Metric categories and Fraïssé limits

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC)
and
Jan Kochanowski University, Kielce (POLAND)
http://www.ujk.edu.pl/~wkubis/

Continuous Logic and Functional Analysis Lyon, 16 – 20 July 2012

Outline

- Introduction
- Classical framework
- Almost homogeneous objects
- Metric-enriched categories
 - Approximate back-and-forth argument
- 5 Application: The pseudo-arc
- Metric categories
- Application: The Gurarii space
- The end

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

- Fraïssé 1954; Jónsson 1960
- Droste & Göbel 1989: Category-theoretic approach
- Irwin & Solecki 2006: Reversed Fraïssé limits

Typical assumptions:

We work in a category \Re of "small" objects, satisfying the following conditions:

- **1** \mathfrak{K} has the Joint Embedding Property, that is, for each \mathfrak{K} -objects a, b there is a \mathfrak{K} -object c satisfying $\mathfrak{K}(a, c) \neq \emptyset \neq \mathfrak{K}(b, c)$.
- A has the Amalgamation Property.

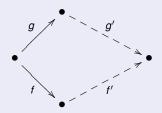
The Amalgamation Property:

Typical assumptions:

We work in a category \Re of "small" objects, satisfying the following conditions:

- \mathfrak{K} has the Joint Embedding Property, that is, for each \mathfrak{K} -objects a,b there is a \mathfrak{K} -object c satisfying $\mathfrak{K}(a,c) \neq \emptyset \neq \mathfrak{K}(b,c)$.
- 2 £ has the Amalgamation Property.

The Amalgamation Property:



Almost homogeneous objects

Motivation:

Theorem (Gurarii 1966)

There exists a separable Banach space $\mathbb G$ satisfying the following condition.

Given finite dimensional spaces $E \subseteq F$, given an isometric embedding $f \colon E \to \mathbb{G}$, for every $\varepsilon > 0$ there exists an extension $g \colon F \to \mathbb{G}$ of f such that $\|g\| \cdot \|g^{-1}\| < 1 + \varepsilon$.

Theorem (Lusky 1976)

The Gurarii space is unique up to a linear isometry.

Solecki & K. 2012: Elementary proof of the uniqueness of G.

Motivation:

Theorem (Gurarii 1966)

There exists a separable Banach space $\mathbb G$ satisfying the following condition.

Given finite dimensional spaces $E \subseteq F$, given an isometric embedding $f \colon E \to \mathbb{G}$, for every $\varepsilon > 0$ there exists an extension $g \colon F \to \mathbb{G}$ of f such that $\|g\| \cdot \|g^{-1}\| < 1 + \varepsilon$.

Theorem (Lusky 1976)

The Gurariĭ space is unique up to a linear isometry.

Solecki & K. 2012: Elementary proof of the uniqueness of G.

Motivation:

Theorem (Gurarii 1966)

There exists a separable Banach space \mathbb{G} satisfying the following condition.

Given finite dimensional spaces $E \subseteq F$, given an isometric embedding $f \colon E \to \mathbb{G}$, for every $\varepsilon > 0$ there exists an extension $g \colon F \to \mathbb{G}$ of f such that $\|g\| \cdot \|g^{-1}\| < 1 + \varepsilon$.

Theorem (Lusky 1976)

The Gurarii space is unique up to a linear isometry.

Solecki & K. 2012: Elementary proof of the uniqueness of G.

A continuum is a nonempty connected compact metric space.

Theorem

There exists a unique, up to a homeomorphism, snake-like continuum \mathbb{P} with the following property:

(*) Given $\varepsilon > 0$, given quotient maps $f_0, f_1 : \mathbb{P} \to \mathbb{I}$, there exists a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $|f_0 - f_1 \circ h| < \varepsilon$.

Furthermore, \mathbb{P} is hereditarily indecomposable and maps onto every snake-like continuum.

- Bing 1948-1959, Moise 1949, Mioduszewski 1962
- Irwin & Solecki 2006

A continuum is a nonempty connected compact metric space.

Theorem

There exists a unique, up to a homeomorphism, snake-like continuum \mathbb{P} with the following property:

(*) Given $\varepsilon > 0$, given quotient maps $f_0, f_1 : \mathbb{P} \to \mathbb{I}$, there exists a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $|f_0 - f_1 \circ h| < \varepsilon$.

Furthermore, \mathbb{P} is hereditarily indecomposable and maps onto every snake-like continuum.

- Bing 1948-1959, Moise 1949, Mioduszewski 1962
- Irwin & Solecki 2006

A continuum is a nonempty connected compact metric space.

Theorem

There exists a unique, up to a homeomorphism, snake-like continuum \mathbb{P} with the following property:

(*) Given $\varepsilon > 0$, given quotient maps $f_0, f_1 : \mathbb{P} \to \mathbb{I}$, there exists a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $|f_0 - f_1 \circ h| < \varepsilon$.

Furthermore, \mathbb{P} is hereditarily indecomposable and maps onto every snake-like continuum.

- Bing 1948-1959, Moise 1949, Mioduszewski 1962
- Irwin & Solecki 2006

A continuum is a nonempty connected compact metric space.

Theorem

There exists a unique, up to a homeomorphism, snake-like continuum \mathbb{P} with the following property:

(*) Given $\varepsilon > 0$, given quotient maps $f_0, f_1 : \mathbb{P} \to \mathbb{I}$, there exists a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $|f_0 - f_1 \circ h| < \varepsilon$.

Furthermore, \mathbb{P} is hereditarily indecomposable and maps onto every snake-like continuum.

- Bing 1948-1959, Moise 1949, Mioduszewski 1962
- Irwin & Solecki 2006

A continuum is a nonempty connected compact metric space.

Theorem

There exists a unique, up to a homeomorphism, snake-like continuum \mathbb{P} with the following property:

(*) Given $\varepsilon > 0$, given quotient maps $f_0, f_1 : \mathbb{P} \to \mathbb{I}$, there exists a homeomorphism $h : \mathbb{P} \to \mathbb{P}$ such that $|f_0 - f_1 \circ h| < \varepsilon$.

Furthermore, \mathbb{P} is hereditarily indecomposable and maps onto every snake-like continuum.

- Bing 1948-1959, Moise 1949, Mioduszewski 1962
- Irwin & Solecki 2006

Metric-enriched categories

Main definition

Let $\mathfrak{M}_{\mathfrak{B}}$ denote the category of metric spaces with non-expansive maps. A category \mathfrak{K} is enriched over $\mathfrak{M}_{\mathfrak{B}}$ if

- For every \Re -objects a, b the hom-set $\Re(a, b)$ has a metric ϱ .
- ② Given compatible \Re -arrows f_0 , f_1 , g, h, the following inequalities hold:

$$\varrho(g \circ f_0, g \circ f_1) \leqslant \varrho(f_0, f_1)$$
 and $\varrho(f_0 \circ h, f_1 \circ h) \leqslant \varrho(f_0, f_1)$

We say briefly that \Re is a metric-enriched category.

- Eilenberg & Steenrod 1952
- Mioduszewski 1963 (in the context of compact metric spaces)

Main definition

Let \mathfrak{M} denote the category of metric spaces with non-expansive maps. A category \mathfrak{K} is enriched over \mathfrak{M} if

- For every \Re -objects a, b the hom-set $\Re(a, b)$ has a metric ϱ .
- ② Given compatible \Re -arrows f_0, f_1, g, h , the following inequalities hold:

$$\varrho(g \circ f_0, g \circ f_1) \leqslant \varrho(f_0, f_1)$$
 and $\varrho(f_0 \circ h, f_1 \circ h) \leqslant \varrho(f_0, f_1)$

We say briefly that \Re is a metric-enriched category.

- Eilenberg & Steenrod 1952
- Mioduszewski 1963 (in the context of compact metric spaces)

Main definition

Let $\mathfrak{M}_{\mathfrak{B}}$ denote the category of metric spaces with non-expansive maps. A category \mathfrak{K} is enriched over $\mathfrak{M}_{\mathfrak{B}}$ if

- For every \Re -objects a, b the hom-set $\Re(a, b)$ has a metric ϱ .
- ② Given compatible \mathfrak{K} -arrows f_0 , f_1 , g, h, the following inequalities hold:

$$\varrho(g \circ f_0, g \circ f_1) \leqslant \varrho(f_0, f_1)$$
 and $\varrho(f_0 \circ h, f_1 \circ h) \leqslant \varrho(f_0, f_1).$

We say briefly that \Re is a metric-enriched category.

- Eilenberg & Steenrod 1952
- Mioduszewski 1963 (in the context of compact metric spaces)

Main definition

Let $\mathfrak{M}_{\mathfrak{B}}$ denote the category of metric spaces with non-expansive maps. A category \mathfrak{K} is enriched over $\mathfrak{M}_{\mathfrak{B}}$ if

- For every \Re -objects a, b the hom-set $\Re(a, b)$ has a metric ϱ .
- ② Given compatible \mathfrak{K} -arrows f_0 , f_1 , g, h, the following inequalities hold:

$$\varrho(g \circ f_0, g \circ f_1) \leqslant \varrho(f_0, f_1)$$
 and $\varrho(f_0 \circ h, f_1 \circ h) \leqslant \varrho(f_0, f_1).$

We say briefly that \Re is a metric-enriched category.

- Eilenberg & Steenrod 1952
- Mioduszewski 1963 (in the context of compact metric spaces)

Main definition

Let \mathfrak{M} denote the category of metric spaces with non-expansive maps. A category \mathfrak{K} is enriched over \mathfrak{M} if

- For every \Re -objects a, b the hom-set $\Re(a, b)$ has a metric ϱ .
- ② Given compatible \Re -arrows f_0 , f_1 , g, h, the following inequalities hold:

$$\varrho(g \circ f_0, g \circ f_1) \leqslant \varrho(f_0, f_1)$$
 and $\varrho(f_0 \circ h, f_1 \circ h) \leqslant \varrho(f_0, f_1).$

We say briefly that \Re is a metric-enriched category.

- Eilenberg & Steenrod 1952
- Mioduszewski 1963 (in the context of compact metric spaces)

Basic example:

 $\mathfrak{K} := \mathfrak{M}_{\mathfrak{S}}$ (metric spaces with 1-Lipschitz mappings).

Joint Embedding and Amalgamation

1 \mathfrak{K} has the Joint Embedding Property (JEP) if for every \mathfrak{K} -objects a, b there exists a \mathfrak{K} -object d such that

$$\mathfrak{K}(a,d) \neq \emptyset$$
 and $\mathfrak{K}(b,d) \neq \emptyset$.

② \mathfrak{K} has the Amalgamation Property (AP) if given $\varepsilon > 0$, given \mathfrak{K} -arrows $f \colon c \to a$, $g \colon c \to b$ there exist \mathfrak{K} -arrows $f' \colon a \to w$ and $g' \colon b \to w$ such that $\varrho(f' \circ f, g' \circ g) < \varepsilon$, that is, the diagram

$$\begin{array}{c|c}
b - \frac{g'}{-} > W \\
\downarrow & \downarrow & \downarrow \\
c & \downarrow & \downarrow \\
c & \downarrow & \downarrow
\end{array}$$

is ε -commutative.

Joint Embedding and Amalgamation

• \mathfrak{K} has the Joint Embedding Property (JEP) if for every \mathfrak{K} -objects a,b there exists a \mathfrak{K} -object d such that

$$\mathfrak{K}(a,d) \neq \emptyset$$
 and $\mathfrak{K}(b,d) \neq \emptyset$.

② \mathfrak{K} has the Amalgamation Property (AP) if given $\varepsilon > 0$, given \mathfrak{K} -arrows $f: c \to a, g: c \to b$ there exist \mathfrak{K} -arrows $f': a \to w$ and $g': b \to w$ such that $\varrho(f' \circ f, g' \circ g) < \varepsilon$, that is, the diagram

$$\begin{array}{c|c}
b - \frac{g'}{-} > W \\
g \mid & | f' \\
c \longrightarrow a
\end{array}$$

is ε -commutative.

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating if

- For every \mathfrak{K} -object x there is an \mathscr{F} -object a such that $\mathfrak{K}(x,a) \neq \emptyset$.
- ② Given $\varepsilon > 0$, given an \mathscr{F} -object a, a \Re -arrow $f \colon a \to x$, there exist an \mathscr{F} -arrow $g \colon a \to b$ and a \Re -arrow $j \colon x \to b$ such that $\varrho(g, j \circ f) < \varepsilon$, that is, the triangle

is ε -commutative.

R is separable if it has a countable dominating subcategory.

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating if

- For every \mathfrak{K} -object x there is an \mathscr{F} -object a such that $\mathfrak{K}(x,a) \neq \emptyset$.
- ② Given $\varepsilon > 0$, given an \mathscr{F} -object a, a \Re -arrow $f: a \to x$, there exist an \mathscr{F} -arrow $g: a \to b$ and a \Re -arrow $j: x \to b$ such that $\varrho(g, j \circ f) < \varepsilon$, that is, the triangle

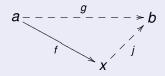
is ε -commutative.

R is separable if it has a countable dominating subcategory.

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating if

- For every \mathfrak{K} -object x there is an \mathscr{F} -object a such that $\mathfrak{K}(x,a) \neq \emptyset$.
- ② Given $\varepsilon > 0$, given an \mathscr{F} -object a, a \mathfrak{K} -arrow $f \colon a \to x$, there exist an \mathscr{F} -arrow $g \colon a \to b$ and a \mathfrak{K} -arrow $j \colon x \to b$ such that $\varrho(g, j \circ f) < \varepsilon$, that is, the triangle



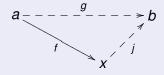
is ε -commutative.

R is separable if it has a countable dominating subcategory.

Definition

We say that $\mathscr{F} \subseteq \mathfrak{K}$ is dominating if

- For every \mathfrak{K} -object x there is an \mathscr{F} -object a such that $\mathfrak{K}(x,a) \neq \emptyset$.
- ② Given $\varepsilon > 0$, given an \mathscr{F} -object a, a \mathfrak{K} -arrow $f \colon a \to x$, there exist an \mathscr{F} -arrow $g \colon a \to b$ and a \mathfrak{K} -arrow $j \colon x \to b$ such that $\varrho(g,j \circ f) < \varepsilon$, that is, the triangle



is ε -commutative.

 \Re is separable if it has a countable dominating subcategory.

Definition

- (U) For every \Re -object x there is n such that $\Re(x, u_n) \neq \emptyset$
- (A) Given $\varepsilon > 0$, given $n \in \omega$, given \Re -arrow $f: u_n \to y$, there exist $m \geqslant n$ and a \Re -arrow $g: y \to u_m$ such that

$$\varrho(g\circ f,u_n^m)<\varepsilon.$$

Definition

- (U) For every \Re -object x there is n such that $\Re(x, u_n) \neq \emptyset$.
- (A) Given $\varepsilon > 0$, given $n \in \omega$, given \Re -arrow $f: u_n \to y$, there exist $m \geqslant n$ and a \Re -arrow $g: y \to u_m$ such that

$$\varrho(g\circ f,u_n^m)<\varepsilon.$$

Definition

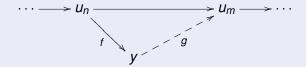
- (U) For every \Re -object x there is n such that $\Re(x, u_n) \neq \emptyset$.
- (A) Given $\varepsilon > 0$, given $n \in \omega$, given \Re -arrow $f: u_n \to y$, there exist $m \geqslant n$ and a \Re -arrow $g: y \to u_m$ such that

$$\varrho(g\circ f,u_n^m)<\varepsilon.$$

Definition

- (U) For every \Re -object x there is n such that $\Re(x, u_n) \neq \emptyset$.
- (A) Given $\varepsilon > 0$, given $n \in \omega$, given \Re -arrow $f: u_n \to y$, there exist $m \geqslant n$ and a \Re -arrow $g: y \to u_m$ such that

$$\varrho(g\circ f,u_n^m)<\varepsilon.$$



Existence

Theorem

For a metric-enriched category \Re the following conditions are equivalent:

- £ is separable and has both the Joint Embedding Property and the Amalgamation Property.

From now on, we fix a separable metric-enriched category $\mathfrak R$ with JEP and AP.

We assume that $\sigma \mathfrak{K} \supseteq \mathfrak{K}$ is a category satisfying

- For every $\sigma \Re$ -object X there is a sequence \vec{x} in \Re such that $X = \lim \vec{x}$.
- ② If $X = \lim \vec{x}$, $Y = \lim \vec{y}$, then $\sigma \Re$ -arrows $F: X \to Y$ correspond to approximate sequences of \Re -arrows:

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$
 $f_0 \downarrow \qquad \qquad f_1 \downarrow \qquad \qquad f_2 \downarrow \qquad \qquad f_3 \downarrow \qquad \qquad \qquad \downarrow$
 $Y_{\varphi(0)} \longrightarrow Y_{\varphi(1)} \longrightarrow Y_{\varphi(2)} \longrightarrow Y_{\varphi(3)} \longrightarrow \cdots$

where

$$(\forall \ \varepsilon > 0)(\exists \ n_0)(\forall \ m > n > n_0) \ \ \varrho\Big(y_{\varphi(n)}^{\varphi(n+1)} \circ f_n, f_m \circ x_n^m\Big) < \varepsilon.$$

From now on, we fix a separable metric-enriched category $\mathfrak R$ with JEP and AP.

We assume that $\sigma \mathfrak{K} \supseteq \mathfrak{K}$ is a category satisfying

- For every $\sigma \mathfrak{K}$ -object X there is a sequence \vec{x} in \mathfrak{K} such that $X = \lim \vec{x}$.
- ② If $X = \lim \vec{x}$, $Y = \lim \vec{y}$, then $\sigma \Re$ -arrows $F: X \to Y$ correspond to approximate sequences of \Re -arrows:

$$X_0 \longrightarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow \cdots$$
 $f_0 \downarrow \qquad \qquad f_1 \downarrow \qquad \qquad f_2 \downarrow \qquad \qquad f_3 \downarrow \qquad \qquad \downarrow$
 $Y_{\varphi(0)} \longrightarrow Y_{\varphi(1)} \longrightarrow Y_{\varphi(2)} \longrightarrow Y_{\varphi(3)} \longrightarrow \cdots$

where

$$(\forall \ \varepsilon > 0)(\exists \ n_0)(\forall \ m > n > n_0) \ \ \varrho\Big(y_{\varphi(n)}^{\varphi(n+1)} \circ f_n, f_m \circ x_n^m\Big) < \varepsilon.$$

From now on, we fix a separable metric-enriched category $\mathfrak R$ with JEP and AP.

We assume that $\sigma \mathfrak{K} \supseteq \mathfrak{K}$ is a category satisfying

- For every $\sigma \mathfrak{K}$ -object X there is a sequence \vec{x} in \mathfrak{K} such that $X = \lim \vec{x}$.
- ② If $X = \lim \vec{x}$, $Y = \lim \vec{y}$, then $\sigma \Re$ -arrows $F: X \to Y$ correspond to approximate sequences of \Re -arrows:

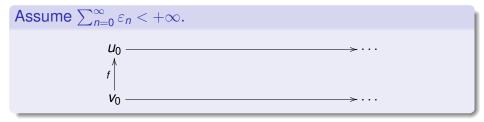
$$X_{0} \longrightarrow X_{1} \longrightarrow X_{2} \longrightarrow X_{3} \longrightarrow \cdots$$

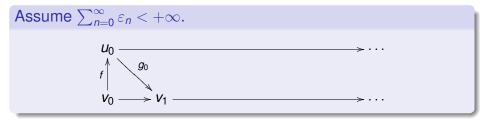
$$f_{0} \downarrow \qquad f_{1} \downarrow \qquad f_{2} \downarrow \qquad f_{3} \downarrow$$

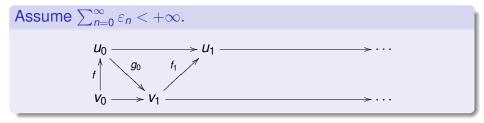
$$Y_{\varphi(0)} \longrightarrow Y_{\varphi(1)} \longrightarrow Y_{\varphi(2)} \longrightarrow Y_{\varphi(3)} \longrightarrow \cdots$$

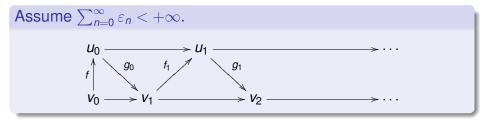
where

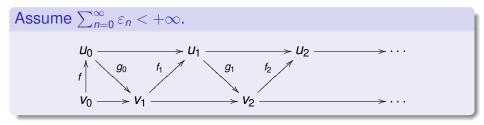
$$(\forall \ \varepsilon > 0)(\exists \ n_0)(\forall \ m > n > n_0) \ \ \varrho\Big(y_{\varphi(n)}^{\varphi(n+1)} \circ f_n, f_m \circ x_n^m\Big) < \varepsilon.$$

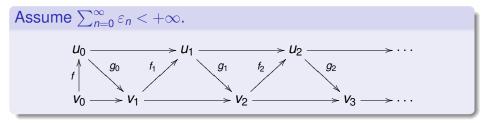


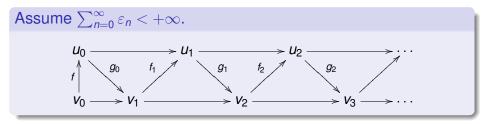












Call a $\sigma \Re$ -object U the Fraïssé limit of \Re if $U = \lim \vec{u}$ for a Fraïssé sequence \vec{u} in \Re .

Theorem

The Fraïssé limit U is unique. Moreover, U is almost \Re -homogeneous, that is, given $\varepsilon > 0$, given \Re -objects a, b, given $i: a \to U, j: b \to U$, given a \Re -arrow $h: a \to b$, there exists an automorphism $H: U \to U$ for which the square

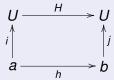
$$\begin{array}{c|c}
U & \xrightarrow{H} & U \\
\downarrow & & \downarrow \\
a & \xrightarrow{h} & b
\end{array}$$

is ε -commutative.

Call a $\sigma \Re$ -object U the Fraïssé limit of \Re if $U = \lim \vec{u}$ for a Fraïssé sequence \vec{u} in \Re .

Theorem

The Fraı̈ssé limit U is unique. Moreover, U is almost \Re -homogeneous, that is, given $\varepsilon > 0$, given \Re -objects a, b, given $i: a \to U, j: b \to U$, given a \Re -arrow $h: a \to b$, there exists an automorphism $H: U \to U$ for which the square



is ε -commutative.

Universality

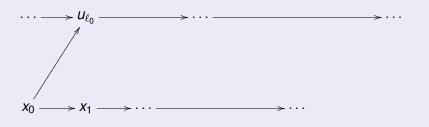
Theorem

Let U be the Fraïssé limit of \Re . Then for every $\sigma\Re$ -object X there is a $\sigma\Re$ -arrow

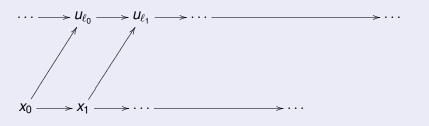
 $F \colon X \to U$.

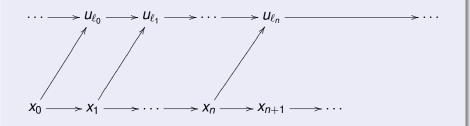
$$\cdots \longrightarrow U_{\ell_0} \longrightarrow \cdots \longrightarrow \cdots$$

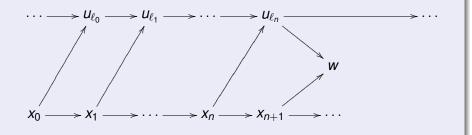
$$X_0 \longrightarrow X_1 \longrightarrow \cdots$$

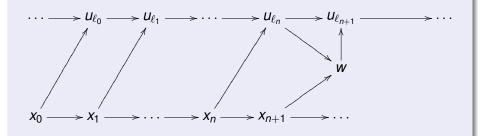


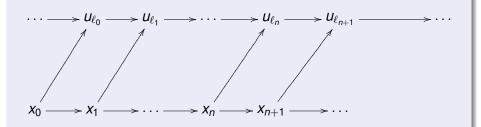












Application: The pseudo-arc

The category:

Let \mathfrak{K} be the category whose objects are metric spaces $\langle \mathbb{I}, d \rangle$, where d is a metric on $\mathbb{I} := [0, 1]$ satisfying $d \leq 1$. The arrows of \mathfrak{K} are non-expansive quotients.

Note: The arrows are reversed!

Lemma

ℜ is a separable metric-enriched category with the JEP and AP.

Application: The pseudo-arc

The category:

Let \mathfrak{K} be the category whose objects are metric spaces $\langle \mathbb{I}, d \rangle$, where d is a metric on $\mathbb{I} := [0, 1]$ satisfying $d \leq 1$. The arrows of \mathfrak{K} are non-expansive quotients.

Note: The arrows are reversed!

Lemma

ℜ is a separable metric-enriched category with the JEP and AP.

Mountain Climbing Theorem

Let $f,g:\mathbb{I}\to\mathbb{I}$ be two quotient maps that are not locally constant. Then there exist quotient maps $f',g':\mathbb{I}\to\mathbb{I}$ for which the square

$$\begin{bmatrix}
 & g' \\
g & f \\
 & f
\end{bmatrix}$$

is commutative.

Claim

Given continuous maps $f_i\colon \langle X, \mathsf{d}
angle o \langle Y_i, \mathsf{d}_i
angle$ (i < 2), the formula

$$d'(s,t) = \max \left\{ d(s,t), f_0(s,t), f_1(s,t) \right\}$$

defines a metric on X for which both f_0 , f_1 are non-expansive.

Mountain Climbing Theorem

Let $f,g:\mathbb{I}\to\mathbb{I}$ be two quotient maps that are not locally constant. Then there exist quotient maps $f',g':\mathbb{I}\to\mathbb{I}$ for which the square

$$\begin{bmatrix}
 g' \\
 g \\
 \downarrow \\
 \end{bmatrix} \xrightarrow{f} \begin{bmatrix}
 f' \\
 \end{bmatrix}$$

is commutative.

Claim

Given continuous maps f_i : $\langle X, d \rangle \rightarrow \langle Y_i, d_i \rangle$ (i < 2), the formula

$$d'(s,t) = \max \left\{ d(s,t), f_0(s,t), f_1(s,t) \right\}$$

defines a metric on X for which both f_0 , f_1 are non-expansive.

Snake-like continua

Definition

A continuum K is snake-like if $K = \varprojlim \vec{s}$, where \vec{s} is an inverse sequence of quotients of the unit interval onto itself.

Observation

A sequence \vec{s} as above "comes" from a sequence in \Re .

Snake-like continua

Definition

A continuum K is snake-like if $K = \varprojlim \vec{s}$, where \vec{s} is an inverse sequence of quotients of the unit interval onto itself.

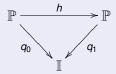
Observation

A sequence \vec{s} as above "comes" from a sequence in \Re .

Theorem

There exists a unique up to isometry snake-like continuum $\langle \mathbb{P}, e \rangle$ of diameter 1, with the following properties:

- Every snake-like continuum of diameter \leq 1 is a non-expansive quotient of \mathbb{P} .
- ② Given $\varepsilon > 0$, given non-expansive quotients $q_0, q_1 : \mathbb{P} \to \mathbb{I}$, where \mathbb{I} is endowed with some compatible metric ϱ , there exists an isometry $h : \mathbb{P} \to \mathbb{P}$ such that $\varrho(q_0(t), q_1(h(t))) < \varepsilon$ for every $t \in \mathbb{P}$.



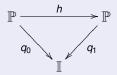
Corollary

 \mathbb{P} is the pseudo-arc.

Theorem

There exists a unique up to isometry snake-like continuum $\langle \mathbb{P}, e \rangle$ of diameter 1, with the following properties:

- Every snake-like continuum of diameter ≤ 1 is a non-expansive quotient of \mathbb{P} .
- ② Given $\varepsilon > 0$, given non-expansive quotients $q_0, q_1 : \mathbb{P} \to \mathbb{I}$, where \mathbb{I} is endowed with some compatible metric ϱ , there exists an isometry $h : \mathbb{P} \to \mathbb{P}$ such that $\varrho(q_0(t), q_1(h(t))) < \varepsilon$ for every $t \in \mathbb{P}$.



Corollary

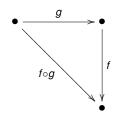
 \mathbb{P} is the pseudo-arc.

Metric categories

Let \Re be a metric-enriched category.

A *metric* on $\mathfrak R$ is a function $\mu \colon \mathfrak R \to [0, +\infty]$ satisfying the following conditions:

- (M_1) $\mu(id_x) = 0$ for every object x.
- (M₂) $\mu(f \circ g) \leqslant \mu(f) + \mu(g)$.
- $(\mathsf{M}_3) \ \mu(g) \leqslant \mu(f \circ g) + \mu(f).$
- (M₄) μ is uniformly continuous with respect to ϱ .



A prototype example:

 $\mathfrak{K}:=\mathfrak{M}_{\mathfrak{S}},$ the category of metric spaces with non-expansive maps, with

$$\mu(f) = \log \operatorname{Lip}(f^{-1}).$$

Define

$$\ker \mathfrak{K} := \{ f \in \mathfrak{K} \colon \mu(f) = 0 \}.$$

Elements of ker & will be called 0-arrows, 0-isomorphisms, etc.

Remark

If $h \in \ker \mathfrak{K}$ is an isomorphism then $\mu(h^{-1}) = 0$.

Define

$$\ker \mathfrak{K} := \{ f \in \mathfrak{K} \colon \mu(f) = 0 \}.$$

Elements of ker & will be called 0-arrows, 0-isomorphisms, etc.

Remark

If $h \in \ker \mathfrak{K}$ is an isomorphism then $\mu(h^{-1}) = 0$.

The Law of Return

Given $\varepsilon > 0$, there is $\eta > 0$, such that whenever f is a \Re -arrow with $\mu(f) < \eta$, then there exist \Re -arrows $g, h \in \ker \Re$ such that

$$\varrho(\boldsymbol{g}\circ\boldsymbol{f},\boldsymbol{h})<\varepsilon$$

holds.

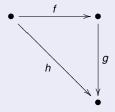
We shall say briefly that \Re has the LRP.

The Law of Return

Given $\varepsilon > 0$, there is $\eta > 0$, such that whenever f is a \Re -arrow with $\mu(f) < \eta$, then there exist \Re -arrows $g, h \in \ker \Re$ such that

$$\varrho(\boldsymbol{g}\circ\boldsymbol{f},\boldsymbol{h})<\varepsilon$$

holds.



We shall say briefly that \Re has the LRP.

Existence

Theorem

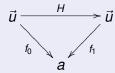
Assume \Re is a metric category with JEP, AP and LRP, such that $\ker \Re$ is separable. Then \Re has a unique, up to a 0-isomorphism, Fraïssé sequence.

Universality and almost homogeneity

Theorem

Let \mathfrak{K} be as above, and let \vec{u} be a Fraïssé sequence in \mathfrak{K} . Then:

- For every sequence \vec{x} in \Re there exists a $\sigma\Re$ -arrow $F: \vec{x} \to \vec{u}$ with $\mu(F) = 0$.
- ② Given $\varepsilon > 0$, given a \Re -object a, given $\sigma \Re$ -arrows $f_0, f_1 : a \to \vec{u}$ with $\mu(f_0) = 0 = \mu(f_1)$, there exists a 0-automorphism $H : \vec{u} \to \vec{u}$ for which the square



is ε -commutative.

Application: The Gurarii space

Lemma (Solecki & K. 2011)

Let $f\colon X\to Y$ be an ε -isometric embedding of finite-dimensional Banach spaces. Then there exist a finite-dimensional Banach space Z and isometric embeddings $i\colon X\to Z$, $j\colon Y\to Z$ such that

$$||j \circ f - i|| < \varepsilon.$$

In fact: $Z = X \oplus Y$ with a suitable norm.

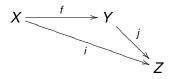
Application: The Gurarii space

Lemma (Solecki & K. 2011)

Let $f\colon X\to Y$ be an ε -isometric embedding of finite-dimensional Banach spaces. Then there exist a finite-dimensional Banach space Z and isometric embeddings $i\colon X\to Z$, $j\colon Y\to Z$ such that

$$||j \circ f - i|| < \varepsilon.$$

In fact: $Z = X \oplus Y$ with a suitable norm.



Proposition

A separable Banach space E is Gurarii iff there is a chain $\{E_n\}_{n\in\omega}$ of finite-dimensional subspaces of E with $\bigcup_{n\in\omega} E_n$ dense in E, such that the following condition is satisfied:

Given n ∈ ω, given ε > 0, for every isometric embedding
 f: E_n → Y with Y finite-dimensional, there are m > n and an
 ε-isometric embedding g: Y → E_m satisfying

$$\|x-g(f(x))\|<\varepsilon$$

for every $x \in E_n$.

Claim

The metric category of finite-dimensional Banach spaces with linear embeddings of norm \leq 1 has separable kernel. Furthermore, it has the AP, JEP and the LRP.

Corollary (Gurarii 1966, Lusky 1976, Solecki & K. 2012)

The Gurariĭ space $\mathbb G$ is unique up to isometry, is isometrically universal for separable Banach spaces and satisfies the following condition:

Given $\varepsilon > 0$, given an isometry $h \colon X \to Y$ between finite-dimensional subspaces of \mathbb{G} , there is a bijective isometry $H \colon \mathbb{G} \to \mathbb{G}$ such that

$$||H \upharpoonright X - h|| < \varepsilon.$$

Claim

The metric category of finite-dimensional Banach spaces with linear embeddings of norm \leq 1 has separable kernel. Furthermore, it has the AP, JEP and the LRP.

Corollary (Gurarii 1966, Lusky 1976, Solecki & K. 2012)

The Gurariĭ space \mathbb{G} is unique up to isometry, is isometrically universal for separable Banach spaces and satisfies the following condition:

Given $\varepsilon > 0$, given an isometry $h: X \to Y$ between finite-dimensional subspaces of \mathbb{G} , there is a bijective isometry $H: \mathbb{G} \to \mathbb{G}$ such that

$$||H \upharpoonright X - h|| < \varepsilon.$$

Another application

Theorem (Garbulińska & K. 2012)

There exists a linear operator $u_\infty\colon \mathbb{G} \to \mathbb{G}$ with $\|u_\infty\|=1$ and with the following property:

• Given a linear operator $T: X \to Y$ between separable Banach spaces with $||T|| \le 1$, there exist isometric embeddings $i: X \to \mathbb{G}$ and $j: Y \to \mathbb{G}$ for which the following diagram commutes.

$$\mathbb{G} \xrightarrow{u_{\infty}} \mathbb{G}$$

$$\downarrow i \qquad \qquad \downarrow j$$

$$X \xrightarrow{T} Y$$

Another application

Theorem (Garbulińska & K. 2012)

There exists a linear operator $u_\infty\colon \mathbb{G} \to \mathbb{G}$ with $\|u_\infty\| = 1$ and with the following property:

 Given a linear operator T: X → Y between separable Banach spaces with ||T|| ≤ 1, there exist isometric embeddings i: X → G and j: Y → G for which the following diagram commutes.

THE END