Ladder systems and projections in Banach spaces

(joint work with Jesús Ferrer and Piotr Koszmider)

Wiesław Kubiś

Academy of Sciences of the Czech Republic and Jan Kochanowski University in Kielce, Poland

40th Winter School in Abstract Analysis Klenčí pod Čerchovem 17 January 2012

2 Small non-separable spaces of continuous functions

3 Almost disjoint families

Main results

Ladder systems and stationary sets

Motivation

Theorem (Sobczyk, 1941)

In a separable Banach space, every copy of c_0 is complemented.

Theorem

There exists a Banach space Z of density \aleph_1 , containing an uncomplemented copy of c_0 .

Motivation

Theorem (Sobczyk, 1941)

In a separable Banach space, every copy of c_0 is complemented.

Theorem

There exists a Banach space Z of density \aleph_1 , containing an uncomplemented copy of c_0 .

Separable complementation properties

Definition

A Banach space X has the separable complementation property (SCP) if for every separable set $A \subseteq X$ there is a projection $P: X \to X$ such that $A \subseteq \text{ im } P$ and im P is separable.

Fact

 $SCP \implies every copy of c_0 is complemented.$

Example

Weakly compactly generated Banach spaces have the SCP.

Separable complementation properties

Definition

A Banach space X has the separable complementation property (SCP) if for every separable set $A \subseteq X$ there is a projection $P: X \to X$ such that $A \subseteq im P$ and im P is separable.

Fact

 $SCP \implies every copy of c_0 is complemented.$

Example

Weakly compactly generated Banach spaces have the SCP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Separable complementation properties

Definition

A Banach space X has the separable complementation property (SCP) if for every separable set $A \subseteq X$ there is a projection $P: X \to X$ such that $A \subseteq \text{ im } P$ and im P is separable.

Fact

 $SCP \implies every copy of c_0 is complemented.$

Example

Weakly compactly generated Banach spaces have the SCP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Controlled SCP

Definition (Wójtowicz, Ferrer)

A Banach space X has the controlled SCP if for every countable sets $A \subseteq X$, $B \subseteq X^*$ there exists a projection $P \colon X \to X$ such that

- im P is separable,
- $A \subseteq \operatorname{im} P$,
- $B \subseteq \operatorname{im} P^*$.

Example

Weakly compactly generated Banach spaces have the controlled SCP.

A (10) A (10)

Controlled SCP

Definition (Wójtowicz, Ferrer)

A Banach space X has the controlled SCP if for every countable sets $A \subseteq X$, $B \subseteq X^*$ there exists a projection $P \colon X \to X$ such that

- im P is separable,
- $A \subseteq \operatorname{im} P$,
- $B \subseteq \operatorname{im} P^*$.

Example

Weakly compactly generated Banach spaces have the controlled SCP.

A (10) A (10)

Definition

A skeleton in a Banach space X is a family \mathscr{F} consisting of closed separable subspaces, satisfying:

Definition

A Banach space has the continuous SCP if it has a skeleton consisting of complemented subspaces.

Example

WCG Banach spaces have the continuous SCP.

Definition

A skeleton in a Banach space X is a family \mathscr{F} consisting of closed separable subspaces, satisfying:

Definition

A Banach space has the continuous SCP if it has a skeleton consisting of complemented subspaces.

Example

WCG Banach spaces have the continuous SCP.

Definition

A skeleton in a Banach space X is a family \mathscr{F} consisting of closed separable subspaces, satisfying:

Definition

A Banach space has the continuous SCP if it has a skeleton consisting of complemented subspaces.

Example

WCG Banach spaces have the continuous SCP.

Definition

A skeleton in a Banach space X is a family \mathscr{F} consisting of closed separable subspaces, satisfying:

Definition

A Banach space has the continuous SCP if it has a skeleton consisting of complemented subspaces.

Example

WCG Banach spaces have the continuous SCP.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

A skeleton in a Banach space X is a family \mathscr{F} consisting of closed separable subspaces, satisfying:

Definition

A Banach space has the continuous SCP if it has a skeleton consisting of complemented subspaces.

Example

WCG Banach spaces have the continuous SCP.

K should be scattered of a very low height.

☞ *K* should be "almost" metrizable.

Remark

If *K* is scattered of height 1 then $C(K) \approx c_0(|K|)$.

Conclusion:

K should be of the form $L \cup \{\infty\}$, where *L* is first countable, of height 2 and of cardinality \aleph_1 .

K should be scattered of a very low height.

☞ *K* should be "almost" metrizable.

Remark

If *K* is scattered of height 1 then $C(K) \approx c_0(|K|)$.

Conclusion:

K should be of the form $L \cup \{\infty\}$, where *L* is first countable, of height 2 and of cardinality \aleph_1 .

- K should be scattered of a very low height.
- ☞ K should be "almost" metrizable.

Remark

If *K* is scattered of height 1 then $C(K) \approx c_0(|K|)$.

Conclusion:

K should be of the form $L \cup \{\infty\}$, where *L* is first countable, of height 2 and of cardinality \aleph_1 .

- K should be scattered of a very low height.
- ☞ K should be "almost" metrizable.

Remark

If *K* is scattered of height 1 then $C(K) \approx c_0(|K|)$.

Conclusion:

K should be of the form $L \cup \{\infty\}$, where *L* is first countable, of height 2 and of cardinality \aleph_1 .

- K should be scattered of a very low height.
- ☞ K should be "almost" metrizable.

Remark

If *K* is scattered of height 1 then $C(K) \approx c_0(|K|)$.

Conclusion:

K should be of the form $L \cup \{\infty\}$, where *L* is first countable, of height 2 and of cardinality \aleph_1 .

∃ ► < ∃ ►</p>

Almost disjoint families

Definition

A family of sets *A* is almost disjoint if

- Each $A \in \mathscr{A}$ is countable infinite.
- 2 $A \cap B$ is finite whenever $A, B \in \mathscr{A}$ are different.

Definition

Let \mathscr{A} be an almost disjoint family with $X = \bigcup \mathscr{A}$. Define $K_{\mathscr{A}}$ to be the Stone space of the Boolean algebra generated by

$$\mathscr{A} \cup [X]^{<\omega} \subseteq \mathscr{P}(X).$$

A (10) A (10)

Almost disjoint families

Definition

A family of sets *A* is almost disjoint if

- Each $A \in \mathscr{A}$ is countable infinite.
- 2 $A \cap B$ is finite whenever $A, B \in \mathscr{A}$ are different.

Definition

Let \mathscr{A} be an almost disjoint family with $X = \bigcup \mathscr{A}$. Define $K_{\mathscr{A}}$ to be the Stone space of the Boolean algebra generated by

$$\mathscr{A} \cup [X]^{<\omega} \subseteq \mathscr{P}(X).$$

 $K_{\mathscr{A}} := X \cup \mathscr{A} \cup \{\infty\}$

with the topology defined by the following conditions:

- All points of $X = \bigcup \mathscr{A}$ are isolated.
- A basic neighborhood of $A \in \mathscr{A}$ is

 $U_F(A) := \{A\} \cup (A \setminus F),$

where $F \subseteq A$ is finite.

• A basic neighborhood of ∞ is

$$U_{\mathscr{F}}(\infty) := K \setminus \bigcup_{A \in \mathscr{F}} U_{\emptyset}(A),$$

where $\mathscr{F} \subseteq \mathscr{A}$ is finite.

 $K_{\mathscr{A}} := X \cup \mathscr{A} \cup \{\infty\}$

with the topology defined by the following conditions:

- All points of $X = \bigcup \mathscr{A}$ are isolated.
- A basic neighborhood of $A \in \mathscr{A}$ is

 $U_F(A) := \{A\} \cup (A \setminus F),$

where $F \subseteq A$ is finite.

• A basic neighborhood of ∞ is

$$U_{\mathscr{F}}(\infty) := K \setminus \bigcup_{A \in \mathscr{F}} U_{\emptyset}(A),$$

where $\mathscr{F} \subseteq \mathscr{A}$ is finite.

 $K_{\mathscr{A}} := X \cup \mathscr{A} \cup \{\infty\}$

with the topology defined by the following conditions:

- All points of $X = \bigcup \mathscr{A}$ are isolated.
- A basic neighborhood of $A \in \mathscr{A}$ is

 $U_F(A) := \{A\} \cup (A \setminus F),$

where $F \subseteq A$ is finite.

• A basic neighborhood of ∞ is

$$U_{\mathscr{F}}(\infty) := K \setminus \bigcup_{A \in \mathscr{F}} U_{\emptyset}(A),$$

where $\mathscr{F} \subseteq \mathscr{A}$ is finite.

 $K_{\mathscr{A}} := X \cup \mathscr{A} \cup \{\infty\}$

with the topology defined by the following conditions:

- All points of $X = \bigcup \mathscr{A}$ are isolated.
- A basic neighborhood of $A \in \mathscr{A}$ is

$$U_F(A) := \{A\} \cup (A \setminus F),$$

where $F \subseteq A$ is finite.

• A basic neighborhood of ∞ is

$$U_{\mathscr{F}}(\infty) := K \setminus \bigcup_{A \in \mathscr{F}} U_{\emptyset}(A),$$

where $\mathscr{F} \subseteq \mathscr{A}$ is finite.

B N A B N

< 6 k

Fact

The space $K_{\mathscr{A}}$ is scattered compact of height 3 and $K_{\mathscr{A}} \setminus \{\infty\}$ is first countable.

Fact

A scattered compact K of height 3 such that K" is a singleton and $K \setminus K$ " is first countable is homeomorphic to $K_{\mathscr{A}}$ for some almost disjoint family \mathscr{A} .

Spaces $K_{\mathcal{A}}$ were studied first by Alexandrov and Urysohn in 1929, later by Mrówka and others.

Fact

The space $K_{\mathscr{A}}$ is scattered compact of height 3 and $K_{\mathscr{A}} \setminus \{\infty\}$ is first countable.

Fact

A scattered compact K of height 3 such that K" is a singleton and $K \setminus K$ " is first countable is homeomorphic to $K_{\mathscr{A}}$ for some almost disjoint family \mathscr{A} .

Spaces $K_{\mathscr{A}}$ were studied first by Alexandrov and Urysohn in 1929, later by Mrówka and others.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fact

The space $K_{\mathscr{A}}$ is scattered compact of height 3 and $K_{\mathscr{A}} \setminus \{\infty\}$ is first countable.

Fact

A scattered compact K of height 3 such that K" is a singleton and $K \setminus K$ " is first countable is homeomorphic to $K_{\mathscr{A}}$ for some almost disjoint family \mathscr{A} .

Spaces $K_{\mathscr{A}}$ were studied first by Alexandrov and Urysohn in 1929, later by Mrówka and others.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Sobczyk + Whitley + ?)

Let *K* be a compactification of \mathbb{N} . If the canonical copy of c_0 is complemented in C(K) then $K \setminus \mathbb{N}$ carries a strictly positive Radon measure.

Corollary

Let \mathscr{A} be an uncountable almost disjoint family with $\mathbb{N} = \bigcup \mathscr{A}$. Then the canonical copy of c_0 is not complemented in $C(K_{\mathscr{A}})$.

Theorem (Sobczyk + Whitley + ?)

Let *K* be a compactification of \mathbb{N} . If the canonical copy of c_0 is complemented in C(K) then $K \setminus \mathbb{N}$ carries a strictly positive Radon measure.

Corollary

Let \mathscr{A} be an uncountable almost disjoint family with $\mathbb{N} = \bigcup \mathscr{A}$. Then the canonical copy of c_0 is not complemented in $C(K_{\mathscr{A}})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main result I

Definition

A compact space K is monolithic if separable subsets of K are second countable.

Fact

Let E be a Banach space with the controlled SCP. Then the dual unit ball B_{E^*} is monolithic.

Theorem

Let \mathscr{A} be an almost disjoint family. Then $C(K_{\mathscr{A}})$ has the controlled SCP if and only if $K_{\mathscr{A}}$ is monolithic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main result I

Definition

A compact space K is monolithic if separable subsets of K are second countable.

Fact

Let *E* be a Banach space with the controlled SCP. Then the dual unit ball B_{E^*} is monolithic.

Theorem

Let \mathscr{A} be an almost disjoint family. Then $C(K_{\mathscr{A}})$ has the controlled SCP if and only if $K_{\mathscr{A}}$ is monolithic.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <

Main result I

Definition

A compact space K is monolithic if separable subsets of K are second countable.

Fact

Let *E* be a Banach space with the controlled SCP. Then the dual unit ball B_{E^*} is monolithic.

Theorem

Let \mathscr{A} be an almost disjoint family. Then $C(K_{\mathscr{A}})$ has the controlled SCP if and only if $K_{\mathscr{A}}$ is monolithic.

Main result II

Theorem

There exists an almost disjoint family $\mathscr{A} \subseteq [\omega_1]^{\omega}$ such that

< 🗇 🕨

Main result II

Theorem

There exists an almost disjoint family $\mathscr{A} \subseteq [\omega_1]^{\omega}$ such that

< 17 ▶

Main result II

Theorem

There exists an almost disjoint family $\mathscr{A} \subseteq [\omega_1]^{\omega}$ such that

$$\bigcirc |\mathscr{A}| = \aleph_1,$$

- 2 $C(K_{\mathscr{A}})$ has the continuous 2-SCP,
- **◎** $K_{\mathscr{A}}$ is not monolithic; in fact $\mathscr{A} \subseteq cl[0, \omega)$ in $K_{\mathscr{A}}$.

3 > 4 3

< 6 k

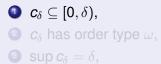
Ladder systems

Definition

Fix $S \subseteq \omega_1$ consisting of limit ordinals only. A ladder system based on S is a sequence

$$\mathscr{C} = \{\textit{c}_{\delta}\}_{\delta \in \textit{S}}$$

such that for each $\delta \in S$:



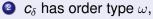
Ladder systems

Definition

Fix $S \subseteq \omega_1$ consisting of limit ordinals only. A ladder system based on S is a sequence

$$\mathscr{C} = \{\textit{c}_{\delta}\}_{\delta \in \textit{S}}$$

such that for each $\delta \in S$:



3 sup $c_{\delta} = \delta$,

3

A B F A B F

Image: A matrix and a matrix

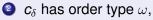
Ladder systems

Definition

Fix $S \subseteq \omega_1$ consisting of limit ordinals only. A ladder system based on S is a sequence

$$\mathscr{C} = \{\textit{c}_{\delta}\}_{\delta \in \textit{S}}$$

such that for each $\delta \in S$:



3 sup
$$c_{\delta} = \delta$$
,

< 17 ▶

Stationary sets

Definition

A set $S \subseteq \omega_1$ is stationary if $S \cap C \neq \emptyset$ whenever $C \subseteq \omega_1$ is closed and unbounded.

Theorem (Pol, 1979)

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system, where $S \subseteq \omega_1$ is stationary. Then $K_{\mathscr{C}}$ is not Eberlein compact, yet $C(K_{\mathscr{C}})$ is weakly Lindelöf.

Proposition

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with S non-stationary. Then \mathscr{C} is equivalent to a disjoint family and $C(K_{\mathscr{C}}) \approx c_0(\omega_1)$.

Stationary sets

Definition

A set $S \subseteq \omega_1$ is stationary if $S \cap C \neq \emptyset$ whenever $C \subseteq \omega_1$ is closed and unbounded.

Theorem (Pol, 1979)

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system, where $S \subseteq \omega_1$ is stationary. Then $K_{\mathscr{C}}$ is not Eberlein compact, yet $C(K_{\mathscr{C}})$ is weakly Lindelöf.

Proposition

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with S non-stationary. Then \mathscr{C} is equivalent to a disjoint family and $C(K_{\mathscr{C}}) \approx c_0(\omega_1)$.

Stationary sets

Definition

A set $S \subseteq \omega_1$ is stationary if $S \cap C \neq \emptyset$ whenever $C \subseteq \omega_1$ is closed and unbounded.

Theorem (Pol, 1979)

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system, where $S \subseteq \omega_1$ is stationary. Then $K_{\mathscr{C}}$ is not Eberlein compact, yet $C(K_{\mathscr{C}})$ is weakly Lindelöf.

Proposition

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with *S* non-stationary. Then \mathscr{C} is equivalent to a disjoint family and $C(K_{\mathscr{C}}) \approx c_0(\omega_1)$.

Projectional skeletons

Definition

A projectional skeleton in a Banach space *X* is a pair $(\mathscr{F}, \mathscr{P})$, where \mathscr{F} is a skeleton of separable subspaces of *X* and $\mathscr{P} = \{P_E\}_{E \in \mathscr{F}}$ is such that for each $E, F \in \mathscr{F}$:

• P_E is a projection onto E,

$$2 E \subseteq F \implies P_E \circ P_F = P_E = P_F \circ P_E.$$

Fact

 $\operatorname{sup}_{E\in\mathscr{F}}\|P_E\|<+\infty.$

There is a renorming of X such that $||P_E|| = 1$ for every $E \in \mathscr{F}$, $E \neq 0$.

Projectional skeletons

Definition

A projectional skeleton in a Banach space *X* is a pair $(\mathscr{F}, \mathscr{P})$, where \mathscr{F} is a skeleton of separable subspaces of *X* and $\mathscr{P} = \{P_E\}_{E \in \mathscr{F}}$ is such that for each $E, F \in \mathscr{F}$:

• P_E is a projection onto E,

$$2 E \subseteq F \implies P_E \circ P_F = P_E = P_F \circ P_E.$$

Fact

 $\operatorname{sup}_{E \in \mathscr{F}} \| P_E \| < +\infty.$

There is a renorming of X such that $||P_E|| = 1$ for every $E \in \mathscr{F}$ $E \neq 0$.

3

Projectional skeletons

Definition

A projectional skeleton in a Banach space *X* is a pair $(\mathscr{F}, \mathscr{P})$, where \mathscr{F} is a skeleton of separable subspaces of *X* and $\mathscr{P} = \{P_E\}_{E \in \mathscr{F}}$ is such that for each $E, F \in \mathscr{F}$:

• P_E is a projection onto E,

Fact

 $\operatorname{sup}_{E \in \mathscr{F}} \| P_E \| < +\infty.$

There is a renorming of X such that $||P_E|| = 1$ for every $E \in \mathscr{F}$, $E \neq 0$.

3

A B A A B A

Image: A matrix and a matrix

Projectional skeleton \implies continuous SCP \implies SCP.

Proposition

Every Banach space with the continuous 1-SCP and of density \aleph_1 has a projectional skeleton.

Fact $SCP \implies (\exists k \in \mathbb{N}) k$ -SCP

Theorem (O. Kalenda and W.K., 2012) Continuous SCP \Rightarrow ($\exists k \in \mathbb{N}$) continuous k-SCP.

Projectional skeleton \implies continuous SCP \implies SCP.

Proposition

Every Banach space with the continuous 1-SCP and of density \aleph_1 has a projectional skeleton.

Fact

$SCP \implies (\exists k \in \mathbb{N}) k$ -SCP.

Theorem (O. Kalenda and W.K., 2012)

Continuous SCP \Rightarrow $(\exists k \in \mathbb{N})$ continuous k-SCP.

Projectional skeleton \implies continuous SCP \implies SCP.

Proposition

Every Banach space with the continuous 1-SCP and of density \aleph_1 has a projectional skeleton.

Fact

 $SCP \implies (\exists k \in \mathbb{N}) k$ -SCP.

Theorem (O. Kalenda and W.K., 2012)

Continuous SCP \Rightarrow $(\exists k \in \mathbb{N})$ continuous k-SCP.

Projectional skeleton \implies continuous SCP \implies SCP.

Proposition

Every Banach space with the continuous 1-SCP and of density \aleph_1 has a projectional skeleton.

Fact

 $SCP \implies (\exists k \in \mathbb{N}) k$ -SCP.

Theorem (O. Kalenda and W.K., 2012)

Continuous SCP \Rightarrow ($\exists k \in \mathbb{N}$) continuous k-SCP.

Main result III

Theorem

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with $S \subseteq \omega_1$ stationary. Then $C(K_{\mathscr{C}})$ has the continuous (and controlled) 2-SCP, yet it does not have a projectional skeleton.

Corollary

Continuous 2-SCP does not imply the existence of a projectional skeleton.

This answers a question from

 O. KALENDA, W. KUBIŚ, Complementation in spaces of continuous functions on compact lines, J. Math. Anal. Appl. 386 (2012) 241–257

< ロ > < 同 > < 回 > < 回 >

Main result III

Theorem

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with $S \subseteq \omega_1$ stationary. Then $C(K_{\mathscr{C}})$ has the continuous (and controlled) 2-SCP, yet it does not have a projectional skeleton.

Corollary

Continuous 2-SCP does not imply the existence of a projectional skeleton.

This answers a question from

 O. KALENDA, W. KUBIŚ, Complementation in spaces of continuous functions on compact lines, J. Math. Anal. Appl. 386 (2012) 241–257

3

Main result III

Theorem

Let $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ be a ladder system with $S \subseteq \omega_1$ stationary. Then $C(K_{\mathscr{C}})$ has the continuous (and controlled) 2-SCP, yet it does not have a projectional skeleton.

Corollary

Continuous 2-SCP does not imply the existence of a projectional skeleton.

This answers a question from

 O. KALENDA, W. KUBIŚ, Complementation in spaces of continuous functions on compact lines, J. Math. Anal. Appl. 386 (2012) 241–257

3

Theorem

Let \mathscr{A} be an almost disjoint family of countable sets with $|\mathscr{A}| = \aleph_1$ and assume $K_{\mathscr{A}}$ is monolithic. Then

- either *A* is equivalent to a disjoint family, or else
- there exist ℬ ⊆ 𝔄 and a stationary set S ⊆ ω₁ such that ℬ is equivalent to a ladder system based on S.

In other words:

- either $K_{\mathscr{A}}$ is a "standard" Eberlein compact of height 3 and $C(K_{\mathscr{A}}) \approx c_0(\omega_1)$, or else
- or else $C(K_{\mathscr{A}})$ has an isometric copy of $C(K_{\mathscr{C}})$, where $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ is a ladder system and $S \subseteq \omega_1$ is stationary.

Theorem

Let \mathscr{A} be an almost disjoint family of countable sets with $|\mathscr{A}| = \aleph_1$ and assume $K_{\mathscr{A}}$ is monolithic. Then

- either *A* is equivalent to a disjoint family, or else
- there exist ℬ ⊆ 𝔄 and a stationary set S ⊆ ω₁ such that ℬ is equivalent to a ladder system based on S.

In other words:

- either $K_{\mathscr{A}}$ is a "standard" Eberlein compact of height 3 and $C(K_{\mathscr{A}}) \approx c_0(\omega_1)$, or else
- or else $C(K_{\mathscr{A}})$ has an isometric copy of $C(K_{\mathscr{C}})$, where $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ is a ladder system and $S \subseteq \omega_1$ is stationary.

3

Theorem

Let \mathscr{A} be an almost disjoint family of countable sets with $|\mathscr{A}| = \aleph_1$ and assume $K_{\mathscr{A}}$ is monolithic. Then

- either A is equivalent to a disjoint family, or else
- there exist ℬ ⊆ 𝔄 and a stationary set S ⊆ ω₁ such that ℬ is equivalent to a ladder system based on S.

In other words:

• either $K_{\mathscr{A}}$ is a "standard" Eberlein compact of height 3 and $C(K_{\mathscr{A}}) \approx c_0(\omega_1)$, or else

• or else $C(K_{\mathscr{A}})$ has an isometric copy of $C(K_{\mathscr{C}})$, where $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ is a ladder system and $S \subseteq \omega_1$ is stationary.

3

イロト 不得 トイヨト イヨト

Theorem

Let \mathscr{A} be an almost disjoint family of countable sets with $|\mathscr{A}| = \aleph_1$ and assume $K_{\mathscr{A}}$ is monolithic. Then

- either A is equivalent to a disjoint family, or else
- there exist ℬ ⊆ 𝔄 and a stationary set S ⊆ ω₁ such that ℬ is equivalent to a ladder system based on S.

In other words:

• either $K_{\mathscr{A}}$ is a "standard" Eberlein compact of height 3 and $C(K_{\mathscr{A}}) \approx c_0(\omega_1)$, or else

• or else $C(K_{\mathscr{A}})$ has an isometric copy of $C(K_{\mathscr{C}})$, where $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ is a ladder system and $S \subseteq \omega_1$ is stationary.

Theorem

Let \mathscr{A} be an almost disjoint family of countable sets with $|\mathscr{A}| = \aleph_1$ and assume $K_{\mathscr{A}}$ is monolithic. Then

- either A is equivalent to a disjoint family, or else
- there exist ℬ ⊆ 𝔄 and a stationary set S ⊆ ω₁ such that ℬ is equivalent to a ladder system based on S.

In other words:

- either $K_{\mathscr{A}}$ is a "standard" Eberlein compact of height 3 and $C(K_{\mathscr{A}}) \approx c_0(\omega_1)$, or else
- or else $C(K_{\mathscr{A}})$ has an isometric copy of $C(K_{\mathscr{C}})$, where $\mathscr{C} = \{c_{\delta}\}_{\delta \in S}$ is a ladder system and $S \subseteq \omega_1$ is stationary.

3

イロト 不得 トイヨト イヨト

= لايتين يتين THE END

æ

イロト イヨト イヨト イヨト