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Abstract

We prove that the hyperspace of closed bounded sets with the Hausdorff topology, over an
almost convex metric space, is an absolute retract. Dense subspaces of normed linear spaces are
examples of, not necessarily connected, almost convex metric spaces. We give some necessary
conditions for the path-wise connectedness of the Hausdorff metric topology on closed bounded
sets. Finally, we describe properties of a separable metric space, under which its hyperspace
with the Wijsman topology is path-wise connected.
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1 Introduction

Given a metric space (X, d), let CL(X) denote the hyperspace of closed nonempty subsets of X.
We are interested in path-wise connectedness and related properties of hyperspace topologies on
CL(X), mainly the Hausdorff metric topology and the Wijsman topology. These two topologies
come from identifying a closed set A ⊆ X with its distance functional x 7→ dist(x,A), so that
CL(X) can be regarded as a subspace of C(X, R), the space of all continuous real functions on
X. Under this identification, the Hausdorff and Wijsman topologies are the topologies of uniform
and pointwise convergence respectively. Both are different from the well known Vietoris topology
(unless X is compact). The advantage of these topologies is metrizability: the Hausdorff topology
on bounded sets is always metrizable and the Wijsman one is metrizable provided the base space
is separable. The Vietoris topology on closed sets is metrizable only if the base space is compact.
For a general reference concerning hyperspace topologies see Beer’s book [3].
Global and local path-wise connectedness of the Vietoris topology on compact sets has been
studied since 1930s. Borsuk and Mazurkiewicz [4] showed in 1931 that both K(X), the hyperspace
of compact subsets of X and C(X), the hyperspace of subcontinua of X, are path-wise connected
provided X is a metrizable continuum. The case of non-metrizable spaces was investigated by
McWaters [14] and Ward [13]: they obtained results on generalized path-wise connectedness of
the Vietoris hyperspace of compact sets. Local path-wise connectedness of K(X) and C(X), for
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a compact metric space X, were first characterized by Wojdys lawski [15] in 1939. Namely, K(X)
is locally path-wise connected iff X is locally connected. The same is true for C(X) and this
property is equivalent to the fact that K(X) (or C(X)) is an absolute neighborhood retract. The
case of all metric spaces is due to Curtis [5]: K(X) is locally path-wise connected (equivalently:
K(X) ∈ ANR) iff X is locally continuum-wise connected, i.e. for every p ∈ X and its neighborhood
V there is a neighborhood U of p such that any two points of U lie in a subcontinuum of V . A
famous result of Curtis and Schori [7] says that K(X) is homeomorphic to the Hilbert cube iff
X is a locally connected, nondegenerate, metric continuum (for other results in this spirit see
e.g. [5, 6]). Let us also mention a useful result of Curtis and Nguyen To Nhu [6]: the Vietoris
hyperspace of finite sets over a locally path-wise connected metric space is an ANR. For a study
of topological properties of compact Vietoris hyperspaces we refer to Nadler’s book [11] or to a
recent one by Illanes and Nadler [8].
Concerning other hyperspace topologies, not much is known. Antosiewicz and Cellina [1] showed
that the hyperspace of closed bounded sets with the Hausdorff metric topology, over a convex
subspace of a normed linear space, is an absolute retract. Sakai and Yang [12] proved that CL(X)
with the Fell topology is homeomorphic to the Hilbert cube minus a point iff X is a locally
compact, locally connected, separable metrizable space with no compact components. Banakh,
Kurihara and Sakai [2] showed that for a normed linear space X, CL(X), K(X) and some
other subspaces of CL(X), equipped with the Attouch-Wets topology, are absolute retracts; in
case where X is a Banach space, CL(X) is homeomorphic to a Hilbert space. Finally, Sakai,
Yaguchi and the second author [9] gave general conditions for the ANR property of CL(X)
with the Wijsman topology. In [9] it is also proved that CL(X) with the Wijsman topology is
homeomorphic to the separable Hilbert space, provided X is a separable Banach space.
We give several results on path-wise connectedness and absolute neighborhood retract property for
some hyperspace topologies. Using well known results for compact hyperspaces, we characterize
path-wise connectednes of the Vietoris topology on closed sets over a metrizable space; we apply
this result for the Wijsman topology. We note that for a noncompact metrizable space X, CL(X)
with the Vietoris topology is not locally connected. We prove that the hyperspace of closed
bounded sets endowed with the Hausdorff topology is an absolute retract, provided the base
space is almost convex (see the definitions below). This improves the result of Antosiewicz and
Cellina [1] mentioned above. We give some necessary conditions for the path-wise connectedness
of the Hausdorff topology on closed bounded sets. Finally, we discuss the path-wise connectedness
of the Wijsman topology. We show, among others, that CL(X) with the Wijsman topology is
path-wise connected if (X, d) is separable and path-wise connected at infinity or continuum-wise
connected.

Notation

For a given topological (metric) space X, we denote by CL(X), K(X), C(X) and CLB(X) the
hyperspace of closed, compact, compact connected and closed bounded nonempty subsets of X
respectively. For any set X, we denote by Fin(X) the collection of all nonempty finite subsets of
X. ω denotes the set of all nonnegative integers.
Let (X, d) be a metric space. We will denote by B(A, r) and B(A, r) the open and closed ball
centered at A ⊆ X and with radius r > 0, respectively. The Hausdorff metric on CLB(X) is
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defined by
dH(A,B) = inf{r > 0: A ⊆ B(B, r) & B ⊆ B(A, r)}.

We can define dH(A,B) also for unbounded sets, setting dH(A,B) = +∞ if there is no r > 0
with A ⊆ B(B, r) and B ⊆ B(A, r). The topology induced by the Hausdorff metric is called the
Hausdorff topology. It is reasonable to consider the Hausdorff topology on all closed subsets of
X, because dH is locally a metric. However, CLB(X) is clopen in CL(X) and hence CL(X) is
not connected for an unbounded metric space (X, d). The Hausdorff topology on K(X) agrees
with the Vietoris topology. The Wijsman topology on CL(X) is the least topology T such that
for every x ∈ X the function A 7→ dist(x,A) is continuous. By the formula

dH(A,B) = sup
x∈X

∣∣dist(x,A)− dist(x,B)
∣∣,

the Wijsman topology is weaker than the Hausdorff topology. For a noncompact metric space, the
Wijsman topology is strictly weaker than the Vietoris one (even on finite sets). We will denote
by TV , TH and TW the Vietoris, Hausdorff and Wijsman topology, respectively (the latter two
depend on the metric).
A metric space (X, d) is almost convex if for every x, y ∈ X and for every s, t > 0 with d(x, y) <
s + t, there exists z ∈ X such that d(x, z) < s and d(z, y) < t. For example, a dense subspace of
a normed linear space (or, more generally, of a convex metric space) is almost convex.
A path in a space X is a continuous map γ : J → X where J ⊆ R is a closed interval (usually
J = [0, 1]). We denote by Bk+1 and Sk the standard k+1-dimensional closed ball and the standard
k-dimensional sphere (which is the boundary of Bk+1), respectively. A topological space X is k-
connected (k ∈ ω) if every continuous map f : Sk → X has a continuous extension F : Bk+1 → X.
In particular, ”0-connected” means ”path-wise connected”. X is homotopically trivial if it is k-
connected for every k ∈ ω. Local versions of k-connectedness are defined in the obvious way. A
metric space (X, d) is path-wise connected at infinity if for every x ∈ X there exists a continuous
map f : [0, +∞) → X such that f(0) = x and limt→+∞ d(x, f(t)) = +∞. A topological space X
is continuum-wise connected if every two points of X are contained in a subcontinuum of X (i.e.
a compact connected subspace of X).
An absolute neighborhood retract (briefly ANR) is a metrizable space X such that for every
metric space Y , every continuous map f : A → X defined on a closed set A ⊆ Y , has a continuous
extension F : U → X, for some open set U with A ⊆ U ⊆ Y . If, under these assumptions, U = Y
then X is an absolute retract (briefly AR). It is well known that an absolute neighborhood retract
is locally k-connected for every k ∈ ω and a homotopically trivial ANR is an absolute retract.
A (join) semilattice is a commutative semigroup (L,∨) such that a ∨ a = a for every a ∈ L.
A semilattice comes from a partially ordered set (L,6) such that every two elements of L have
a supremum. Specifically, setting a ∨ b = sup{a, b}, (L,6) becomes a semilattice. Conversely, if
(L,∨) is a semilattice then defining a 6 b iff a ∨ b = b, we get a partial order on L such that
a ∨ b = sup{a, b}. A Lawson semilattice [10] is a topological semilattice (L,∨) (i.e. a semilattice
equipped with the topology such that ∨ : L × L → L is continuous) which has a neighborhood
base consisting of subsemilattices. Most of hyperspaces are Lawson semilattices with respect to
∪ (see Section 2.2).
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2 General results

2.1 On path-wise connectedness

Fix a topological (metric) space X and let T be the Vietoris topology or the Wijsman topology
on CL(X). Observe that (CL(X), T ) has the following properties:

(i) If {An}n∈ω converges to A then {C ∪An}n∈ω converges to C ∪A for each C ∈ CL(X).

(ii) If {An}n∈ω is increasing and such that
⋃

n∈ω An is dense in X then {An}n∈ω converges to
X.

Most of the hyperspace topologies satisfy stronger condition than (i), namely the union operator
∪ : CL(X)×CL(X) → CL(X) is continuous. On the other hand, for a bounded metric space X
the Hausdorff topology on CL(X) does not necessarily satisfy (ii).

Proposition 2.1. Let X be a separable topological space and let T be a topology on CL(X)
satisfying conditions (i), (ii) above. Then the following conditions are equivalent:

(a) (CL(X), T ) is path-wise connected.

(b) For each a, b ∈ X there is a continuous map γ : [0, 1] → (CL(X), T ) such that γ(0) = {a}
and b ∈ γ(1).

Proof. It is enough to show that (b) =⇒ (a). Fix C ∈ CL(X). We show that there exists a
path joining C to X. Fix a countable dense set {dn : n ∈ ω} ⊆ X with d0 ∈ C. For each n ∈ ω
choose a continuous map γn : [0, 1] → (CL(X), T ) such that γ(0) = {dn} and dn+1 ∈ γ(1). Define
ϕn : [n, n + 1] → CL(X) by setting

ϕn(t) = C ∪
⋃
k<n

γk(1) ∪ γn(t− n).

As T is nice (property (1)), we see that ϕn is continuous. Furthermore, ϕn(n+1) = ϕn+1(n+1) and⋃
n∈ω ϕn(n) is dense. Thus we can define a map ϕ : [0, +∞] → CL(X) by setting ϕ � [n, n+1] = ϕn

and ϕ(+∞) = X. Applying condition (2) for T we see that ϕ is continuous at +∞. This completes
the proof.

2.2 Hyperspaces as Lawson semilattices

Let (Y,∨) be a Lawson semilattice and consider Fin(L) with the Vietoris topology. The formula

r({a1, . . . , an}) = a1 ∨ . . . ∨ an

defines a map r : Fin(L) → L which is easily seen to be continuous (because L has a basis
consisting of subsemilattices). Identifying L with {{x} : x ∈ L} we see that L is a retract of
Fin(L). On the other hand, if L is metrizable and locally path-wise connected [and connected]
then Fin(L) is an ANR [AR] (by the theorem of Curtis and Nguyen To Nhu [6]). Thus we obtain
a useful result due to Banakh, Kurihara and Sakai [2]:
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Theorem 2.2. Let (L,∨) be a metrizable Lawson semilattice which is locally path-wise connected.
Then L is an ANR. If , additionally, L is connected then L is an AR.

Using similar arguments we can prove the following:

Proposition 2.3. Let (L,∨) be a metrizable Lawson semilattice. Then L is k-connected for every
k > 0.

Proof. Let f : Sk → L be a continuous map. Then f extends naturally to a Vietoris continuous
map f : Fin(Sk) → Fin(L). As k > 0, Fin(Sk) is an AR, so there is a map j : Bk+1 → Fin(Sk)
such that j(x) = {x} for x ∈ Sk (in fact, there is a straightforward formula for j, see [6]). Now
setting F = rfj, where r : Fin(L) → L is the retraction defined above, we get a continuous
extension of f .

To apply the above results for hyperspaces we need to know that they are Lawson semilattices.

Proposition 2.4. The Vietoris, Wijsman and Hausdorff hyperspaces are Lawson semilattices
with respect to ∪.

Proof. Let X be a topological (metric) space and let T ∈ {TV , TH , TW }. Clearly, T has a base
consisting of subsemilattices. We need to show the continuity of the union. First, let T = TV and
fix (A0, B0) ∈ CL(X)×CL(X). If A0∪B0 ∈ U+ then (A0, B0) ∈ U+×U+ and ∪[U+×U+] ⊆ U+,
where ∪[M ] is the image of M ⊆ CL(X) × CL(X) under ∪ : CL(X) × CL(X) → CL(X). If
A0 ∪ B0 ∈ U− then (A0, B0) ∈ W , where W = (U− × CL(X)) ∪ (CL(X) × U−), and we have
∪[W ] ⊆ U−. Thus, ∪ is continuous with respect to TV . For T = TW and T = TH the continuity
of ∪ follows from the formulae:

dist(x,A ∪B) = min{dist(x,A), dist(x,B)},
dH(A ∪B,A′ ∪B′) 6 max{dH(A,A′), dH(B,B′)}.

3 The Vietoris topology

In this section we note some results on path-wise connectedness of the Vietoris topology. Recall
that the theorem of Borsuk and Mazurkiewicz [4] says that both K(X) and C(X) are path-wise
connected whenever X is a metrizable continuum. Using this result, we are able to investigate
the case of noncompact metric spaces. We use the following fact: if γ : [0, 1] → K(X) is a path
and γ(0) is connected then

⋃
γ[0, 1] is a subcontinuum of X (see, e.g. Nadler [11]).

Theorem 3.1. For a metrizable space X the following conditions are equivalent:

(a) Every compact subset of X is contained in a continuum.

(b) (K(X), TV ) is path-wise connected.
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Proof. (a) =⇒ (b) Fix A,B ∈ K(X). Let C ⊆ X be a continuum such that A ∪ B ⊆ C.
Then A,B ∈ K(C) and hence, by the theorem of Borsuk-Mazurkiewicz, there exists a path
γ : [0, 1] → K(C) such that γ(0) = A and γ(1) = B.
(b) =⇒ (a) Fix A ∈ K(X) and a ∈ X. Let γ : [0, 1] → K(X) be a path joining A and {a}. Then
D =

⋃
γ[0, 1] is a continuum containing A.

Example 3.2. An example of a path-wise connected subspace of the plane R2 which does not
satisfy (a) above. Consider

X = ({0} × [0, +∞)) ∪ S ∪ T,

where
S = {(x, | sin(π/x)|/x) : x ∈ [0, 1]}

and T = {(x, y) ∈ R2 : (x− 1/2)2 + y2 = 1/4 and y < 0}. Observe that X is path-wise connected.
Let A = ({0} ∪ {1/n : n ∈ ω}) × {0}. Then A ∈ K(X) but each closed connected subset of X
containing A also contains {0} × [0, +∞) and therefore is not compact.

Theorem 3.3. For a metrizable space X the following conditions are equivalent:

(a) (C(X), TV ) is path-wise connected.

(b) There exists G ⊆ K(X) containing all singletons of X, such that (G, TV ) is path-wise con-
nected.

(c) X is continuum-wise connected, i.e. each two points of X lie in a subcontinuum of X.

Proof. (a) =⇒ (b) is obvious.
(b) =⇒ (c) Fix a, b ∈ X and let γ : [0, 1] → G be a path joining {a} and {b}. Then

⋃
γ[0, 1] is a

subcontinuum of X containing a, b.
(c) =⇒ (a) Fix A,B ∈ C(X). Let G be a subcontinuum of X intersecting both A and B. Then
A,B ∈ C(D), where D = A∪B∪G. By the theorem of Borsuk-Mazurkiewicz, there exists a path
in C(D) joining A and B.

Using the above result and Proposition 2.1 we obtain the following.

Corollary 3.4. Let X be a separable topological space. If X is path-wise connected or X is
continuum-wise connected and metrizable then (CL(X), TV ) is path-wise connected.

Let X be a metrizable space. A theorem of Curtis [5] says that (K(X), TV ) is locally path-
wise connected (equivalently: (K(X), TV ) ∈ ANR) iff X is locally continuum-wise connected.
Concerning CL(X), we have the following negative result.

Theorem 3.5. If X is a noncompact metrizable space then (CL(X), TV ) is not locally connected.

Proof. Let C = {xn : n ∈ ω} be a (one-to-one) sequence in X having no cluster point (by the
noncompactness of X); then C ∈ CL(X). Choose a disjoint family {Un}n∈ω of open sets such
that xn ∈ Un for n ∈ ω. Let U =

⋃
n∈ω Un. Then U+ is a neighborhood of C. Let V ∈ TV

be any nieghborhood of C such that V ⊆ U+. Then V contains a basic neighborhood W =
V + ∩ V −

0 ∩ · · · ∩ V −
m−1 of C, with Vi ⊆ V and V, V0, . . . , Vm−1 open in X. This implies, in
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particular, that C ⊆ V and that for every i < m there is an n(i) ∈ ω with xn(i) ∈ Vi. Let
F = {xn(0), . . . , xn(m−1)}, so that F ∈ W, and fix k > max{n(i) : i < m}. We will prove that
S = V ∩ U−

k is clopen in V, and this will imply that V is disconnected, because C ∈ S while
F ∈ W \ S ⊆ V \ S.
Clearly, S is open in V because U−

k is open in CL(X). On the other hand, we may observe that
S = V∩ [cl Uk]−: indeed, every element of V is a subset of U and hence it cannot contain any point
of (cl Uk) \ Uk (because the sets Ui are pairwise disjoint). Therefore, S is also closed in V.

4 The Hausdorff metric topology

In this section we consider CLB(X) endowed with the Hausdorff metric topology. The Hausdorff
metric is actually defined on CL(X) but one can easily observe that CLB(X) is clopen in CL(X)
so CL(X) is not connected unless X is bounded. If X is not compact then there is an unbounded
metric on X; on the other hand if d is an unbounded metric on X then %(x, y) = min{1, d(x, y)}
defines a bounded, uniformly equivalent metric, so the Hausdorff metric induced by % is equivalent
to the one induced by d. It follows that a noncompact metrizable space admits a metric for which
the Hausdorff hyperspace of closed bounded sets is disconnected.
Observe that if γ : [0, 1] → CLB(X) is a path then the map Γ: [0, 1] → CLB(X) defined by the
formula

Γ(t) = cl
(⋃

s6t

γ(s)
)

is also a path in CLB(X). Such a map will be called an order arc in CLB(X).

Lemma 4.1. For a metric space (X, d) the following conditions are equivalent:

(a) (CLB(X), TH) is path-wise connected.

(b) For each p ∈ X and for each n ∈ ω there exists a path γ : [0, 1] → CLB(X) such that
γ(0) = {p} and B(p, n) ⊆

⋃
t61 γ(t).

Proof. We need to show that (b) =⇒ (a). Fix C,D ∈ CLB(X). Fix n ∈ ω with

n > max{dH({c}, D), dH(C, {d})},

where c ∈ C and d ∈ D are fixed arbitrarily. By (b) there exist paths f, g : [0, 1] → CLB(X) with
f(0) = {c}, g(0) = {d}, B(c, n) ⊆

⋃
t61 f(t) and B(d, n) ⊆

⋃
t61 g(t). We may assume that f, g

are order arcs, thus B(c, n) ⊆ f(1) and B(d, n) ⊆ g(1). Set F = f(1) ∪ g(1). Then F ∈ CLB(X)
and C ∪D ⊆ B(d, n) ∪ B(c, n) ⊆ F . Define γ : [0, 2] → CLB(X) by setting

γ(t) =

{
C ∪ f(t) if t ∈ [0, 1],
C ∪ f(1) ∪ g(t− 1) if t ∈ [1, 2].

Observe that γ is well-defined, continuous and γ(0) = C, γ(2) = F . It follows that C and F can
be joined by a path. Similarly, there is a path joining D to F .
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4.1 Almost convex metric spaces

Recall that a metric space (X, d) is almost convex if for each a, b ∈ X and for each s, t > 0 such
that d(a, b) < s + t there exists x ∈ X with d(a, x) < s and d(x, b) < t. Clearly, every convex
metric space is almost convex and a dense subspace of an almost convex metric space is almost
convex.

Lemma 4.2. A metric space (X, d) is almost convex iff for each A ⊆ X and for each s, t > 0 we
have B(B(A, s), t) = B(A, s + t).

Proof. If (X, d) satisfies the above condition then for a, b ∈ X and s, t > 0 with d(a, b) < s + t we
have b ∈ B(a, s + t) = B(B(a, s), t) and hence there is x ∈ B(a, s) with d(x, b) < t. Thus (X, d) is
almost convex.
Assume now that (X, d) is almost convex and fix A ⊆ X and s, t > 0. Clearly B(B(A, s), t) ⊆
B(A, s + t). Fix p ∈ B(A, s + t). Let a ∈ A be such that d(a, p) < s + t. There exists x ∈ X with
d(a, x) < s and d(x, p) < t. Thus p ∈ B(B(A, s), t).

Lemma 4.3. Let (X, d) be an almost convex metric space and let C ∈ CL(X). Then the map
γ : [0, +∞) → CL(X) defined by the formula

γ(t) = B(C, t)

is a constant 1 Lipschitz map with respect to the Hausdorff metric on CL(X) and the standard
metric on [0, +∞).

Proof. First observe that cl B(A, r) = B(A, r) for every A ⊆ X and r > 0. Thus, by Lemma 4.2
we have γ(t + r) ⊆ B(γ(t), r) for every t, r > 0. It follows that dH(γ(t), γ(t + r)) 6 r.

Theorem 4.4. Let (X, d) be an almost convex metric space. Then (CLB(X), TH) is an absolute
retract.

Proof. CLB(X) is path-wise connected by Lemma 4.1, but we need to show that it is locally
path-wise connected. Fix C,D ∈ CLB(X) and r > dH(C,D). Let A = B(C, r) ∪ B(D, r). Then
C ∪D ⊆ A and A ∈ CLB(X). Define γ : [0, 2r] → CLB(X) by

γ(t) =

{
B(C, t), if t 6 r,

B(C, r) ∪ B(D, t− r), if r 6 t 6 2r.

By Lemma 4.3, γ is continuous with respect to the Hausdorff metric. Observe that dH(γ(t), C) 6
2r, Thus C and A can be joined by a path contained in the open ball centered at C and with
radius 2r. By symmetry, the same applies to D and A. This proves that (CLB(X), dH) is locally
path-wise connected. As CLB(X) is a Lawson semilattice, by Theorem 2.2, it is an ANR. On the
other hand, CLB(X) is homotopically trivial (Proposition 2.3), so it is an AR.

Corollary 4.5. Let X be a dense subset of a convex subset of a normed linear space, endowed
with the metric induced by the norm. Then (CLB(X), TH) is an absolute retract.

The above result in the case of convex subsets of normed spaces was proved, using elementary
although complicated methods, by Antosiewicz and Cellina [1].
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4.2 C-connectedness

We investigate necessary conditions for the path-wise connectedness of (CLB(X), dH) and we
present some counterexamples.
Let us call a metric space (X, d) C-connected (or connected in Cantor’s sense) if for each a, b ∈ X
and for each ε > 0 there exist x0, . . . , xn ∈ X such that x0 = a, xn = b and d(xi, xi+1) < ε for
i < n. Clearly every connected space is C-connected and every compact C-connected space is
connected. A sequence (x0, . . . , xn) with d(xi, xi+1) < ε for i < n will be called an ε-sequence of
size n joining x0, xn. Call a metric space (X, d) uniformly C-connected if for each bounded set
B ⊆ X and for each ε > 0 there exists k ∈ ω such that for each x, y ∈ B there exists an ε-sequence
in X of size at most k joining x, y. Observe that the closure of a uniformly C-connected subset
of X is also uniformly C-connected.

Proposition 4.6. Let (X, d) be a metric space. Then (CLB(X), dH) is C-connected if and only
if (X, d) is uniformly C-connected.

Proof. Suppose that (CLB(X), dH) is C-connected. Fix a closed bounded set B ⊆ X and p ∈ B.
Fix ε > 0 and let (A0, . . . , Ak) be an ε-sequence in CLB(X) with A0 = {p} and Ak = B. Fix
x ∈ B. We can find xk−1 ∈ Ak−1 such that d(xk−1, x) < ε, because dH(Ak−1, B) < ε. Inductively,
we find xi ∈ Ai such that d(xi, xi+1) < ε. Then x0 = {p} and (x0, . . . , xk−1, x) is an ε-sequence
of size k joining p, x. It follows that every two points of B are joined by an ε-sequence of size at
most 2k. Thus (X, d) is uniformly C-connected.
Suppose now that (X, d) is uniformly C-connected and fix B ∈ CLB(X). Fix p ∈ B. We show
that {p} and B can be joined be an ε-sequence for every ε > 0. As (X, d) is C-connected and is
isometrically embedded in CLB(X), it then follows that CLB(X) is C-connected.
Fix ε > 0. Let k be such that for each x ∈ B there exists an ε/2-sequence (y0(x), . . . , yk(x))
such that y0(x) = p and yk(x) = x. Define Ai = cl{yi(x) : x ∈ B}. Observe that Ai ∈ CLB(X)
and dH(Ai, Ai+1) 6 ε/2 < ε for i < k. Thus (A0, . . . , Ak) is an ε-sequence in CLB(X) joining
A0 = {p} to Ak = B.

Consider the following metric properties:

C1: Every bounded subset of X is contained in a uniformly C-connected bounded subset of X.

C2: For each p ∈ X and for each r > s > 0 such that B(p, r)\B(p, s) 6= ∅ there exists a uniformly
C-connected set S ⊆ B(p, r) such that p ∈ S and S ∩ B(p, r) \ B(p, s) 6= ∅.

Proposition 4.7. Let (X, d) be a metric space such that (CLB(X), TH) is path-wise connected.
Then (X, d) has properties C1, C2.

Proof. Fix p ∈ X and r > 0. Let f : [0, 1] → CLB(X) be a Hausdorff continuous order arc
with f(0) = {p} and f(1) ⊇ B(p, r). Fix ε > 0. Let k ∈ ω be such that |t − s| < 1/k implies
dH(f(t), f(s)) < ε. Fix x0 ∈ B(p, r). As dH(f(1), f(1 − 1/k)) < ε, we can find x1 ∈ f(1 − 1/k)
with d(x0, x1) < ε. Inductively, we find xi ∈ f(1− i/k) with d(xi−1, xi) < ε. Finally xk = p which
means that (x0, . . . , xk) is an ε-sequence of size k joining p, x. This shows that f(1) is uniformly
C-connected and consequently (X, d) has property C1. By the same argument, f(t) is C-connected
for each t ∈ [0, 1]. Now let 0 < s < r be such that B(p, r) \ B(p, s) 6= ∅. Then dH({p}, f(1)) > s.
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Let t0 ∈ [0, 1] be such that dH({p}, f(t0)) ∈ (s, r). Then S = f(t0) is a uniformly C-connected
set with p ∈ S and S ∩ B(p, r) \ B(p, s) 6= ∅. This shows property C2.

We now describe two examples of path-wise connected spaces with path-wise disconnected Haus-
dorff hyperspaces.

Example 4.8. Let (X, %) be an unbounded metric space and define a bounded metric on X by
the formula d(x, y) = min{%(x, y), 1}. Then (CL(X), dH) is not C-connected since (X, d) is not
uniformly C-connected. Indeed, (X, d) is bounded, but for every k we can find two points of X
which cannot be joined by a 1-sequence of size k. This shows that if a metrizable space X is not
compact then there exists a metric d on X such that (CLB(X), dH) is not C-connected.

Example 4.9. Let A =
⋃

n∈ω(3−n, 2 · 3−n) and B =
⋃

n∈ω[3−n, 2 · 3−n]. Consider

X = {(x, y) ∈ [0, 1]2 : χA(x) 6 y 6 χB(x)}

with the topology inheritted from the plane. Then for any compatible metric d on X, CLB(X) is
not path-wise connected since (X, d) does not have property C2. Indeed, if U is a neighborhood
of p = (0, 0) contained in [0, 1] × [0, 1/2) then the only C-connected subset of U containing p is
{p}. On the other hand, if d is the Euclidean metric on X then (X, d) has property C1.

PROBLEM: Do properties C1, C2 characterize path-wise connectedness of the Hausdorff topol-
ogy?

5 The Wijsman topology

Let (X, d) be a metric space. Recall that the Wijsman topology is weaker than the Vietoris one;
on CLB(X) it is also weaker than the Hausdorff metric topology. (CL(X), TW ) is completely
regular, it is metrizable iff X is separable. See Beer’s book [3] for the details.
Applying Corollary 3.4 and Lemma 4.3 together with Proposition 2.1 we obtain the following.

Corollary 5.1. If (X, d) is a separable continuum-wise connected metric space then (CL(X), TW )
is path-wise connected.

Theorem 5.2. If (X, d) is an almost convex metric space then (CL(X), TW ) is path-wise con-
nected.

Proof. If (X, d) is separable, this follows from Proposition 2.1 and Lemma 4.3. However in general,
by Lemma 4.3, the formula

γ(t) =

{
B(A, t) if t ∈ [0, +∞),
X if t = +∞.

defines a Wijsman continuous path γ : [0, +∞] → CL(X) joining A to X, for each A ∈ CL(X).

The next result describes different situations. It appears that (CL(X), TW ) may be path-wise
connected even if X is far from being connected.
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Theorem 5.3. Let (X, d) be a separable metric space such that for each a, b ∈ X either there
exists a uniformly continuous map f : Q ∩ [0, 1] → X with f(0) = a and f(1) = b, or else there
exists a map g : Q∩ [0, +∞) → X such that g(0) = b, limt→+∞ d(g(t), b) = +∞ and g � (Q∩ [0, n])
is uniformly continuous for every n ∈ ω. Then CL(X) with the Wijsman topology is path-wise
connected.

Proof. We use Proposition 2.1. Fix a, b ∈ X. Assume first that there exists a uniformly continuous
map f : Q ∩ [0, 1] → X with f(0) = a and f(1) = b. Define a path γ : [0, 1] → CL(X) by setting

γ(t) = cl{f(q) : q ∈ Q ∩ [0, t]}.

Clearly, γ(0) = {a} and b ∈ γ(1). We need to show that γ is continuous. Fix ε > 0. Let δ > 0
be such that d(f(q0), f(q1)) < ε whenever |q0 − q1| < δ, q0, q1 ∈ Q ∩ [0, 1]. Fix t0, t1 ∈ [0, 1]
with |t0 − t1| < δ. Consider x = f(q0), where q0 ∈ Q ∩ [0, t0]. Choose q1 ∈ Q ∩ [0, t1] such
that |q0 − q1| < δ. Then d(x, f(q1)) < ε and f(q1) ∈ γ(t1). It follows that γ(t0) ⊆ B(γ(t1), ε).
By symmetry we get dH(γ(t0), γ(t1)) 6 ε. It follows that γ is continuous with respect to the
Hausdorff metric on CL(X). Hence, γ is also continuous with respect to the Wijsman topology.
Now assume that there exists a map g : Q∩ [0, +∞) → X such that g(0) = b, limt→+∞ d(g(t), b) =
+∞ and g � (Q ∩ [0, n]) is uniformly continuous for each n ∈ ω. Define γ : [0, +∞] → CL(X) by
setting

γ(t) = {a} ∪ cl{g(q) : q ∈ Q ∩ [t, +∞)}

for t ∈ [0, +∞) and γ(+∞) = {a}. Clearly, b ∈ γ(0). Observe that γ � [0, n] can be represented
in the form

γ(t) = η(t) ∪Bn,

where Bn = {a} ∪ cl{g(q) : q ∈ [n, +∞)} and

η(t) = cl{g(q) : q ∈ Q ∩ [t, n]}.

Thus, by the previous argument, γ � [0, n] is continuous with respect to the Wijsman topology. It
remains to show that γ is continuous at +∞. Fix x ∈ X. Then dist(x, γ(+∞)) = d(x, a). On the
other hand, d(g(q), x) > d(g(q), b) − d(x, b) so there exists n0 ∈ ω such that d(g(q), x) > d(x, a)
for q ∈ Q ∩ [n0, +∞). Hence dist(x, γ(t)) = d(x, a) = dist(x, γ(+∞)) for t > n0.

Corollary 5.4. Let (X, d) be a separable metric space which is path-wise connected at infinity.
Then (CL(X), TW ) is path-wise connected.

Let (X, d) be a separable, locally path-wise connected metric space. In [9], Sakai, Yaguchi and the
second author proved that (CL(X), TW ) is an absolute neighborhood retract provided X \

⋃
B

has finitely many components, for every finite family B consisting of closed balls in (X, d). We
give an example of an almost convex, locally path-wise connected, separable metric space, for
which the Wijsman hyperspace is not locally connected.

Example 5.5. Let (X, d) be the separable hedgehog space, i.e.

X = {θ} ∪
⋃
n∈ω

(0, 1]× {n},
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where d(θ, (t, n)) = t, d((t, n), (s, n)) = |t− s| and d((t, n), (s,m)) = t + s for n 6= m. Then (X, d)
is an almost convex metric space and it is an absolute retract. We claim that (CL(X), TW ) is not
locally connected. Let A0 = {(1, n) : n ∈ ω} and let U = {A ∈ CL(X) : dist(θ, A) > 1/2}. Then
U is a neighborhood of A0. For each n ∈ ω define

V−n = {A ∈ CL(X) : dist((1, n), A) < 1/2}, V+
n = {A ∈ CL(X) : dist((1, n), A) > 1}.

Clearly V−n ∩ V+
n = ∅ and V−n ,V+

n ∈ TW . Observe that U ⊆ V−n ∪ V+
n . Also, V−n is a neighborhood

of A0. Now we claim that for every neighborhood V of A0 with V ⊆ U , there is n ∈ ω such
that V+

n ∩ V 6= ∅, i.e. V+
n disconnects V. Indeed, observe that A0 = limn→∞An, where An =

{(1, k) : k < n}. Thus, for every open V ⊆ U with A0 ∈ V there exists n ∈ ω such that An ∈ V.
On the other hand dist((1, n), An) = 2 so An ∈ V+

n .
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