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Motivations

Theorem (Sierpiński)
Let S be a set of cardinality ℵ1. Then there exists a sequence of
functions {fn : S → S}n∈ω, such that

S × S =
⋃
n∈ω

(fn ∪ f−1
n ).

Proof.
We assume that S = ω1.
For each β ∈ S fix a surjection gβ : ω → β + 1.
Define fn(β) = gβ(n).
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Let S be a set of cardinality ℵ1. Then there exists a sequence of
functions {fn : S → S}n∈ω, such that

S × S =
⋃
n∈ω

(fn ∪ f−1
n ).

Proof.
We assume that S = ω1.
For each β ∈ S fix a surjection gβ : ω → β + 1.
Define fn(β) = gβ(n).
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Remark (Sierpiński)
If S has the above property then |S| 6 ℵ1.

Proof.
Fix A ∈ [S]ℵ1 .
For each x ∈ A let Fx = {fn(x) : n ∈ ω}.
The set

⋃
x∈A Fx has cardinality 6 ℵ1.

Suppose p ∈ S is such that p /∈ Fx for x ∈ A.
For each a ∈ A there is n(a) ∈ ω such that a = fn(a)(p).
The map a 7→ n(a) must be one-to-one. A contradiction.
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Covering ℵ1 × ℵ1 by ℵ0 functions Bȩdlewo, 11 September 2007 3 / 14
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Remark (Sierpiński)
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Question
Is it possible that the square of some uncountable subset of R is
covered by countably many continuous real functions and their
inverses?

In other words:

Question
Does there exist a family {fn : R → R}n∈ω consisting of continuous
functions such that

S × S ⊆
⋃
n∈ω

(fn ∪ f−1
n )

for some S ∈ [R]ℵ1?
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Question
How about covering by (continuous) non-decreasing functions?

Suppose S × S ⊆
⋃

n∈ω(fn ∪ f−1
n ), where each fn : S → S is a

non-decreasing function.
Then both fn and f−1

n are chains in S × S.
Thus, if |S| > ℵ0 then S is a Countryman type!
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Proposition
There exists a compact line K and a family {fn : K → K}n∈ω consisting
of continuous non-decreasing functions such that

S × S ⊆
⋃
n∈ω

(fn ∪ f−1
n )

for some uncountable set S ⊆ K .
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Another motivation

Proposition (Shelah [5])

There exists an Fσ set A ⊆ R2 with the following properties.
S × S ⊆ A for some uncountable set S.
X × Y 6⊆ A whenever X ,Y ∈ [R]ℵ2 .
X × Y 6⊆ A whenever X ,Y are perfect subsets of R.

Question
Is it possible that A =

⋃
n∈ω(fn ∪ f−1

n ), where each fn is a continuous
real function?
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Proposition
Assume {fn : S → S}n∈ω and A,B are uncountable sets such that

A × B ⊆
⋃
n∈ω

(fn ∪ f−1
n ).

Then |A| = |B| = ℵ1.

Proposition
Let {fn : R → R}n∈ω be a family of continuous functions.
Then there are no perfect sets P,Q such that

P × Q ⊆
⋃
n∈ω

(fn ∪ f−1
n ).
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Main result
Theorem
There exists a ccc forcing which introduces a family of 1-Lipschitz
functions {fn : 2ω → 2ω}n∈ω such that

S × S ⊆
⋃
n∈ω

(fn ∪ f−1
n )

for some uncountable set S ⊆ 2ω.

The forcing:
p ∈ P iff p = 〈np, sp, vp, f p, γp, %p〉, where
(1) np ∈ ω, sp ∈ [ω]<ω and vp ∈ [ω1]

<ω;
(2) f p = {f p

i }i∈sp ⊆ Lip1(2np
,2np

) and %p : [vp]2 → sp;

(3) γp : vp → 2np
is one-to-one;

(4) γp(α) = f p
%p(α,β)(γ

p(β)) whenever α < β and α, β ∈ vp.
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W.Kubiś (http://www.pu.kielce.pl/∼wkubis/) Covering ℵ1 × ℵ1 by ℵ0 functions Bȩdlewo, 11 September 2007 9 / 14
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Corollaries

Theorem (ZFC)
There exist a family of 1-Lipschitz functions {fn : 2ω → 2ω}n∈ω and an
uncountable set S ⊆ 2ω such that

S × S ⊆
⋃
n∈ω

(fn ∪ f−1
n ).

Proof.
By Keisler’s absoluteness theorem [2] for the language Lω1,ω(Q).

Theorem (ZFC)
There exist an ℵ1-dense set X ⊆ R and a family of continuous
functions {fn : R → R}n∈ω such that X × X ⊆

⋃
n∈ω(fn ∪ f−1

n ).
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Corollaries

Theorem (ZFC)
There exist a family of 1-Lipschitz functions {fn : 2ω → 2ω}n∈ω and an
uncountable set S ⊆ 2ω such that

S × S ⊆
⋃
n∈ω

(fn ∪ f−1
n ).

Proof.
By Keisler’s absoluteness theorem [2] for the language Lω1,ω(Q).

Theorem (ZFC)
There exist an ℵ1-dense set X ⊆ R and a family of continuous
functions {fn : R → R}n∈ω such that X × X ⊆

⋃
n∈ω(fn ∪ f−1

n ).
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Corollary

It is relatively consistent with ZFC that for every set X ∈ [R]ℵ1 there
exists a sequence of continuous functions fn : R → R with
X × X ⊆

⋃
n∈ω(fn ∪ f−1

n ).

Proof.
This holds in Baumgartner’s model [1] in which every two ℵ1-dense
subsets of R are order isomorphic.
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Theorem
There exists a family of continuous functions {un : 2ω → 2ω}n∈ω with
the following properties:

1 For every family {gn : 2ω → 2ω}n∈ω consisting of continuous
functions, there exist quotient maps k : 2ω → 2ω, ` : 2ω → 2ω and
an injection ψ : ω → ω such that the diagram

2ω
uψ(n) //

k
��

2ω

`
��

2ω
gn // 2ω

commutes for every n ∈ ω.
2 Some sort of homogeneity.

The above properties describe the family {un}n∈ω uniquely.
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Theorem
Let {un}n∈ω be the universal homogeneous family of functions from the
previous theorem. Then

X 2 ⊆
⋃
n∈ω

(un ∪ u−1
n )

for some uncountable set X ⊆ 2ω.
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