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1 Lecture 5

We shall present the classical theorem of Galvin & Prikry on Borel colorings of the
space of irrationals. We now look at [N]ω as a natural topological space, namely, the
Vietoris hyperspace of the discrete space N. Recall that, given a topological space
X, its hyperspace expX is defined as the family of all nonempty closed subsets of
X endowed with the Vietoris topology generated by the sets:

V −0 ∩ · · · ∩ V −k−1 ∩ U+ = {A ∈ expX : A ⊆ U and A ∩ Vi 6= ∅ for every i < k},

where each of the sets V0, . . . , Vk−1, U is open and k ∈ ω. We shall be interested
in the smallest non-trivial hyperspace, namely, all nonempty subsets of the discrete
space N.

1.1 Ramsey sets

We shall work in the space of all subsets of N, which carries the natural Cantor set
topology. Excluding the empty set, it can also be regarded as the Vietoris hyperspace
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of N. The advantage here is that the Vietoris topology is much richer than the Cantor
set topology. This is particularly important when aiming at a partition theorem
involving Borel sets.

In what follows, we shall usually denote finite sets by small letters and infinite
sets by capital letters. Given A,B ⊆ N, we shall write A @ B if A is a proper initial
segment of B, that is, A ⊆ B, A 6= B, and B ∩ (−∞, supA) ⊆ A. Observe that
A @ B implies that A is finite.

The Vietoris topology on [N]ω has a natural basis consisting of the following sets:

[s;A]V := {B ∈ [A]ω : s @ B},

where s ∈ [N]<ω and A ∈ [N]ω. Note that [s;A]V 6= ∅ if and only if s is a subset of A.
Furthermore, A ∈ [s;A]V if and only if s is an initial segment of A. Note also that
the natural (inherited from the Cantor set) topology on [N]ω has a basis consisting
of sets of the form [s;N]V , where s ∈ [N]<ω.

The following fact is an easy exercise:

Proposition 1.1. The family of all sets of the form [s;A]V , where s ∈ [N]<ω,
A ∈ [N]ω, forms an open basis for the Vietoris topology on [N]ω.

From now on, we fix F ⊆ [N]ω.

Definition 1.2. Given A ∈ [N]ω, s ∈ [N]<ω, we shall say that A accepts s (with
respect to F ) if s ⊆ A and [s;A]V ⊆ F . We shall say that A rejects s (with respect
to F ) if no B ∈ [A]ω with A ∩max(s) ⊆ B accepts s.

Finally, we shall say that A ∈ [N]ω is decided if for every s ⊆ A either A accepts
s or A rejects s.

The definition of accepting is clear. Rejecting s by A means that it is not possible
to “shrink” A by removing some elements on the right-hand side of s so that the
smaller set would accept s. Note that every infinite subset of a decided set is decided.
The existence of decided sets is crucial.

Lemma 1.3. Given N ∈ [N]ω, there exists M ∈ [N ]ω such that M is decided.

Proof #1. Given k ∈ N and A ∈ [N]ω, we shall say that A decides k, provided that
for every s ⊆ k, A either decides or rejects s. Let P be the set of all pairs 〈k,A〉
such that A decides k. Given 〈k,A〉, 〈`, B〉 ∈ P, we define 〈k,A〉 � 〈`, B〉 iff k 6 `
and B ⊆ A is such that B ∩ k = A∩ k. Then � is a partial ordering of P. We claim
that for every 〈k,A〉 ∈ P there is 〈`, B〉 ∈ P such that 〈k,A〉 � 〈`, B〉 and k < `.

Fix 〈k,A〉 ∈ P and let ` = min(A \ k) + 1. Suppose 〈`, A〉 /∈ P. Then there is
t ⊆ ` such that A neither accepts nor rejects t. Necessarily max(t) = ` − 1 and,
as A does not reject t, there is A′ ⊆ A such that A′ ∩ ` = A ∩ ` and A′ accepts t.
Repeating this argument for each possible subset of `, we obtain B ⊆ A such that
B ∩ ` = A ∩ ` and 〈`, B〉 ∈ P. Clearly, 〈k,A〉 � 〈`, B〉.
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Finally, notice that 〈0, A〉 ∈ P for some A ∈ [N ]ω. Indeed, either A = N or
A ∈ [N ]ω accepts ∅ in case where N does not reject ∅.

By the arguments above, there is a sequence

〈k0, A0〉 � 〈k1, A1〉 � 〈k2, A2〉 � . . .

in P such that 〈k0, A0〉 = 〈0, A〉 and k0 < k1 < k2 < . . . . Finally, A =
⋂
n∈ω An is an

infinite decided subset of N .

Proof #2. We construct a strictly increasing sequence of finite sets ∅ = s0 @ s1 @
s2 @ . . . and a decreasing sequence of infinite sets N ⊇ M0 ⊇ M1 ⊇ M2 ⊇ . . . so
that the following conditions are satisfied:

(1) sn @ Mn,

(2) For every t ⊆ sn, Mn either accepts or rejects t.

If N rejects ∅ then we set M0 = N , otherwise we find M0 ∈ [N ]ω such that M0 accepts
∅. Now suppose sn and Mn have already been constructed. We set sn+1 = sn ∪{`n},
where `n is the minimal element of Mn greater than all elements of sn.

Fix t ⊆ sn+1. If t ⊆ sn then Mn either accepts or rejects t. Suppose `n ∈ t and Mn

does not reject t. Then there is an infinite set M ′
n ⊆Mn such that M ′

n ∩ (`n + 1) =
Mn∩(`n+1) and M ′

n accepts t. Repeating this argument finitely many times (for each
subset of sn) we obtain Mn+1 with the property that sn+1 @ Mn+1 and condition
(2) is satisfied.

Finally, M =
⋃
n∈ω sn is as required.

Lemma 1.4. Let M ∈ [N]ω be a decided set and let s ∈ [N]<ω be such that s @ M .
If M rejects s then M rejects s ∪ {n} for all but finitely many n ∈M \ s.

Proof. Suppose otherwise. Then there is N ∈ [s;M ]V be such that M accepts s∪{k}
whenever k ∈ N \ s. Thus, we have

[s;N ]V =
⋃

k∈N\s

[s ∪ {k};N ]V ⊆
⋃

k∈N\s

[s ∪ {k};M ]V ⊆ F .

It follows that N accepts s, contradicting the definition of rejecting.

Lemma 1.5. Let M ∈ [N]ω be a decided set. If M rejects ∅ then there exists N ∈
[M ]ω such that N rejects all of its finite subsets.

Proof. Using Lemma 1.4 inductively, we construct a chain of finite sets

∅ = s0 @ s1 @ s2 @ . . . @ M

such that M rejects all subsets of sn for every n ∈ ω. Finally, N =
⋃
n∈ω sn is as

required.
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We now come to the main notions.

Definition 1.6. Let F ⊆ P(N). We say that F is Ramsey if for every A ∈ [N]ω

there exists B ∈ [N]ω such that either [B]ω ⊆ F or [B]ω ∩F = ∅.

Theorem 1.7 (Galvin & Prikry). Every open set in the Vietoris topology is Ramsey.

Proof. Let U ⊆P(ω) be open with respect to the Vietoris topology. Fix A ∈ [N]ω.
Shrinking A, we may assume that it is decided with respect to U (Lemma 1.3). If A
accepts ∅ then [A]ω ⊆ U . Otherwise, by Lemma 1.5, we may further shrink A so that
it rejects all of its finite subsets. Suppose that U ∩ [∅;A]V 6= ∅. As U is open, there
exists a finite set s ⊆ A and B ∈ [A]ω such that s @ B and [s;B]V ⊆ U . It follows
that B accepts s, contradicting the fact that A rejects s. Thus, [A]ω ∩U = ∅.

1.2 Nash-Williams partition theorem

Using Theorem 1.7, we shall now state and prove a partition theorem on finite sets,
due to Nash-Williams, which in turn generalizes Ramsey theorem.

Definition 1.8. A family S of finite subsets of N will be called thin if s = t
whenever s, t ∈ S and s @ t. In other words, S is thin if no member of S is an
initial segment of another.

A typical example of a thin family is [N]k, where k > 0 is a natural number.

Theorem 1.9 (Nash-Williams). Let S ⊆ [N]<ω be a thin family and assume S =
S0 ∪ · · · ∪ Sn−1. Then there is M ∈ [N]ω such that [M ]<ω ∩S ⊆ Sj for some j < n.

Note that setting S = [N]k, this gives Ramsey theorem.

Proof. It is sufficient to prove the result for n = 2. Define

S∗0 = {X ∈ [N]ω : (∃ s ∈ S0) s @ X}.

Notice that S∗0 is open in the Vietoris topology (actually, even in the usual topology).
By Theorem 1.7, there is A ∈ [N]ω such that either [A]ω ∩ S∗0 = ∅ or [A]ω ⊆ S∗0 . In
the former case we are done, so assume [A]ω ⊆ S∗0 .

Fix t ∈ S ∩ [A]<ω and let

At = t ∪ (A \ {0, 1, . . . ,max(t)}).

Then t @ At and At ⊆ A, therefore At ∈ S∗0 . Thus, there is s ∈ S0 such that s @ At.
Now either s @ t or t @ s. Recall that S is thin, therefore s = t. This shows that
[A]<ω ∩S ⊆ S0.
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