# Cantor's back-and-forth method in category theory

#### Wiesław Kubiś

Instytut Matematyki
Akademia Świętokrzyska
Kielce, POLAND
http://www.pu.kielce.pl/~wkubis/

UPEI, Charlottetown, 26 March 2007







## **Outline**

- Cantor's back-and-forth method
  - Fraïssé limits
- Categories
- Fraïssé sequences
  - The existence
  - Cofinality
  - Homogeneity and uniqueness
  - The back-and-forth method
- Example 1: Reversing the arrows
- Example 2: Countable linear orders
- 6 Example 3: Retractive pairs



## Theorem (G. Cantor)

Let Q denote the set of rational numbers. Then

- Every countable linearly ordered set embeds into Q.
- For every finite sets A, B ⊆ Q, every order preserving injection
   f: A → B extends to an order isomorphism F: Q → Q.
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary





## Theorem (G. Cantor)

#### Let $\mathbb{Q}$ denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into Q.
- For every finite sets  $A, B \subseteq \mathbb{Q}$ , every order preserving injection  $f: A \to B$  extends to an order isomorphism  $F: \mathbb{Q} \to \mathbb{Q}$ .
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary

 $\mathbb Q$  is the unique countable dense linear order with no end-points.



UPEI, 26 March 2007

## Theorem (G. Cantor)

Let  $\mathbb{Q}$  denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into  $\mathbb{Q}$ .
- For every finite sets  $A, B \subseteq \mathbb{Q}$ , every order preserving injection  $f: A \to B$  extends to an order isomorphism  $F: \mathbb{Q} \to \mathbb{Q}$ .
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary



## Theorem (G. Cantor)

Let  $\mathbb{Q}$  denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into  $\mathbb{Q}$ .
- For every finite sets  $A, B \subseteq \mathbb{Q}$ , every order preserving injection  $f: A \to B$  extends to an order isomorphism  $F: \mathbb{Q} \to \mathbb{Q}$ .
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary



## Theorem (G. Cantor)

Let  $\mathbb{Q}$  denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into  $\mathbb{Q}$ .
- For every finite sets  $A, B \subseteq \mathbb{Q}$ , every order preserving injection  $f: A \to B$  extends to an order isomorphism  $F: \mathbb{Q} \to \mathbb{Q}$ .
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary



## Theorem (G. Cantor)

Let  $\mathbb{Q}$  denote the set of rational numbers. Then:

- Every countable linearly ordered set embeds into Q.
- For every finite sets  $A, B \subseteq \mathbb{Q}$ , every order preserving injection  $f: A \to B$  extends to an order isomorphism  $F: \mathbb{Q} \to \mathbb{Q}$ .
- Q is a unique (up to order isomorphism) countable linearly ordered set with the above properties.

## Corollary



- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \to Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \rightarrow Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \rightarrow Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \to Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \rightarrow Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- o ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \rightarrow Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \to Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \rightarrow Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \to Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \rightarrow Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \to Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \rightarrow Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \rightarrow Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2: Q_{k_2} \to Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \rightarrow Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2 \colon Q_{k_2} \to Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \rightarrow Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2 \colon Q_{k_2} \to Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





- Let  $\mathbb{Q} = \bigcup_{n \in \omega} Q_n$ , where each  $Q_n$  is finite and  $Q_n \subseteq Q_{n+1}$ .
- Let  $P = \bigcup_{n \in \omega} P_n$  be a linearly ordered set, where  $P_n \subseteq P_{n+1}$  and each  $P_n$  is finite.
- Define inductively embeddings  $f_n \colon P_n \to Q_{k_n}$  so that  $f_{n+1} \upharpoonright P_n = f_n$ .
- Now assume  $P = \mathbb{Q}$  and  $f : A \to B$  is given, where  $A, B \subseteq Q_{k_0}$ .
- Extend f to  $f_1: Q_{k_0} \to Q_{k_1}$ , where  $k_1 > k_0$ .
- Extend  $f_1^{-1}$  to a map  $g_1: Q_{k_1} \rightarrow Q_{k_2}$ , where  $k_2 > k_1$ .
- Extend  $g_1^{-1}$  to  $f_2 \colon Q_{k_2} \to Q_{k_3}$ , where  $k_3 > k_2$ .
- And so on ...
- ...
- $\bigcup_{n \in \omega} f_n$  is an isomorphism extending f.





Let M be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every A, B  $\in$  M there is  $C \in$  M such that both A and B embed
- For every two embeddings  $f: E \rightarrow A$  and  $g: E \rightarrow B$ , where

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in M$ ,



UPEI, 26 March 2007

Let  $\mathbb{M}$  be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every  $A, B \in \mathbb{M}$  there is  $C \in \mathbb{M}$  such that both A and B embed into C. (Joint Embedding)
- For every two embeddings  $f: E \to A$  and  $g: E \to B$ , where  $E, A, B \in \mathbb{M}$ , there exist  $D \in \mathbb{M}$  and embeddings  $f': A \to D$ ,  $g': B \to D$  such that  $f' \circ f = g' \circ g$ . (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in \mathbb{M}$ , there exists and embedding  $\overline{f}: B \to M$  such that  $\overline{f} \circ g = f$ .



Let  $\mathbb{M}$  be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every  $A, B \in \mathbb{M}$  there is  $C \in \mathbb{M}$  such that both A and B embed into C. (Joint Embedding)
- For every two embeddings  $f: E \to A$  and  $g: E \to B$ , where  $E, A, B \in \mathbb{M}$ , there exist  $D \in \mathbb{M}$  and embeddings  $f': A \to D$ ,  $g': B \to D$  such that  $f' \circ f = g' \circ g$ . (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in \mathbb{M}$ , there exists and embedding  $\overline{f}: B \to M$  such that  $\overline{f} \circ g = f$ .



UPEI, 26 March 2007

Let  $\mathbb{M}$  be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every  $A, B \in \mathbb{M}$  there is  $C \in \mathbb{M}$  such that both A and B embed into C. (Joint Embedding)
- For every two embeddings  $f: E \to A$  and  $g: E \to B$ , where  $E, A, B \in \mathbb{M}$ , there exist  $D \in \mathbb{M}$  and embeddings  $f': A \to D$ ,  $g': B \to D$  such that  $f' \circ f = g' \circ g$ . (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in \mathbb{M}$ , there exists and embedding  $\overline{f}: B \to M$  such that  $\overline{f} \circ g = f$ .



Let  $\mathbb{M}$  be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every  $A, B \in \mathbb{M}$  there is  $C \in \mathbb{M}$  such that both A and B embed into C. (Joint Embedding)
- For every two embeddings  $f: E \to A$  and  $g: E \to B$ , where  $E, A, B \in \mathbb{M}$ , there exist  $D \in \mathbb{M}$  and embeddings  $f': A \to D$ ,  $g': B \to D$  such that  $f' \circ f = g' \circ g$ . (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in \mathbb{M}$ , there exists and embedding  $\overline{f}: B \to M$  such that  $\overline{f} \circ g = f$ .



Let  $\mathbb{M}$  be a countable class of finitely generated models of a fixed countable first-order language, satisfying the following conditions:

- For every  $A, B \in \mathbb{M}$  there is  $C \in \mathbb{M}$  such that both A and B embed into C. (Joint Embedding)
- For every two embeddings  $f: E \to A$  and  $g: E \to B$ , where  $E, A, B \in \mathbb{M}$ , there exist  $D \in \mathbb{M}$  and embeddings  $f': A \to D$ ,  $g': B \to D$  such that  $f' \circ f = g' \circ g$ . (Amalgamation)

Then there exists a unique, up to isomorphism, countable model M of the same language such that:

- Every  $A \in \mathbb{M}$  embeds into M.
- For every embeddings  $f: A \to M$  and  $g: A \to B$ , where  $A, B \in \mathbb{M}$ , there exists and embedding  $\overline{f}: B \to M$  such that  $\overline{f} \circ g = f$ .



UPEI, 26 March 2007

## Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space  $\mathbb U$  with the following properties:

- ullet Every separable metric space is isometric to a subset of  $\mathbb{U}$ .
- For every finite sets  $A, B \subseteq \mathbb{U}$ , every isometry  $f: A \to B$  extends to an isometric bijection  $F: \mathbb{U} \to \mathbb{U}$ .





### Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space  $\mathbb{U}$  with the following properties:

- ullet Every separable metric space is isometric to a subset of  $\mathbb{U}$ .
- For every finite sets  $A, B \subseteq \mathbb{U}$ , every isometry  $f: A \to B$  extends to an isometric bijection  $F: \mathbb{U} \to \mathbb{U}$ .





## Theorem (P.S. Urysohn 1927)

There exists a unique complete separable metric space  $\mathbb U$  with the following properties:

- ullet Every separable metric space is isometric to a subset of  $\mathbb{U}$ .
- For every finite sets  $A, B \subseteq \mathbb{U}$ , every isometry  $f: A \to B$  extends to an isometric bijection  $F: \mathbb{U} \to \mathbb{U}$ .





# Categories

## Let $\Re$ be a category.

• We say that  $\mathcal R$  has the amalgamation property if for every arrows  $f\colon Z\to X$  and  $g\colon Z\to Y$  there are arrows  $f'\colon X\to W$  and  $g'\colon Y\to W$  such that  $f'\circ f=g'\circ g$ .



• If moreover for every other pair of arrows  $k: X \to V$  and  $\ell: Y \to V$  with  $k \circ f = \ell \circ g$  there exists a unique arrow  $h: W \to V$  such that

$$f' \circ h = k$$
 and  $g' \circ h = \ell$ 

then  $\langle f', g' \rangle$  is called the pushout of  $\langle f, g \rangle$ .



UPEI, 26 March 2007

# Categories

Let  $\Re$  be a category.

• We say that  $\mathfrak{K}$  has the amalgamation property if for every arrows  $f: Z \to X$  and  $g: Z \to Y$  there are arrows  $f': X \to W$  and  $g': Y \to W$  such that  $f' \circ f = g' \circ g$ .



• If moreover for every other pair of arrows  $k: X \to V$  and  $\ell: Y \to V$  with  $k \circ f = \ell \circ g$  there exists a unique arrow  $h: W \to V$  such that

$$f' \circ h = k$$
 and  $g' \circ h = \ell$ 

then  $\langle f', g' \rangle$  is called the pushout of  $\langle f, g \rangle$ .



# Categories

Let  $\Re$  be a category.

• We say that  $\mathfrak{K}$  has the amalgamation property if for every arrows  $f: Z \to X$  and  $g: Z \to Y$  there are arrows  $f': X \to W$  and  $g': Y \to W$  such that  $f' \circ f = g' \circ g$ .



• If moreover for every other pair of arrows  $k \colon X \to V$  and  $\ell \colon Y \to V$  with  $k \circ f = \ell \circ g$  there exists a unique arrow  $h \colon W \to V$  such that

$$f' \circ h = k$$
 and  $g' \circ h = \ell$ 

then  $\langle f', g' \rangle$  is called the pushout of  $\langle f, g \rangle$ .



## **Pushouts**







## **Pushouts**







## **Pushouts**







UPEI, 26 March 2007

- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m: x_n \to x_m$  for  $n \le m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\Re$ .

A transformation of  $\vec{x}$  into  $\vec{y}$  is a pair  $\langle \varphi, \vec{f} \rangle$  such that

- ①  $\varphi: \omega \to \omega$  is increasing;
- ②  $f = \{f_n\}_{n \in \omega}$ , where  $f_n : x_n \to y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak{K}$  we mean a functor  $\vec{x}$  from  $\omega = \{0, 1, ...\}$  into  $\mathfrak{K}$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\Re$ .

A transformation of  $\vec{x}$  into  $\vec{y}$  is a pair  $\langle \varphi, \vec{f} \rangle$  such that

- ①  $\varphi : \omega \to \omega$  is increasing;
- ②  $\vec{f} = \{f_n\}_{n \in \omega}$ , where  $f_n : x_n \to y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\Re$ .

A transformation of  $\vec{x}$  into  $\vec{y}$  is a pair  $\langle \varphi, \vec{f} \rangle$  such that

- $\bullet$   $\varphi: \omega \to \omega$  is increasing;
- ②  $f = \{f_n\}_{n \in \omega}$ , where  $f_n : X_n \to Y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\mathfrak{K}$ .

A transformation of  $\vec{x}$  into  $\vec{y}$  is a pair  $\langle \varphi, f \rangle$  such that

- $\varphi: \omega \to \omega$  is increasing;
- ②  $\vec{f} = \{f_n\}_{n \in \omega}$ , where  $f_n : x_n \to y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

  - $\overset{\sim}{2} \overset{\sim}{k} < \ell \overset{\sim}{<} m \implies i_k^m = i_\ell^m \circ i_k^\ell.$

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\Re$ .

- $\varphi: \omega \to \omega$  is increasing;
- ②  $\vec{f} = \{f_n\}_{n \in \omega}$ , where  $f_n : x_n \to y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\Re$ .

- $\varphi : \omega \to \omega$  is increasing;
- ②  $f = \{f_n\}_{n \in \omega}$ , where  $f_n : X_n \to Y_{\varphi(n)}$ ;





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

  - $\overset{\sim}{2} \overset{\sim}{k} < \ell < m \implies i_k^m = i_\ell^m \circ i_k^\ell.$

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\mathfrak{K}$ .

- $\varphi : \omega \to \omega$  is increasing;
- $\vec{f} = \{f_n\}_{n \in \omega}, \text{ where } f_n \colon x_n \to y_{\varphi(n)};$





- By a sequence in a category  $\mathfrak K$  we mean a functor  $\vec x$  from  $\omega = \{0, 1, \dots\}$  into  $\mathfrak K$ .
- A sequence  $\vec{x}$  can be described as  $\{x_n\}_{n\in\omega}$  together with arrows  $i_n^m \colon x_n \to x_m$  for  $n \leqslant m$ , such that

We shall write  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$ .

Let  $\vec{x} = \langle x_n, i_n^m, \omega \rangle$  and  $\vec{y} = \langle y_n, j_n^m, \omega \rangle$  be sequences in  $\mathfrak{K}$ .

- $\bullet$   $\varphi : \omega \to \omega$  is increasing;
- $\vec{f} = \{f_n\}_{n \in \omega}, \text{ where } f_n \colon x_n \to y_{\varphi(n)};$





• Let  $\vec{x}$ ,  $\vec{y}$  be sequences in  $\Re$  and let  $\langle \varphi, \vec{f} \rangle$ ,  $\langle \psi, \vec{g} \rangle$  be transformations between them. We say that they are equivalent if all diagrams like



- An arrow of sequences  $\vec{x} \rightarrow \vec{y}$  is an equivalence class of this relation.
- We write  $\vec{f}: \vec{x} \to \vec{y}$ , having in mind the equivalence class of a transformation  $\vec{f} = \{f_n\}_{n \in \omega}$ .





• Let  $\vec{x}$ ,  $\vec{y}$  be sequences in  $\mathfrak R$  and let  $\langle \varphi, \vec{f} \rangle$ ,  $\langle \psi, \vec{g} \rangle$  be transformations between them. We say that they are equivalent if all diagrams like



- An arrow of sequences  $\vec{x} \rightarrow \vec{y}$  is an equivalence class of this relation.
- We write  $\vec{f}: \vec{x} \to \vec{y}$ , having in mind the equivalence class of a transformation  $\vec{f} = \{f_n\}_{n \in \omega}$ .



• Let  $\vec{x}$ ,  $\vec{y}$  be sequences in  $\mathfrak R$  and let  $\langle \varphi, \vec{f} \rangle$ ,  $\langle \psi, \vec{g} \rangle$  be transformations between them. We say that they are equivalent if all diagrams like



- An arrow of sequences  $\vec{x} \rightarrow \vec{y}$  is an equivalence class of this relation.
- We write  $\vec{f}: \vec{x} \to \vec{y}$ , having in mind the equivalence class of a transformation  $\vec{f} = \{f_n\}_{n \in \omega}$ .



• Let  $\vec{x}$ ,  $\vec{y}$  be sequences in  $\Re$  and let  $\langle \varphi, \vec{f} \rangle$ ,  $\langle \psi, \vec{g} \rangle$  be transformations between them. We say that they are equivalent if all diagrams like



- An arrow of sequences  $\vec{x} \rightarrow \vec{y}$  is an equivalence class of this relation.
- We write  $\vec{f}: \vec{x} \to \vec{y}$ , having in mind the equivalence class of a transformation  $\vec{f} = \{f_n\}_{n \in \omega}$ .



A Fraïssé sequence in  $\mathfrak K$  is a sequence  $\vec u = \langle u_n, i_n^m, \omega \rangle$  satisfying the following conditions:

(U) For every  $x \in \Re$  there exists  $n \in \omega$  such that  $\Re(x, u_n) \neq \emptyset$ 



(A) For every  $n \in \omega$  and for every arrow  $f \in \mathfrak{K}(u_n, y)$ , where  $y \in \mathfrak{K}$ , there exist  $m \geqslant n$  and  $g \in \mathfrak{K}(y, u_m)$  such that  $i_n^m = g \circ f$ .





A Fraïssé sequence in  $\mathfrak K$  is a sequence  $\vec u=\langle u_n,i_n^m,\omega\rangle$  satisfying the following conditions:

(U) For every  $x \in \Re$  there exists  $n \in \omega$  such that  $\Re(x, u_n) \neq \emptyset$ .



(A) For every  $n \in \omega$  and for every arrow  $f \in \mathfrak{K}(u_n, y)$ , where  $y \in \mathfrak{K}$ , there exist  $m \geqslant n$  and  $g \in \mathfrak{K}(y, u_m)$  such that  $i_n^m = g \circ f$ .





A Fraïssé sequence in  $\mathfrak K$  is a sequence  $\vec u=\langle u_n,i_n^m,\omega\rangle$  satisfying the following conditions:

(U) For every  $x \in \Re$  there exists  $n \in \omega$  such that  $\Re(x, u_n) \neq \emptyset$ .



(A) For every  $n \in \omega$  and for every arrow  $f \in \mathfrak{K}(u_n, y)$ , where  $y \in \mathfrak{K}$ , there exist  $m \geqslant n$  and  $g \in \mathfrak{K}(y, u_m)$  such that  $i_n^m = g \circ f$ .





A Fraïssé sequence in  $\mathfrak K$  is a sequence  $\vec u=\langle u_n,i_n^m,\omega\rangle$  satisfying the following conditions:

(U) For every  $x \in \mathfrak{K}$  there exists  $n \in \omega$  such that  $\mathfrak{K}(x, u_n) \neq \emptyset$ .



(A) For every  $n \in \omega$  and for every arrow  $f \in \mathfrak{K}(u_n, y)$ , where  $y \in \mathfrak{K}$ , there exist  $m \geqslant n$  and  $g \in \mathfrak{K}(y, u_m)$  such that  $i_n^m = g \circ f$ .





A Fraïssé sequence in  $\mathfrak K$  is a sequence  $\vec u=\langle u_n,i_n^m,\omega\rangle$  satisfying the following conditions:

(U) For every  $x \in \Re$  there exists  $n \in \omega$  such that  $\Re(x, u_n) \neq \emptyset$ .



(A) For every  $n \in \omega$  and for every arrow  $f \in \mathfrak{K}(u_n, y)$ , where  $y \in \mathfrak{K}$ , there exist  $m \ge n$  and  $g \in \mathfrak{K}(y, u_m)$  such that  $i_n^m = g \circ f$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}.$ 

We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \Re$  there exists  $a \in Dom(\mathcal{F})$  such that  $\Re(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \rightarrow y$  in  $\Re$  with  $a \in Dom(\mathcal{F})$  there exist arrows f, h in  $\Re$  such that  $f \in \mathcal{F}$  and  $f = h \circ g$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$ . We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \Re$  there exists  $a \in Dom(\mathcal{F})$  such that  $\Re(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \to y$  in  $\Re$  with  $a \in Dom(\mathcal{F})$  there exist arrows f, h in  $\Re$  such that  $f \in \mathcal{F}$  and  $f = h \circ g$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$ . We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \Re$  there exists  $a \in Dom(\mathcal{F})$  such that  $\Re(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \to y$  in  $\Re$  with  $a \in Dom(\mathcal{F})$  there exist arrows f, h in  $\Re$  such that  $f \in \mathcal{F}$  and  $f = h \circ g$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$ . We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \Re$  there exists  $a \in Dom(\mathcal{F})$  such that  $\Re(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \to y$  in  $\mathfrak R$  with  $a \in \mathsf{Dom}(\mathcal F)$  there exist arrows f, h in  $\mathfrak R$  such that  $f \in \mathcal F$  and  $f = h \circ g$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$ . We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \Re$  there exists  $a \in Dom(\mathcal{F})$  such that  $\Re(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \to y$  in  $\mathfrak R$  with  $a \in \mathsf{Dom}(\mathcal F)$  there exist arrows f, h in  $\mathfrak R$  such that  $f \in \mathcal F$  and  $f = h \circ g$ .





Let  $\mathcal{F}$  be a set of arrows in  $\mathfrak{K}$ . Let  $\mathsf{Dom}(\mathcal{F}) = \{\mathsf{dom}(f) \colon f \in \mathcal{F}\}$ . We say that  $\mathcal{F}$  is dominating in  $\mathfrak{K}$  if the following conditions are satisfied:

(D1) For every  $x \in \mathfrak{K}$  there exists  $a \in \mathsf{Dom}(\mathcal{F})$  such that  $\mathfrak{K}(x, a) \neq \emptyset$ .

(D2) For every arrow  $g: a \to y$  in  $\mathfrak R$  with  $a \in \mathsf{Dom}(\mathcal F)$  there exist arrows f, h in  $\mathfrak R$  such that  $f \in \mathcal F$  and  $f = h \circ g$ .





#### **Theorem**

Let  $\mathfrak{K}$  be a category which has the amalgamation property and the join embedding property. Assume further that  $\mathcal{F} \subseteq \operatorname{Arr}(\mathfrak{K})$  is dominating in  $\mathfrak{K}$  and  $|\mathcal{F}| \leqslant \aleph_0$ .

Then there exists a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  in  $\Re$  such that  $\{u_n \colon n \in \omega\} \subseteq \mathsf{Dom}(\mathcal{F})$ .

#### Remark





#### **Theorem**

Let  $\mathfrak{K}$  be a category which has the amalgamation property and the joint embedding property. Assume further that  $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$  is dominating in  $\mathfrak{K}$  and  $|\mathcal{F}| \leqslant \aleph_0$ .

Then there exists a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  in  $\Re$  such that  $\{u_n \colon n \in \omega\} \subseteq \mathsf{Dom}(\mathcal{F}).$ 

#### Remark



#### **Theorem**

Let  $\mathfrak{K}$  be a category which has the amalgamation property and the joint embedding property. Assume further that  $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$  is dominating in  $\mathfrak{K}$  and  $|\mathcal{F}| \leqslant \aleph_0$ .

Then there exists a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  in  $\Re$  such that  $\{u_n \colon n \in \omega\} \subseteq \mathsf{Dom}(\mathcal{F})$ .

#### Remark





#### **Theorem**

Let  $\mathfrak{K}$  be a category which has the amalgamation property and the joint embedding property. Assume further that  $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$  is dominating in  $\mathfrak{K}$  and  $|\mathcal{F}| \leqslant \aleph_0$ .

Then there exists a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  in  $\Re$  such that  $\{u_n \colon n \in \omega\} \subseteq \mathsf{Dom}(\mathcal{F})$ .

#### Remark





#### **Theorem**

Let  $\mathfrak{K}$  be a category which has the amalgamation property and the joint embedding property. Assume further that  $\mathcal{F} \subseteq \mathsf{Arr}(\mathfrak{K})$  is dominating in  $\mathfrak{K}$  and  $|\mathcal{F}| \leqslant \aleph_0$ .

Then there exists a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  in  $\Re$  such that  $\{u_n \colon n \in \omega\} \subseteq \mathsf{Dom}(\mathcal{F})$ .

#### Remark





# Cofinality

#### **Theorem**

Assume  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  is a Fraïssé sequence in a category with amalgamation  $\Re$ . Then for every sequence  $\vec{x}$  in  $\Re$  there exists an arrow  $\vec{t} : \vec{x} \to \vec{u}$ .



## Cofinality

#### **Theorem**

Assume  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  is a Fraïssé sequence in a category with amalgamation  $\mathfrak{R}$ . Then for every sequence  $\vec{x}$  in  $\mathfrak{R}$  there exists an arrow  $\vec{t} : \vec{x} \to \vec{u}$ .













































# Homogeneity and Uniqueness

#### **Theorem**

Assume that  $\vec{u} = \langle u_m, i_m^n, \omega \rangle$ ,  $\vec{v} = \langle v_m, j_m^n, \omega \rangle$  are Fraïssé sequences in a fixed category  $\Re$ .

- (a) Let  $f: u_k \to v_\ell$ , where  $k, \ell < \omega$ . Then there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i_k = j_\ell \circ f$ . In particular  $\vec{u} \approx \vec{v}$ .
- (b) Assume  $\Re$  has the amalgamation property. Then for every  $a, b \in \Re$  and for every arrows  $f: a \to b$ ,  $i: a \to \vec{u}$ ,  $j: b \to \vec{v}$  there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i = j \circ f$ .

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\downarrow^{i_{k}} \qquad \uparrow^{i_{\ell}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{i_{\ell}} \qquad \downarrow^{i_{\ell}} \\
\downarrow^{i_{\ell}} \qquad \downarrow^{i_$$



# Homogeneity and Uniqueness

#### **Theorem**

Assume that  $\vec{u} = \langle u_m, i_m^n, \omega \rangle$ ,  $\vec{v} = \langle v_m, j_m^n, \omega \rangle$  are Fraïssé sequences in a fixed category  $\Re$ .

- (a) Let  $f: u_k \to v_\ell$ , where  $k, \ell < \omega$ . Then there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i_k = j_\ell \circ f$ . In particular  $\vec{u} \approx \vec{v}$ .
- (b) Assume  $\Re$  has the amalgamation property. Then for every  $a, b \in \Re$  and for every arrows  $f: a \to b$ ,  $i: a \to \vec{u}$ ,  $j: b \to \vec{v}$  there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i = j \circ f$ .

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\downarrow^{i_{k}} \qquad \uparrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j} \\
\downarrow^{i_{k}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}}$$

$$\downarrow^{i_{k}} \qquad \downarrow^{i_{k}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell$$





# Homogeneity and Uniqueness

#### **Theorem**

Assume that  $\vec{u} = \langle u_m, i_m^n, \omega \rangle$ ,  $\vec{v} = \langle v_m, j_m^n, \omega \rangle$  are Fraïssé sequences in a fixed category  $\Re$ .

- (a) Let  $f: u_k \to v_\ell$ , where  $k, \ell < \omega$ . Then there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i_k = j_\ell \circ f$ . In particular  $\vec{u} \approx \vec{v}$ .
- (b) Assume  $\Re$  has the amalgamation property. Then for every  $a, b \in \Re$  and for every arrows  $f: a \to b$ ,  $i: a \to \vec{u}$ ,  $j: b \to \vec{v}$  there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i = j \circ f$ .

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v} \\
\downarrow^{i_{k}} \qquad \uparrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \\
\downarrow^{i_{k}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_{\ell}} \\
\downarrow^{i_{k}} \qquad \downarrow^{i_{k}} \qquad \downarrow^{j_{\ell}} \qquad \downarrow^{j_$$





# Homogeneity and Uniqueness

#### **Theorem**

Assume that  $\vec{u} = \langle u_m, i_m^n, \omega \rangle$ ,  $\vec{v} = \langle v_m, j_m^n, \omega \rangle$  are Fraïssé sequences in a fixed category  $\Re$ .

- (a) Let  $f: u_k \to v_\ell$ , where  $k, \ell < \omega$ . Then there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i_k = j_\ell \circ f$ . In particular  $\vec{u} \approx \vec{v}$ .
- (b) Assume  $\Re$  has the amalgamation property. Then for every  $a,b \in \Re$  and for every arrows  $f: a \to b$ ,  $i: a \to \vec{u}$ ,  $j: b \to \vec{v}$  there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i = j \circ f$ .





# Homogeneity and Uniqueness

#### **Theorem**

Assume that  $\vec{u} = \langle u_m, i_m^n, \omega \rangle$ ,  $\vec{v} = \langle v_m, j_m^n, \omega \rangle$  are Fraïssé sequences in a fixed category  $\Re$ .

- (a) Let  $f: u_k \to v_\ell$ , where  $k, \ell < \omega$ . Then there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i_k = j_\ell \circ f$ . In particular  $\vec{u} \approx \vec{v}$ .
- (b) Assume  $\Re$  has the amalgamation property. Then for every  $a,b \in \Re$  and for every arrows  $f: a \to b$ ,  $i: a \to \vec{u}$ ,  $j: b \to \vec{v}$  there exists an isomorphism  $F: \vec{u} \to \vec{v}$  such that  $F \circ i = j \circ f$ .









UPEI, 26 March 2007



























## Let $\Re$ be the category described as follows:

- Objects of 
   \mathbb{R} are finite linearly ordered sets.
- $f \in \mathfrak{K}(P,Q)$  iff  $f: Q \to P$  is an order preserving surjection.

### Claim

R has the amalgamation property

#### **Theorem**

R has a Fraïssé sequence

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$$

whose limit is the Cantor set with the standard linear ordering.



## Let $\Re$ be the category described as follows:

- ullet Objects of  $\mathfrak K$  are finite linearly ordered sets.
- $f \in \mathfrak{K}(P,Q)$  iff  $f : Q \to P$  is an order preserving surjection.

### Claim

R has the amalgamation property

#### Theorem

R has a Fraïssé sequence

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$$

whose limit is the Cantor set with the standard linear ordering.



Let  $\Re$  be the category described as follows:

- Objects of  $\Re$  are finite linearly ordered sets.
- $f \in \mathfrak{K}(P,Q)$  iff  $f : Q \to P$  is an order preserving surjection.

### Claim

R has the amalgamation property

#### Theorem

R has a Fraïssé sequence

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$$

whose limit is the Cantor set with the standard linear ordering.



UPEI, 26 March 2007

Let  $\Re$  be the category described as follows:

- Objects of R are finite linearly ordered sets.
- $f \in \mathfrak{K}(P,Q)$  iff  $f : Q \to P$  is an order preserving surjection.

## Claim

R has the amalgamation property.

#### Theorem

R has a Fraïssé sequence

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$$

whose limit is the Cantor set with the standard linear ordering.



Let  $\Re$  be the category described as follows:

- Objects of 
   \R are finite linearly ordered sets.
- $f \in \mathfrak{K}(P,Q)$  iff  $f : Q \to P$  is an order preserving surjection.

## Claim

R has the amalgamation property.

#### **Theorem**

R has a Fraïssé sequence

$$P_0 \leftarrow P_1 \leftarrow P_2 \leftarrow \dots$$

whose limit is the Cantor set with the standard linear ordering.



Let  $\mathfrak{K}$  be the category whose objects are countable linear orders  $\langle P, \leqslant \rangle$  and arrows are left-invertible order preserving maps.

That is:  $f: \langle P, \leqslant \rangle \to \langle Q, \preceq \rangle$  is an arrow in  $\mathfrak R$  if

- f is order preserving, i.e.  $x \leqslant y \implies f(x) \leq f(y)$ ;
- there is an order preserving map  $g: \langle Q, \preceq \rangle \to \langle P, \leqslant \rangle$  such that  $g \circ f = \mathrm{id}_P$ .

Necessarily f is one-to-one.

#### Lemma



Let  $\mathfrak{K}$  be the category whose objects are countable linear orders  $\langle P, \leqslant \rangle$  and arrows are left-invertible order preserving maps.

That is:  $f: \langle P, \leqslant \rangle \rightarrow \langle Q, \preceq \rangle$  is an arrow in  $\mathfrak R$  if

- f is order preserving, i.e.  $x \leqslant y \implies f(x) \leq f(y)$ ;
- there is an order preserving map  $g: \langle Q, \preceq \rangle \rightarrow \langle P, \leqslant \rangle$  such that  $g \circ f = \mathrm{id}_P$ .

Necessarily f is one-to-one.

#### Lemma



Let  $\mathfrak R$  be the category whose objects are countable linear orders  $\langle P,\leqslant \rangle$  and arrows are left-invertible order preserving maps.

That is:  $f: \langle P, \leqslant \rangle \rightarrow \langle Q, \preceq \rangle$  is an arrow in  $\mathfrak{K}$  if

- f is order preserving, i.e.  $x \leqslant y \implies f(x) \leq f(y)$ ;
- there is an order preserving map  $g: \langle Q, \preceq \rangle \to \langle P, \leqslant \rangle$  such that  $g \circ f = \mathrm{id}_P$ .

Necessarily f is one-to-one.

#### Lemma



Let  $\mathfrak{K}$  be the category whose objects are countable linear orders  $\langle P, \leqslant \rangle$  and arrows are left-invertible order preserving maps.

That is:  $f: \langle P, \leqslant \rangle \rightarrow \langle Q, \preceq \rangle$  is an arrow in  $\mathfrak{K}$  if

- f is order preserving, i.e.  $x \leqslant y \implies f(x) \leq f(y)$ ;
- there is an order preserving map  $g: \langle Q, \preceq \rangle \to \langle P, \leqslant \rangle$  such that  $g \circ f = \mathrm{id}_P$ .

Necessarily *f* is one-to-one.

#### Lemma



Let  $\mathfrak{K}$  be the category whose objects are countable linear orders  $\langle P, \leqslant \rangle$  and arrows are left-invertible order preserving maps.

That is:  $f: \langle P, \leqslant \rangle \rightarrow \langle Q, \preceq \rangle$  is an arrow in  $\mathfrak{K}$  if

- f is order preserving, i.e.  $x \leqslant y \implies f(x) \leq f(y)$ ;
- there is an order preserving map  $g: \langle Q, \preceq \rangle \to \langle P, \leqslant \rangle$  such that  $g \circ f = \mathrm{id}_P$ .

Necessarily *f* is one-to-one.

#### Lemma



#### Lemma

Let  $\pi: \mathbb{Q} \to \mathbb{Q} \cdot \mathbb{Q}$  be defined by  $\pi(q) = \langle q, 0 \rangle$ . Then  $\{\pi\}$  is a dominating family of arrows in  $\mathfrak{K}$ .

#### **Theorem**

 $\mathfrak R$  has a Fraïssé sequence  $\vec u=\langle u_n,i_n^m,\omega
angle$  such that each  $u_n$  is isomorphic to  $\mathfrak Q$  and each  $i_n^m$  is isomorphic to  $\pi$ .





#### Lemma

Let  $\pi: \mathbb{Q} \to \mathbb{Q} \cdot \mathbb{Q}$  be defined by  $\pi(q) = \langle q, 0 \rangle$ . Then  $\{\pi\}$  is a dominating family of arrows in  $\mathfrak{K}$ .

#### **Theorem**

 $\mathfrak{K}$  has a Fraïssé sequence  $\vec{u} = \langle u_n, i_n^m, \omega \rangle$  such that each  $u_n$  is isomorphic to  $\mathbb{Q}$  and each  $i_n^m$  is isomorphic to  $\pi$ .



UPEI, 26 March 2007

# Example 3: Retractive pairs

## Fix a category $\mathfrak{K}$ . Denote by $\mathfrak{T}$ the following category:

- The objects of ‡R are the same as the objects of R.
- $f \in \mathfrak{T}(a,b)$  iff  $f = \langle r,e \rangle$ , where  $r \colon b \to a$  and  $e \colon a \to b$  are arrows of  $\mathfrak{T}$  such that  $r \circ e = \mathrm{id}_a$ . We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in  $\ddagger \Re$ , their composition is

$$gf = \langle r(f) \circ r(g), e(g) \circ e(f) \rangle.$$



# Example 3: Retractive pairs

Fix a category  $\mathfrak{K}$ . Denote by  $\mathfrak{T}$  the following category:

- The objects of  $\ddagger \Re$  are the same as the objects of  $\Re$ .
- $f \in \sharp \mathfrak{K}(a,b)$  iff  $f = \langle r,e \rangle$ , where  $r \colon b \to a$  and  $e \colon a \to b$  are arrows of  $\mathfrak{K}$  such that  $r \circ e = \mathrm{id}_a$ . We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in  $\ddagger \Re$ , their composition is

$$gf = \langle r(f) \circ r(g), e(g) \circ e(f) \rangle$$



# Example 3: Retractive pairs

Fix a category  $\mathfrak{K}$ . Denote by  $\mathfrak{T}$  the following category:

- The objects of  $\sharp \Re$  are the same as the objects of  $\Re$ .
- $f \in \sharp \mathfrak{K}(a,b)$  iff  $f = \langle r,e \rangle$ , where  $r \colon b \to a$  and  $e \colon a \to b$  are arrows of  $\mathfrak{K}$  such that  $r \circ e = \mathrm{id}_a$ . We shall write r(f) = r, e(f) = e.
- Given compatible arrows f, g in  $\ddagger \Re$ , their composition is

$$gf = \langle r(f) \circ r(g), e(g) \circ e(f) \rangle.$$



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\mathop{\sharp} \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\mathop{\sharp} \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



If  $\Re$  has pullbacks then  $\ddagger \Re$  has the amalgamation property.



# Selected bibliography

- FRAÏSSÉ, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182.
- JÓNSSON, B., *Homogeneous universal relational systems*, Math. Scand. 8 (1960) 137–142.
- URYSOHN, P.S., Sur un espace metrique universel, Bull. Sci. Math. 51 (1927) 1–38.



