LECTURES: Infinitary combinatorics with applications in mathematical analysis PART 2

WiesŁaw Kubiś
Mathematical Institute, Academy of Sciences of the Czech Republic
Žitná 25, 11567 Praha 1

\therefore April 7, 2013

Contents

1 Lecture 5 1
1.1 Ramsey sets 1
1.2 Nash-Williams partition theorem 4

1 Lecture 5

We shall present the classical theorem of Galvin \& Prikry on Borel colorings of the space of irrationals. We now look at $[\mathbb{N}]^{\omega}$ as a natural topological space, namely, the Vietoris hyperspace of the discrete space \mathbb{N}. Recall that, given a topological space X, its hyperspace $\exp X$ is defined as the family of all nonempty closed subsets of X endowed with the Vietoris topology generated by the sets:

$$
V_{0}^{-} \cap \cdots \cap V_{k-1}^{-} \cap U^{+}=\left\{A \in \exp X: A \subseteq U \text { and } A \cap V_{i} \neq \emptyset \text { for every } i<k\right\}
$$

where each of the sets $V_{0}, \ldots, V_{k-1}, U$ is open and $k \in \omega$. We shall be interested in the smallest non-trivial hyperspace, namely, all nonempty subsets of the discrete space \mathbb{N}.

1.1 Ramsey sets

We shall work in the space of all subsets of \mathbb{N}, which carries the natural Cantor set topology. Excluding the empty set, it can also be regarded as the Vietoris hyperspace
of \mathbb{N}. The advantage here is that the Vietoris topology is much richer than the Cantor set topology. This is particularly important when aiming at a partition theorem involving Borel sets.

In what follows, we shall usually denote finite sets by small letters and infinite sets by capital letters. Given $A, B \subseteq \mathbb{N}$, we shall write $A \sqsubset B$ if A is a proper initial segment of B, that is, $A \subseteq B, A \neq B$, and $B \cap(-\infty, \sup A) \subseteq A$. Observe that $A \sqsubset B$ implies that A is finite.

The Vietoris topology on $[\mathbb{N}]^{\omega}$ has a natural basis consisting of the following sets:

$$
[s ; A]^{\mathscr{V}}:=\left\{B \in[A]^{\omega}: s \sqsubset B\right\},
$$

where $s \in[\mathbb{N}]^{<\omega}$ and $A \in[\mathbb{N}]^{\omega}$. Note that $[s ; A]^{\mathscr{V}} \neq \emptyset$ if and only if s is a subset of A. Furthermore, $A \in[s ; A]^{\mathscr{V}}$ if and only if s is an initial segment of A. Note also that the natural (inherited from the Cantor set) topology on $[\mathbb{N}]^{\omega}$ has a basis consisting of sets of the form $[s ; \mathbb{N}]^{\mathscr{V}}$, where $s \in[\mathbb{N}]^{<\omega}$.

The following fact is an easy exercise:
Proposition 1.1. The family of all sets of the form $[s ; A]^{\mathscr{V}}$, where $s \in[\mathbb{N}]^{<\omega}$, $A \in[\mathbb{N}]^{\omega}$, forms an open basis for the Vietoris topology on $[\mathbb{N}]^{\omega}$.

From now on, we fix $\mathscr{F} \subseteq[\mathbb{N}]^{\omega}$.
Definition 1.2. Given $A \in[\mathbb{N}]^{\omega}, s \in[\mathbb{N}]^{<\omega}$, we shall say that A accepts s (with respect to \mathscr{F}) if $s \subseteq A$ and $[s ; A]^{\mathscr{V}} \subseteq \mathscr{F}$. We shall say that A rejects s (with respect to \mathscr{F}) if no $B \in[A]^{\omega}$ with $A \cap \max (s) \subseteq B$ accepts s.

Finally, we shall say that $A \in[\mathbb{N}]^{\omega}$ is decided if for every $s \subseteq A$ either A accepts s or A rejects s.

The definition of accepting is clear. Rejecting s by A means that it is not possible to "shrink" A by removing some elements on the right-hand side of s so that the smaller set would accept s. Note that every infinite subset of a decided set is decided. The existence of decided sets is crucial.

Lemma 1.3. Given $N \in[\mathbb{N}]^{\omega}$, there exists $M \in[N]^{\omega}$ such that M is decided.
Proof \#1. Given $k \in \mathbb{N}$ and $A \in[\mathbb{N}]^{\omega}$, we shall say that A decides k, provided that for every $s \subseteq k, A$ either decides or rejects s. Let \mathbb{P} be the set of all pairs $\langle k, A\rangle$ such that A decides k. Given $\langle k, A\rangle,\langle\ell, B\rangle \in \mathbb{P}$, we define $\langle k, A\rangle \preceq\langle\ell, B\rangle$ iff $k \leqslant \ell$ and $B \subseteq A$ is such that $B \cap k=A \cap k$. Then \preceq is a partial ordering of \mathbb{P}. We claim that for every $\langle k, A\rangle \in \mathbb{P}$ there is $\langle\ell, B\rangle \in \mathbb{P}$ such that $\langle k, A\rangle \preceq\langle\ell, B\rangle$ and $k<\ell$.

Fix $\langle k, A\rangle \in \mathbb{P}$ and let $\ell=\min (A \backslash k)+1$. Suppose $\langle\ell, A\rangle \notin \mathbb{P}$. Then there is $t \subseteq \ell$ such that A neither accepts nor rejects t. Necessarily $\max (t)=\ell-1$ and, as A does not reject t, there is $A^{\prime} \subseteq A$ such that $A^{\prime} \cap \ell=A \cap \ell$ and A^{\prime} accepts t. Repeating this argument for each possible subset of ℓ, we obtain $B \subseteq A$ such that $B \cap \ell=A \cap \ell$ and $\langle\ell, B\rangle \in \mathbb{P}$. Clearly, $\langle k, A\rangle \preceq\langle\ell, B\rangle$.

Finally, notice that $\langle 0, A\rangle \in \mathbb{P}$ for some $A \in[N]^{\omega}$. Indeed, either $A=N$ or $A \in[N]^{\omega}$ accepts \emptyset in case where N does not reject \emptyset.

By the arguments above, there is a sequence

$$
\left\langle k_{0}, A_{0}\right\rangle \preceq\left\langle k_{1}, A_{1}\right\rangle \preceq\left\langle k_{2}, A_{2}\right\rangle \preceq \ldots
$$

in \mathbb{P} such that $\left\langle k_{0}, A_{0}\right\rangle=\langle 0, A\rangle$ and $k_{0}<k_{1}<k_{2}<\ldots$. Finally, $A=\bigcap_{n \in \omega} A_{n}$ is an infinite decided subset of N.

Proof \#2. We construct a strictly increasing sequence of finite sets $\emptyset=s_{0} \sqsubset s_{1} \sqsubset$ $s_{2} \sqsubset \ldots$ and a decreasing sequence of infinite sets $N \supseteq M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots$ so that the following conditions are satisfied:
(1) $s_{n} \sqsubset M_{n}$,
(2) For every $t \subseteq s_{n}, M_{n}$ either accepts or rejects t.

If N rejects \emptyset then we set $M_{0}=N$, otherwise we find $M_{0} \in[N]^{\omega}$ such that M_{0} accepts \emptyset. Now suppose s_{n} and M_{n} have already been constructed. We set $s_{n+1}=s_{n} \cup\left\{\ell_{n}\right\}$, where ℓ_{n} is the minimal element of M_{n} greater than all elements of s_{n}.

Fix $t \subseteq s_{n+1}$. If $t \subseteq s_{n}$ then M_{n} either accepts or rejects t. Suppose $\ell_{n} \in t$ and M_{n} does not reject t. Then there is an infinite set $M_{n}^{\prime} \subseteq M_{n}$ such that $M_{n}^{\prime} \cap\left(\ell_{n}+1\right)=$ $M_{n} \cap\left(\ell_{n}+1\right)$ and M_{n}^{\prime} accepts t. Repeating this argument finitely many times (for each subset of s_{n}) we obtain M_{n+1} with the property that $s_{n+1} \sqsubset M_{n+1}$ and condition (2) is satisfied.

Finally, $M=\bigcup_{n \in \omega} s_{n}$ is as required.
Lemma 1.4. Let $M \in[\mathbb{N}]^{\omega}$ be a decided set and let $s \in[\mathbb{N}]^{<\omega}$ be such that $s \sqsubset M$. If M rejects s then M rejects $s \cup\{n\}$ for all but finitely many $n \in M \backslash s$.

Proof. Suppose otherwise. Then there is $N \in[s ; M]^{\mathscr{V}}$ be such that M accepts $s \cup\{k\}$ whenever $k \in N \backslash s$. Thus, we have

$$
[s ; N]^{\mathscr{V}}=\bigcup_{k \in N \backslash s}[s \cup\{k\} ; N]^{\mathscr{V}} \subseteq \bigcup_{k \in N \backslash s}[s \cup\{k\} ; M]^{\mathscr{V}} \subseteq \mathscr{F} .
$$

It follows that N accepts s, contradicting the definition of rejecting.
Lemma 1.5. Let $M \in[\mathbb{N}]^{\omega}$ be a decided set. If M rejects \emptyset then there exists $N \in$ $[M]^{\omega}$ such that N rejects all of its finite subsets.

Proof. Using Lemma 1.4 inductively, we construct a chain of finite sets

$$
\emptyset=s_{0} \sqsubset s_{1} \sqsubset s_{2} \sqsubset \ldots \sqsubset M
$$

such that M rejects all subsets of s_{n} for every $n \in \omega$. Finally, $N=\bigcup_{n \in \omega} s_{n}$ is as required.

We now come to the main notions.
Definition 1.6. Let $\mathscr{F} \subseteq \mathscr{P}(\mathbb{N})$. We say that \mathscr{F} is Ramsey if for every $A \in[\mathbb{N}]^{\omega}$ there exists $B \in[\mathbb{N}]^{\omega}$ such that either $[B]^{\omega} \subseteq \mathscr{F}$ or $[B]^{\omega} \cap \mathscr{F}=\emptyset$.

Theorem 1.7 (Galvin \& Prikry). Every open set in the Vietoris topology is Ramsey.
Proof. Let $\mathscr{U} \subseteq \mathscr{P}(\omega)$ be open with respect to the Vietoris topology. Fix $A \in[\mathbb{N}]^{\omega}$. Shrinking A, we may assume that it is decided with respect to \mathscr{U} (Lemma 1.3). If A accepts \emptyset then $[A]^{\omega} \subseteq \mathscr{U}$. Otherwise, by Lemma 1.5, we may further shrink A so that it rejects all of its finite subsets. Suppose that $\mathscr{U} \cap[\emptyset ; A]^{\mathscr{V}} \neq \emptyset$. As \mathscr{U} is open, there exists a finite set $s \subseteq A$ and $B \in[A]^{\omega}$ such that $s \sqsubset B$ and $[s ; B]^{\mathscr{V}} \subseteq \mathscr{U}$. It follows that B accepts s, contradicting the fact that A rejects s. Thus, $[A]^{\omega} \cap \mathscr{U}=\emptyset$.

1.2 Nash-Williams partition theorem

Using Theorem 1.7, we shall now state and prove a partition theorem on finite sets, due to Nash-Williams, which in turn generalizes Ramsey theorem.

Definition 1.8. A family \mathscr{S} of finite subsets of \mathbb{N} will be called thin if $s=t$ whenever $s, t \in \mathscr{S}$ and $s \sqsubset t$. In other words, \mathscr{S} is thin if no member of \mathscr{S} is an initial segment of another.

A typical example of a thin family is $[\mathbb{N}]^{k}$, where $k>0$ is a natural number.
Theorem 1.9 (Nash-Williams). Let $\mathscr{S} \subseteq[\mathbb{N}]^{<\omega}$ be a thin family and assume $\mathscr{S}=$ $S_{0} \cup \cdots \cup S_{n-1}$. Then there is $M \in[\mathbb{N}]^{\omega}$ such that $[M]^{<\omega} \cap \mathscr{S} \subseteq S_{j}$ for some $j<n$.

Note that setting $\mathscr{S}=[\mathbb{N}]^{k}$, this gives Ramsey theorem.
Proof. It is sufficient to prove the result for $n=2$. Define

$$
S_{0}^{*}=\left\{X \in[\mathbb{N}]^{\omega}:\left(\exists s \in S_{0}\right) s \sqsubset X\right\} .
$$

Notice that S_{0}^{*} is open in the Vietoris topology (actually, even in the usual topology). By Theorem 1.7, there is $A \in[\mathbb{N}]^{\omega}$ such that either $[A]^{\omega} \cap S_{0}^{*}=\emptyset$ or $[A]^{\omega} \subseteq S_{0}^{*}$. In the former case we are done, so assume $[A]^{\omega} \subseteq S_{0}^{*}$.

Fix $t \in \mathscr{S} \cap[A]^{<\omega}$ and let

$$
A_{t}=t \cup(A \backslash\{0,1, \ldots, \max (t)\})
$$

Then $t \sqsubset A_{t}$ and $A_{t} \subseteq A$, therefore $A_{t} \in S_{0}^{*}$. Thus, there is $s \in S_{0}$ such that $s \sqsubset A_{t}$. Now either $s \sqsubset t$ or $t \sqsubset s$. Recall that \mathscr{S} is thin, therefore $s=t$. This shows that $[A]^{<\omega} \cap \mathscr{S} \subseteq S_{0}$.

References

[1] Abraham, U.; Rubin, M.; Shelah, S., On the consistency of some partition theorems for continuous colorings, and the structure of \aleph_{1}-dense real order types, Ann. Pure Appl. Logic 29 (1985), no. 2, 123-206
[2] Blass, A., A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), no. 2, 271-277
[3] Filipczak, F. M., Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966) 75-87
[4] W. Kubiś, Perfect cliques and G_{δ}-colorings of Polish spaces, Proc. Amer. Math. Soc. 131 (2003) 619-623
[5] W. Kubiś, S. Shelah, Analytic colorings, Ann. Pure Appl. Logic 121 (2003) 145-161
[6] W. Kubiś, B. Vejnar, Covering an uncountable square by countably many continuous functions, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4359-4368
[7] Mycielski, J., Independent sets in topological algebras, Fund. Math. 55 (1964) 139-147
[8] S. Shelah, Borel sets with large squares, Fund. Math. 159 (1999) 1-50
[9] Todorchevich, S.; Farah, I., Some applications of the method of forcing. Yenisei Series in Pure and Applied Mathematics. Yenisei, Moscow; Lycée, Troitsk, 1995

