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Abstract. We state a ”sandwich” type theorem for maps of bi-convexity spaces (sets with
two convexity structures). In a special case, this yields a result on separation of meet and
join homomorphisms of distributive lattices.

1. Introduction

A function f : R → R is quasi-convex (quasi-concave) if f(x) 6 max{f(a), f(b)} (f(x) >
min{f(a), f(b)}) whenever x ∈ [a, b]. A result of Förg-Rob, Nikodem and Páles [2] says that
if f, g : R → R are such that f is quasi-concave, g is quasi-convex and f 6 g then there exists
a monotone map h : R → R such that f 6 h 6 g. A similar ”sandwich” type theorem is valid
for maps of arbitrary linearly ordered spaces (see below) but fails to hold for maps from R2

to R.
One can easily check that a map f : R → R is quasi-convex (quasi-concave) iff f−1(−∞, a]
(f−1[a,+∞)) is convex for each a ∈ R. Also, f is monotone iff it is simultaneously quasi-
convex and quasi-concave. This suggests that the definition of such classes of maps can be
formulated using the notion of convexity structures. Then one can look for sandwich type
theorems for classes of spaces larger than linearly ordered sets. By a ”space” we mean a
bi-convexity space, i.e. a set equipped with two convexity structures - then an analogue of
quasi-convex/quasi-concave maps can be defined. We show that a sandwich theorem for the
class of S4 bi-convexity spaces (which is the most natural class, containing real vector spaces)
holds when the image space is a complete Boolean algebra (which is a bi-convexity space
with the convexities consisting of ideals and filters). Under some natural conditions, complete
Boolean algebras are the only spaces having such a property.

2. Bi-convexity spaces

By a convexity on a set X we mean, as in [8], a collection G ⊂ P(X) stable under intersections,
unions of chains and containing ∅, X. The convex hull of A ⊂ X is defined by convG A =⋂
{G ∈ G : A ⊂ G}. A bi-convexity space is a triple 〈X,L,U〉, where L and U are two

convexities on a set X, called the lower and the upper convexity. The members of L and U
are called lower convex and upper convex respectively. We denote by convL and convU the
convex hull with respect to the lower and the upper convexity respectively. The class of bi-
convexity spaces was defined implicitly in [1]. Any subset of a bi-convexity space is also a
bi-convexity space with the convexities consisting of the traces of lower/upper convex sets,
see [8]. Every convexity space (a pair 〈X,G〉, where G is a convexity on X) can be viewed
as a bi-convexity space 〈X,G,G〉 - this provides natural examples of bi-convexity spaces.
If 〈X,L,U〉 and 〈X ′,L′,U ′〉 are two bi-convexity spaces then a map f : X → X ′ is lower
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convexity preserving (lcp for short) provided f−1(G) ∈ L whenever G ∈ L′. Equivalently:
f(convL S) ⊂ convL f(S) for every finite S ⊂ X, see [8]. We define similarly the notion of
an upper convexity preserving (ucp) map. A map f : X → X ′ is convexity preserving (cp
for short) if f is both lcp and ucp. A bi-convexity space 〈X,L,U〉 is S4 provided that for
each two disjoint sets L ∈ L, U ∈ U there exist an H ∈ U such that U ⊂ H, L ⊂ X \ H
and X \ H ∈ L. Every S4 space satisfies the Pasch axiom: for every a ∈ X and for every
M1,M2, N1, N2 ∈ [X]<ω if convL({a} ∪M1) ∩ convU N1 6= ∅ 6= convL M2 ∩ convU ({a} ∪N2)
then convL(N1 ∪ N2) ∩ convU (M1 ∪ M2) 6= ∅ (indeed, otherwise there is no H ∈ U with
X \ H ∈ L and M1 ∪ M2 ⊂ H, N1 ∪ N2 ⊂ X \ H). In fact, the Pasch axiom characterizes
S4, see [4]. Real vector spaces (or their convex subsets with the relative convexity) provide
natural examples of S4 convexity spaces.
Let 〈L,∧,∨〉 be a lattice. Denote by I(L) (F(L)) the collection of all ideals (filters) in L
respectively (∅, L are non-proper filters and ideals). Let G(L) be the convexity generated by
I(L)∪F(L). Then 〈L, I(L),F(L)〉 is a bi-convexity space and 〈L,G(L)〉 is a convexity space
(cf. [1, 8]). Note that the lower (upper) convex hull of a finite set S ⊂ L equals the principal
ideal (filter) generated by sup S (inf S). By Stone-Birkhoff’s theorem (cf. [3]), a lattice is S4

iff it is distributive.
The sandwich theorem of Förg-Rob, Nikodem and Páles can be now stated as follows. For
completeness, we sketch a proof.

Theorem 2.1. Let X, Y be linearly ordered spaces. If f, g : 〈X,G(X)〉 → 〈Y, I(Y ), F(Y )〉 are
such that f is upper convexity preserving, g is lower convexity preserving and f 6 g then there
exists a convexity preserving map h : 〈X,G(X)〉 → 〈Y, I(Y ),F(Y )〉 such that f 6 h 6 g.

Proof. Set I1 = {x ∈ X : (∀ y 6 x) f(y) 6 f(x)} and I2 = {x ∈ X : (∀ y 6 x) g(y) > g(x)}.
Observe that I1, I2 ∈ I(X), f | I1, g | (X \ I2) are increasing and f | (X \ I1), g | I2 are
decreasing. Now, if e.g. I1 ⊂ I2 then we can define h(x) = g(x) for x ∈ I2 and h(x) = f(x)
for x ∈ X \ I2, obtaining a monotone map between f, g. �

Consider the four-element Boolean algebra X = {0, 1} × {0, 1} (with coordinate-wise order)
and the three-element linearly ordered space Y = {0, 1, 2}. Define f, g : X → Y by setting
f(0, 0) = f(0, 1) = 0, f(1, 0) = 1, f(1, 1) = 2, g(0, 0) = 0, g(1, 0) = 1 and g(0, 1) = g(1, 1) = 2.
It is easy to check that f is ucp, g is lcp and f 6 g but there is no cp map between f, g. Thus
an analogue of Theorem 2.1 is not valid for non-linearly ordered spaces. This example can be
easily modified to show the same for maps of type R2 → R.

3. Main result and its consequences

Let X be a bi-convexity space and let B be a Boolean algebra (always considered as a bi-
convexity space). Furthermore, let f, g : X → B be two maps such that f is ucp, g is lcp and
f 6 g. We say that a map h : M → B, where M ⊂ X, is well-placed (between f, g) provided
for each S, T ∈ [M ]<ω and F,G ∈ [X]<ω the following implication holds:

convL(S ∪G) ∩ convU (T ∪ F ) 6= ∅ =⇒ convL(h(S) ∪ g(G)) ∩ convU (h(T ) ∪ f(F )) 6= ∅.

Observe that if h : X → B is well-placed then f 6 h 6 g and h is cp. Indeed, setting
S = F = {p} and T = G = ∅ above, we get f(p) 6 h(p). Similarly h(p) 6 g(p). If S is finite
and p ∈ convL S then convL S ∩ convU{p} 6= ∅ whence convL h(S) ∩ convU{h(p)} 6= ∅. This
means h(p) ∈ convL h(S). Thus h is lcp. By the dual argument, h is also ucp.
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Lemma 3.1. Let B be a complete Boolean algebra and let A,B be two collections of finite
subsets of B such that convL S ∩ convU T 6= ∅ whenever S ∈ A, T ∈ B. Then

⋂
S∈A convL S ∩⋂

T∈B convU T 6= ∅.

Proof. Let aS = supS, bT = inf T and let p = supT∈B bT . Then bT 6 p 6 aS for every S ∈ A,
T ∈ B. Hence p ∈

⋂
S∈A convL S ∩

⋂
T∈B convU T . �

Lemma 3.2. In every Boolean algebra, the following equivalence holds:

convL(A ∪B) ∩ convU (C ∪D) 6= ∅ ⇐⇒ convL(A ∪ ¬D) ∩ convU (C ∪ ¬B) 6= ∅,

where ¬X = {¬x : x ∈ X} and ¬x denotes the complement of x.

Proof. Suppose that convL(A∪¬D)∩ convU (C ∪¬B) = ∅. Then there exists an ultrafilter P
with C ∪ ¬B ⊂ P and (A ∪ ¬D) ∩ P = ∅. Now D ⊂ P and B is disjoint from P . It follows
that P separates C ∪D from A∪B and consequently convL(A∪B)∩ convU (C ∪D) = ∅. �

Now we can state our main result.

Theorem 3.3. Let B be a complete Boolean algebra, let X be an S4 bi-convexity space and
let f, g : X → B be such two maps that f is ucp, g is lcp and f 6 g. If M ⊂ X then every
well-placed map h : M → B can be extended to a convexity preserving map h : X → B such
that f 6 h 6 g.

Proof. We show that h can be extended to a well-placed map h : X → B. The union of a
chain of well-placed maps is also well-placed. Thus we should only show that for a fixed point
a ∈ X \M , h can be extended to a well-placed map h′ : M ∪{a} → B. Consider two collections
of intervals:

AU = {convU (h(T ) ∪ f(F ) ∪ ¬h(S)∪¬g(G)) : S, T ∈ [M ]<ω, F, G ∈ [X]<ω,

convL(S ∪ {a} ∪G) ∩ convU (T ∪ F ) 6= ∅},
AL = {convL(h(S) ∪ g(G) ∪ ¬h(T )∪¬f(F )) : S, T ∈ [M ]<ω, F, G ∈ [X]<ω,

convL(S ∪G) ∩ convU (T ∪ {a} ∪ F ) 6= ∅}.

We show that every element of AU meets every element of AL. Fix S1, S2, T1, T2 ∈ [M ]<ω and
F1, F2, G1, G2 ∈ [X]<ω such that

convL(S1 ∪ {a} ∪G1) ∩ convU (T1 ∪ F1) 6= ∅ 6= convL(S2 ∪G2) ∩ convU (T2 ∪ {a} ∪ F2).

Applying the Pasch axiom for X we get convL(S1∪G1∪S2∪G2)∩convU (T1∪F1∪T2∪F2) 6= ∅.
Since h is well-placed, we obtain

convL(h(S1) ∪ g(G1) ∪ h(S2) ∪ g(G2)) ∩ convU (h(T1) ∪ f(F1) ∪ h(T2) ∪ f(F2)) 6= ∅.

Applying Lemma 3.2 for A = h(S2) ∪ g(G2), B = h(S1) ∪ g(G1), C = h(T1) ∪ f(F1) and
D = h(T2) ∪ f(F2) we get

convL(h(S2) ∪ g(G2) ∪ ¬h(T2) ∪ ¬f(F2)) ∩ convU (h(T1) ∪ f(F1) ∪ ¬h(S1) ∪ ¬g(G1)) 6= ∅.

Now, applying Lemma 3.1 we can find a point

b ∈
⋂
AU ∩

⋂
AL.
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Define h′ : M ∪ {a} → B by setting h′(a) = b and h′ | M = h. It remains to show that h′

is well-placed. For let S′, T ′ ∈ [M ∪ {a}]<ω and F,G ∈ [X]<ω be such that convL(S′ ∪ G) ∩
convU (T ′ ∪ F ) 6= ∅. We have to check that

(∗) convL(h′(S′) ∪ g(G)) ∩ convU (h′(T ′) ∪ f(F )) 6= ∅.

If S′, T ′ ⊂ M or a ∈ S′ ∩ T ′ then we are done, so suppose that e.g. S′ = S ∪ {a} and
T ′ = T ⊂ M . By the construction of AU , b ∈ convU (h(T )∪ f(F )∪¬h(S)∪¬g(G)). Applying
Lemma 3.2 for A = {b}, B = h(S) ∪ g(G), C = h(T ) ∪ f(F ) and D = ∅ we get (∗). This
completes the proof. �

Corollary 3.4. Under the above assumptions, there exists a convexity preserving map h : X →
B with f 6 h 6 g.

Proof. It is enough to show that the empty map is well-placed. Suppose that p ∈ convL G ∩
convU F 6= ∅, where F,G ∈ [X]<ω. Since f is ucp and g is lcp, we have f(p) ∈ convU f(F ) and
g(p) ∈ convL g(G). Now, since f(p) 6 g(p), we get f(p), g(p) ∈ convL g(G) ∩ convU f(F ). �

The next corollary was proved in [5], it is a Tietze type extension theorem for convexity
preserving maps.

Corollary 3.5. Let B be a complete Boolean algebra and let h : A → B be a cp map defined
on a convex subset of an S4 convexity space 〈X,G〉. Then there exists a cp map h : X → B
extending h.

Proof. Define f, g : X → B by setting f | A = g | A = h and f | (X \A) = 0B, g | (X \A) = 1B.
We check that h is well-placed between f, g; then we can apply Theorem 3.3. Fix S, T ∈ [A]<ω

and F,G ∈ [X]<ω with p ∈ conv(S ∪ G) ∩ conv(T ∪ F ). If F ∪ G ⊂ A then g(G) = h(G),
f(F ) = h(F ) and hence the set

K = convL(h(S) ∪ g(G)) ∩ convU (h(T ) ∪ f(F ))

contains h(p), since h is cp. Finally, if G \ A 6= ∅ then 1B ∈ g(G) and hence also K 6= ∅ since
convL(h(S) ∪ g(G)) = B. Similarly, K 6= ∅ in case F \A 6= ∅. This completes the proof. �

Remarks . (a) Observe that the statement of Corollary 3.4 for B = {0, 1} is in fact a reformu-
lation of axiom S4, since lower/upper convex sets can be identified with lcp/ucp characteristic
functions.
(b) If f, g are as in Theorem 3.3 and h can be extended to a cp map h with f 6 h 6 g
then h is well-placed between f, g. Indeed, if x ∈ convL(S ∪ G) ∩ convU (T ∪ F ) in X then
h(x) ∈ convL(h(S ∪G)) ∩ convU (h(T ∪ F )) ⊂ convL(h(S) ∪ g(G)) ∩ convU (h(T ) ∪ f(F )).
(c) It is proved in [6] that complete Boolean algebras are the only S4 convexity spaces sat-
isfying the assertion of Corollary 3.5. Thus, if B = 〈B,L,U〉 is a bounded partially ordered
bi-convexity space satisfying the assertion of Theorem 3.3 and having some ”reasonable” prop-
erties (specifically: the convexity generated by L∪U should be S4 and the lower/upper convex
hull of a set containing the greatest/least element should equal B), then we can deduce that
B is isomorphic to a complete Boolean algebra, by showing that B satisfies the assertion of
Corollary 3.5 and applying the mentioned result from [6].

Finally, we state a version of Theorem 3.3 for maps of distributive lattices.
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Proposition 3.6. Let K, L be lattices considered as bi-convexity spaces. A map f : K → L is
lower convexity preserving if and only if it is a join homomorphism, i.e. f(a∨b) = f(a)∨f(b)
for every a, b ∈ K. Dually, f is ucp iff it is a meet homomorphism.

Proof. Let f be lcp. Denote by Ip the principal ideal generated by a point p ∈ L. If x, y ∈ K and
x 6 y then y ∈ f−1(If(y)), hence x ∈ f−1(If(y)) and consequently f(x) ∈ If(y) which means
f(x) 6 f(y). Thus f is order-preserving. Now, for x, y ∈ K we have x, y ∈ f−1(If(x)∨f(y));
hence also x ∨ y ∈ f−1(If(x)∨f(y)) and consequently f(x ∨ y) 6 f(x) ∨ f(y). Since f is order-
preserving, we get f(x) ∨ f(y) = f(x ∨ y).
Now let f be a join homomorphism and consider an ideal I ⊂ L. If x, y ∈ f−1(I) and z 6 x∨y
then f(z) 6 f(x ∨ y) = f(x) ∨ f(y) ∈ I; hence z ∈ f−1(I). Thus f−1(I) is an ideal in K and
therefore f is lcp. �

Theorem 3.7. Let L be a distributive lattice, let B be a complete Boolean algebra. Fur-
thermore, let f, g : L → B be such two maps that f is a meet homomorphism, g is a join
homomorphism and f 6 g. If K is a sublattice of L and h : K → B is a lattice homomorphism
satisfying

(1) ∀ s, t ∈ K ∀ a, b ∈ L, t ∧ a 6 s ∨ b =⇒ h(t) ∧ f(a) 6 h(s) ∨ g(b),

then there exists a lattice homomorphism h : L → B with f 6 h 6 g and h | K = h. In
particular, there exists a lattice homomorphism between f and g.

Proof. We should only check that h is well-placed. Let S, T ∈ [K]<ω, F,G ∈ [L]<ω be such
that convL(S ∪ G) ∩ convU (T ∪ F ) 6= ∅. This is equivalent to (inf T ) ∧ (inf F ) 6 (supS) ∨
(supG). Applying condition (1) we get h(inf T )∧f(inf F ) 6 h(supS)∨g(supG) which means
convL(h(S) ∪ g(G)) ∩ convU (h(T ) ∪ f(F )) 6= ∅. �

Observe that every partial lattice homomorphism satisfies condition (1) with f = 0B and
g = 1B. Thus, as a consequence, we obtain the theorem of Sikorski [7] on injectivity of
complete Boolean algebras, which says that every partial Boolean homomorphism with values
in a complete Boolean algebra can be extended to a full homomorphism. The theorem of
Sikorski characterizes complete Boolean algebras among all distributive lattices. Thus there
are no other bounded distributive lattices satisfying the assertion of Theorem 3.7 in place of
B.

References

[1] J.E. Ellis, A general set-separation theorem, Duke Math. J. 19 (1952) 417-421.
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