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Abstract. We state a Fréchet type theorem for measurable maps with values in an almost
arcwise connected metrizable space. As an application, we obtain some results on continuous
approximation of measurable multifunctions.

1. Introduction

The well known Fréchet theorem says that a Lebesgue measurable extended real-valued map
is the almost everywhere pointwise limit of a sequence of finite continuous maps. Recently
different generalizations of this classical result were obtained by Aldaz [1], Kawabe [3], Nowak
[5] and Wísniewski [7, 8]. All these authors assumed that the value space is a locally convex
linear topological space. It is not the case when we deal with multifunctions, since hyperspaces
have no linear structure.
The main result of this paper is a Fréchet type theorem for measurable maps with values in a
separable almost arcwise connected metrizable space. Since we need no linear structure of the
value space, we can apply the result to multifunctions. In this way we obtain some theorems
on the approximation of measurable multifunctions by multifunctions continuous with respect
to the Wijsman topology or the Hausdorff metric. The study of Fréchet type theorems for
multifunctions was initiated by the first author in [4].

2. Preliminaries

In this section we introduce the notation and terminology used throughout the paper.
According to [2] we shall denote by CL(Y ) (K(Y ), CLB(Y )) the space of all nonempty closed
(nonempty compact, nonempty closed bounded) subsets of a topological (metric) space Y .
Furthermore, CLC(Y ) will denote the space of all nonempty closed convex subsets of a normed
space Y . Let (Y, %) be a metric space. We shall denote by B(y0, ε) the open ball with center y0

and radius ε. The Wijsman topology on CL(Y ) is the least topology on CL(Y ) such that all the
functions dist(y, · ) : CL(Y ) → R are continuous. Equivalently, this is the topology generated
by all sets of the form

U(y, ε) = {A ∈ CL(Y ) : dist(y, A) < ε},
V (y, ε) = {A ∈ CL(Y ) : dist(y, A) > ε},
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where y ∈ Y and ε > 0, see [2]. Recall that the Hausdorff distance of two closed bounded sets
A,B ⊂ Y is

dH(A,B) = max{sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)},

and dH is a metric on CLB(Y ). Since |dist(y, A)−dist(y, B)| 6 dH(A,B), the topology induced
by the Hausdorff distance is stronger than the Wijsman topology on CLB(Y ).

By a multifunction we mean any map ϕ : T → P(Y ) \ {∅}, where T, Y are arbitrary sets. If
(T,M) is a measurable space and Y is a topological space then a multifunction ϕ : T → CL(Y )
is measurable provided for each open V ⊂ Y the set {t ∈ T : ϕ(t) ∩ V 6= ∅} is measurable.

Let (T,M, µ) be a measure space and let X be a topological space. A map f : T → X is almost
separably-valued if there exists a measure zero set M such that f | (T \M) is separably-valued ,
i.e. f(T \M) is separable. We say that f is simple provided f is measurable and f(T ) is finite.
A map f is Bochner measurable if there exists a sequence of simple maps almost everywhere
pointwise converging to f . These notions will be applied for multifunctions as for single-valued
maps. Suppose T is a topological space and M contains the Borel σ-field on T . Then a measure
µ on M is regular if for any E ∈ M and ε > 0 there exists a closed set F ⊂ E such that
µ(E \ F ) < ε.

A topological space X will be called almost arcwise connected provided there exists a dense set
D ⊂ X such that each two points a, b ∈ D can be joined by an arc in X, i.e. there exists a
continuous map γ : [0, 1] → X with γ(0) = a and γ(1) = b.

We shall use the following result which is well-known for real-valued maps (cf. e.g. [6, Thm.
VII.4.5]).

The Diagonal Lemma . Let (T,M, µ) be a space with a σ-finite measure and let Z be a
separable metrizable space. Furthermore, let fk

n , fk, f : T → Z be measurable maps such that
limn→∞ fn(t) = f(t) a.e. and limn→∞ fk

n(t) = fk(t) a.e. for each k ∈ N. Then there exists an
increasing function τ : N → N such that limn→∞ fn

τ(n)(t) = f(t) almost everywhere.

Proof. There exists a finite measure defined on M with the same sets of measure zero. Thus we
may assume that µ is finite. Also, we may assume that limn→∞ fk

n = fk and limn→∞ fn = f
everywhere on T . Set

Am(n) = {t ∈ T : %(fn
i (t), fn(t)) 6 %(fn(t), f(t)) +

1
n

, for each i > m},

where % is a metric compatible with the topology of Z. Note that Am(n) is measurable, since Z
is separable. Moreover Am(n) ⊂ Am+1(n) and

⋃
m∈N Am(n) = T . Fix j ∈ N. As µ(T ) < ∞, for

each n ∈ N there exists σj(n) ∈ N such that µ(T \Aσj(n)(n)) 6 1
j 2−n. Let Aj =

⋂
n∈N Aσj(n)(n).

Then µ(T \ Aj) 6 1
j . Now let A =

⋃
j∈N Aj and let τ(n) = max{σj(n) : j 6 n}. Clearly

µ(T \ A) = 0. Fix t ∈ A. There exists j ∈ N with t ∈ Aσj(n)(n) for every n ∈ N; thus for
i > σj(n) we have %(fn

i (t), fn(t)) 6 %(fn(t), f(t)) + 1
n . Hence for n > j we get

%(fn
τ(n)(t), f(t)) 6 %(fn

τ(n)(t), f
n(t)) + %(fn(t), f(t)) 6 2%(fn(t), f(t)) +

1
n

.

It follows that limn→∞ fn
τ(n)(t) = f(t) for t ∈ A. �
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3. Main result

In this section we prove a general Fréchet type theorem. We start with an auxiliary lemma.

Lemma 1. Let (T,M, µ) be a normal space with a regular measure and let Y be an almost
arcwise connected metrizable space. Then for each simple map f : T → Y there exists a sequence
of continuous separably-valued maps fn : T → Y almost everywhere pointwise convergent to f .

Proof. Let {Ei : i = 1, . . . , k} be a measurable partition of T such that f | Ei = yi ∈ Y . By the
regularity of µ there exist closed sets F i

n ⊂ Ei such that µ(Ei \ F i
n) < 1

n and F i
n ⊂ F i

n+1. Fix
r1 = 0 < r2 < · · · < rk = 1 and define hn :

⋃k
i=1 F i

n → [0, 1] by setting hn | F i
n = ri. By the the

Tietze-Urysohn theorem, hn can be extended to a continuous map Hn : T → [0, 1]. There exists
a dense set D ⊂ Y such that each two points of D can be joined by an arc in Y . Now we can find
sequences (yi

n)n∈N ⊂ D and continuous maps Gn : [0, 1] → Y such that limn→∞ yi
n = yi and

Gn(ri) = yi
n for i = 1, . . . , k;n ∈ N. Set fn = Gn ◦Hn. Clearly fn is continuous and separably-

valued. Observe that the set M =
⋃k

i=1(E
i \

⋃
n∈N F i

n) has measure zero. For t ∈ T \ M we
have t ∈ F i

n for almost all n ∈ N and consequently fn(t) = yi
n@ >> n →∞ > yi = f(t). �

Theorem 2. Let T be a normal space with a regular σ-finite measure and let X be an almost
arcwise connected metrizable space. Assume that f : T → X is a measurable almost separably-
valued map. Then there exists a sequence of continuous maps fn : T → X almost everywhere
pointwise convergent to f .

Proof. Without loss of generality we may assume that f(T ) is separable. There exists a sequence
of simple measurable maps gn : T → X a.e. pointwise convergent to f . By Lemma 1 for each
n ∈ N there exists a sequence of continuous maps gn

k : T → X such that limk→∞ gn
k (t) = gn(t)

almost everywhere and gn
k (T ) is separable. Applying the diagonal lemma for Z = f(T ) ∪⋃

n∈N gn(T ) ∪
⋃

n,k∈N gn
k (T ) we obtain a map τ : N → N such that limn→∞ gn

τ(n)(t) = f(t) a.e.
Set fn = gn

τ(n). �

Theorem 2 generalizes results obtained in [3, 5, 7, 8]. In particular, it implies the classical
Fréchet theorem.

4. Applications to multifunctions

In this section we apply Theorem 2 for some hyperspaces. We start with the space CL(Y )
endowed with the Wijsman topology.

Proposition 3. If Y is an arcwise connected metric space then CL(Y ) with the Wijsman
topology is almost arcwise connected.

Proof. Observe that the collection of finite subsets of Y forms a dense set in CL(Y ). It remains
to show that for fixed two finite sets A,B ⊂ Y there exists an arc in CL(Y ) joining A,B. For
each a ∈ A, b ∈ B choose a continuous map ha,b : [0, 1] → Y with ha,b(0) = a and ha,b(1) = b.
Define γ(λ) = {ha,b(λ) : a ∈ A, b ∈ B}, λ ∈ [0, 1]. It is easy to show that γ is continuous with
respect to the Wijsman topology. �

Theorem 4. Let T be a normal space with a regular σ-finite measure and let Y be an arcwise
connected separable metric space. Then for each measurable multifunction ϕ : T → CL(Y ) there
exists a sequence of multifunctions ϕn : T → CL(Y ), which are continuous with respect to the
Wijsman topology, almost everywhere convergent to ϕ.
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Proof. By [2, Theorem 2.1.5], CL(Y ) with the Wijsman topology is metrizable and separable,
by Proposition 3 it is almost arcwise connected. Moreover, ϕ is measurable with respect to the
Wijsman topology, see [2, Hess’ Theorem 6.5.14]. Thus we may apply Theorem 2. �

Next we give a Fréchet type theorem for closed convex-valued multifunctions.

Proposition 5. If Y is a normed space then CLC(Y ) with the Wijsman topology is almost
arcwise connected.

Proof. We first show that each two closed convex and bounded sets A,B ⊂ Y can be joined
by an arc in CLC(Y ). Define γ : [0, 1] → CLC(Y ) by setting γ(λ) = cl((1 − λ)A + λB). It is
enough to verify that the superposition dist(y, · )◦γ is continuous for every y ∈ Y . This follows
from the inequality |dist(y, γ(λ)) − dist(y, γ(δ))| 6 M |λ − δ|, where M = supa∈A,b∈B ‖a − b‖.
Indeed, for each n ∈ N there exists cn = (1 − λ)an + λbn, where an ∈ A, bn ∈ B, such that
‖y − cn‖ 6 dist(y, γ(λ)) + 1

n . We have

dist(y, γ(δ)) 6 ‖y − (1− δ)an − δbn‖ 6 ‖y − cn‖+ ‖an(δ − λ) + bn(λ− δ)‖

6 dist(y, γ(λ)) +
1
n

+ |λ− δ|‖an − bn‖ 6 dist(y, γ(λ)) +
1
n

+ M |λ− δ|.

Hence dist(y, γ(δ))− dist(y, γ(λ)) 6 M |λ− δ|. By the same argument,

dist(y, γ(λ))− dist(y, γ(δ)) 6 M |λ− δ|.
Now it remains to show that the collection {conv S : S ⊂ Y is nonempty finite } is dense
in CLC(Y ). Fix a closed convex set F ∈

⋂
i6k U(yi, αi) ∩

⋂
i6l V (zi, βi), where αi, βi > 0. For

every i 6 k there exists si ∈ F ∩B(yi, αi). Set A = conv{s1, . . . , sk}. Then A ∈
⋂

i6k U(yi, αi)∩⋂
i6l V (zi, βi). �

By Theorem 2 and Proposition 5 we obtain

Theorem 6. Let T be a normal space with a regular σ-finite measure and let Y be a separable
normed space. Then for each measurable multifunction ϕ : T → CLC(Y ) there exists a se-
quence of multifunctions ϕn : T → CLC(Y ), which are continuous with respect to the Wijsman
topology, almost everywhere convergent to ϕ.

We now consider the space of closed bounded sets with the Hausdorff distance.

Proposition 7. If Y is a normed space then CLB(Y ) with the Hausdorff distance is arcwise
connected.

Proof. Fix A,B ∈ CLB(Y ). Define γ(λ) = cl((1 − λ)A + λB), λ ∈ [0, 1]. We show that
dH(γ(λ), γ(δ)) 6 M |λ− δ|, where M = supa∈A,b∈B ‖a− b‖. Fix r > M |λ− δ|. For a ∈ A, b ∈ B
we have

dist((1− λ)a + λb, γ(δ)) 6 ‖(1− λ)a + λb− (1− δ)a− δb‖ 6 M |λ− δ|.
Hence γ(λ) ⊂ B(γ(δ), r). By the same argument, γ(δ) ⊂ B(γ(λ), r). Thus
dH(γ(λ), γ(δ)) 6 r. �

Theorem 8. Let T be a normal space with a regular complete σ-finite measure and let Y
be a normed space. If ϕ : T → CLB(Y ) is a Bochner measurable multifunction then there
exists a sequence of continuous, with respect to the Hausdorff distance, multifunctions ϕn : T →
CLB(Y ) almost everywhere convergent to ϕ.
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Proof. It is enough to observe that ϕ is almost separably-valued and, by the completeness of
measure, ϕ is measurable with respect to the topology induced by the Hausdorff distance. �

As an another application of Theorem 2 we obtain a strengthening of a result from [4] on
continuous approximation of compact-valued multifunctions.

Theorem 9. Let T be a normal space with a regular σ-finite measure and let Y be an arcwise
connected separable metrizable space. Then for each measurable multifunction ϕ : T → K(Y )
there exists a sequence of multifunctions ϕn : T → K(Y ) which are continuous with respect to
the Hausdorff distance, almost everywhere pointwise converging to ϕ.

Proof. The same arguments as in the proof of Proposition 3 show that K(Y ) with the topol-
ogy generated by the Hausdorff distance is almost arcwise connected. On the other hand,
a measurable multifunction is measurable with respect to this topology. Thus we can apply
Theorem 2. �
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