Banach spaces of universal disposition

Wiesław Kubiś

Czech Academy of Sciences, Prague and Jan Kochanowski University in Kielce

http://www.math.cas.cz/~kubis/

37th Winter School in Abstract Analysis, Section of Analysis Kácov, 17 – 24 January 2009

Gurarii space

Theorem (Gurarii, 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(*) Given finite-dimensional spaces Y ⊆ X, ε > 0 and an isometric embedding i: Y → G there exists an embedding j: X → G such that

 $j \upharpoonright Y = i$ and $\max\{||j||, ||j^{-1}||\} < 1 + \varepsilon.$

A space *G* satisfying (*) will be called of almost universal disposition for finite-dimensional spaces. Briefly: $G \in AUD$ (fin).

Theorem (Lusky, 1976)

The space G is unique up to isometry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gurarii space

Theorem (Gurarii, 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(*) Given finite-dimensional spaces Y ⊆ X, ε > 0 and an isometric embedding i: Y → G there exists an embedding j: X → G such that

 $j \upharpoonright Y = i$ and $\max\{||j||, ||j^{-1}||\} < 1 + \varepsilon$.

A space *G* satisfying (*) will be called of almost universal disposition for finite-dimensional spaces. Briefly: $G \in AUD$ (fin).

Theorem (Lusky, 1976)

The space G is unique up to isometry.

イロト イポト イヨト イヨト 一旦

Gurarii space

Theorem (Gurarii, 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(*) Given finite-dimensional spaces Y ⊆ X, ε > 0 and an isometric embedding i: Y → G there exists an embedding j: X → G such that

$$j \upharpoonright Y = i$$
 and $\max\{||j||, ||j^{-1}||\} < 1 + \varepsilon$.

A space *G* satisfying (*) will be called of almost universal disposition for finite-dimensional spaces. Briefly: $G \in AUD$ (fin).

Theorem (Lusky, 1976)

The space \mathbb{G} is unique up to isometry.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Gurarii space is isometrically universal for separable Banach spaces.

Proposition

The space \mathbb{G} is not isomorphic to any $\mathcal{C}(K)$.

A space *G* is of universal disposition for a class \mathcal{K} if for every $Y \subseteq X$ with $Y, X \in \mathcal{K}$, every isometric embedding *i* : $Y \to G$ can be extended to an isometric embedding *j* : $X \to G$. We write $G \in UD(\mathcal{K})$.

Theorem (Gurarii, 1966)

No separable Banach space is UD (fin).

イロト イヨト イヨト イヨト

The Gurarii space is isometrically universal for separable Banach spaces.

Proposition

The space \mathbb{G} is not isomorphic to any $\mathcal{C}(K)$.

A space *G* is of universal disposition for a class \mathcal{K} if for every $Y \subseteq X$ with $Y, X \in \mathcal{K}$, every isometric embedding *i* : $Y \to G$ can be extended to an isometric embedding *j* : $X \to G$. We write $G \in UD(\mathcal{K})$.

Theorem (Gurarii, 1966)

No separable Banach space is UD (fin).

< 日 > < 同 > < 回 > < 回 > < 回 > <

The Gurarii space is isometrically universal for separable Banach spaces.

Proposition

The space \mathbb{G} is not isomorphic to any $\mathcal{C}(K)$.

A space *G* is of universal disposition for a class \mathcal{K} if for every $Y \subseteq X$ with $Y, X \in \mathcal{K}$, every isometric embedding *i*: $Y \to G$ can be extended to an isometric embedding *j*: $X \to G$. We write $G \in UD(\mathcal{K})$.

Theorem (Gurarii, 1966)

No separable Banach space is UD (fin).

The Gurarii space is isometrically universal for separable Banach spaces.

Proposition

The space \mathbb{G} is not isomorphic to any $\mathcal{C}(K)$.

A space *G* is of universal disposition for a class \mathcal{K} if for every $Y \subseteq X$ with $Y, X \in \mathcal{K}$, every isometric embedding *i* : $Y \to G$ can be extended to an isometric embedding *j* : $X \to G$. We write $G \in UD(\mathcal{K})$.

Theorem (Gurarii, 1966)

No separable Banach space is UD (fin).

Theorem (K., 2007)

If $2^{\aleph_0} = \aleph_1$ then there exists a unique, up to isometry, Banach space \mathbb{U} of density \aleph_1 and of universal disposition for separable Banach spaces.

Proposition

Every Banach space of universal disposition for separable spaces is universal for spaces of density $\leq \aleph_1$.

Questions

■ Does there exist a 'concrete' Banach space U ∈ UD (separable)?

• Is \mathbb{U} isomorphic to a $\mathcal{C}(K)$ space?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theorem (K., 2007)

If $2^{\aleph_0} = \aleph_1$ then there exists a unique, up to isometry, Banach space \mathbb{U} of density \aleph_1 and of universal disposition for separable Banach spaces.

Proposition

Every Banach space of universal disposition for separable spaces is universal for spaces of density $\leq \aleph_1$.

Questions

■ Does there exist a 'concrete' Banach space U ∈ UD (separable)?

• Is \mathbb{U} isomorphic to a $\mathcal{C}(K)$ space?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (K., 2007)

If $2^{\aleph_0} = \aleph_1$ then there exists a unique, up to isometry, Banach space \mathbb{U} of density \aleph_1 and of universal disposition for separable Banach spaces.

Proposition

Every Banach space of universal disposition for separable spaces is universal for spaces of density $\leq \aleph_1$.

Questions

■ Does there exist a 'concrete' Banach space U ∈ UD (separable)?

• Is \mathbb{U} isomorphic to a $\mathcal{C}(K)$ space?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem (K., 2007)

If $2^{\aleph_0} = \aleph_1$ then there exists a unique, up to isometry, Banach space \mathbb{U} of density \aleph_1 and of universal disposition for separable Banach spaces.

Proposition

Every Banach space of universal disposition for separable spaces is universal for spaces of density $\leq \aleph_1$.

Questions

• Does there exist a 'concrete' Banach space $U \in UD(separable)$?

• Is \mathbb{U} isomorphic to a $\mathcal{C}(K)$ space?

Theorem (K., 2007)

If $2^{\aleph_0} = \aleph_1$ then there exists a unique, up to isometry, Banach space \mathbb{U} of density \aleph_1 and of universal disposition for separable Banach spaces.

Proposition

Every Banach space of universal disposition for separable spaces is universal for spaces of density $\leq \aleph_1$.

Questions

- Does there exist a 'concrete' Banach space $U \in UD(separable)$?
- Is \mathbb{U} isomorphic to a $\mathcal{C}(K)$ space?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space $\beta \mathbb{N} \setminus \mathbb{N}$ is UD (metric compacta + quotient maps).

•
$$\mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}) = \ell_{\infty}/c_0$$
.

不同 いくていくて

 The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space $\beta \mathbb{N} \setminus \mathbb{N}$ is UD (metric compacta + quotient maps).

•
$$\mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}) = \ell_{\infty}/c_0$$
.

4 **A** N A **B** N A **B**

 The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space $\beta \mathbb{N} \setminus \mathbb{N}$ is UD (metric compacta + quotient maps).

•
$$\mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}) = \ell_{\infty}/c_0$$
.

∃ ► < ∃</p>

< 6 k

 The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space βN \ N is UD (metric compacta + quotient maps).
 C (βN \ N) = ℓ_∞/c₀.

< (T) > <

 The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space βN \ N is UD (metric compacta + quotient maps).
 C (βN \ N) = ℓ_∞/_{c₀}.

< 回 > < 三 > < 三 >

 The Cantor set is the unique object of universal disposition for finite sets in the category of metric compacta with quotient maps.

- Urysohn's universal metric space is of universal disposition for finite spaces + isometric embeddings.
- The space $\beta \mathbb{N} \setminus \mathbb{N}$ is UD (metric compacta + quotient maps).

•
$$\mathcal{C}(\beta \mathbb{N} \setminus \mathbb{N}) = \ell_{\infty}/c_0$$
.

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

- Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .
- For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n\in\omega}$ is a chain such that $X = cl(\bigcup_{n\in\omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

- Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .
- For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n\in\omega}$ is a chain such that $X = cl(\bigcup_{n\in\omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

• Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .

• For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n\in\omega}$ is a chain such that $X = cl(\bigcup_{n\in\omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

- Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .
- For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n\in\omega}$ is a chain such that $X = cl(\bigcup_{n\in\omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

- Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .
- For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n \in \omega}$ is a chain such that $X = cl(\bigcup_{n \in \omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

Theorem

Let X be a Banach space. Then $X \in AUD$ (fin) if and only if there exists a family G of subspaces of X satisfying the following conditions.

- Each $G \in \mathcal{G}$ is isometric to the Gurarii space \mathbb{G} .
- For every separable set $A \subseteq X$ there is $G \in \mathcal{G}$ with $A \subseteq G$;

Lemma

Assume $\{X_n\}_{n \in \omega}$ is a chain such that $X = cl(\bigcup_{n \in \omega} X_n)$ and each X_n is isometric to \mathbb{G} . Then so is X.

Corollary

No Banach space of AUD (fin) can be isomorphic to a C(K) space.

Ultrapowers

Theorem (Cabello, 2008)

Let p be a non-principal ultrafilter on ω . Then $\mathbb{G}^{\omega}/_{p} \in UD$ (separable).

Proposition

Assume $X \in AUD$ (fin). Then $X^{\omega}/_{p} \in UD$ (separable) for every non-principle ultrafilter p on ω .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Ultrapowers

Theorem (Cabello, 2008)

Let p be a non-principal ultrafilter on ω . Then $\mathbb{G}^{\omega}/_{p} \in UD$ (separable).

Proposition

Assume $X \in AUD$ (fin). Then $X^{\omega}/_{p} \in UD$ (separable) for every non-principle ultrafilter p on ω .

< ロ > < 同 > < 回 > < 回 >

Ultrapowers

Theorem (Cabello, 2008)

Let p be a non-principal ultrafilter on ω . Then $\mathbb{G}^{\omega}/_{p} \in UD$ (separable).

Proposition

Assume $X \in AUD$ (fin). Then $X^{\omega}/_{p} \in UD$ (separable) for every non-principle ultrafilter p on ω .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Proposition

Given Banach spaces X, Y with $Z = X \cap Y$, let

 $W=(X\oplus Y)/_{\Delta_Z},$

where $\Delta_Z = \{ \langle z, -z \rangle : z \in Z \}$. Then there are isometric embeddings $i: X \to W$ and $j: Y \to W$ such that $i \upharpoonright Z = j \upharpoonright Z$.

Proposition

The square

is a pushout in the category of Banach spaces with linear transformations of norm ≤ 1 .

Proposition

Given Banach spaces X, Y with $Z = X \cap Y$, let

$$W=(X\oplus Y)/_{\Delta_Z},$$

where $\Delta_Z = \{ \langle z, -z \rangle : z \in Z \}$. Then there are isometric embeddings $i: X \to W$ and $j: Y \to W$ such that $i \upharpoonright Z = j \upharpoonright Z$.

Proposition

The square

is a pushout in the category of Banach spaces with linear transformations of norm ≤ 1 .

Proposition

Given Banach spaces X, Y with $Z = X \cap Y$, let

$$W=(X\oplus Y)/_{\Delta_Z},$$

where $\Delta_Z = \{ \langle z, -z \rangle \colon z \in Z \}$. Then there are isometric embeddings $i \colon X \to W$ and $j \colon Y \to W$ such that $i \upharpoonright Z = j \upharpoonright Z$.

Proposition

The square

is a pushout in the category of Banach spaces with linear transformations of norm ≤ 1 .

Corollary

There exists a Banach space U of density 2^{\aleph_0} and of universal disposition for separable Banach spaces.

Question

How many isomorphic types does the class UD (fin) contain?

< ロ > < 同 > < 回 > < 回 >

Corollary

There exists a Banach space U of density 2^{\aleph_0} and of universal disposition for separable Banach spaces.

Question

How many isomorphic types does the class UD (fin) contain?

< 回 > < 三 > < 三 >

Theorem

There exists a norm one projection $\mathfrak{u} \colon \mathbb{G} \to \mathbb{G}$ such that $Im(\mathfrak{u}) \approx \mathbb{G}$ and $ker(\mathfrak{u})$ is infinite-dimensional. Moreover:

 For every finite-dimensional spaces X₀ ⊆ X₁, Y₀ ⊆ Y₁, Y₀ ⊆ X₀, Y₁ ⊆ X₁, for every norm one projections P: X₀ → Y₀, Q: X₁ → Y₁ such that Q ↾ X₀ = P, for every isometric embeddings i₀: Y₀ → G, j₀: X₀ → G satisfying j₀ ↾ Y₀ = i₀, i₀ ∘ P = u ∘ j₀, for every ε > 0 there exist ε-isometric embeddings i: Y₁ → G and j: X₁ → G satisfying

$$i \upharpoonright Y_0 = i_0, j \upharpoonright X_0 = j_0, j \upharpoonright Y_1 = i$$
 and $\mathfrak{u} \circ j = i \circ Q$.

Corollary

Theorem

There exists a norm one projection $\mathfrak{u} \colon \mathbb{G} \to \mathbb{G}$ such that $Im(\mathfrak{u}) \approx \mathbb{G}$ and $ker(\mathfrak{u})$ is infinite-dimensional. Moreover:

 For every finite-dimensional spaces X₀ ⊆ X₁, Y₀ ⊆ Y₁, Y₀ ⊆ X₀, Y₁ ⊆ X₁, for every norm one projections P: X₀ → Y₀, Q: X₁ → Y₁ such that Q ↾ X₀ = P, for every isometric embeddings i₀: Y₀ → G, j₀: X₀ → G satisfying j₀ ↾ Y₀ = i₀, i₀ ∘ P = u ∘ j₀, for every ε > 0 there exist ε-isometric embeddings i: Y₁ → G and j: X₁ → G satisfying

$$i \upharpoonright Y_0 = i_0, j \upharpoonright X_0 = j_0, j \upharpoonright Y_1 = i$$
 and $\mathfrak{u} \circ j = i \circ Q$.

Corollary

Theorem

There exists a norm one projection $\mathfrak{u} \colon \mathbb{G} \to \mathbb{G}$ such that $Im(\mathfrak{u}) \approx \mathbb{G}$ and $ker(\mathfrak{u})$ is infinite-dimensional. Moreover:

For every finite-dimensional spaces X₀ ⊆ X₁, Y₀ ⊆ Y₁, Y₀ ⊆ X₀, Y₁ ⊆ X₁, for every norm one projections P: X₀ → Y₀, Q: X₁ → Y₁ such that Q ↾ X₀ = P, for every isometric embeddings i₀: Y₀ → G, j₀: X₀ → G satisfying j₀ ↾ Y₀ = i₀, i₀ ∘ P = u ∘ j₀, for every ε > 0 there exist ε-isometric embeddings i: Y₁ → G and j: X₁ → G satisfying

$$i \upharpoonright Y_0 = i_0, \ j \upharpoonright X_0 = j_0, \ j \upharpoonright Y_1 = i$$
 and $\mathfrak{u} \circ j = i \circ Q$.

Corollary

Theorem

There exists a norm one projection $\mathfrak{u} \colon \mathbb{G} \to \mathbb{G}$ such that $Im(\mathfrak{u}) \approx \mathbb{G}$ and $ker(\mathfrak{u})$ is infinite-dimensional. Moreover:

For every finite-dimensional spaces X₀ ⊆ X₁, Y₀ ⊆ Y₁, Y₀ ⊆ X₀, Y₁ ⊆ X₁, for every norm one projections P: X₀ → Y₀, Q: X₁ → Y₁ such that Q ↾ X₀ = P, for every isometric embeddings i₀: Y₀ → G, j₀: X₀ → G satisfying j₀ ↾ Y₀ = i₀, i₀ ∘ P = u ∘ j₀, for every ε > 0 there exist ε-isometric embeddings i: Y₁ → G and j: X₁ → G satisfying

$$i \upharpoonright Y_0 = i_0, \ j \upharpoonright X_0 = j_0, \ j \upharpoonright Y_1 = i$$
 and $\mathfrak{u} \circ j = i \circ Q$.

Corollary

THE END

W.Kubiś (http://www.math.cas.cz/~kubis/)

2

<ロ> <四> <ヨ> <ヨ>