LECTURES: Infinitary combinatorics with applications in mathematical analysis PART 2

Wiesław Kubiś

Mathematical Institute, Academy of Sciences of the Czech Republic Žitná 25, 115 67 Praha 1

April 7, 2013

Contents

1 Lecture 5		1	
	1.1	Ramsey sets	1
	1.2	Nash-Williams partition theorem	4

1 Lecture 5

We shall present the classical theorem of Galvin & Prikry on Borel colorings of the space of irrationals. We now look at $[\mathbb{N}]^{\omega}$ as a natural topological space, namely, the Vietoris hyperspace of the discrete space \mathbb{N} . Recall that, given a topological space X, its hyperspace exp X is defined as the family of all nonempty closed subsets of X endowed with the Vietoris topology generated by the sets:

 $V_0^- \cap \dots \cap V_{k-1}^- \cap U^+ = \{ A \in \exp X \colon A \subseteq U \text{ and } A \cap V_i \neq \emptyset \text{ for every } i < k \},\$

where each of the sets V_0, \ldots, V_{k-1}, U is open and $k \in \omega$. We shall be interested in the smallest non-trivial hyperspace, namely, all nonempty subsets of the discrete space \mathbb{N} .

1.1 Ramsey sets

We shall work in the space of all subsets of \mathbb{N} , which carries the natural Cantor set topology. Excluding the empty set, it can also be regarded as the Vietoris hyperspace

of \mathbb{N} . The advantage here is that the Vietoris topology is much richer than the Cantor set topology. This is particularly important when aiming at a partition theorem involving Borel sets.

In what follows, we shall usually denote finite sets by small letters and infinite sets by capital letters. Given $A, B \subseteq \mathbb{N}$, we shall write $A \sqsubset B$ if A is a proper initial segment of B, that is, $A \subseteq B$, $A \neq B$, and $B \cap (-\infty, \sup A) \subseteq A$. Observe that $A \sqsubset B$ implies that A is finite.

The Vietoris topology on $[\mathbb{N}]^{\omega}$ has a natural basis consisting of the following sets:

$$[s;A]^{\mathscr{V}} := \{ B \in [A]^{\omega} \colon s \sqsubset B \},\$$

where $s \in [\mathbb{N}]^{<\omega}$ and $A \in [\mathbb{N}]^{\omega}$. Note that $[s; A]^{\mathscr{V}} \neq \emptyset$ if and only if s is a subset of A. Furthermore, $A \in [s; A]^{\mathscr{V}}$ if and only if s is an initial segment of A. Note also that the natural (inherited from the Cantor set) topology on $[\mathbb{N}]^{\omega}$ has a basis consisting of sets of the form $[s; \mathbb{N}]^{\mathscr{V}}$, where $s \in [\mathbb{N}]^{<\omega}$.

The following fact is an easy exercise:

Proposition 1.1. The family of all sets of the form $[s; A]^{\mathscr{V}}$, where $s \in [\mathbb{N}]^{<\omega}$, $A \in [\mathbb{N}]^{\omega}$, forms an open basis for the Vietoris topology on $[\mathbb{N}]^{\omega}$.

From now on, we fix $\mathscr{F} \subseteq [\mathbb{N}]^{\omega}$.

Definition 1.2. Given $A \in [\mathbb{N}]^{\omega}$, $s \in [\mathbb{N}]^{<\omega}$, we shall say that A accepts s (with respect to \mathscr{F}) if $s \subseteq A$ and $[s; A]^{\mathscr{V}} \subseteq \mathscr{F}$. We shall say that A rejects s (with respect to \mathscr{F}) if no $B \in [A]^{\omega}$ with $A \cap \max(s) \subseteq B$ accepts s.

Finally, we shall say that $A \in [\mathbb{N}]^{\omega}$ is *decided* if for every $s \subseteq A$ either A accepts s or A rejects s.

The definition of accepting is clear. Rejecting s by A means that it is not possible to "shrink" A by removing some elements on the right-hand side of s so that the smaller set would accept s. Note that every infinite subset of a decided set is decided. The existence of decided sets is crucial.

Lemma 1.3. Given $N \in [\mathbb{N}]^{\omega}$, there exists $M \in [N]^{\omega}$ such that M is decided.

Proof #1. Given $k \in \mathbb{N}$ and $A \in [\mathbb{N}]^{\omega}$, we shall say that A decides k, provided that for every $s \subseteq k$, A either decides or rejects s. Let \mathbb{P} be the set of all pairs $\langle k, A \rangle$ such that A decides k. Given $\langle k, A \rangle, \langle \ell, B \rangle \in \mathbb{P}$, we define $\langle k, A \rangle \preceq \langle \ell, B \rangle$ iff $k \leq \ell$ and $B \subseteq A$ is such that $B \cap k = A \cap k$. Then \preceq is a partial ordering of \mathbb{P} . We claim that for every $\langle k, A \rangle \in \mathbb{P}$ there is $\langle \ell, B \rangle \in \mathbb{P}$ such that $\langle k, A \rangle \preceq \langle \ell, B \rangle$ and $k < \ell$.

Fix $\langle k, A \rangle \in \mathbb{P}$ and let $\ell = \min(A \setminus k) + 1$. Suppose $\langle \ell, A \rangle \notin \mathbb{P}$. Then there is $t \subseteq \ell$ such that A neither accepts nor rejects t. Necessarily $\max(t) = \ell - 1$ and, as A does not reject t, there is $A' \subseteq A$ such that $A' \cap \ell = A \cap \ell$ and A' accepts t. Repeating this argument for each possible subset of ℓ , we obtain $B \subseteq A$ such that $B \cap \ell = A \cap \ell$ and $\langle \ell, B \rangle \in \mathbb{P}$. Clearly, $\langle k, A \rangle \preceq \langle \ell, B \rangle$.

Finally, notice that $\langle 0, A \rangle \in \mathbb{P}$ for some $A \in [N]^{\omega}$. Indeed, either A = N or $A \in [N]^{\omega}$ accepts \emptyset in case where N does not reject \emptyset .

By the arguments above, there is a sequence

$$\langle k_0, A_0 \rangle \preceq \langle k_1, A_1 \rangle \preceq \langle k_2, A_2 \rangle \preceq \dots$$

in \mathbb{P} such that $\langle k_0, A_0 \rangle = \langle 0, A \rangle$ and $k_0 < k_1 < k_2 < \dots$ Finally, $A = \bigcap_{n \in \omega} A_n$ is an infinite decided subset of N.

Proof #2. We construct a strictly increasing sequence of finite sets $\emptyset = s_0 \sqsubset s_1 \sqsubset s_2 \sqsubset \ldots$ and a decreasing sequence of infinite sets $N \supseteq M_0 \supseteq M_1 \supseteq M_2 \supseteq \ldots$ so that the following conditions are satisfied:

- (1) $s_n \sqsubset M_n$,
- (2) For every $t \subseteq s_n$, M_n either accepts or rejects t.

If N rejects \emptyset then we set $M_0 = N$, otherwise we find $M_0 \in [N]^{\omega}$ such that M_0 accepts \emptyset . Now suppose s_n and M_n have already been constructed. We set $s_{n+1} = s_n \cup \{\ell_n\}$, where ℓ_n is the minimal element of M_n greater than all elements of s_n .

Fix $t \subseteq s_{n+1}$. If $t \subseteq s_n$ then M_n either accepts or rejects t. Suppose $\ell_n \in t$ and M_n does not reject t. Then there is an infinite set $M'_n \subseteq M_n$ such that $M'_n \cap (\ell_n + 1) = M_n \cap (\ell_n + 1)$ and M'_n accepts t. Repeating this argument finitely many times (for each subset of s_n) we obtain M_{n+1} with the property that $s_{n+1} \sqsubset M_{n+1}$ and condition (2) is satisfied.

Finally, $M = \bigcup_{n \in \omega} s_n$ is as required.

Lemma 1.4. Let $M \in [\mathbb{N}]^{\omega}$ be a decided set and let $s \in [\mathbb{N}]^{<\omega}$ be such that $s \sqsubset M$. If M rejects s then M rejects $s \cup \{n\}$ for all but finitely many $n \in M \setminus s$.

Proof. Suppose otherwise. Then there is $N \in [s; M]^{\mathscr{V}}$ be such that M accepts $s \cup \{k\}$ whenever $k \in N \setminus s$. Thus, we have

$$[s;N]^{\mathscr{V}} = \bigcup_{k \in N \setminus s} [s \cup \{k\}; N]^{\mathscr{V}} \subseteq \bigcup_{k \in N \setminus s} [s \cup \{k\}; M]^{\mathscr{V}} \subseteq \mathscr{F}.$$

It follows that N accepts s, contradicting the definition of rejecting.

Lemma 1.5. Let $M \in [\mathbb{N}]^{\omega}$ be a decided set. If M rejects \emptyset then there exists $N \in [M]^{\omega}$ such that N rejects all of its finite subsets.

Proof. Using Lemma 1.4 inductively, we construct a chain of finite sets

$$\emptyset = s_0 \sqsubset s_1 \sqsubset s_2 \sqsubset \ldots \sqsubset M$$

such that M rejects all subsets of s_n for every $n \in \omega$. Finally, $N = \bigcup_{n \in \omega} s_n$ is as required.

We now come to the main notions.

Definition 1.6. Let $\mathscr{F} \subseteq \mathscr{P}(\mathbb{N})$. We say that \mathscr{F} is *Ramsey* if for every $A \in [\mathbb{N}]^{\omega}$ there exists $B \in [\mathbb{N}]^{\omega}$ such that either $[B]^{\omega} \subseteq \mathscr{F}$ or $[B]^{\omega} \cap \mathscr{F} = \emptyset$.

Theorem 1.7 (Galvin & Prikry). Every open set in the Vietoris topology is Ramsey.

Proof. Let $\mathscr{U} \subseteq \mathscr{P}(\omega)$ be open with respect to the Vietoris topology. Fix $A \in [\mathbb{N}]^{\omega}$. Shrinking A, we may assume that it is decided with respect to \mathscr{U} (Lemma 1.3). If A accepts \emptyset then $[A]^{\omega} \subseteq \mathscr{U}$. Otherwise, by Lemma 1.5, we may further shrink A so that it rejects all of its finite subsets. Suppose that $\mathscr{U} \cap [\emptyset; A]^{\mathscr{V}} \neq \emptyset$. As \mathscr{U} is open, there exists a finite set $s \subseteq A$ and $B \in [A]^{\omega}$ such that $s \sqsubset B$ and $[s; B]^{\mathscr{V}} \subseteq \mathscr{U}$. It follows that B accepts s, contradicting the fact that A rejects s. Thus, $[A]^{\omega} \cap \mathscr{U} = \emptyset$.

1.2 Nash-Williams partition theorem

Using Theorem 1.7, we shall now state and prove a partition theorem on finite sets, due to Nash-Williams, which in turn generalizes Ramsey theorem.

Definition 1.8. A family \mathscr{S} of finite subsets of \mathbb{N} will be called *thin* if s = t whenever $s, t \in \mathscr{S}$ and $s \sqsubset t$. In other words, \mathscr{S} is thin if no member of \mathscr{S} is an initial segment of another.

A typical example of a thin family is $[\mathbb{N}]^k$, where k > 0 is a natural number.

Theorem 1.9 (Nash-Williams). Let $\mathscr{S} \subseteq [\mathbb{N}]^{<\omega}$ be a thin family and assume $\mathscr{S} = S_0 \cup \cdots \cup S_{n-1}$. Then there is $M \in [\mathbb{N}]^{\omega}$ such that $[M]^{<\omega} \cap \mathscr{S} \subseteq S_j$ for some j < n.

Note that setting $\mathscr{S} = [\mathbb{N}]^k$, this gives Ramsey theorem.

Proof. It is sufficient to prove the result for n = 2. Define

$$S_0^* = \{ X \in [\mathbb{N}]^\omega \colon (\exists s \in S_0) \ s \sqsubset X \}.$$

Notice that S_0^* is open in the Vietoris topology (actually, even in the usual topology). By Theorem 1.7, there is $A \in [\mathbb{N}]^{\omega}$ such that either $[A]^{\omega} \cap S_0^* = \emptyset$ or $[A]^{\omega} \subseteq S_0^*$. In the former case we are done, so assume $[A]^{\omega} \subseteq S_0^*$.

Fix $t \in \mathscr{S} \cap [A]^{<\omega}$ and let

$$A_t = t \cup (A \setminus \{0, 1, \dots, \max(t)\}).$$

Then $t \sqsubset A_t$ and $A_t \subseteq A$, therefore $A_t \in S_0^*$. Thus, there is $s \in S_0$ such that $s \sqsubset A_t$. Now either $s \sqsubset t$ or $t \sqsubset s$. Recall that \mathscr{S} is thin, therefore s = t. This shows that $[A]^{<\omega} \cap \mathscr{S} \subseteq S_0$.

References

- ABRAHAM, U.; RUBIN, M.; SHELAH, S., On the consistency of some partition theorems for continuous colorings, and the structure of ℵ₁-dense real order types, Ann. Pure Appl. Logic 29 (1985), no. 2, 123–206
- [2] BLASS, A., A partition theorem for perfect sets, Proc. Amer. Math. Soc. 82 (1981), no. 2, 271–277
- [3] FILIPCZAK, F. M., Sur les fonctions continues relativement monotones, Fund. Math. 58 (1966) 75–87
- [4] W. KUBIŚ, Perfect cliques and G_{δ} -colorings of Polish spaces, Proc. Amer. Math. Soc. **131** (2003) 619–623
- [5] W. KUBIŚ, S. SHELAH, Analytic colorings, Ann. Pure Appl. Logic 121 (2003) 145–161
- [6] W. KUBIŚ, B. VEJNAR, Covering an uncountable square by countably many continuous functions, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4359–4368
- [7] MYCIELSKI, J., Independent sets in topological algebras, Fund. Math. 55 (1964) 139–147
- [8] S. SHELAH, Borel sets with large squares, Fund. Math. 159 (1999) 1–50
- [9] TODORCHEVICH, S.; FARAH, I., Some applications of the method of forcing. Yenisei Series in Pure and Applied Mathematics. Yenisei, Moscow; Lycée, Troitsk, 1995