⩽ supT and inf T ⩽ x ⩽ supS. By the condition (S) we get inf f ′(S) ⩽
sup f ′(T ) and inf f ′(T ) ⩽ sup f ′(S). Hence, setting y = inf f ′(S) ∨ inf f ′(T ), we have y ∈
conv f ′(S) ∩ conv f ′(T ). It follows that f ′ satisfies the condition (I) of Theorem 4.3.

Since every distributive lattice is a median convexity space, we can apply Theorem 4.3 to
obtain a unique cp map F : K ′ → L′ with F | M ′ = f ′. As we have observed, for every
x, y ∈ K ′ the point x ∧ y belongs to [x, y] ∩ [x, 0K ] ∩ [y, 0K ] and consequently F (x ∧ y) is
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the median of F (x), F (y), F (0K). Since F (0K) = 0L, it follows that F (x ∧ y) = F (x) ∧ F (y).
Similarly F (x ∨ y) = F (x) ∨ F (y). Hence F is a lattice homomorphism. Finally, F (K) is a
sublattice generated by f(M); hence F (K) ⊂ L. This completes the proof. □

Let us finally mention that the last theorem is no longer true when we drop the assumption
of the distributivity of the lattice L. Indeed, if L satisfies the above statement then taking K
equal to the free distributive lattice generated by the set L we see that L is a homomorphic
image of a distributive lattice; consequently L is distributive.
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