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Abstract

Let 〈P,≤〉 be a partially ordered set. The poset Boolean algebra
of P , denoted F (P ), is defined as follows: The set of generators of
F (P ) is {xp : p ∈ P}, and the set of relations is {xp · xq = xp : p ≤ q}.
We say that a Boolean algebra B is well-generated, if B has a sub-
lattice G such that G generates B and 〈G,≤B �G〉 is well-founded. A
well-generated algebra is superatomic.
Theorem 1. Let 〈P,≤〉 be a partially ordered set. The following
are equivalent. (i) P does not contain an infinite set of pairwise in-
comparable elements, and P does not contain a subset isomorphic to
the chain of rational numbers. (ii) F (P ) is superatomic. (iii) F (P ) is
well-generated.

The equivalence (i) ⇔ (ii) is due to M. Pouzet [P]. A partially
ordered set W is well-ordered, if W does not contain a strictly de-
creasing infinite sequence, and W does not contain an infinite set of
pairwise incomparable elements.
Theorem 2. Let F (P ) be a superatomic poset algebra. Then there
are a well-ordered set W and a subalgebra B of F (W ), such that F (P )
is a homomorphic image of B.

This is similar but weaker than the fact that every interval alge-
bra of a scattered chain is embeddable in an ordinal algebra ([AB1]).
Remember that an interval algebra is a special case of a poset algebra.
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1 Introduction

In this paper we investigate poset Boolean algebras and especially super-
atomic poset Boolean algebras. The construction of a Boolean algebra from
a partially ordered set (poset) is natural. Yet, not much is known about the
relationship between the properties of the poset and the properties of the
Boolean algebra constructed from it. Two of the three theorems proved in
this work are of this kind.

A poset 〈P,≤P 〉 is denoted for simplicity by P , and when the context is
clear we write ≤ rather than ≤P .

For Boolean algebras we use the notations of [Ko]. Thus +, · , − and ≤
denote the join, meet, complementation and partial ordering of a Boolean
algebra B. The zero and one of B are denoted by 0 and 1.

Poset algebras are defined as follows. Let 〈P,≤〉 be a partially ordered
set. The poset Boolean algebra of 〈P,≤〉, denoted by F (〈P,≤〉), is defined
by specifying a set of generators together with a set of relations on them.
The set of generators for F (〈P,≤〉) is {xp : p ∈ P}. The set of relations is
{xp · xq = xp : p, q ∈ P and p ≤ q} union with the set of all identities of
the variety of Boolean algebras. We shall need a more formal definition of
F (〈P,≤〉).

Definition 1.1. Let Y = {yp : p ∈ P} be a set of distinct variables and T (Y )
be the set of all terms in the language {+, ·,−, 0, 1} with variables from Y .
Let

RP = {yp · yq = yp : p, q ∈ P and p ≤ q}.
Define an equivalence relation ∼ on T (Y ): t ∼ u if u can be obtained from t
by a sequence of substitutions using the identities of the variety of Boolean
algebras and the relations of RP . For t ∈ T (Y ) denote [t] = t/∼ and let
T [Y ] = {[t] : t ∈ T (Y )}. Define [t] + [u] = [t+ u], [t] · [u] = [t · u] etc..

It is well-known from universal algebra that such a construction yields a
Boolean algebra. The resulting Boolean algebra 〈T [Y ],+, ·,−, 0, 1〉 is called
the poset algebra of P . We denote the set of equivalence classes T [Y ] by
F (P ) and [yp] by xp.

We shall use the following well-known property of T [Y ] which is a special
case of a more general theorem in universal algebra.

Theorem 1.2. Let B be a Boolean algebra and g : Y → B. Suppose that
{g(y) : y ∈ Y } satisfies the relations of RP . That is, for every p ≤ q in P ,
g(yp) · g(yq) = g(yp). Then there is a homomorphism g̃ : T [Y ] → B such that
for every y ∈ Y , g̃([y]) = g(y).

There is an alternative description of F (P ) using topology. A subset
R of P is a final segment if for every p ∈ R and q ∈ P : if p ≤ q then
q ∈ R. Let Fs (P ) be the set of final segments of P . Viewing a final segment
as its characteristic function, it is obvious that Fs (P ) is a closed subspace
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of {0, 1}P . Let F̂ (P ) be the Boolean algebra of clopen subsets of Fs (P ).
Consider the map xp 7→ {R ∈ Fs (P ) : p ∈ R}. In Theorem 2.3 it will be

shown that this map extends to an isomorphism between F (P ) and F̂ (P ).
Thus we have a description of F (P ) as an algebra of subsets of Fs (P ).

Poset algebras can be viewed in yet another way. A topological lattice
is a structure of the form 〈X, τ,∨,∧〉 where 〈X, τ〉 is a topological space,
〈X,∨,∧〉 is a lattice and ∨ and ∧ are continuous. In Fs (P ) define x∨y = x∪y
and x ∧ y = x ∩ y. This makes Fs (P ) into a topological lattice which we
denote by L(P ). Obviously, L(P ) is a distributive lattice.

Our first main theorem (Theorem 2.6) is that every Hausdorff compact
0-dimensional topological distributive lattice is isomorphic to L(P ) for some
poset P .

We next define the notions used in the statement of the main theorems
of Sections 3 and 4.

A poset P is well-founded, if P has no strictly decreasing infinite sequence.
Let B be a Boolean algebra. A member a ∈ B is called an atom of B, if a

is a minimal element of B−{0}. A Boolean algebra B is superatomic, if every
subalgebra of B has an atom. A Boolean algebra B is called a well-generated
algebra, if B has a sublattice G (that is, a subset closed under + and ·) such
that:
(1) G generates B;
(2) 〈G,≤B�G〉 is well-founded.

Every well-generated algebra is superatomic. This is proved in [BR] Propo-
sition 2.7(b). However, the proof is easy, and can be found by the reader.

We now turn to partial orderings. A subset of a poset P consisting of
pairwise incomparable elements is called an antichain of P .

A poset P is narrow, if P does not contain infinite antichains.
A poset P is scattered, if P does not contain a subset isomorphic to the

chain of rational numbers.
We can now state the second main theorem. It will be proved in Section 3.

Theorem 1.3. Let P be a partially ordered set. Then the following properties
are equivalent.
(1) P is narrow and scattered.
(2) F (P ) is superatomic.
(3) F (P ) is well-generated.

The implication (1) ⇒ (3) is the difficult part of Theorem 1.3. M. Pouzet
[P] proved the implication (1) ⇒ (2) (see R. Fräıssé [F] Section 6.7). But
now this fact follows easily from the implication (1) ⇒ (3).

The interval algebra of a linearly ordered set 〈L,<〉 is the subalgebra of
P(L) generated by the set {[a,∞) : a ∈ L} of left closed rays of L. This
algebra is denoted by B(L). The interval algebra of L is isomorphic to the
poset algebra of L when L has no minimum, and to the poset algebra of L
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minus its minimum when L has a minimum. Thus interval algebras are a
special case of poset algebras.

In [AB1] Theorem 3.4 it is proved that an interval algebra of a scattered
linear ordering is embeddable in the interval algebra of a well-ordering. This
result motivates our third main theorem.

A partially ordered set is well-ordered, if it is narrow and well-founded.

Theorem 1.4. Let P be a narrow scattered partially ordered set. Then there
is a well-ordered poset W and a subalgebra B of F (W ) such that F (P ) is a
homomorphic image of B.

Theorems 1.3 and 1.4 use a structure theorem for narrow scattered par-
tially ordered sets, which is similar to the theorem of Hausdorff on the struc-
ture of scattered linear orderings. This theorem is due to Abraham. It is
proved in [AB2] Theorem 3.4. We next quote this theorem.

Suppose that P is a poset and for every a ∈ P , Qa is a poset. We define
the lexicographic sum of the indexed family {Qa : a ∈ P}, and denote it by∑
{Qa : a ∈ P}. The universe of

∑
{Qa : a ∈ P} is

⋃
{{a} × Qa : a ∈ P}.

The partial ordering on
∑
{Qa : a ∈ P} is defined as follows: 〈a, q〉 ≤ 〈b, r〉,

if either (i) a <P b or (ii) a = b and q ≤Qa r.
We say that a poset 〈P,≤〉 is anti well-ordered, if 〈P,≥〉 is well-ordered.

Let W denote the class of posets which are either well-ordered or anti well-
ordered.

Suppose that ≤1 and ≤2 are partial orderings of a set P . We say that
〈P,≤2〉 is an augmentation of 〈P,≤1〉 iff ≤1 ⊆ ≤2 .

Theorem 1.5. ([AB2] Theorem 3.4)
Let H 0 be the class of all posets whose universe is a singleton. Let H be
the closure of H 0 under lexicographic sums indexed by members of W, and
under isomorphism.
Then for every poset P the following are equivalent.
(1) P is narrow and scattered.
(2) P is an augmentation of a member of H.

Theorem 1.4 follows from Theorem 1.5 and from the following theorem
which is of independent interest.

Theorem 1.6. Let P ∈ H. Then there is a well-ordered poset W such that
F (P ) is embeddable in F (W ).

Theorems 1.6 and 1.4 will be proved in Section 4.

We conjecture that Theorem 1.4 cannot be strengthened by requiring that
for some well-ordered poset W , F (P ) is embeddable in F (W ). We thus ask
the following question.

Question 1.7. Is there a narrow scattered poset P such that F (P ) cannot
be embedded in F (W ) whenever W is a well-ordered poset?
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In [AB1] Theorem 1, it is proved that a superatomic subalgebra of an
interval algebra is embeddable in an interval algebra of a scattered linear
ordering. We ask whether the analogous fact for partially ordered sets is also
true.

Question 1.8. Let B be a superatomic subalgebra of a poset algebra. Does
there exist a narrow scattered poset P such that B is embeddable in F (P ) ?

2 Topological descriptions of poset algebras

In this section we show that the poset algebra of P is the algebra of clopen
sets of the space of final segments of P . We also characterize poset algebras
as the algebras of clopen sets of Hausdorff compact 0-dimensional topological
distributive lattices.

Referring to Definition 1.1, let P be a poset, Y = {yp : p ∈ P}, B be a
Boolean algebra and f : Y → B. We say that f respects the relations of RP

if f(yp) · f(yq) = f(yp) whenever p ≤ q. Note that this is equivalent to the
fact that the function p 7→ f(yp) is order preserving.

The property of F (P ) mentioned in Theorem 1.2 characterizes F (P ) up
to an isomorphism. This is noted in the following theorem.

Theorem 2.1. Let P be a poset, B be a Boolean algebra and g : Y → B.
Suppose that g and B satisfy the following three properties:

(1) g respects the relations of RP .

(2) The image of g generates B.

(3) For every Boolean algebra C and a function h from Y to C: if h respects
RP , then there is a homomorphism α : B → C such that α ◦ g = h.

Then F (P ) ∼= B and there is such an isomorphism ψ satisfying
ψ(xp) = g(yp), for every p ∈ P .

Proof. It is trivial that Clauses (1) - (3) characterize B up to an isomor-
phism. And by Theorem 1.2, F (P ) fulfills these clauses.

Let P(A) denote the powerset of A. P(A) is equipped with its Cantor
topology defined as follows. Let σ, τ be finite subsets of A. Denote
Uσ,τ = {x ∈ P(A) : σ ⊆ x and x ∩ τ = ∅}. The set of all Uσ,τ ’s is a base for
the topology of P(A).

Definition 2.2. A subset R of a poset P is a final segment of P if for every
p ∈ R and q ∈ P : if p ≤ q, then q ∈ R. The set of final segments of P is
denoted by Fs (P ).

For every p ∈ P let Vp = {x ∈ Fs (P ) : p ∈ x}. Let F̂ (P ) be the subalge-
bra of P(Fs (P )) generated by the set {Vp : p ∈ P}.

The following theorem provides an alternative (and sometimes more con-
venient) description of F (P ). It will be also used to prove some computa-
tional facts about F (P ).



6

Theorem 2.3. Let P be a poset.
(a) Fs (P ) is closed in P(P ), and F̂ (P ) is the set of clopen subsets of

Fs (P ).

(b) There is an isomorphism ϕ between F (P ) and F̂ (P ) such that for
every p ∈ P , ϕ(xp) = Vp.

(c) For every p 6= q in P , xp 6= xq.

Proof. (a) It is trivial that Fs (P ) is closed. Denote by clop (X) the set
of clopen subsets of a space X. If X is a Hausdorff compact 0-dimensional
space, and F ⊆ X is closed, then clop (F ) = {U ∩ F : U ∈ clop (X)}. It is
easy to see that a subset U ⊆ P(P ) is clopen iff it is a finite union of sets of
the form Uσ,τ .

It is also easy to see that for every V , V ∈ F̂ (P ) iff there is U of the

above form such that V = U ∩ Fs (P ). It follows that F̂ (P ) = clop (Fs (P )).

(b) By the definition of F̂ (P ) for every p, q ∈ P : if p ≤ q, then
Vp ⊆ Vq. So the relation Vp ∩ Vq = Vp holds between the generators Vp

and Vq of F̂ (P ). Recall that F (P ) is T [Y ] of Definition 1.1 and xp = [yp].

So by Theorem 1.2, there is a homomorphism ϕ : F (P ) → F̂ (P ) such that
ϕ([yp]) = Vp.

Since {Vp : p ∈ P} generates F̂ (P ), ϕ is surjective.
Let σ, τ be finite subsets of P . It is easy to see that:

If
⋂
{Vp : p ∈ σ} ∩

⋂
{−Vq : q ∈ τ} = ∅, then for some p ∈ σ

and q ∈ τ , p ≤ q.
(1)

Also, by the definition of the relations of F (P ),

If p ≤ q, then in F (P ), xp · −xq = 0. (2)

Now suppose that a ∈ F (P ) and ϕ(a) = ∅. The element a is the sum of
elements of the form

∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ}. Let us take one of

these summands. Then
∅ = ϕ(

∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ}) =

⋂
{Vp : p ∈ σ} ∩

⋂
{−Vq : q ∈ τ}.

By (1), there are p ∈ σ and q ∈ τ such that p ≤ q. By (2),∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ} = 0. It follows that a = 0. So ϕ is injective.

(c) If p 6= q, then Vp 6= Vq. Since ϕ(xp) = Vp and ϕ(xq) = Vq, xp 6= xq.

Definition 2.4. Let 〈P,≤〉 be a poset.
(a) We denote by 〈P,≤〉∗ the inverse ordering of 〈P,≤〉. That is,

〈P,≤〉∗ = 〈P,≥〉. We abbreviate 〈P,≤〉∗, and denote it by P ∗.
(b) Let a ∈ P . Then P≥a denotes the set {p ∈ P : p ≥ a}. For σ ⊆ P let

P≥σ = {p ∈ P : there is a ∈ σ such that p ≥ a}.
(c) Let P and Q be posets and α : P → Q. We say that α is a homomor-

phism from P to Q, if for every s, t ∈ P : if s ≤ t, then α(s) ≤ α(t).
We say that α is an embedding of P in Q, if for every s, t ∈ P : s ≤ t, iff

α(s) ≤ α(t).
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The next proposition collects some easy facts needed in the subsequent
sections.

Proposition 2.5. Let P be a poset and denote the set of generators of F (P )
by X := {xp : p ∈ P}.

(a) We denote the set of generators of F (P ∗) by {x∗p : p ∈ P}. Then the
function xp 7→ −x∗p, p ∈ P extends to an isomorphism between F (P ) and
F (P ∗). We denote this isomorphism by ψP .

(b) Let σ and τ be finite subsets of P . The following are equivalent.
(i)

∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ} = 0.

(ii) There are p ∈ σ and q ∈ τ such that p ≤ q.
(c) Let σ, τ ⊆ P be such that for every p ∈ σ and q ∈ τ , p and q

are incomparable. Suppose that b and c belong to the subalgebras of F (P )
generated respectively by {xr : r ∈ σ} and {xr : r ∈ τ}. If b ·c = 0, then b = 0
or c = 0.

(d) Let Q be a poset and α : P → Q be a homomorphism. Let
Z := {zq : q ∈ Q} be the set of generators of F (Q). Define ρ : X → Z as
follows: ρ(xp) = zα(p). Then
(1) ρ extends to a homomorphism ρα from F (P ) to F (Q).
(2) If α is an embedding of P in Q, then ρα is an embedding of F (Q) in
F (P ).

Proof. (a) The function ψ′P defined by xp 7→ −x∗p , p ∈ P , is an or-
der preserving function from {xp : p ∈ P} to F (P ∗). That is, for every
relation xp · xq = xp in the defining set of relations of F (P ), the relation
(−x∗p) · (−x∗q) = −x∗p holds for the images of the x ’s under ψ′P . So ψ′P ex-
tends to a homomorphism ψP between F (P ) and F (P ∗). Since Rng(ψ′P )
generates F (P ∗), ψP is surjective.

The homomorphism ψP ∗ : F (P ∗) → F (P ) is defined similarly.
ψP ∗(x∗p)=−xp. So ψP ∗(−x∗p)=xp. Hence (ψP ∗ ◦ ψP ) �{xp : p∈P}= Id . It
follows that ψP ∗ ◦ ψP = Id . So ψP is injective.

(b) Suppose that there are p ∈ σ and q ∈ τ such that p ≤ q. Then in
F (P ), xp · xq = xp. So in F (P ), xp − xq = 0. So in F (P ),∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ} = 0.

For the second direction we use the isomorphism ϕ between F (P ) and

F̂ (P ) defined in Theorem 2.3(b). Suppose that for every p ∈ σ and q ∈ τ ,
p 6≤ q. The set R :=

⋃
{P≥p : p ∈ σ} is a final segment of P . For every p ∈ σ,

p ∈ R; and for every q ∈ τ , q 6∈ R. So R ∈
⋂
{Vp : p ∈ σ} ∩

⋂
{−Vq : q ∈ τ}.

It follows that

ϕ(
∏
{xp : p∈ σ} ·

∏
{−xq : q ∈ τ}) =

⋂
{Vp : p∈ σ}∩

⋂
{−Vq : q ∈ τ} 6= ∅ .

So
∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ} 6= 0.

(c) Part (c) follows easily from Part (b).

(d) (1) A relation between generators of F (P ), has the form xs · xt = xs,
where s ≤ t in P . Since α is a homomorphism, α(s) ≤ α(t). So
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zα(s) · zα(t) = zα(s) holds in F (Q). That is, ρ(xs) · ρ(xt) = ρ(xs). This
implies (1).

(2) Let σ, τ ⊆ P be finite. Denote
xσ,τ =

∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ}. It suffices to show that for every

finite σ, τ ⊆ P , if ρα(xσ,τ ) = 0, then xσ,τ = 0.
Now, ρα(xσ,τ ) =

∏
{zα(p) : p ∈ σ} ·

∏
{−zα(q) : q ∈ τ}. So if ρα(xσ,τ ) = 0,

then by Part (b), there are p ∈ σ and q ∈ τ such that α(p) ≤ α(q). Since α
is an embedding, p ≤ q. So by Part (b), xσ,τ = 0.

Recall that the Cantor topology on P(A) was defined by the basic clopen
sets

Uσ,τ = {x ∈ P(A) : σ ⊆ x and x ∩ τ = ∅}

defined for every σ, τ finite subsets of A. The resulting topology is Hausdorff,
compact, and 0-dimensional.

Since the intersection (and unions) of a family of final segments is again a
final segment, Fs (P ) is a lattice (a sublattice of P(P )) in addition to being
a topological space. In fact it is a topological lattice as we shall see. Denote
by τP the Cantor topology on Fs (P ) and define

L(P ) := 〈Fs (P ), τP ,∪,∩〉.

The main goal of this section is to prove the following theorem.

Theorem 2.6. (a) Let P be a poset. Then L(P ) is a Hausdorff compact
0-dimensional topological distributive lattice.

(b) Let 〈X, τ,∨,∧〉 be a Hausdorff compact 0-dimensional topological dis-
tributive lattice. Then there is a poset P such that 〈X, τ,∨,∧〉 ∼= L(P ).

(c) If ϕ : L(P ) ∼= L(Q), then there is α : P ∼= Q such that α induces ϕ.
Actually, it is enough to assume that ϕ is a lattice isomorphism of Fs (P )
and Fs (Q); this already implies that ϕ is continuous.

We recall first some notions on lattices. Let L be a lattice. A subset
F ⊆ L is a filter if (i) F is closed under meet and (ii) for every a ∈ F and
b ≥ a, b ∈ F . F is called a proper filter if F 6= L. I ⊆ L is an ideal if (i) F
is closed under join and (ii) for every a ∈ I and b ≤ a, b ∈ I.

An element e of a lattice L is compact if, for every D ⊆ L, e ≤
∨
D

implies e ≤
∨
D0 for some finite D0 ⊆ D. An element e is join irreducible if

e = a ∨ b implies e = a or e = b. An element e of a lattice is completely join
prime if e ≤

∨
D implies that there exists d ∈ D such that e ≤ d. Observe

that the minimal element of a lattice L (if it exists) is not completely join
prime. (For if 0 is the minimal element of L then 0 =

∨
∅.) Similarly, we

say that e is completely meet prime if e ≥
∧
D implies that there exists

d ∈ D such that e ≥ d. Observe, again, that 1 (if it exists) is not completely
meet prime. If e is completely join prime then it is both compact and join
irreducible. The converse also holds in distributive lattices.



9

If a < b and there is no c in the lattice with a < c < b, then we way that
b covers a (and b is said to be a cover).

Let e and f be two elements of a complete lattice L. We shall say that
〈e, f〉 is a prime pair iff L is a disjoint union of the sets L≥e and L≤f . In this
case e is obviously completely join prime, and f is completely meet prime.

If e is any completely join prime in a complete lattice L, then there exists
a (uniquely determined) completely meet prime element f such that 〈e, f〉
is a prime pair. Indeed, define f =

∨
(L − L≥e). Then e 6≤ f , or else the

fact that e is completely join prime implies that e ≤ d for some d 6∈ L≥e

which is impossible. Similarly, if f is completely meet prime and we define
e =

∧
(L− L≤f ), then 〈e, f〉 is a prime pair.

Prime pairs and covers are intimately connected. If 〈e, f〉 is a prime pair,
then e covers e ∧ f , and e ∨ f covers f . Let L be a distributive, complete
lattice, and suppose that b covers a. Define

I = {x ∈ L : x ∧ b ≤ a}
F = {x ∈ L : x ∨ a ≥ b}.

Then I is an ideal, F a filter, I ∩ F = ∅, and I ∪ F = L. To prove this last
equation, let x be an arbitrary element of L, and define c = a∨ (b∧x). Then
a ≤ c ≤ b, and hence there are two possibilities: c = a which implies that
c ∈ I, and c = b which implies that c ∈ F .

Now, since L is complete we can define e =
∧
F , f =

∨
I. Then 〈e, f〉 is

a prime pair. Thus we have proved the following

Lemma 2.7. Suppose that L is a distributive complete lattice, and b covers
a. Then there exists a prime pair 〈e, f〉 such that e ≤ b and f ≥ a.

A topological lattice is a structure 〈L, τ,∨,∧〉 such that (L, τ) is a Haus-
dorff topological space, (L,∨,∧) a lattice, and the join and meet functions
are continuous (from L × L to L). Observe that the set ≤ (as a subset of
L×L) is closed. Observe also that a compact (Hausdorff) topological lattice
L is necessarily complete. (In particular, 0L and 1L exist.)

Let P be a poset. We have defined L(P ) as the topological lattice of
final segments Fs (P ) of P . We note that part (a) of Theorem 2.6 is an
easy exercise. To prove that L(P ) is a Hausdorff, compact, 0-dimensional
topological distributive lattice, recall that Fs (P ) is closed in P(P ) and hence
it inherits these topological properties. It is obvious that the set of all sets
of the form Fs (P ) ∩ Uσ,τ is a basis for the topology. It follows now that the
lattice operations are continuous.

What are the covers and the completely prime elements of L(P )? The
covers of L(P ) are those final segments x that possess a minimal element p
(that is, p ∈ x and there is no q < p in x). Such x covers the initial segment
x−{p} (and possibly other initial segments if it has other minimal elements).

For any p ∈ P , e = P≥p is completely join prime in L(P ), f = P −P≤p is
completely meet prime, and 〈e, f〉 forms a prime pair. For the other direction,
every completely join prime member of Fs (P ) is some P≥p. To see this,
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suppose that e ∈ Fs (P ) is completely join prime. Since e =
∨
{P≥p : p ∈ e},

e = P≥p for some p ∈ P . Similarly, if f ∈ Fs (P ) is completely meet prime,
then f = P − P≤p for some p ∈ P , and 〈P≥p, f〉 is a prime pair.

Thus e : P → Fs (P ) defined by e(p) = P≥p is an order-inversion bijec-
tions between P and the set of completely join prime elements of L(P ).

We return to the general discussion and prove that prime pairs are con-
nected to clopen filters and ideals.

Lemma 2.8. Let L be a distributive compact topological lattice.
(1) If F is a non-empty closed filter, then e =

∧
F ∈ F and F = L≥e.

(2) If F is a proper, clopen, prime filter, then e =
∧
F is completely

join prime. Conversely, if e is any completely join prime, then L≥e is a
non-empty, non-trivial, clopen, prime filter.

Proof. Given that F is a closed filter, the closed sets Fa = {x ∈ F : x ≤ a},
a ∈ F , have the finite intersection property, and hence their non-empty
intersection gives the desired e ∈ F .

Assume now that F is a proper, clopen, prime filter. Then e =
∧
F ∈ F .

Define I = L− F . Since F is a proper, prime filter, I is a non-empty ideal,
and I is closed, since F is open. It follows, as above, that f =

∨
I ∈ I exists.

Hence e 6≤ f , and it follows that e is completely join prime. (If e ≤
∨
D then

D∩F 6= ∅, or else D ⊆ I and then
∨
D ≤ f contradicts the assumption that

e ≤
∨
D.)

We have identified above the completely meet prime elements of Fs (P ).
So this lemma yields the following characterization.

Lemma 2.9. Let P be a poset. In Fs (P ) every clopen, prime, proper filter
has the form Vp = {X ∈ Fs (P ) : p ∈ X} for some p ∈ P .

We are interested in this section in compact, 0-dimensional, distributive
lattices, and our first result concerning these lattices is the following.

Lemma 2.10. Let X be a compact, 0-dimensional, distributive topological
lattice. Then for every a < b in L there are a′ and b′ such that a ≤ a′ < b′ ≤ b
and b′ covers a′.

Proof. Let C be a maximal chain (linearly ordered set) such that a ≤
∧
C

and
∨
C ≤ b. Since X is 0-dimensional, there exists a clopen set B such that

b ∈ B and a 6∈ B. Any maximal chain between a and b is a closed set. Thus
B∩C is closed and trivially closed under meets. Hence b′ =

∧
(B∩C) ∈ B∩C.

So b′ > a, and we observe that C<b′∩B = ∅. Thus C<b′ = C≤b′−B is closed,
and we define a′ =

∨
C<b′ . Then a′ < b′ and b′ covers a′.

Lemma 2.11. Let X be a compact, 0-dimensional, distributive topological
lattice. Then:

(1) Every element x ∈ X is the join of the set of completely join prime
elements g such that g ≤ x.
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(2) The proper, clopen, prime filters of X separate points, and hence
generate the algebra of clopen subsets of X.

Proof. Let x ∈ X be an arbitrary element and define x0 as the join of all
g ≤ x that are completely meet prime. We shall obtain a contradiction from
the assumption that x0 < x. By the previous lemma there are a′, b′ in X
such that x ≤ a′ < b′ ≤ x0 and b′ covers a′. By Lemma 2.7, there is a prime
pair 〈e, f〉 with e ≤ b′ and f ≥ a′. Since e ≤ x and e is completely join
prime, e ≤ x0. But then e ≤ f , which contradicts the fact that 〈e, f〉 is a
prime pair.

Let a, b ∈ X be any two points, and assume that b 6≤ a. We argue first
that we can assume that a < b. Indeed, a ∧ b < b, and if we find a proper,
clopen prime filter F such that a ∧ b 6∈ F and b ∈ F , then a 6∈ F as well
since F is a filter. So we assume that a < b. By the previous lemma there
are a′, b′ in X such that x ≤ a′ < b′ ≤ x0 and b′ covers a′. By Lemma 2.7,
there is a prime pair 〈e, f〉 with e ≤ b′ and f ≥ a′. The filter X≥e contains
b, excludes a and is as required.

Thus the algebra of clopen subsets of X is generated by the clopen filters
of X. (In any compact space a family of clopen sets that separate points
generates all clopen sets.)

We are now ready to prove part (b) of Theorem 2.6. So let L = 〈X, τ,∨,∧〉
be a Hausdorff compact 0-dimensional topological distributive lattice. Let
<L denote its lattice ordering. Let P ⊆ X be the set of completely join
prime elements of X, and define a <P b iff b <L a. That is reverse the
lattice ordering. Then P = 〈P,<P 〉 is the required poset for which we prove
that L(〈P,<P 〉) ∼= L. To define the required isomorphism ψ : L(P ) → L,
let x ∈ L(P ) be any element. Then x ∈ Fs (P ) is a final segment in P ,
and hence it is an initial segment of completely join prime members of X.
Anyhow, x ⊆ X and we define

ψ(x) =
∨
x ∈ X.

It is obvious that x is an order-homomorphism, and Lemma 2.11(1) immedi-
ately implies that ψ is onto X. We prove that ψ is an embedding. Suppose
that x1 6≤ x2 and we shall prove that ψ(x1) 6≤ ψ(x2). There exists p ∈ x1−x2,
and since p is completely join prime, p 6≤

∨
x2. Thus ψ(x1) 6≤ ψ(x2). Hence

ψ is a lattice isomorphism. But this implies, as we are going to prove in the
following lemma, that ψ preserves the topological structure as well, namely
that it is an isomorphism between the topological lattices L(P ) and L.

Lemma 2.12. Suppose that L1 and L2 are Hausdorff compact 0-dimensional
topological distributive lattices, and ψ : L1 → L2 is a lattice isomorphism.
Then ψ is continuous.

Proof. Since the notion of being a completely join prime element is lattice-
theoretic, Lemma 2.8 implies that ψ establish a correspondence between the
clopen prime filters of L1 and L2. But, by Lemma 2.11, it follows that ψ
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establishes a correspondence between the clopen sets of L1 and L2. Since
the topology of our 0-dimensional spaces is generated by the clopen sets, it
is clear that ψ is a homemomorphism.

We can now also prove part (c) of Theroem 2.6. Suppose that
ϕ : L(P ) ∼= L(Q), namely that ϕ is a lattice isomorphism (and thus an iso-
morphism of the topological structures as well). Let JL(P ) be the set of
completely join prime elements of L(P ), and JL(Q) be the corresponding set
in L(Q). Then ϕ is an order isomorphism between JL(P ) and JL(Q). Now,
eP : P → JL(P ) defined by eP (x) = P≥x is an order anti-iomorphism, and so
is eQ. Thus α : P → Q defined by

α(p) = e−1
Q ◦ ϕ ◦ eP (p)

is an order isomorphism between P and Q. We have ϕ(P≥p) = Q≥α(p). Hence
α induces ϕ in the sense that for every final segment s ∈ Fs (P ), ϕ(s) = α[s].

Our results reveal that the category of posets with order-preserving maps
is (anti) isomorphic to the category of compact, 0-dimensional, distributive
topological lattices, with continuous lattice homomorphisms that preserve 0
and 1. For this, we need the following lemma.

Lemma 2.13. Let X and Y be compact 0-dimensional distributive lattices.
A map f : X → Y is a continuous lattice homomorphism iff the f -preimage
of every clopen prime filter of Y is a clopen prime filter of X.

Proof. Clearly, the condition is necessary: if f is a continuous lattice
homomorphism then the preimage of every clopen set is clopen, and the
preimage of every prime filter is a prime filter.

Assume that f : X → Y is such that f−1[P ] is a clopen prime filter in X,
whenever P is a clopen prime filter in Y . Since the complement of a clopen
prime ideal is a clopen prime filter, we get that the preimage of any clopen
prime ideal is also a clopen prime ideal. Then f is continuous, because by
Lemma 2.11 the collection of clopen prime filters and ideals generates the
topology.

Suppose x, y ∈ X are such that a = f(x ∧ y) 6= f(x) ∧ f(y) = b. There
exists a clopen prime filter F which separates a, b. In case a ∈ F and b /∈ F ,
x∧y ∈ f−1[F ] (since f−1[F ] is a filter) and hence x, y ∈ f−1[F ] and therefore
f(x), f(y) ∈ F , which is a contradiction. In case a /∈ F and b ∈ F , then we
get a contradiction again. Thus f is meet preserving. By a dual argument,
f is join preserving.

For every order preserving map f : P → Q there is a continuous homo-
morphism g : L(Q) → L(P ) that maps 0 to 0 and 1 to 1, and satisfies

g−1[Vp] = Vf(p) (3)

for every p ∈ P . (Simply define g(X) = f−1[X].)
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Lemma 2.13 implies that if f and g are any two functions connected
as in (3), then f is order-preserving and g is a continuous homomorphism
(preserving 0 and 1).

Now, if g : L(Q) → L(P ) is any continuous homomorphism that maps
0 to 0 and 1 to 1, then f that satisfies (3) can be defined by referring to
Lemma 2.9.

3 The well-generatedness of poset algebras

In this section we prove Theorem 1.3. It says that the poset algebra of a
narrow scattered poset is well-generated.

Recall that W is the class of posets which are either well-ordered or anti
well-ordered.

Definition 3.1. We define by induction on the ordinal α the class of posets
Hα. Let H 0 be the class of all posets whose universe is a singleton.
If α is a limit ordinal, then Hα =

⋃
{H β : β < α}.

If α = β+1, thenHα is the class of all posets P such that there isW ∈ W and
an indexed family of posets {Pw : w ∈ W} ⊆ H β such that P is isomorphic
to

∑
{Pw : w ∈ W}. Define

H =
⋃
{Hα : α ∈ Ord }.

We shall prove by induction on α that if P ∈ Hα, then F (P ) is well-
generated. The rough idea of the proof is as follows. Let P ∈ Hα+1, and
suppose that P =

∑
w∈W Pw, where W ∈ W and each Pw belongs to Hα.

For every w ∈ W let Lw be a well-founded lattice which generates F (Pw).
If the Lw are appropriately chosen, then

⋃
w∈W Lw generates a well-founded

lattice, and certainly, this lattice generates F (P ).
The following key lemma from [BR] is reproved here for the reader’s

convenience.

Proposition 3.2. Let B be a well-generated algebra and I be a maximal
ideal of B. Then there is a sublattice G ⊆ I such that G generates B, and G
is well-founded.

Proof. We prove the following claim.

Claim 1. Let G′ be a well-founded sublattice of B and b ∈ B. Let H be the
sublattice of B generated by G′ ∪ {b}. Then H is well-founded.

Proof. We may assume that 0B, 1B ∈ G′. Then every member of H has the
form g + h · b, where g, h ∈ G′.

Let {gn+hn ·b : n ∈ ω} be a decreasing sequence in H. Let dn = gn+hn ·b
and en = gn + hn. Suppose by contradiction that {dn · b : n ∈ ω} is not
eventually constant. We have dn · b = en · b . So {en · b : n ∈ ω} is not
eventually constant. Then pn :=

∏
i≤n ei, n ∈ ω, is a decreasing sequence of
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members of G′ which is not eventually constant. So
(i) {dn · b : n ∈ ω} is eventually constant.

Suppose by contradiction that {dn−b : n ∈ ω} is not eventually constant.
dn − b = gn − b. So {gn − b : n ∈ ω} is a decreasing sequence, which is not
eventually constant. Then qn :=

∏
i≤n gi, n ∈ ω, is a decreasing sequence of

members of G′ which is not eventually constant. So
(ii) {dn − b : n ∈ ω} is eventually constant.
It follows from (i) and (ii) that {dn : n ∈ ω} is eventually constant. So H is
well-founded. We have proved Claim 1.

We prove the proposition. Let G′ be a well-founded sublattice of B which
generates B. If G′ ⊆ I, then there is nothing to prove. Assume that G′ 6⊆ I.
Let G1 := G′ − I. By the maximality of I, G1 is a lattice, and since in
addition, G1 is well-founded and not empty, it has a minimum. Denote the
minimum by a. Let G be the sublattice of B generated by
(G′ ∩ I) ∪ {b − a : b ∈ G1} ∪ {−a}. Clearly, G is contained in the lattice
generated by G′∪{−a}. So by Claim 1, G is well-founded. By the maximality
of I, −a ∈ I, so G ⊆ I. Let b ∈ G′. If b ∈ I, then b ∈ G. If b 6∈ I, then
a ≤ b. So b = (b − a) + a. This means that b belongs to the subalgebra
generated by G. So G generates B.

Let 〈T,∨,∧〉 be a lattice. x ∨ y and x ∧ y denote the join and the meet
of x and y in T . The partial ordering of T is denoted by ≤. So x ≤ y if
x ∧ y = x.

We shall need the following lemma. It appears in [BR] Lemma 2.8, and
the proof is brought here for the readers’s convenience.

Lemma 3.3. Let T be a distributive lattice.
(a) If T is well-founded, then every nonempty subset L of T closed under

meet has a minimum m.
(b) Let S be a subset of T such that:

(1) S generates T .
(2) The meet of two elements of S is a finite join of elements of S.
(3) S is well-founded with respect to the partial ordering of T .

Then T is well-founded.
In particular, if S ⊆ T is closed under meet, generates T , and is well-founded,
then T is well-founded.

Proof. (a) Let m1 and m2 be minimal elements of L. Then m := m1∧m2 ∈
L, and thus m = m1 = m2.

(b) Clearly, every element of T is a finite join of elements of S. It is easy
to check that the following holds.

(∗) If w0 > w1 > · · · is a strictly decreasing sequence in T , and w0 =
∨

i<n vi,
then there is ` < n such that {wj ∧ v` : j < ω} contains a strictly decreasing
infinite subsequence.

The proof uses the distributivity of T .
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Next suppose by contradiction that u0 > u1 > · · · is a strictly decreas-
ing sequence in T . We define by induction a strictly decreasing sequence
{vn : n < ω} in S. Assume by induction that vn has the following property.

(∗∗) There is a strictly decreasing sequence w0 > w1 > · · · in T such that
w0 < vn.

Let U be a finite subset of S such that u0 =
∨
U . By (∗), there is v0 ∈ U

such that {uj ∧v0 : j < ω} contains a strictly decreasing subsequence. Hence
v0 satisfies the induction hypothesis. Suppose that vn has been defined, and
let vn > w0 > w1 > · · · be as in the induction hypothesis. Let W be a
finite subset of S such that

∨
W = w0. By (∗), there is vn+1 ∈ W such

that {wj ∧ vn+1 : j < ω} contains a strictly decreasing subsequence. So
vn+1 satisfies the induction hypothesis and vn > w0 ≥ vn+1. The sequence
{vn : n < ω} ⊆ S is strictly decreasing. This contradicts the well-foundedness
of S, so T is well-founded.

Theorem 3.4. Let 〈T,∨,∧〉 be a distributive lattice. We assume that T has
a minimum 0 and a maximum 1. Let 〈I,≤〉 be a poset, and {Ti : i ∈ I} be a
family of sublattices of T . Suppose that:

(W1) 〈I,≤〉 is a well-ordered poset.

(W2) For every i ∈ I, Ti is well-founded.

(W3)
⋃
{Ti : i ∈ I} generates the lattice T .

(W4) For every i, j ∈ I, s ∈ Ti and t ∈ Tj: if i < j and s 6= 1, then either
s < t or s ∧ t = 0.

(W5) Let σ ⊆ I, ` ∈ I, and for every i ∈ σ ∪ {`}, ui ∈ Ti. Suppose that the
following properties hold:
(1) σ is finite;
(2) for every i ∈ σ, i 6≤ `;
(3)

∧
i∈σ ui 6= 0 and u` 6= 1.

Then
∧

i∈σ∪{`} ui <
∧

i∈σ ui .

Then T is a well-founded lattice.

Proof. We may assume that for every i ∈ I, 1 ∈ Ti. Let T be the set of all
functions ~t such that:
(1) Dom (~t) is a finite subset of I,
(2) for every i ∈ Dom (~t), ~t(i) ∈ Ti.
Let

∧
~t :=

∧
{~t(i) : i ∈ Dom (~t)}, and

L := {
∧
~t : ~t ∈ T }.

Let ~t ∈ T and i ∈ Dom (~t). We denote ~t(i) by ti .
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Claim 1. Let u ∈ L − {0, 1}. Let ~t ∈ T be such that u =
∧
{ti : i ∈

Dom (~t)}. Let σ be the set of minimal elements of Dom (~t). Then σ is a
finite antichain in I and u =

∧
{ti : i ∈ σ}.

Proof. For each j ∈ Dom (~t)−σ, let m(j) ∈ σ be such that m(j) < j. Since
u 6= 0, tm(j) ∧ tj 6= 0. By (W4), tm(j) < tj. Hence

u =
∧
~t ≤

∧
{tj : j ∈ σ} ≤ u. So u =

∧
{ti : i ∈ σ}.

Claim 2. For u ∈ L − {0, 1}, there is ~t u ∈ T satisfying the following
properties.

(1) Dom (~t u) is an antichain.
(2) u =

∧
~t u.

(3) If i ∈ Dom (~t u), then tui 6= 0, 1.
(4) For every ~t ∈ T such that u =

∧
~t : Dom (~t u) ⊆ Dom (~t), and if

i ∈ Dom (~t u) then tui ≤ ti.

Proof. Let i ∈ I. The set

T u
i :={ t′∈Ti : there is ~t∈T such that i∈Dom (~t ), ti = t′ and u=

∧
~t }

is nonempty and closed under ∧ . By (W2), Ti is well-founded, and it follows
from Lemma 3.3(a), that t∗i := min(T u

i ) exists.
Let ~r ∈ T be such that u =

∧
~r. Since u 6= 1, we may assume that for

every k ∈ Dom (~r), rk 6= 1. Let σ be the set of minimal elements of Dom (~r)
and ~s = ~r � σ. By Claim 1 and since u 6= 0,

∧
~s = u. Also, σ is an antichain.

For every k ∈ σ, t∗k ≤ sk, so
∧

k∈σ t
∗
k ≤

∧
k∈σ sk . That is,

(i)
∧
{t∗k : k ∈ σ} ≤ u.

For every k ∈ σ, let ~t k ∈ T be such that u =
∧
~t k and tkk = t∗k . Let

ρ = {〈k, j〉 : k ∈ σ, j ∈ Dom (~t k)}. Obviously,
u =

∧
{
∧
~t k : k ∈ σ)} =

∧
{tkj : 〈k, j〉 ∈ ρ}.

Since for every k ∈ σ, t∗k ∈ {tkj : 〈k, j〉 ∈ ρ},∧
{tkj : 〈k, j〉 ∈ ρ} ≤

∧
{t∗k : k ∈ σ}. That is,

(ii) u ≤
∧
{t∗k : k ∈ σ}.

It follows from (i) and (ii) that u =
∧
{t∗k : k ∈ σ}.

Let ~t u be defined as follows: Dom (~t u) = σ and for every i ∈ Dom (~t u),
~t u(i) = t∗i , that is ~t u

i = t∗i .
We show that ~t u is as required.

(1) Dom (~t u) = σ is an antichain.
(2) We have proved that u =

∧
~t u.

(3) Since for every i ∈ σ, t∗i ≤ si < 1, (3) holds.
(4) Let ~t ∈ T be such that u =

∧
~t, and suppose by contradiction that

` ∈ Dom (~t u) − Dom (~t). By Claim 1, we may assume that Dom (~t) is an
antichain. Suppose by contradiction that for some k ∈ Dom (~t), k < `. Since
Dom (~t u) is an antichain and k < ` ∈ Dom (~t u), for every i ∈ Dom (~t u),
i 6≤ k. Since u 6= 1, we may assume that for every k ∈ Dom (~t), tk 6= 1.
We apply (W5) to Dom (~t u), k, {tui : i ∈ Dom (~t u)}, and tk, and conclude that

u ∧ tk = (
∧
{tui : i ∈ Dom (~t u)} ) ∧ tk <

∧
{tui : i ∈ Dom (~t u)} = u.
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Hence u∧ tk < u, and so u 6≤ tk. A contradiction. So there is no k ∈ Dom (~t)
such that k < `.

We now apply (W5) to Dom (~t), `, {ti : i ∈ Dom (~t)}, and tu` , and conclude
that

u ∧ tu` = (
∧
{ti : i ∈ Dom (~t)}) ∧ tu` <

∧
{ti : i ∈ Dom (~t)} = u.

Hence u ∧ tu` < u, and so u 6≤ tu` . A contradiction. So Dom (~t u) ⊆ Dom (~t).
Let i ∈ Dom (~t u), and we show that tui ≤ ti. Since

∧
~t u ∧

∧
~t = u,

tui ∧ ti ∈ T u
i . Also, tui = min(T u

i ). So tui ≤ tui ∧ ti. That is, tui ≤ ti. We have
proved Clause (4) of Claim 2. So Claim 2 is proved.

It is obvious that the object ~t u which satisfies Clauses (1) - (4) of Claim 2
is unique. For every u ∈ L− {0, 1} we denote

σ(u) := Dom (~t u).
Claim 3. Let u, v ∈ L− {0, 1} be such that u ≤ v.

(a) For every i ∈ σ(u) ∩ σ(v), tui ≤ tvi .
(b) For every i ∈ σ(v) there is j ∈ σ(u) such that j ≤ i.

Proof. (a) For w ∈ L− {0, 1} and i ∈ I − σ(w) we set twi = 1. Hence∧
{tui : i ∈ σ(u)} = u = u∧ v =

∧
{tui : i ∈ σ(u)}∧

∧
{tvi : i ∈ σ(v)}

=
∧
{tui ∧ tvi : i ∈ σ(u)∪σ(v)}.

So by Claim 2, for every i ∈ σ(u) ∩ σ(v), tui ≤ tui ∧ tvi , and thus tui ≤ tvi .
(b) Let i ∈ σ(v), and suppose by contradiction that there is no j ∈ σ(u)

such that j ≤ i. We apply (W5) to σ(u), i, {tuj : j ∈ σ(u)} and tvi . Then

u ∧ tvi = (
∧
{tuj : j ∈ σ(u)}) ∧ tvi <

∧
{tuj : j ∈ σ(u)} = u.

So u 6≤ tvi . But u ≤ v ≤ tvi . A contradiction.
So there is j ∈ σ(u) such that j ≤ i. Claim 3 is proved.

Let Q be a poset. A subset J of Q is an initial segment of Q if for every
q ∈ Q and p ∈ J : if q ≤ p, then q ∈ J .

Claim 4. LetQ be a well-ordered poset. Then there is no strictly decreasing
sequence of initial segments of Q with respect to set inclusion.

Proof. Claim 4 is due to Higman [H]. For completeness, we sketch a proof.
Assume by contradiction that {Jn : n ∈ ω} is a strictly decreasing sequence of
initial segments of Q. For every n ∈ ω, let qn ∈ Jn−Jn+1. Then {qn : n ∈ ω}
has no increasing pair. Hence Q is not well-ordered. A contradiction. We
have proved Claim 4.

We define a partial ordering on the set Ant (Q) of antichains of a poset
Q: let σ ≤m τ , if for every i ∈ τ there is j ∈ σ such that j ≤ i.

Claim 5. If Q is a well-ordered poset, then 〈Ant (Q),≤m〉 is well-founded.

Proof. For σ ∈ Ant (Q) let Q≥σ = {q ∈ Q : (∃p ∈ σ)(p ≤ q)} and
I(σ) = Q − Q≥σ. Since Q≥σ is a final segment of Q, its complement I(σ)
is an inital segment. The function σ 7→ Q≥σ is one-to-one, and if σ ≤m τ ,
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then Q≥σ ⊇ Q≥τ , and so I(σ) ⊆ I(τ). If {σn : n ∈ ω} is a strictly de-
creasing sequence in Ant (Q), then {I(σn) : n ∈ ω} is a strictly decreasing
sequence in the set of initial segments of Q, which by Claim 4 is impossible.
So 〈Ant (Q),≤m〉 is well-founded.

Claim 6. L is well-founded.
Proof. We prove that L is well-founded.
Note that by Claim 3(b), for every u, v ∈ L − {0, 1}: if u ≤ v, then
σ(u) ≤m σ(v).

Let {un : n < ω} be a decreasing sequence in L. Then for every m > n,
σ(um) ≤m σ(un). So by Claim 5, we may assume that {σ(un) : n ∈ ω} is a
constant sequence. Let σ = σ(u0). By Claim 3(a), if m > n then tmi ≤ tni .
Recall that tni ∈ Ti and that Ti is well-founded. Since σ is finite, there is
n0 ∈ ω such that for every i ∈ σ and m > n0, t

m
i = tn0

i . So um = un0 . Claim
6 is proved.

We now prove the theorem. By the Claim 6, L is well-founded. It is
obvious that L is closed under ∧. Since T is a distributive lattice, and T is
generated by

⋃
{Ti : i ∈ I}, every member of T is a finite sum of members of

L. So L generates T . By Lemma 3.3(b), T is well-founded.

Definition 3.5. Let P be a poset. An element b ∈ F (P ) is said to be bounded
if there is a nonempty finite subset σ of P such that b ≤

∑
{xp : p ∈ σ}. Let

I bnd (P ) be the set of bounded elements of F (P ).

Observe the following trivial fact.

Proposition 3.6. Let F (P ) be a poset algebra. Then Ibnd (P ) is a maximal
ideal of F (P ).

Proof of Theorem 1.3. (3) ⇒ (2). The easy proof that every well-
generated Boolean algebra is superatomic appears in [BR] Proposition 2.7(b).

(2) ⇒ (1). Suppose that it is not true that P is narrow and scatterd, and
we show that F (P ) is not superatomic. If Q is embeddable in P , then F (Q)
(which is atomless) is embeddable in F (P ). So F (P ) is not superatomic.

If A is an infinite antichain in P , then F (A) (which is an infinite free
Boolean algebra) is embeddable in F (P ). So F (P ) is not superatomic.

(1) ⇒ (3). We prove by induction on α, that for every P ∈ Hα, F (P ) is
well-generated. There is nothing to prove for α = 0 and for limit ordinals.
Suppose that the claim is true for α, and let P ∈ Hα+1 − Hα .

Note that if 〈P,≤〉 ∈ Hα, then 〈P,≥〉 ∈ Hα. Hence by Proposi-
tion 2.5(a), we may assume that P =

∑
{Pv : v ∈ V }, where V is a well-

ordered poset, and for every v ∈ V , Pv ∈ Hα. By the induction hypothesis,
for every v ∈ V , F (Pv) is well-generated. By Proposition 3.6, I bnd (Pv) is
a maximal ideal in F (Pv). So by Proposition 3.2, there is a well-founded
sublattice Gv of F (Pv) such that Gv generates F (Pv) and Gv ⊆ I bnd (Pv).
Let G be the sublattice of F (P ) generated by

⋃
{Gv : v ∈ V }. We verify that

G and {Gv : v ∈ V } satisfy the hypotheses of Theorem 3.4.
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By the definition, V is well-ordered, and thus (W1) holds.
Since each Gv is a well-founded lattice, (W2) holds.
(W3) follows from the definition of G.
(W4) Let v < w in V , g ∈ Gv−{1F (P )} and h ∈ Gw. We show that either

g < h or g ·h = 0. Let γ be a finite subset of Pv such that g ≤
∑
{xp : p ∈ γ}.

Let b =
∑
{xp : p ∈ γ}. It suffices to show that either b < h or b · h = 0.

Note that h has a representation of the following form: there is ` ∈ ω and
for every i < ` there are finite disjoint subsets η(i) and τ(i) of Pw such that
η(i) 6= ∅ and

h =
∑

i<`

( ∏
{xp : p ∈ η(i)} ·

∏
{−xq : q ∈ τ(i)}

)
.

Case 1. There is i0 < ` such that τ(i0) = ∅.
Hence b <

∏
{xp : p ∈ η(i0)} ≤ h, and thus b < h.

Case 2. For every i < `, τ(i) 6= ∅.
For every i < `, b ·

∏
{−xq : q ∈ τ(i)} = ∅, and thus

b ·
∏
{xp : p ∈ η(i)} ·

∏
{−xq : q ∈ τ(i)} = 0. Hence b · h = 0.

We have proved that (W4) holds.
(W5) Let ρ ⊆ V , w ∈ V , and {gv : v ∈ ρ ∪ {w}} ⊆ G. We assume that:

(1) ρ is finite; (2) for every v ∈ ρ, v 6≤ w; (3) for every v ∈ ρ∪ {w}, gv ∈ Gv;
(4)

∏
{gv : v ∈ ρ} 6= 0 and gw 6= 1.

It needs to be shown that
gw ·

∏
{gv : v ∈ ρ} <

∏
{gv : v ∈ ρ}.

By (W4), arguing as in Claim 1 of Theorem 3.4, we may assume that ρ is an
antichain.

We rely on the fact that F (P ) and F̂ (P ) are isomorphic, and argue in

F̂ (P ) rather than in F (P ). Recall that the above isomorphism takes xp to
Vp. Let σ, τ be finite subsets of P . Define

Tσ,τ = {x ∈ Fs (P ) : σ ⊆ x and x ∩ τ = ∅}.
Clearly, for every T ⊆ Fs (P ): T ∈ F̂ (P ) iff T is a finite union of Tσ,τ ’s. Also,
(i) Tσ,τ 6= ∅ iff for every p ∈ σ and q ∈ τ , p 6≤ q.

Let T =
⋃

i<n Tσi,τi
and assume that each Tσi,τi

is nonempty. Then T is
bounded iff for every i < n, σi 6= ∅.

We regard the gv’s as members of F̂ (P ). For every v ∈ ρ ∪ {w} let
gv =

⋃
i<n(v) Tσ(v,i),τ(v,i), where σ(v, i), τ(v, i) ⊆ Pv. We may assume that

each Tσ(v,i),τ(v,i) is nonempty. Let v ∈ ρ. Since gv 6= 0, n(v) > 0, Let
v ∈ ρ ∪ {w}. Since gv is bounded, σ(v, i) 6= ∅ for every i < n(v).

Let σ =
⋃

v∈ρ σ(v, 0) and x = P≥σ. So x ∈ Fs (P ). We shall show that

x ∈
∏

v∈ρ gv and x 6∈ gw.

For v ∈ ρ ∪ {w} let η(v) =
⋃

i<n(v) σ(v, i) ∪
⋃

i<n(v) τ(v, i).

(ii) If u,v∈ρ are distinct, p∈η(u) and q∈η(v), then p,q are incomparable.
This follows from the fact that ρ is an antichain and η(v) ⊆ Pv. We show
that for every v ∈ ρ, x ∈ Tσ(v,0),τ(v,0). By the definition of x, σ(v, 0) ⊆ x.

Let q ∈ τ(v, 0). By (i), q 6∈ P≥σ(v,0). By (ii), q 6∈ P≥σ(u,0), for every u 6= v.
So q 6∈ x. Hence τ(v, 0) ∩ x = ∅. We have shown that x ∈ Tσ(v,0),τ(v,0) ⊆ gv.
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Hence x ∈
∏

v∈ρ gv.
Recall that for every v ∈ ρ, v 6≤ w. It follows that for every v ∈ ρ,

p ∈ η(v) and q ∈ η(w), p 6≤ q. That is, denoting η =
⋃

v∈ρ η(v),

P≥η ∩ η(w) = ∅.
But σ ⊆ η, and for every i < n(w), σ(w, i) ⊆ η(w). So σ(w, i) ∩ P≥σ = ∅.
Recalling that x = P≥σ and that σ(w, i) 6= ∅, one concludes that for every
i < n(w), x 6∈ Tσ(w,i),τ(w,i). So x 6∈

⋃
i<n(w) Tσ(w,i),τ(w,i) = gw.

We have shown that G and {Gv : v ∈ V } satisfy the hypotheses (W1) -
(W5). So by Theorem 3.4, G is well-founded. For every v ∈ V , Gv generates
F (Pv) and

⋃
{F (Pv) : v ∈ V } generates F (P ). So G =

⋃
{Gv : v ∈ V }

generates F (P ).

4 The embeddability of poset algebras in well-

ordered poset algebras

In this section we prove Theorems 1.6 and 1.4. In fact, we prove the following
slight strengthening of 1.6.

Theorem 4.1. Let P ∈ H. Then there is a well-ordered poset W and an
embedding ϕ of F (P ) in F (W ) such that ϕ(Ibnd (P )) ⊆ I bnd (W ).

We shall prove by induction on α that the claim of the theorem is true
for every P ∈ Hα.

For a poset Q let mQ be an element which does not belong to Q and
let Q+ = {mQ} + Q. That is, Q+ is the lexicographic sum of a singleton
and Q over a chain with two elements. Let X := {xp : p ∈ P} be the set of
generators of P . Denote by {zq : q ∈ Q} the generators of F (Q) and by
{z+

q : q ∈ Q+} the generators of F (Q+). Let a 7→ a+ be the embedding
of F (Q) into F (Q+) which sends zq to z+

q . Let ϕ : F (P ) → F (Q) be an
embedding. Define ϕ̂ : X → F (Q+) as follows: ϕ̂(xp) = x+

mQ
+ (ϕ(xp))

+.
The following notation will be used below. If σ, τ are finite subsets of Q, then
zσ,τ :=

∏
p∈σ zp ·

∏
q∈τ −zq. z

+
σ,τ is defined similarly.

Lemma 4.2. Let P , Q, ϕ and ϕ̂ be as in the preceding paragraph.
(a) Let σ be a finite subset of P . Then:

(1)
∑
{ϕ̂(xp) : p ∈ σ} = z+

mQ
+

∑
{ϕ(xp)

+ : p ∈ σ}.
(2)

∏
{ϕ̂(xp) : p ∈ σ} = z+

mQ
+

∏
{ϕ(xp)

+ : p ∈ σ}.
(b) ϕ̂ can be extended to an embedding of F (P ) in F (Q+).

Proof. (a) The proof of is trival.
(b) Let p, q ∈ P and p ≤ q. Then
ϕ̂(xp) · ϕ̂(xq) = z+

mQ
+ ϕ(xp)

+ · ϕ(xq)
+ = z+

mQ
+ ϕ(xp)

+ = ϕ̂(xp).
By Theorem 1.2, ϕ̂ can be extended to a homomorphism ϕ̃ from F (P ) to
F (Q).
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We show that ϕ̃ is an embedding. Notice first that for every a ∈ F (P ),
either ϕ̃(a) = z+

mQ
+ ϕ(a)+ or ϕ̃(a) = −z+

mQ
· ϕ(a)+. To see this, notice

that if ϕ̃(a) and ϕ̃(b) have one of the above forms, then so do ϕ̃(−a) and
ϕ̃(a · b). Let a ∈ F (P ) − {0}. We show that ϕ̃(a) 6= 0. Write ϕ(a) as
ϕ(a) =

∑
i<n zσi,τi

, where all the summands are different from 0. Then n > 0
and ϕ(a)+ =

∑
i<n z

+
σi,τi

. If ϕ̃(a) = z+
mQ

+ ϕ(a)+, then ϕ̃(a) 6= 0. Suppose

that ϕ̃(a) = −z+
mQ

· ϕ(a)+. Then ϕ̃(a) =
∑

i<n z
+
σi,τi∪{mQ}. Since mQ is the

minimum of Q+ and mQ 6∈ σi, for every p ∈ σi and q ∈ τi ∪{mQ}, p 6≤ q. By
Proposition 2.5(b), for every i < n, z+

σi,τi∪{mQ} 6= 0. So ϕ̃(a) 6= 0.

Let {xi : i ∈ I} be a set of generators for a Boolean algebra B. Let
σ, τ ⊆ I be finite. We denote xσ,τ =

∏
{xp : p ∈ σ} ·

∏
{−xq : q ∈ τ}. If

ϕ is a function from {xi : i ∈ I} to a Boolean algebra C, then we denote
x ϕ

σ,τ =
∏
{ϕ(xp) : p ∈ σ} ·

∏
{−ϕ(xq) : q ∈ τ}.

The following claim is part of a lemma due to Sikorski. See [Ko] Theo-
rem 5.5.

Proposition 4.3. Let {xi : i ∈ I} be a set of generators for a Boolean algebra
B and ϕ be a homomorphism from B to a Boolean algebra C. Suppose that
for every finite σ, τ ⊆ I: if x ϕ

σ,τ = 0, then xσ,τ = 0. Then ϕ is an embedding
of B into C.

Lemma 4.4. Let R =
∑
{Ri : i ∈ I} be a lexicographic sum of posets.

Suppose that σ, τ ⊆ I are finite, and for every i ∈ σ and j ∈ τ , i < j.
For every i ∈ σ let ai ∈ I bnd (Ri). For every j ∈ τ let rj ∈ Rj. Then∑

i∈σ ai <
∏

j∈τ xrj
.

Proof. We rely on the fact that F (R) and F̂ (R) are isomorphic, and argue

in F̂ (R) rather than in F (R). Recall that the isomorphism between F (R)

and F̂ (R) takes each xr to Vr, where Vr = {x ∈ Fs (R) : r ∈ x}. As in the
proof Theorem 1.3 we denote Tσ,τ = {x ∈ Fs (R) : σ ⊆ x and x ∩ τ = ∅}.
Now, each xri

is replaced by Vri
and ai has the form ai =

⋃
`<n(i) Tσ(i,`),τ(i,`).

We may assume that for every i, `, Tσ(i,`),τ(i,`) 6= ∅. By the boundedness of
the ai’s, for every i and `, σ(i, `) 6= ∅. Let s(i, `) ∈ σ(i, `). Clearly, for every
i ∈ σ, ` < n(i) and j ∈ τ , s(i, `) < rj. Let x ∈

⋃
i∈σ ai. Then for some i

and `, s(i, `) ∈ x. Hence for every j ∈ τ , rj ∈ x. So x ∈
⋂

j∈τ Vrj
. That is,⋃

i∈σ ai ⊆
⋂

j∈τ Vrj
.

Let x =
⋃

j∈τ P
≥rj . Then x ∈

⋂
j∈τ Vrj

. Since for every i ∈ σ and
` < n(i) and j ∈ τ , rj 6< s(i, `), s(i, `) 6∈ x. So x 6∈

⋃
i∈σ ai. That is,⋃

i∈σ ai $
⋂

j∈τ Vrj
.

The next lemma contains the main claim in the proof of Theorem 4.1. It
will be used in the inductive step.

Lemma 4.5. Let V be a poset. For every v ∈ V let Pv, Qv be posets and
ϕv : F (Pv) → F (Qv) be an embedding such that ϕv(I

bnd (Pv)) ⊆ I bnd (Qv).
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Let P =
∑
{Pv : v ∈ V }. For every v ∈ V let Q+

v be as in Lemma 4.2(b),
and let R =

∑
{Q+

v : v ∈ V }. For every v ∈ V denote mQv by m(v).
We regard each F (Pv) as a subalgebra of F (P ) and each F (Q+

v ) as a sub-
algebra of F (R). Let Z = {zr : r ∈ R} be the set of generators of F (R),
and for every v ∈ V let Xv = {xp : p ∈ Pv} be the set of generators of Pv.
For v ∈ V define ϕ̂v : Xv → F (R) as follows:

ϕ̂v(xp) = zm(v) + ϕv(xp),
and let

ϕ+ =
⋃

v∈V ϕ̂v.

Then ϕ+ can be extended to an embedding ψ of F (P ) in F (R), and
ψ(I bnd (P )) ⊆ I bnd (R).

Proof. Claim 1. Let p ∈ Pv and q ∈ Pw. Suppose that v < w. Then
ϕ+(xp) < xm(w) < ϕ+(xq).
Proof. Claim 1 follows trivially from Lemma 4.4.

We show that ϕ+ can be extended to a homomorphism from F (P ) to
F (R). By Theorem 1.2 it suffices to show that if p, q ∈ P and p ≤ q, then
ϕ+(xp) ≤ ϕ+(xq). Suppose that p ∈ Pv and q ∈ Pw.
Case 1 v = w.
By Proposition 4.2(b), ϕ+

v can be extended to an embedding
χ : F (Pv) → F (Q+

v ). So
ϕ+(xp) · ϕ+(xq) = χ(xp) · χ(xq) = χ(xp · xq) = χ(xp) = ϕ+(xp).

Hence ϕ+(xp) ≤ ϕ+(xq).
Case 2 v 6= w.
Since p ≤ q, v < w. By Claim 1,
ϕ+(xp) < xm(w) < ϕ+(xq).

So ϕ+ can be extended to a homomorphism.

We prove that the homomorphism extending ϕ+ is an embedding.
By Proposition 4.3, it suffices to show that:

(?) if x ϕ+

σ,τ = 0, then xσ,τ = 0.

Let σ, τ be finite subsets of P . Denote ρ+(σ, τ) = {v ∈ V : σ ∩ Pv 6= ∅},
ρ−(σ, τ) = {v ∈ V : τ ∩ Pv 6= ∅} and ρ(σ, τ) = ρ+(σ, τ) ∪ ρ−(σ, τ).

Claim 2. If ρ+(σ, τ) and ρ−(σ, τ) are antichains and x ϕ+

σ,τ = 0, then xσ,τ = 0.

Proof. By induction on |ρ(σ, τ)|. Let n = |ρ(σ, τ)|. We show that the
induction holds for n = 1. Suppose that x ϕ+

σ,τ = 0 and that |ρ(σ, τ)| = 1.
Then there is v ∈ V such that σ ∪ τ ⊆ Pv. By Proposition 4.2(b), there is
an embedding χ : F (Pv) → F (Q+

v ) which extends ϕ+
v . Then

0 = x ϕ+

σ,τ = x ϕ+
v

σ,τ = χ(xσ,τ ). Since χ is an embedding, xσ,τ = 0.
Suppose that the induction hypothesis holds for n, and let σ, τ be such

that x ϕ+

σ,τ = 0, ρ+(σ, τ) and ρ−(σ, τ) are antichains and
|ρ(σ, τ)| = n+ 1. Denote ρ+ = ρ+(σ, τ), ρ− = ρ−(σ, τ) and ρ = ρ(σ, τ).
Case 1 There is v ∈ ρ+ and w ∈ ρ− such that v < w.
Let p ∈ Pv ∩σ and q ∈ Pw ∩ τ . Then p < q. Hence xp · −xq = 0. So xσ,τ = 0.
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For the other cases we need some additional notations. For u ∈ P let
b+u := b+u (σ, τ) =

∏
{ϕ+(xp) : p ∈ Pu ∩ σ},

c+u := c+u (σ, τ) =
∏
{ϕ+(xp) : p ∈ σ − Pu},

b−u := b−u (σ, τ) =
∏
{−ϕ+(xq) : q ∈ Pu ∩ τ},

c−u := c−u (σ, τ) =
∏
{−ϕ+(xq) : q ∈ τ − Pu} .

Case 2 ρ+ ∩ ρ− 6= ∅.
Let u ∈ ρ+ ∩ ρ−. Then 0 = x ϕ+

σ,τ = (b+u · b−u ) · (c+u · c−u ). Since ρ+ and ρ− are
antichains, u is incomparable with every member of ρ − {u}. Let η = Q+

u

and ζ =
⋃

v∈ρ−{u}Q
+
v . Then for every p ∈ η and q ∈ ζ, p, q are incomparable.

Also, b+u · b−u belongs to the algebra generated by {z+
r : r ∈ η}, and c+u · c−u

belongs to the algebra generated by {z+
r : r ∈ ζ}. By Proposition 2.5(c),

either b+u · b−u = 0, or c+u · c−u = 0.
Suppose that b+u · b−u = 0. Let σ′ = σ ∩ Pu and τ ′ = τ ∩ Pu, then

b+u · b−u = x ϕ+

σ′,τ ′ and ρ(σ′, τ ′) = {u}. So by the induction claim for n = 1,
xσ′,τ ′ = 0. Obviously, xσ,τ ≤ xσ′,τ ′ = 0. Thus xσ,τ = 0.

Suppose next that c+u · c−u = 0. Let σ′ = σ − Pu and τ ′ = τ − Pu. Then

c+u · c−u = x ϕ+

σ′,τ ′ , ρ+(σ′, τ ′) = ρ+ − {u}, and ρ−(σ′, τ ′) = ρ− − {u}. Clearly,
|ρ(σ′, τ ′)| = |ρ| − 1. So by the induction hypothesis, xσ′,τ ′ = 0. Obviously,
xσ,τ ≤ xσ′,τ ′ = 0. Thus xσ,τ = 0.
Case 3 Cases 1 and 2 do not occur.
So
(1) For every v ∈ ρ+ and w ∈ ρ−, either w < v or w and v are incomparable.
We shall show that in this case x ϕ+

σ,τ 6= 0. This will contradict our assumption.
We shall thus conclude that Case 3 cannot happen.

We compute x ϕ+

σ,τ . For v ∈ ρ+ let σv = σ∩Pv. For w ∈ ρ− let τw = τ∩Pw.

Let v ∈ ρ+. Then x ϕ+

σv ,∅ =
∏
{ϕ+

v (xp) : p ∈ σv}. So by Lemma 4.2(a)(1),

x ϕ+

σv ,∅ has the form zm(v) + dv, where dv ∈ I bnd (Q+
v ). So

(2) xϕ+

σ,∅ =
∏
{xϕ+

σv ,∅ :v ∈ ρ+}=
∏
{xz(v)+dv :v ∈ ρ+} ≥

∏
{zm(v) :v ∈ ρ+}.

Let w ∈ ρ−. Then

x ϕ+

∅,τw
=

∏
{−ϕ+

w(xq) : q ∈ τw} = −
∑
{ϕ+

w(xq) : q ∈ τw}.
Then by Lemma 4.2(a)(2), x ϕ+

∅,τw
has the form −(zm(w) + ew), where

ew ∈ I bnd (Q+
w). So

(3) x ϕ+

∅,τ =
∏
{x ϕ+

∅,τw
: w ∈ ρ−} =

∏
{−(zm(w) + ew) : w ∈ ρ−}

= −(
∑
{zm(w) + ew : w ∈ ρ−}) .

For every w ∈ ρ− there is a finite set ηw ⊆ Qw such that

(4) ew ≤
∑
{zq : q ∈ ηw}.

By (2), (3) and (4),

(5) xϕ+

σ,τ = (xϕ+

σ,∅ )·(x
ϕ+

∅,τ ) ≥
∏
{zm(v) :v ∈ ρ+}−

∑
{zm(w)+ew :w∈ ρ−}

≥
∏
{zm(v) :v ∈ ρ+}−

∑
{zq :w∈ ρ−, q ∈{m(w)}∪ηw}

=
∏
{zm(v) :v ∈ ρ+}·

∏
{−zq :w∈ ρ−, q ∈{m(w)}∪ηw}.
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For every v ∈ ρ+ and q ∈ {m(w) : w ∈ ρ−} ∪
⋃
{ηw : w ∈ ρ−}, m(v) 6≤ q.

So by Proposition 2.5(b), the last expression in (5) is different from 0. So
x ϕ+

σ,τ 6= 0. A contradiction, so Case 3 does not happen.
It follows that xσ,τ = 0. So Claim 2 is proved.

Claim 3. Let σ, τ be such that x ϕ+

σ,τ = 0. Then there are σ′ ⊆ σ and τ ′ ⊆ τ

such that x ϕ+

σ′,τ ′ = 0 and ρ+(σ′, τ ′), ρ−(σ′, τ ′) are antichains.
Proof. Denote ρ+ = ρ+(σ, τ) and ρ− = ρ−(σ, τ). Let η+ be the set of
minimal elements of ρ+, and η− be the set of maximal elements of ρ−. Let
σ′ = σ ∩

⋃
{Pv : v ∈ η+} and τ ′ = τ ∩

⋃
{Pv : v ∈ η−}.

Clearly, ρ+(σ′, τ ′) = η+ and ρ−(σ′, τ ′) = η−. So ρ+(σ′, τ ′) and ρ−(σ′, τ ′)
are antichains.

Let p ∈ σ − σ′. Let v ∈ ρ+ be such that p ∈ Pv. There is w ∈ η+ such
that w < v. Let q ∈ Pw ∩ σ. By the definition of σ′, q ∈ σ′. By Claim 1
ϕ+(xq) < ϕ+(xp). It follows that∏
{ϕ+(xp) : p ∈ σ′} ≤

∏
{ϕ+(xp) : p ∈ σ}. Since σ′ ⊆ σ,∏

{ϕ+(xp) : p ∈ σ′} ≥
∏
{ϕ+(xp) : p ∈ σ}. So x ϕ+

σ′,∅ = x ϕ+

σ,∅ .

An identical argument shows that x ϕ+

∅,η′ = x ϕ+

∅,η . So x ϕ+

σ′,η′ = x ϕ+

σ,η = 0. We
have proved Claim 3.

We now prove (?). Suppose that x ϕ+

σ,τ = 0. Let σ′, τ ′ be as assured by
Claim 3. By Claim 2, xσ′,τ ′ = 0. Since σ′ ⊆ σ and τ ′ ⊆ τ , xσ,τ = 0. We have
proved (?).

We have shown that ϕ+ fulfills the condition of Proposition 4.3. So the
homomorphism ψ, which extends ϕ+ is an embedding of F (P ) into F (Q+). It
remains to show that ψ(Ibnd (P )) ⊆ Ibnd (Q+). Since {xp : p ∈ P} generates
Ibnd (P ), it suffices to show that for every p ∈ P , ψ(xp) ∈ Ibnd (R). But this
follows from the definition of ϕ+.

Proof of Theorem 4.1. We prove by induction on α, that for every
P ∈ Hα, F (P ) is well-generated. There is nothing to prove for α = 0 and for
limit ordinals. Suppose that the claim is true for α, and let P ∈ Hα+1−Hα .

By Proposition 2.5(a), F (P ∗) ∼= F (P ). It follows from the definition of
Hα that if P ∈ Hα+1 −Hα, then P ∗ ∈ Hα+1 −Hα.

Hence we may assume that P =
∑
{Pv : v ∈ V }, where V is a well-

ordered poset, and for every v ∈ V , Pv ∈ Hα. By the induction hypothesis,
for every v ∈ V there is a well-ordered poset Qv and an embedding ϕv of
F (Pv) in F (Qv) such that ϕv(I

bnd (Pv)) ⊆ I bnd (Qv).
We may apply Lemma 4.5 to V , {Pv : v ∈ V }, {Qv : v ∈ V } and

{ϕv : v ∈ V }.
Let Q+

v , v ∈ V and ψ be as assured by that lemma and R =
∑

v∈V Q
+
v .

Since Q+
v is obtained from Qv by adding only one element, Q+

v is well-ordered.
Recall that V is well-ordered.

It is easy to check that if in a lexicographic sum the index poset is well-
ordered and each summand is well-ordered, then the sum is well-ordered. So
R is well-ordered.
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Finally, ψ is an embedding of F (P ) in F (R), and ψ(I bnd (P )) ⊆ I bnd (R).
So R and ψ are as required.

Proof of Theorem 1.4. Let 〈P,≤〉 be narrow and scattered. By Theo-
rem 1.5 we may assume that there is ≤′ ⊆ ≤ such that 〈P,≤′〉 ∈ H. By
Theorem 1.6, F (〈P,≤′〉) is embeddable in F (W ), where W is a well-ordered
poset, and obviously F (〈P,≤〉) is a homomorphic image of F (〈P,≤′〉) .

Remark. The Boolean algebra F (ω∗ · ω1) is not a homomorphic image of a
poset algebra of a well-ordered poset. This is proved in [ABK].
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