Cantor's back-and-forth method in category theory

Wiesław Kubiś

Instytut Matematyki
Akademia Świẹtokrzyska
Kielce, POLAND
http://www.pu.kielce.pl/~wkubis/

UPEI, Charlottetown, 26 March 2007

Outline

(1) Cantor's back-and-forth method

- Fraïssé limits
(2) Categories
(3) Fraïssé sequences
- The existence
- Cofinality
- Homogeneity and uniqueness
- The back-and-forth method
(4) Example 1: Reversing the arrows
(5) Example 2: Countable linear orders
(6) Example 3: Retractive pairs

Cantor's back-and-forth method

Theorem (G. Cantor)

Let (©) denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

Corollary
\mathbb{Q} is the unicue countable dense linear order with no end-points.

Cantor's back-and-forth method

Theorem (G. Cantor)

Let \mathbb{Q} denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

Corollary
is the unique countable dense linear order with no end-points.

Cantor's back-and-forth method

Theorem (G. Cantor)

Let \mathbb{Q} denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.
is the unique countable dense linear order with no end-points.

Cantor's back-and-forth method

Theorem (G. Cantor)

Let \mathbb{Q} denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

\mathbb{Q} is the unique countable dense linear order with no end-points.

Cantor's back-and-forth method

Theorem (G. Cantor)

Let \mathbb{Q} denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.
\mathbb{Q} is the unique countable dense linear order with no end-points.

Cantor's back-and-forth method

Theorem (G. Cantor)

Let \mathbb{Q} denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into \mathbb{Q}.
- For every finite sets $A, B \subseteq \mathbb{Q}$, every order preserving injection $f: A \rightarrow B$ extends to an order isomorphism $F: \mathbb{Q} \rightarrow \mathbb{Q}$.
- \mathbb{Q} is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

Corollary

\mathbb{Q} is the unique countable dense linear order with no end-points.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively \in mbeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \mid P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.
- Extend g_{1}^{-1} to $f_{2}: Q_{k_{2}} \rightarrow Q_{k_{3}}$, where $k_{3}>k_{2}$.
- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.
- Extend g_{1}^{-1} to $f_{2}: Q_{k_{2}} \rightarrow Q_{k_{3}}$, where $k_{3}>k_{2}$.
- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$. - Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$

- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.

- And so on
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.

- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.
- Extend g_{1}^{-1} to $t_{2}: Q_{k_{2}} \rightarrow Q_{k_{3}}$, where $k_{3}>k_{2}$.
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.
- Extend g_{1}^{-1} to $f_{2}: Q_{k_{2}} \rightarrow Q_{k_{3}}$, where $k_{3}>k_{2}$.
- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Proof.

- Let $\mathbb{Q}=\bigcup_{n \in \omega} Q_{n}$, where each Q_{n} is finite and $Q_{n} \subseteq Q_{n+1}$.
- Let $P=\bigcup_{n \in \omega} P_{n}$ be a linearly ordered set, where $P_{n} \subseteq P_{n+1}$ and each P_{n} is finite.
- Define inductively embeddings $f_{n}: P_{n} \rightarrow Q_{k_{n}}$ so that $f_{n+1} \upharpoonright P_{n}=f_{n}$.
- Now assume $P=\mathbb{Q}$ and $f: A \rightarrow B$ is given, where $A, B \subseteq Q_{k_{0}}$.
- Extend f to $f_{1}: Q_{k_{0}} \rightarrow Q_{k_{1}}$, where $k_{1}>k_{0}$.
- Extend f_{1}^{-1} to a map $g_{1}: Q_{k_{1}} \rightarrow Q_{k_{2}}$, where $k_{2}>k_{1}$.
- Extend g_{1}^{-1} to $t_{2}: Q_{k_{2}} \rightarrow Q_{k_{3}}$, where $k_{3}>k_{2}$.
- And so on ...
- $\bigcup_{n \in \omega} f_{n}$ is an isomorphism extending f.

Theorem (R. Fraïssé 1954)
Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

Theorem (R. Fraïssé 1954)
Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every $A, B \in \mathbb{M}$ there is $C \in \mathbb{M}$ such that both A and B embed into C. (Joint Embedding)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every $A \in \mathbb{M}$ embeds into M.
- For every embeddings $f: A \rightarrow M$ and $g: A \rightarrow B$, where $A, B \in \mathbb{M}$, there exists and embedding $f: B \rightarrow M$ such that $f \circ g=f$.

Theorem (R. Fraïssé 1954)

Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every $A, B \in \mathbb{M}$ there is $C \in \mathbb{M}$ such that both A and B embed into C. (Joint Embedding)
- For every two embeddings $f: E \rightarrow A$ and $g: E \rightarrow B$, where $E, A, B \in \mathbb{M}$, there exist $D \in \mathbb{M}$ and embeddings $f^{\prime}: A \rightarrow D$, $g^{\prime}: B \rightarrow D$ such that $f^{\prime} \circ f=g^{\prime} \circ g$. (Amalgamation)

Theorem (R. Fraïssé 1954)

Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every $A, B \in \mathbb{M}$ there is $C \in \mathbb{M}$ such that both A and B embed into C. (Joint Embedding)
- For every two embeddings $f: E \rightarrow A$ and $g: E \rightarrow B$, where $E, A, B \in \mathbb{M}$, there exist $D \in \mathbb{M}$ and embeddings $f^{\prime}: A \rightarrow D$, $g^{\prime}: B \rightarrow D$ such that $f^{\prime} \circ f=g^{\prime} \circ g$. (Amalgamation)
Then there exists a unique, up to isomorphism, countable model M of the same language such that:
- Every $A \in \mathbb{M}$ embeds into M.

- For every embeddings $f: A \rightarrow M$ and $g: A \rightarrow B$, where $A, B \in \mathbb{M}$,

 there exists and embedding $\bar{f}: B$
Theorem (R. Fraïssé 1954)

Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every $A, B \in \mathbb{M}$ there is $C \in \mathbb{M}$ such that both A and B embed into C. (Joint Embedding)
- For every two embeddings $f: E \rightarrow A$ and $g: E \rightarrow B$, where $E, A, B \in \mathbb{M}$, there exist $D \in \mathbb{M}$ and embeddings $f^{\prime}: A \rightarrow D$, $g^{\prime}: B \rightarrow D$ such that $f^{\prime} \circ f=g^{\prime} \circ g$. (Amalgamation)
Then there exists a unique, up to isomorphism, countable model M of the same language such that:
- Every $A \in \mathbb{M}$ embeds into M.
\square

Theorem (R. Fraïssé 1954)

Let \mathbb{M} be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every $A, B \in \mathbb{M}$ there is $C \in \mathbb{M}$ such that both A and B embed into C. (Joint Embedding)
- For every two embeddings $f: E \rightarrow A$ and $g: E \rightarrow B$, where $E, A, B \in \mathbb{M}$, there exist $D \in \mathbb{M}$ and embeddings $f^{\prime}: A \rightarrow D$, $g^{\prime}: B \rightarrow D$ such that $f^{\prime} \circ f=g^{\prime} \circ g$. (Amalgamation)
Then there exists a unique, up to isomorphism, countable model M of the same language such that:
- Every $A \in \mathbb{M}$ embeds into M.
- For every embeddings $f: A \rightarrow M$ and $g: A \rightarrow B$, where $A, B \in \mathbb{M}$, there exists and embedding $\bar{f}: B \rightarrow M$ such that $\bar{f} \circ g=f$.

Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space \mathbb{U} with the following properties:

- Every separable metric space is isometric to a subset of \mathbb{U}.
- For every finite sets $A, B \subseteq \mathbb{U}$, every isometry $f: A \rightarrow B$ extends to an isometric bijection $F: \mathbb{U} \rightarrow \mathbb{U}$.

Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space \mathbb{U} with the following properties:

- Every separable metric space is isometric to a subset of \mathbb{U}.
- For every finite sets $A, B \subseteq \mathbb{U}$, every isometry $f: A \rightarrow B$ extends to an isometric bijection $F: \mathbb{U} \rightarrow \mathbb{U}$.

Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space \mathbb{U} with the following properties:

- Every separable metric space is isometric to a subset of \mathbb{U}.
- For every finite sets $A, B \subseteq \mathbb{U}$, every isometry $f: A \rightarrow B$ extends to an isometric bijection $F: \mathbb{U} \rightarrow \mathbb{U}$.

Categories

Let \mathfrak{K} be a category.

- We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ there are arrows $f^{\prime}: X \rightarrow W$ and $g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f=g^{\prime} \circ g$.

- If moreover for every other pair of arrows $k: X \rightarrow V$ and $\ell: Y \rightarrow V$ with $k \circ f=\ell \circ g$ there exists a unique arrow $h: W \rightarrow V$ such that

$$
f^{\prime} \circ h=k \text { and } g^{\prime} \circ h=\ell
$$

then $\left\langle f^{\prime}, g^{\prime}\right\rangle$ is called the pushout of $\langle f, g\rangle$.

Categories

Let \mathfrak{K} be a category.

- We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ there are arrows $f^{\prime}: X \rightarrow W$ and $g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f=g^{\prime} \circ g$.

- If moreover for every other pair of arrows $k: X \rightarrow V$ and $\ell: Y \rightarrow V$
with $k \circ f=\ell \circ g$ there exists a unique arrow $h: W \rightarrow V$ such that

$$
f^{\prime} \circ h=k \text { and } g^{\prime} \circ h=\ell
$$

then $\left\langle f^{\prime}, g^{\prime}\right\rangle$ is called the pushout of $\langle f, g\rangle$.

Categories

Let \mathfrak{K} be a category.

- We say that \mathfrak{K} has the amalgamation property if for every arrows $f: Z \rightarrow X$ and $g: Z \rightarrow Y$ there are arrows $f^{\prime}: X \rightarrow W$ and $g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f=g^{\prime} \circ g$.

- If moreover for every other pair of arrows $k: X \rightarrow V$ and $\ell: Y \rightarrow V$ with $k \circ f=\ell \circ g$ there exists a unique arrow $h: W \rightarrow V$ such that

$$
f^{\prime} \circ h=k \text { and } g^{\prime} \circ h=\ell
$$

then $\left\langle f^{\prime}, g^{\prime}\right\rangle$ is called the pushout of $\langle f, g\rangle$.

Pushouts

The pushout of $\langle f, g\rangle$

Pushouts

The pushout of $\langle f, g\rangle$

Pushouts

The pushout of $\langle f, g\rangle$

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{X} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\} n \in \omega$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=\mathrm{id}_{x_{n}}$,
(2) $k<l<m \Longrightarrow i_{k}^{m}=i_{l}^{m} \circ i_{k}^{l}$.

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.
Let $\vec{x}=\left\langle x_{n}, i m, \omega\right\rangle$ and $\vec{y}=\left\langle y n, i_{n}^{m}, \omega\right\rangle$ be sequences in $\mathfrak{\Omega}$.
A transformation of \vec{x} into \vec{y} is a pair $\langle\varphi, \vec{f}\rangle$ such that
(1) $\varphi: \omega \rightarrow \omega$ is increasing;
(2) $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$, where $f_{n}: x_{n}-y_{\varphi(n)}$;
(3) $n<m \Longrightarrow f_{m} \circ i_{n}^{m}=j_{\varphi(n)}^{\varphi(m)} \circ f_{n}$.

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
 We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.

A transformation of \vec{x} into \vec{y} is a pair $\langle\varphi, \vec{f}\rangle$ such that
(1) $\varphi: \omega \rightarrow \omega$ is increasing;
(2) $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$, where $f_{n}: x_{n} \rightarrow y_{\varphi(n)}$;
(8) $n<m \Longrightarrow f_{m} \circ i_{n}^{m}=j_{\varphi(n)}^{\varphi(m)} \circ f_{n}$.

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=\mathrm{id}_{x_{n}}$,

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=i d_{x_{n}}$,
(2) $k<\ell<m \Longrightarrow i_{k}^{m}=i_{\ell}^{m} \circ i_{k}^{\ell}$.

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.

(2) $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$, where $f_{n}: x_{n} \rightarrow y_{\varphi(n)}$;

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=\mathrm{id}_{x_{n}}$,
(2) $k<\ell<m \Longrightarrow i_{k}^{m}=i_{\ell}^{m} \circ i_{k}^{\ell}$.

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.
Let $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$ and $\vec{y}=\left\langle y_{n}, j_{n}^{m}, \omega\right\rangle$ be sequences in \mathfrak{K}.
A transformation of \vec{x} into \vec{y} is a pair $\langle\varphi, \vec{f}\rangle$ such that
(1) $\varphi: \omega \rightarrow \omega$ is increasing;

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=\mathrm{id}_{x_{n}}$,
(2) $k<\ell<m \Longrightarrow i_{k}^{m}=i_{\ell}^{m} \circ i_{k}^{\ell}$.

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.
Let $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$ and $\vec{y}=\left\langle y_{n}, j_{n}^{m}, \omega\right\rangle$ be sequences in \mathfrak{K}.
A transformation of \vec{x} into \vec{y} is a pair $\langle\varphi, \vec{f}\rangle$ such that
(1) $\varphi: \omega \rightarrow \omega$ is increasing;
(2) $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$, where $f_{n}: x_{n} \rightarrow y_{\varphi(n)}$;
(3) $n<m \Longrightarrow f_{m} \circ i_{n}^{m}=j_{\varphi(n)}^{\varphi(m)} \circ f_{n}$.

Sequences

- By a sequence in a category \mathfrak{K} we mean a functor \vec{x} from $\omega=\{0,1, \ldots\}$ into \mathfrak{K}.
- A sequence \vec{x} can be described as $\left\{x_{n}\right\}_{n \in \omega}$ together with arrows $i_{n}^{m}: x_{n} \rightarrow x_{m}$ for $n \leqslant m$, such that
(1) $i_{n}^{n}=i d_{x_{n}}$,
(2) $k<\ell<m \Longrightarrow i_{k}^{m}=i_{\ell}^{m} \circ i_{k}^{\ell}$.

We shall write $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$.
Let $\vec{x}=\left\langle x_{n}, i_{n}^{m}, \omega\right\rangle$ and $\vec{y}=\left\langle y_{n}, j_{n}^{m}, \omega\right\rangle$ be sequences in \mathfrak{K}.
A transformation of \vec{x} into \vec{y} is a pair $\langle\varphi, \vec{f}\rangle$ such that
(1) $\varphi: \omega \rightarrow \omega$ is increasing;
(2) $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$, where $f_{n}: x_{n} \rightarrow y_{\varphi(n)}$;
(3) $n<m \Longrightarrow f_{m} \circ i_{n}^{m}=j_{\varphi(n)}^{\varphi(m)} \circ f_{n}$.

Arrows between sequences

- Let \vec{x}, \vec{y} be sequences in \mathfrak{K} and let $\langle\varphi, \vec{f}\rangle,\langle\psi, \vec{g}\rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.

- An arrow of sequences $\vec{x} \rightarrow \vec{y}$ is an equivalence class of this relation.
- We write $\vec{f}: \vec{x} \rightarrow \vec{y}$, having in mind the equivalence class of a transformation $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$.

Arrows between sequences

- Let \vec{x}, \vec{y} be sequences in \mathfrak{K} and let $\langle\varphi, \vec{f}\rangle,\langle\psi, \vec{g}\rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.
- An arrow of sequences $\vec{x} \rightarrow \vec{y}$ is an equivalence class of this relation.
- We write $\vec{f}: \vec{x} \rightarrow \vec{y}$, having in mind the equivalence class of a transformation $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$

Arrows between sequences

- Let \vec{x}, \vec{y} be sequences in \mathfrak{K} and let $\langle\varphi, \vec{f}\rangle,\langle\psi, \vec{g}\rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.
- An arrow of sequences $\vec{x} \rightarrow \vec{y}$ is an equivalence class of this relation.
- We write $\vec{f}: \vec{x} \rightarrow \vec{y}$, having in mind the equivalence class of a
transformation $\vec{f}=\left\{f_{n}\right\} n \in \omega$.

Arrows between sequences

- Let \vec{x}, \vec{y} be sequences in \mathfrak{K} and let $\langle\varphi, \vec{f}\rangle,\langle\psi, \vec{g}\rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.
- An arrow of sequences $\vec{x} \rightarrow \vec{y}$ is an equivalence class of this relation.
- We write $\vec{f}: \vec{x} \rightarrow \vec{y}$, having in mind the equivalence class of a transformation $\vec{f}=\left\{f_{n}\right\}_{n \in \omega}$.

Let \mathfrak{K} be a fixed category.

A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ satisfying the following conditions:

(U) For every $x \in \mathfrak{K}$ there exists $n \in \omega$ such that $\mathfrak{K}\left(x, u_{n}\right) \neq \emptyset$.

(A) For every $n \in \omega$ and for every arrow $f \in \mathfrak{K}\left(u_{n}, y\right)$, where $y \in \mathfrak{K}$, there exist $m \geqslant n$ and $g \in \mathfrak{K}\left(y, u_{m}\right)$ such that $i_{n}^{m}=g \circ f$.

Let \mathfrak{K} be a fixed category.

A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ satisfying the following conditions:
(U) For every $x \in \mathfrak{K}$ there exists $n \in \omega$ such that $\mathfrak{K}\left(x, u_{n}\right) \neq \emptyset$.
(A) For every $n \in \omega$ and for every arrow $f \in \mathfrak{K}\left(u_{n}, y\right)$, where $y \in \mathfrak{K}$,
there exist $m \geqslant n$ and $g \in \mathfrak{K}\left(y, u_{m}\right)$ such that $i_{n}^{m}=g \circ f$.

Let \mathfrak{K} be a fixed category.

A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ satisfying the following conditions:
(U) For every $x \in \mathfrak{K}$ there exists $n \in \omega$ such that $\mathfrak{K}\left(x, u_{n}\right) \neq \emptyset$.

(A) For every $n \in \omega$ and for every arrow $f \in \mathfrak{K}\left(u_{n}, y\right)$, where $y \in \mathfrak{K}$, there exist $m \geqslant n$ and $g \in \mathfrak{K}\left(y, u_{m}\right)$ such that $i_{n}^{m}=g \circ f$.

Let \mathfrak{K} be a fixed category.
A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ satisfying the following conditions:
(U) For every $x \in \mathfrak{K}$ there exists $n \in \omega$ such that $\mathfrak{K}\left(x, u_{n}\right) \neq \emptyset$.

(A) For every $n \in \omega$ and for every arrow $f \in \mathfrak{K}\left(u_{n}, y\right)$, where $y \in \mathfrak{K}$, there exist $m \geqslant n$ and $g \in \mathfrak{K}\left(y, u_{m}\right)$ such that $i_{n}^{m}=g \circ f$.

Let \mathfrak{K} be a fixed category.
A Fraïssé sequence in \mathfrak{K} is a sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ satisfying the following conditions:
(U) For every $x \in \mathfrak{K}$ there exists $n \in \omega$ such that $\mathfrak{K}\left(x, u_{n}\right) \neq \emptyset$.

(A) For every $n \in \omega$ and for every arrow $f \in \mathfrak{K}\left(u_{n}, y\right)$, where $y \in \mathfrak{K}$, there exist $m \geqslant n$ and $g \in \mathfrak{K}\left(y, u_{m}\right)$ such that $i_{n}^{m}=g \circ f$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:
(D1) For overy $x \in \mathfrak{R}$ there exists $a \in \operatorname{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq 0$.
(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:

(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:
(D1) For every $x \in \mathfrak{K}$ there exists $a \in \operatorname{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

$$
x \cdots \quad>a
$$

(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:
(D1) For every $x \in \mathfrak{K}$ there exists $a \in \operatorname{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.

$$
x \cdots \quad>a
$$

(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:
(D1) For every $x \in \mathfrak{K}$ there exists $a \in \operatorname{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.
(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

Dominating families of arrows

Let \mathcal{F} be a set of arrows in \mathfrak{K}. Let $\operatorname{Dom}(\mathcal{F})=\{\operatorname{dom}(f): f \in \mathcal{F}\}$. We say that \mathcal{F} is dominating in \mathfrak{K} if the following conditions are satisfied:
(D1) For every $x \in \mathfrak{K}$ there exists $a \in \operatorname{Dom}(\mathcal{F})$ such that $\mathfrak{K}(x, a) \neq \emptyset$.
(D2) For every arrow $g: a \rightarrow y$ in \mathfrak{K} with $a \in \operatorname{Dom}(\mathcal{F})$ there exist arrows f, h in \mathfrak{K} such that $f \in \mathcal{F}$ and $f=h \circ g$.

The existence

```
Theorem
Let }\mathfrak{K}\mathrm{ be a category which has the amalgamation property and the joint
embedding property. Assume further that \mathcal{F}\subseteq\operatorname{Arr}(\mathfrak{K})\mathrm{ is dominating in}
\Re}\mathrm{ and |F| | < %.
Then there exists a Fraïssé sequence }\vec{u}=\langle\mp@subsup{u}{n}{},\mp@subsup{i}{n}{m},w\rangle\mathrm{ in }\mathfrak{\Re}\mathrm{ such that
{\mp@subsup{u}{n}{}:n\in\omega}\subseteq\operatorname{Dom}(\mathcal{F}).
```

Remark
Assume $\vec{u}:=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ is a Frailssé sequence in $\mathfrak{\Omega}$. Then $\mathfrak{\Omega}$ has the
joint embedding property and $\mathcal{F}=\left\{i_{n}^{m}: n<m<\omega\right\}$ is dominating in \mathfrak{K}.

The existence

Theorem
 Let \mathfrak{K} be a category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\mathfrak{K})$ is dominating in \mathfrak{K} and $|\mathcal{F}| \leqslant \aleph_{0}$.

 \square

The existence

Theorem

Let \mathfrak{K} be a category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\mathfrak{K})$ is dominating in \mathfrak{K} and $|\mathcal{F}| \leqslant \aleph_{0}$.
Then there exists a Fraïssé sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ in $\mathfrak{\kappa}$ such that

The existence

Theorem

Let \mathfrak{K} be a category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\mathfrak{K})$ is dominating in $\mathfrak{\kappa}$ and $|\mathcal{F}| \leqslant \aleph_{0}$.
Then there exists a Fraïssé sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ in $\mathfrak{\kappa}$ such that $\left\{u_{n}: n \in \omega\right\} \subseteq \operatorname{Dom}(\mathcal{F})$.

Remark
Assume $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ is a Fraïssé sequence in \mathfrak{K}. Then \mathfrak{K} has the joint embedding property and $\mathcal{F}=\left\{i_{n}^{m}: n<m<\omega\right\}$ is dominating in Ω.

The existence

Theorem

Let \mathfrak{K} be a category which has the amalgamation property and the joint embedding property. Assume further that $\mathcal{F} \subseteq \operatorname{Arr}(\mathfrak{K})$ is dominating in \mathfrak{K} and $|\mathcal{F}| \leqslant \aleph_{0}$.
Then there exists a Fraïssé sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ in \mathfrak{K} such that $\left\{u_{n}: n \in \omega\right\} \subseteq \operatorname{Dom}(\mathcal{F})$.

Remark

Assume $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ is a Fraïssé sequence in \mathfrak{K}. Then \mathfrak{K} has the joint embedding property and $\mathcal{F}=\left\{i_{n}^{m}: n<m<\omega\right\}$ is dominating in \mathfrak{K}.

Cofinality

```
Theorem
Assume \vec{u}=\langle\mp@subsup{u}{n}{},\mp@subsup{i}{n}{m},\omega\rangle)\mathrm{ is a Fraïssé sequence in a category with}
amalgamation \Re. Then for every sequence \vec{x}\mathrm{ in }\mathfrak{\Re}\mathrm{ there exists an arrow}
f:\vec{x}->\vec{u}.
```


Cofinality

Theorem

Assume $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ is a Fraïssé sequence in a category with amalgamation \mathfrak{K}. Then for every sequence \vec{x} in \mathfrak{K} there exists an arrow $\vec{f}: \vec{x} \rightarrow \vec{u}$.

Proof.

$$
\begin{aligned}
& \cdots \longrightarrow u_{\ell_{0}} \longrightarrow \cdots \cdots \\
& x_{0} \longrightarrow x_{1} \longrightarrow \cdots \longrightarrow \cdots
\end{aligned}
$$

Proof.

$\cdots \longrightarrow U_{\ell_{0}}$

Proof.

Proof.

Proof.

$$
\begin{gathered}
\cdots \longrightarrow u_{\ell_{0}} \longrightarrow u_{\ell_{1}} \longrightarrow \cdots \longrightarrow u_{\ell_{n}} \longrightarrow \cdots \\
x_{0} \longrightarrow x_{1} \longrightarrow \cdots x_{n} \longrightarrow x_{n+1} \longrightarrow \cdots
\end{gathered}
$$

Proof.

Proof.

Proof.

Homogeneity and Uniqueness

Theorem

Assume that $\vec{u}=\left\langle u_{m}, i_{m}^{n}, \omega\right\rangle, \vec{v}=\left\langle v_{m}, j_{m}^{n}, \omega\right\rangle$ are Fraïssé sequences in
a fixed category $\mathfrak{\Re}$.
(a) Let $f: u_{k} \rightarrow v_{\ell}$, where $k, \ell<\omega$. Then there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i_{k}=j_{\ell} \circ f$. In particular $\vec{u} \approx \vec{v}$.
(b) Assume \mathfrak{K} has the amalgamation property. Then for every $a, b \in \mathfrak{K}$ and for every arrows $f: a \rightarrow b, i: a \rightarrow \vec{u}, j: b \rightarrow \vec{v}$ there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i=j \circ f$.

Homogeneity and Uniqueness

Theorem

Assume that $\vec{u}=\left\langle u_{m}, i_{m}^{n}, \omega\right\rangle, \vec{v}=\left\langle v_{m}, j_{m}^{n}, \omega\right\rangle$ are Fraïssé sequences in a fixed category \mathfrak{K}.

$F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i_{k}=j_{\ell} \circ f$. In particular $\vec{u} \approx \vec{v}$.
(b) Assume \& has the amalgamation pronerty. Then for every $a, b \in \mathfrak{A}$ and for every arrows $f: a \rightarrow b, i: a \rightarrow \vec{u}, j: b \rightarrow \vec{v}$ there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i=j \circ f$.

Homogeneity and Uniqueness

Theorem

Assume that $\vec{u}=\left\langle u_{m}, i_{m}^{n}, \omega\right\rangle, \vec{v}=\left\langle v_{m}, j_{m}^{n}, \omega\right\rangle$ are Fraïssé sequences in a fixed category \mathfrak{K}.
(a) Let $f: u_{k} \rightarrow v_{\ell}$, where $k, \ell<\omega$. Then there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i_{k}=j_{\ell} \circ f$. In particular $\vec{u} \approx \vec{v}$.
(b) Assume $\mathfrak{\Omega}$ has the amalgamation property. Then for every $a, b \in \Omega$ and for every arrows $f: a \rightarrow b, i: a \rightarrow \vec{u}, j: b \rightarrow \vec{v}$ there exists an isomorphism F

Homogeneity and Uniqueness

Theorem

Assume that $\vec{u}=\left\langle u_{m}, i_{m}^{n}, \omega\right\rangle, \vec{v}=\left\langle v_{m}, j_{m}^{n}, \omega\right\rangle$ are Fraïssé sequences in a fixed category \mathfrak{K}.
(a) Let $f: u_{k} \rightarrow v_{\ell}$, where $k, \ell<\omega$. Then there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i_{k}=j_{\ell} \circ f$. In particular $\vec{u} \approx \vec{v}$.
(b) Assume \mathfrak{K} has the amalgamation property. Then for every $a, b \in \mathfrak{K}$ and for every arrows $f: a \rightarrow b, i: a \rightarrow \vec{u}, j: b \rightarrow \vec{v}$ there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i=j \circ f$.

Homogeneity and Uniqueness

Theorem

Assume that $\vec{u}=\left\langle u_{m}, i_{m}^{n}, \omega\right\rangle, \vec{v}=\left\langle v_{m}, j_{m}^{n}, \omega\right\rangle$ are Fraïssé sequences in a fixed category \mathfrak{K}.
(a) Let $f: u_{k} \rightarrow v_{\ell}$, where $k, \ell<\omega$. Then there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i_{k}=j_{\ell} \circ f$. In particular $\vec{u} \approx \vec{v}$.
(b) Assume \mathfrak{K} has the amalgamation property. Then for every $a, b \in \mathfrak{K}$ and for every arrows $f: a \rightarrow b, i: a \rightarrow \vec{u}, j: b \rightarrow \vec{v}$ there exists an isomorphism $F: \vec{u} \rightarrow \vec{v}$ such that $F \circ i=j \circ f$.

The back-and-forth method

Example 1: Reversing the arrows

Let \mathfrak{K} be the category described as follows:

- Objects of \mathfrak{K} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P, Q)$ iff $f: Q \rightarrow P$ is an order preserving surjection.

Claim
 \mathfrak{K} has the amalgamation property.

Theorem
$\mathfrak{\Re}$ has a Fraïssé sequence

whose limit is the Cantor set with the standard linear ordering.

Example 1: Reversing the arrows

Let \mathfrak{K} be the category described as follows:

- Objects of \mathfrak{K} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P, Q)$ iff $f: Q \rightarrow P$ is an order preserving surjection.
\square
Claim
\mathfrak{K} has the amalgamation property.

Theorem
\mathfrak{K} has a Fraïssé sequence

whose limit is the Cantor set with the standard linear ordering.

Example 1: Reversing the arrows

Let \mathfrak{K} be the category described as follows:

- Objects of \mathfrak{K} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P, Q)$ iff $f: Q \rightarrow P$ is an order preserving surjection.

Claim
 \mathfrak{K} has the amalgamation property.

Theorem
$\mathfrak{\Re}$ has a Fraïssé sequence
whose limit is the Cantor set with the standard linear ordering.

Example 1: Reversing the arrows

Let \mathfrak{K} be the category described as follows:

- Objects of \mathfrak{K} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P, Q)$ iff $f: Q \rightarrow P$ is an order preserving surjection.

Claim
 \mathfrak{K} has the amalgamation property.

\square
\& has a Fraïssé sequence
whose limit is the Cantor set with the standard linear ordering.

Example 1: Reversing the arrows

Let \mathfrak{K} be the category described as follows:

- Objects of \mathfrak{K} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P, Q)$ iff $f: Q \rightarrow P$ is an order preserving surjection.

Claim
 \mathfrak{K} has the amalgamation property.

Theorem

\mathfrak{K} has a Fraïssé sequence

$$
P_{0} \leftarrow P_{1} \leftarrow P_{2} \leftarrow \ldots
$$

whose limit is the Cantor set with the standard linear ordering.

Example 2: Countable linear orders

Let \mathfrak{K} be the category whose objects are countable linear orders $\langle P, \leqslant\rangle$ and arrows are left-invertible order preserving maps.

- f is order preserving, i.e. $x \leqslant y \Longrightarrow f(x) \preceq f(y)$;
- there is an order preserving man $g:\langle Q \prec\rangle \rightarrow\langle P \leqslant\rangle$ such that $g \circ f=i d_{p}$.
Necessarily f is one-to-one.
Lemma
\mathfrak{K} has the amalgamation property.

Example 2: Countable linear orders

Let \mathfrak{K} be the category whose objects are countable linear orders $\langle P, \leqslant\rangle$ and arrows are left-invertible order preserving maps.
That is: $f:\langle P, \leqslant\rangle \rightarrow\langle Q, \preceq\rangle$ is an arrow in \mathfrak{K} if

- f is order preserving, i.e. $x \leqslant y \Longrightarrow f(x) \preceq f(y)$;

Necessarily f is one-to-one.
\square
\mathfrak{K} has the amalgamation property.

Example 2: Countable linear orders

Let \mathfrak{K} be the category whose objects are countable linear orders $\langle P, \leqslant\rangle$ and arrows are left-invertible order preserving maps.
That is: $f:\langle P, \leqslant\rangle \rightarrow\langle Q, \preceq\rangle$ is an arrow in \mathfrak{K} if

- f is order preserving, i.e. $x \leqslant y \Longrightarrow f(x) \preceq f(y)$;
- there is an order preserving map $g:\langle Q, \preceq\rangle \rightarrow\langle P, \leqslant\rangle$ such that $g \circ f=\mathrm{id}_{p}$.
Necessarily f is one-to-one.
\square
\mathfrak{K} has the amalgamation property.

Example 2: Countable linear orders

Let \mathfrak{K} be the category whose objects are countable linear orders $\langle P, \leqslant\rangle$ and arrows are left-invertible order preserving maps.
That is: $f:\langle P, \leqslant\rangle \rightarrow\langle Q, \preceq\rangle$ is an arrow in \mathfrak{K} if

- f is order preserving, i.e. $x \leqslant y \Longrightarrow f(x) \preceq f(y)$;
- there is an order preserving map $g:\langle Q, \preceq\rangle \rightarrow\langle P, \leqslant\rangle$ such that $g \circ f=\mathrm{id}_{p}$.
Necessarily f is one-to-one.
\mathfrak{K} has the amalgamation property.

Example 2: Countable linear orders

Let \mathfrak{K} be the category whose objects are countable linear orders $\langle P, \leqslant\rangle$ and arrows are left-invertible order preserving maps.
That is: $f:\langle P, \leqslant\rangle \rightarrow\langle Q, \preceq\rangle$ is an arrow in \mathfrak{K} if

- f is order preserving, i.e. $x \leqslant y \Longrightarrow f(x) \preceq f(y)$;
- there is an order preserving map $g:\langle Q, \preceq\rangle \rightarrow\langle P, \leqslant\rangle$ such that $g \circ f=\mathrm{id}_{p}$.
Necessarily f is one-to-one.

Lemma

\mathfrak{K} has the amalgamation property.

Lemma

Let $\pi: \mathbb{Q} \rightarrow \mathbb{Q} \cdot \mathbb{Q}$ be defined by $\pi(q)=\langle q, 0\rangle$. Then $\{\pi\}$ is a dominating family of arrows in \mathfrak{K}.

Theorem
\mathfrak{K} has a Fraïssé sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ such that each u_{n} is isomorphic to \mathbb{Q} and each i_{n}^{m} is isomorphic to π.

Lemma

Let $\pi: \mathbb{Q} \rightarrow \mathbb{Q} \cdot \mathbb{Q}$ be defined by $\pi(q)=\langle q, 0\rangle$. Then $\{\pi\}$ is a dominating family of arrows in \mathfrak{K}.

Theorem
\mathfrak{K} has a Fraïssé sequence $\vec{u}=\left\langle u_{n}, i_{n}^{m}, \omega\right\rangle$ such that each u_{n} is isomorphic to \mathbb{Q} and each i_{n}^{m} is isomorphic to π.

Example 3: Retractive pairs

Fix a category \mathfrak{K}. Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of $\ddagger \mathfrak{K}$ are the same as the objects of \mathfrak{K}.
- $f \in \ddagger \mathfrak{K}(a, b)$ iff $f=\langle r, e\rangle$, where $r: b \rightarrow a$ and $e: a \rightarrow b$ are arrows of \mathfrak{K} such that $r \circ e=i d_{a}$. We shall write $r(f)=r, e(f)=e$.
- Given compatible arrows f, g in $\ddagger \AA$, their composition is

$$
g f=\langle r(f) \circ r(g), e(g) \circ e(f)\rangle .
$$

Example 3: Retractive pairs

Fix a category \mathfrak{K}. Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of $\ddagger \mathfrak{K}$ are the same as the objects of \mathfrak{K}.
- $f \in \ddagger \mathfrak{K}(a, b)$ iff $f=\langle r, e\rangle$, where $r: b \rightarrow a$ and $e: a \rightarrow b$ are arrows of \mathfrak{K} such that $r \circ e=\mathrm{id}_{a}$.
We shall write $r(f)=r, e(f)=e$.
- Given compatible arrows f, g in $\ddagger \mathfrak{\kappa}$, their composition is

Example 3: Retractive pairs

Fix a category \mathfrak{K}. Denote by $\ddagger \mathfrak{K}$ the following category:

- The objects of $\ddagger \mathfrak{K}$ are the same as the objects of \mathfrak{K}.
- $f \in \ddagger \mathfrak{K}(a, b)$ iff $f=\langle r, e\rangle$, where $r: b \rightarrow a$ and $e: a \rightarrow b$ are arrows of \mathfrak{K} such that $r \circ e=\mathrm{id}_{a}$.
We shall write $r(f)=r, e(f)=e$.
- Given compatible arrows f, g in $\ddagger \mathfrak{K}$, their composition is

$$
g f=\langle r(f) \circ r(g), e(g) \circ e(f)\rangle
$$

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Claim

If \mathfrak{K} has pullbacks then $\ddagger \mathfrak{K}$ has the amalgamation property.

Proof.

Selected bibliography

© Fraïssé, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35-182.

- Jónsson, B., Homogeneous universal relational systems, Math. Scand. 8 (1960) 137-142.

囦 URYSOHN, P.S., Sur un espace metrique universel, Bull. Sci. Math. 51 (1927) 1-38.

