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Abstract

A coloring of a set X is any subset C of [X]V, where N > 1 is a natural number. We
give some sufficient conditions for the existence of a perfect C-homogeneous set, in case
where C' is G5 and X is a Polish space. In particular, we show that it is sufficient that
there exist C-homogeneous sets of arbitrarily large countable Cantor-Bendixson rank. We
apply our methods to show that an analytic subset of the plane contains a perfect 3-clique
if it contains any uncountable k-clique, where k is a natural number or Xy (a set K is a
k-clique in X if the convex hull of any of its k-element subsets is not contained in X).

2000 AMS Subject Classification: Primary: 52A37, 54H05, Secondary: 03E02, 52A10.
Keywords: Open (Gs) coloring, perfect homogeneous set, clique.

1 Introduction

For a set X and natural number N, [X]" denotes the collection of all N-element subsets
of X. A (two-color) coloring of X is (represented by) a set C' C [X]V. We identify [X]V
with a suitable subspace of the product X~. We are interested in the following problem: find
sufficient conditions for the existence of a perfect C'-homogeneous set P C X, where X is
a Polish space and C' C [X]" is open (or more generally Gs). A natural example for this
problem is the following: let X C RY be closed and C' = {s € [X]¥: convs € X}. Then C is
open and a C-homogeneous set is called a k-clique in X. It is known (see [3]) that there exists
a closed set X C R? such that X is not a countable union of convex sets but every k-clique
in X is countable for every k < w. On the other hand, it is proved in [3] that if a closed set
X C R? contains an uncountable k-clique for some k then it contains a perfect 3-clique.

We prove that if C' is a G5 coloring of a Polish space and there are no perfect C-homogeneous
sets, then there is a countable ordinal + such that the Cantor-Bendixson rank of every C-
homogeneous set is < 7. In the context of cliques, this strengthens the result of Kojman [2]



(see Theorem 3.1(a) below). From our result it follows that if C' is a G5 coloring of an analytic
space then either there exists a perfect C-homogeneous set or all C-homogeneous sets are
countable. This is not true for F, colorings: a result of Shelah [4] states that consistently
there exist F, 2-colorings with uncountable but not perfect homogeneous sets. Concerning
cliques, we investigate analytic subsets of the plane. We prove that if an analytic set X C R?
contains an uncountable Rg-clique then X contains also a perfect 3-clique.

1.1 Notation

Any subset of [X]V is called a coloring (or an N-coloring) of X. We write =C' instead of
[X]V\ C. A set S C X is C-homogeneous if [A]N C C. We identify [X]V with the subspace
of X consisting of all N-tuples (zq, ...,zy_1) With z; # z; for i # j. Thus we may consider
topological properties of colorings. If f: X — Y is a function then we write f[S] for the image
of aset S C X and f(s) for the value at a point s € X. By a perfect set we mean a compact,
nonempty, topological space with no isolated points.

2 On colorings

First we recall a simple result on open 2-colorings of analytic spaces (see Todorcevi¢-Farah’s
book [5, p. 81]). We present a proof for completeness.

Proposition 2.1. Let X be an analytic space and let C C [X]? be open. Then either there
exists a perfect C'-homogeneous set or else X is a countable union of =C'-homogeneous sets,
ie. X =, e, An where [A;)2NC =0 for everyn € w.

new

Proof. Let f: w“ — X be continuous and onto X. Define
C' = {s € [w*]?: f[s] € C}.

Note that if {z,y} € C’ then f(x) # f(y). Now observe that if w* is a union of countably
many —C’-homogeneous sets, then the same holds for X. Also, if P is a compact, perfect, C’-
homogeneous subset of w* then f [ P is one-to-one and hence f[P] is a perfect C-homogeneous
set. Thus we may assume that X = w* and that X cannot be covered by countably many
—(C-homogeneous sets.

Let V consist of all x € w* such that some neighborhood of z is a countable union of —C-
homogeneous sets. By assumption, it follows that V' # w“. Let B = w* \ V. Now we are
working in B: construct a tree T = {us: s € 2<“} of open subsets of B such that T' defines a
Cantor set and {x,y} € C whenever = € u,, y € u; and s,t € 2% are distinct, k < w. Coming
to split us, where s € 2, we first find a pair {x,y} € [us]?> N C (this is possible since u; is not
—C-homogeneous). Next, using the fact that C' is open, enlarge x,y to open sets ug~g, Ug~1,
preserving C-homogeneity. The perfect set obtained from T is evidently C-homogeneous. [

The above result is no longer valid when we replace the word ”open” with ”closed”, see [5, p.
83]. Also, the above proposition cannot be strengthened for colorings of triples: there exists a
clopen 3-coloring of 2¢ such that there are no uncountable homogeneous sets neither of this



color nor of its complement, see Blass’ example [1]. In this example, the Cantor-Bendixson
rank of any homogeneous set is at most 1. Below we show that in this situation, there always
exists a countable ordinal which bounds the Cantor-Bendixson ranks of all homogeneous sets.
In fact this is true for G colorings.

For a topological space Y and an ordinal o we denote by Y@ the a-derivative of Y the
Cantor-Bendizson rank of Y is the minimal ordinal  such that Y1 is empty.

Theorem 2.2. Let C' be a Gs N-coloring of a Polish space X . If for every countable ordinal
v there exists a C-homogeneous set of the Cantor-Bendixson rank > ~ then X contains a
perfect C'-homogeneous set.

Proof. Fix a countable base B in X and fix a complete metric on X. Let C' =, c,, Cn, where
each C), is open and Cp11 C C),. We will construct a tree of open sets T' = {us: s € 2<¥}
with the following properties:

(i) clug; C us, clus Nclug = () if 5,¢ are incompatible and diam (u,) < 27 1eneth(s);

(ii) if k < w and s, ...,sny_1 € 2F are pairwise distinct then

{xo, .. .,J/‘Nfl} € Cy
whenever z; € ug,, 1 < N;

(iii) if # < w then for each v < w; there exists a C-homogeneous set P = P}, such that
P Ny, # 0 for each s € 2%,

We start with uy = X. Suppose that us has been defined for all s € 2%, Fix v < w; and
consider P = Py 11, as in (iii). Then for each s € 2 the set P() Nuy is infinite. Fix § € P()
such that |S Nwu,| = 2 for each s € 2F. Next, enlarge each € S Nwu, to a small open set
v, € B, contained in ug, such that {yo,...,yn—1} € Crs1 whenever y; are taken from pairwise
distinct v,’s. This is possible, because Cj; is open. Let ¢(y) = {vy: © € S}. This defines a
mapping ¢: w1 — [B]<“. As B is countable, there is unbounded F' C w; such that ¢ [ F' is
constant, say {v,-;: s € 2F i < 2}, where v,~; C u,. Set uy~; = v,~;. Observe that (i) holds

if we let v,’s to be small enough. Also (ii) holds, by the definition of v,’s. Finally, (iii) holds,
™)

because Py, Nuy # 0 for t € 2k+1 whenever v € F. By (ii) the perfect set obtained from
this construction is C-homogeneous. O

Using the above theorem and arguments from the proof of Proposition 2.1 we obtain the
following (see Shelah [4, Remark 1.14]):

Corollary 2.3. Let 1 < N < w and let C be a G5 N-coloring of an analytic space X . If there
exists an uncountable C-homogeneous set then there exists also a perfect one.



3 Applications to convexity

Let X C E, where F is a real vector space. A subset K of X is a k-clique (k can be a cardinal
or just a natural number, we will use this notion for ¥ < w and k£ = W) if convS € X
whenever S € [K*. If E is finite-dimensional and k > dim E then we can define the notion
of a strong k-clique replacing conv S by int conv.S in the definition. A finite set S C X is
(strongly) defected in X if conv S € X (int conv.S Z X). It is clear that the relation of strong
defectedness is open and defectedness is open provided that X is closed.

Applying the results of the previous section we get the following:

Theorem 3.1. (a) Let X be a closed set in a Polish linear space and let N < w. If X does
not contain a perfect N-clique then all N-cliques in X are countable. Moreover, there exists
an ordinal v < wy which bounds the Cantor-Bendixson ranks of all N-cliques in X.

(b) Let X be an analytic subset of R™. If m < N < w and X contains an uncountable strong
N-clique then X contains also a perfect one.

Theorem 3.1(a) was proved, under the stronger assumption that X is a countable union of
convex sets, by Kojman in [2].

In [3] we proved, in particular, that in a closed planar set either all cliques are countable or
there exists a perfect 3-clique. Here we prove the same for analytic sets, namely:

Theorem 3.2. Let X C R? be analytic. If X contains an uncountable Xo-clique then X
contains a perfect 3-clique.

Proof. Fix a continuous function f: w* — X onto X and fix an uncountable Ry-clique K C X.
We may assume that every line contains only countably many points of L: otherwise, for some
line L, X N L contains an uncountable Ry-clique, so it contains a perfect 2-clique (Proposition
2.1), which is also a 3-clique in X. Fix uncountable K’ C w* such that f [ K’ is a bijection
onto K.

A finite collection {uqg,...,ux—_1} of open subsets of w* will be called relevant if each w;
contains uncountably many points of K’, clu; N clu; = () whenever ¢ < j < k and

int conv{ f(xo), f(x1), f(x2)} € X

whenever xg,x1, o are taken from pairwise distinct u;’s. To find a perfect 3-clique in X, it
suffices to construct a perfect tree of open sets in w* with relevant levels. If P is a perfect set
obtained from such a tree then f [ P is one-to-one and f[P] is a perfect strong 3-clique.

Suppose that we have a relevant collection {uy, ..., u}. We have to show that it is possible to
split each u; to obtain again a relevant collection. We will split uy. Let L = K’ Nuy and pick
yi € u; fori < k. Define ¢;: [L]? — 2 by letting ¢;(xg, 1) = 1 iff conv{f(z0), f(x1), f(v:)} € X.
Observe that there are no infinite ¢;-homogeneous sets of color 0: if S C L is infinite then,
by Carathéodory’s theorem, there is s € [S] such that f[s] is defected in X (because f[S]
is defected) and hence for some xg,z1 € s we have conv{f(xo), f(z1), f(yi)} € X, because
convT C Ux,yET conv{z,y,p} for T C R? p € R2. Using k times the theorem of Dushnik-
Miller we obtain uncountable L' C L which is ¢;-homogeneous of color 1 for ¢ < k. Shrinking
L' we may assume that each nonempty open subset of L’ is uncountable. Now choose disjoint



open sets v, v1 with clv; C ug and v; N L' # () for j < 2. To finish the proof we need the
following geometric property of the plane:

Claim 3.3. Let A,B C X C R? and ¢ € R? be such that A, B are uncountable, each line
contains countably many points of AU B and conv{a,b,c} € X whenever a € A, b € B. Then
there are ag € A, by € B such that int conv{ag, by, c} Z X.

Proof. Suppose this is not true. Observe that, replacing A and B if necessary, we may assume
that for some by € B, [a,bo] U [a,c] € X whenever a € A. Indeed, if [b,c¢] C X for some
b € B then we take by = b, otherwise we take any ag € A and we replace A and B. Now,
without loss of generality, we may assume that by = (—1,0), ¢ = (1,0) and A is contained in
(—1,1) x (0,1). Now, if some vertical line contains two elements of A then we are done: we
take ag € A such that some a; € A is below ag, then the relative interiors of segments [bg, a1],
[c,a1] are contained in the interior of conv{ayg, by, c}.

Assume that each vertical line contains at most one element of A. As A is uncountable, there
is a1 € A such that arbitrarily close to a; there are uncountably many points both on the left
and the right side of a;. Suppose now that e.g. {bg, a1} is defected in X. As [bg, a1] contains
only countably many points of A, we can find as € A which is close enough to a1, on the left
side of a; and not in [by, a;]. If ag is below [by, a1] then we can set ay = a1, otherwise we can
set ag = as. ]

Let 4 = 0. Using Claim 3.3 for A = flugNL'], B = fl[tuNL'] and ¢ = f(y;) we get z; € v; such
that int conv{f(xo), f(z1), f(yi)} € X. By continuity, shrink vy, v; and enlarge y; to an open
set u; C u; such that each triple selected from flvg] x flv1] x f[u}] is (strongly) defected in X.
Repeat the same argument for each i < k, obtaining a relevant collection {u, ..., u)_,,v(, ]}
which realizes the splitting of ug. This completes the proof. O

Actually, we have proved that if an analytic planar set X contains any uncountable Ng-clique
then either X contains a perfect strong 3-clique or else, X N L contains a perfect 2-clique for
some line L.
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