Universal Banach spaces with a projectional resolution of the identity: category-theoretic approach

Wiesław Kubiś

Czech Academy of Sciences, Prague and Jan Kochanowski University in Kielce

http://www.math.cas.cz/~kubis/

II Iberian Mathematical Meeting Badajoz, October 3 – 5, 2008

E N 4 E N

Theorem (Pełczyński, 1969)

There exists a complementably universal Banach space for the class of Banach spaces with a Schauder basis.

A Banach space E is complementably universal for a class of spaces ${\mathcal K}$ if

• $E \in \mathcal{K}$.

• Every $X \in \mathcal{K}$ is isomorphic to a complemented subspace of *E*.

A (10) + A (10) +

Theorem (Pełczyński, 1969)

There exists a complementably universal Banach space for the class of Banach spaces with a Schauder basis.

A Banach space E is complementably universal for a class of spaces ${\mathcal K}$ if

• $E \in \mathcal{K}$.

• Every $X \in \mathcal{K}$ is isomorphic to a complemented subspace of *E*.

A (10) A (10) A (10)

Theorem (Pełczyński, 1969)

There exists a complementably universal Banach space for the class of Banach spaces with a Schauder basis.

A Banach space ${\it E}$ is complementably universal for a class of spaces ${\it {\cal K}}$ if

• $E \in \mathcal{K}$.

• Every $X \in \mathcal{K}$ is isomorphic to a complemented subspace of E.

< 回 > < 三 > < 三 >

Theorem (Pełczyński, 1969)

There exists a complementably universal Banach space for the class of Banach spaces with a Schauder basis.

A Banach space *E* is complementably universal for a class of spaces \mathcal{K} if

• $E \in \mathcal{K}$.

• Every $X \in \mathcal{K}$ is isomorphic to a complemented subspace of E.

< 回 > < 三 > < 三 >

Theorem (Pełczyński, 1969)

There exists a complementably universal Banach space for the class of Banach spaces with a Schauder basis.

A Banach space *E* is complementably universal for a class of spaces \mathcal{K} if

• $E \in \mathcal{K}$.

• Every $X \in \mathcal{K}$ is isomorphic to a complemented subspace of E.

∃ ► < ∃ ►</p>

A Schauder basis in X is a sequence $\{x_n\}_{n \in \omega} \subseteq X$ such that for every $x \in X$ there are uniquely determined scalars $\{\lambda_n\}_{n \in \omega}$ such that the series

converges to *x* in the norm.

Define $P_n \colon X \to X$ by

$$P_n\left(\sum_{i=0}^{\infty}\lambda_i x_i\right) = \sum_{i< n}\lambda_i x_i.$$

Then P_n is a bounded projection and $\lim_{n\to\infty} P_n x = x$ for $x \in X$.

A Schauder basis in X is a sequence $\{x_n\}_{n \in \omega} \subseteq X$ such that for every $x \in X$ there are uniquely determined scalars $\{\lambda_n\}_{n \in \omega}$ such that the series

 $\sum_{n=0} \lambda_n x_n$

Define $P_n: X \to X$ by

$$P_n\left(\sum_{i=0}^{\infty}\lambda_i x_i\right) = \sum_{i< n}\lambda_i x_i.$$

Then P_n is a bounded projection and $\lim_{n\to\infty} P_n x = x$ for $x \in X$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A Schauder basis in X is a sequence $\{x_n\}_{n \in \omega} \subseteq X$ such that for every $x \in X$ there are uniquely determined scalars $\{\lambda_n\}_{n \in \omega}$ such that the series

converges to x in the norm.

Define $P_n: X \to X$ by

$$\boldsymbol{P}_n\left(\sum_{i=0}^\infty \lambda_i \boldsymbol{x}_i\right) = \sum_{i< n} \lambda_i \boldsymbol{x}_i.$$

Then P_n is a bounded projection and $\lim_{n\to\infty} P_n x = x$ for $x \in X$.

Proposition

Given a Banach space X, the following properties are equivalent.

- X has a Schauder basis.
- There exists a sequence {P_n}_{n∈ω} of bounded projections of X onto finite-dimensional subspaces, converging pointwise to the identity and such that

 $P_n P_m = P_{\min\{n,m\}}$

holds for every $n, m \in \omega$.

伺 ト イ ヨ ト イ ヨ

Proposition

Given a Banach space X, the following properties are equivalent.

- X has a Schauder basis.
- There exists a sequence {P_n}_{n∈ω} of bounded projections of X onto finite-dimensional subspaces, converging pointwise to the identity and such that

$$P_n P_m = P_{\min\{n,m\}}$$

holds for every $n, m \in \omega$.

∃ ► < ∃</p>

Markushevich bases

Let *X* be a Banach space of density \aleph_1 . A Markushevich basis in *X* is a bi-orthogonal system $\langle x_{\alpha}, y_{\alpha} \rangle$, $\alpha < \omega_1$, such that

- $\{x_{\alpha} : \alpha < \omega_1\}$ is linearly dense in *X*,
- (2) { y_{α} : $\alpha < \omega_1$ } is total for *X*.

A D A D A D A

Markushevich bases

Let *X* be a Banach space of density \aleph_1 . A Markushevich basis in *X* is a bi-orthogonal system $\langle x_{\alpha}, y_{\alpha} \rangle$, $\alpha < \omega_1$, such that

- $\ \ \, \{x_{\alpha} \colon \alpha < \omega_1\} \text{ is linearly dense in } X,$
- (2) { y_{α} : $\alpha < \omega_1$ } is total for *X*.

Markushevich bases

Let *X* be a Banach space of density \aleph_1 . A Markushevich basis in *X* is a bi-orthogonal system $\langle x_{\alpha}, y_{\alpha} \rangle$, $\alpha < \omega_1$, such that

- $\{x_{\alpha}: \alpha < \omega_1\}$ is linearly dense in *X*,
- $\{ y_{\alpha} : \alpha < \omega_1 \} \text{ is total for } X.$

Let *X* be a Banach space of density \aleph_1 . A Markushevich basis in *X* is a bi-orthogonal system $\langle x_{\alpha}, y_{\alpha} \rangle$, $\alpha < \omega_1$, such that

- $\{x_{\alpha}: \alpha < \omega_1\}$ is linearly dense in *X*,
- 2 { y_{α} : $\alpha < \omega_1$ } is total for *X*.

A THE A THE

A projectional resolution of the identity (PRI for short) in a Banach space *X* is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of *X* such that

- δ is a limit ordinal (a well-ordered set with no maximum),
- $P_{\alpha}P_{\beta} = P_{\min\{\alpha,\beta\}},$
- $\lim_{\alpha < \delta} P_{\alpha} x = x$ for every $x \in X$,
- $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{lpha}\}_{lpha<\delta}$ is

• regular, if

```
dens(P_{\alpha}X) < dens(X)
```

```
for every \alpha < \delta;
```

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

< ロ > < 同 > < 回 > < 回 >

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

- δ is a limit ordinal (a well-ordered set with no maximum),
- $P_{\alpha}P_{\beta} = P_{\min\{\alpha,\beta\}},$
- $\lim_{\alpha < \delta} P_{\alpha} x = x$ for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{\alpha}\}_{\alpha<\delta}$ is

• regular, if

 $\operatorname{dens}(P_{\alpha}X) < \operatorname{dens}(X)$

for every $\alpha < \delta$;

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

< ロ > < 同 > < 回 > < 回 >

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

- δ is a limit ordinal (a well-ordered set with no maximum),
- $P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$
- $\lim_{\alpha < \delta} P_{\alpha} x = x$ for every $x \in X$,
- $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

```
We say that the PRI \{P_{\alpha}\}_{\alpha < \delta} is
```

• regular, if

 $dens(P_{\alpha}X) < dens(X)$

for every $\alpha < \delta$;

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

< ロ > < 同 > < 回 > < 回 >

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

δ is a limit ordinal (a well-ordered set with no maximum),

•
$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$$

• $\lim_{\alpha < \delta} P_{\alpha} x = x$ for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{\alpha}\}_{\alpha < \delta}$ is

• regular, if

 $dens(P_{\alpha}X) < dens(X)$

for every $\alpha < \delta$;

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

< □ > < 同 > < 回 > < 回 >

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

δ is a limit ordinal (a well-ordered set with no maximum),

•
$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$$

•
$$\lim_{\alpha < \delta} P_{\alpha} x = x$$
 for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

```
We say that the PRI \{P_lpha\}_{lpha<\delta} is
```

regular, if

```
dens(P_{\alpha}X) < dens(X)
```

```
for every \alpha < \delta;
```

```
• normalized, if \|P_{\alpha}\| = 1 for each \alpha < \delta.
```

A D N A B N A B N A B N

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

δ is a limit ordinal (a well-ordered set with no maximum),

•
$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$$

•
$$\lim_{\alpha < \delta} P_{\alpha} x = x$$
 for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{\alpha}\}_{\alpha<\delta}$ is

• regular, if

 $dens(P_{\alpha}X) < dens(X)$

for every $\alpha < \delta$

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

A D N A B N A B N A B N

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

• δ is a limit ordinal (a well-ordered set with no maximum),

•
$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$$

•
$$\lim_{\alpha < \delta} P_{\alpha} x = x$$
 for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{\alpha}\}_{\alpha < \delta}$ is

regular, if

 $\operatorname{dens}(P_{\alpha}X) < \operatorname{dens}(X)$

for every $\alpha < \delta$;

• normalized, if $||P_{\alpha}|| = 1$ for each $\alpha < \delta$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A projectional resolution of the identity (PRI for short) in a Banach space X is a sequence $\{P_{\alpha}\}_{\alpha<\delta}$ of bounded projections of X such that

• δ is a limit ordinal (a well-ordered set with no maximum),

•
$$P_{\alpha}P_{\beta}=P_{\min\{\alpha,\beta\}},$$

•
$$\lim_{\alpha < \delta} P_{\alpha} x = x$$
 for every $x \in X$,

• $\lim_{\alpha < \varrho} P_{\alpha} x = P_{\varrho} x$ for every limit ordinal $\varrho < \delta$.

We say that the PRI $\{P_{\alpha}\}_{\alpha < \delta}$ is

regular, if

 $\operatorname{dens}(P_{\alpha}X) < \operatorname{dens}(X)$

for every $\alpha < \delta$;

• normalized, if $\|P_{\alpha}\| = 1$ for each $\alpha < \delta$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Given a Banach space X of density \aleph_1 , the following conditions are equivalent:

- X has a regular PRI.
- ② X has a countably norming Markushevich basis $\langle x_{\alpha}, y_{\alpha} \rangle_{\alpha < \omega_1}$, i.e. the space

 $\{y \in X^* \colon |\{\alpha \colon y(x_\alpha) \neq 0\}| \leqslant \aleph_0\}$

is norming for X.

Theorem

Given a Banach space X of density \aleph_1 , the following conditions are equivalent:

- X has a regular PRI.

Theorem

Given a Banach space X of density \aleph_1 , the following conditions are equivalent:

- X has a regular PRI.
- 2 X has a countably norming Markushevich basis $\langle x_{\alpha}, y_{\alpha} \rangle_{\alpha < \omega_1}$, i.e. the space

$$\{\mathbf{y} \in \mathbf{X}^* \colon |\{\alpha \colon \mathbf{y}(\mathbf{x}_{\alpha}) \neq \mathbf{0}\}| \leqslant \aleph_{\mathbf{0}}\}$$

is norming for X.

3 > 4 3

A .

- Chain of closed subspaces is an inductive sequence in the category of Banach spaces.
- Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n \in \omega}$. TFAE:

- There exists a normalized PRI $\{P_n\}_{n \in \omega}$ such that $X_n = P_n X$ for $n \in \omega$.
- Solution For each $n \in \omega$, X_n is 1-complemented in X_{n+1} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Chain of closed subspaces is an inductive sequence in the category of Banach spaces.

• Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n\in\omega}$. TFAE:

- There exists a normalized PRI $\{P_n\}_{n \in \omega}$ such that $X_n = P_n X$ for $n \in \omega$.
- Solution For each $n \in \omega$, X_n is 1-complemented in X_{n+1} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Chain of closed subspaces is an inductive sequence in the category of Banach spaces.
- Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n\in\omega}$. TFAE:

- There exists a normalized PRI $\{P_n\}_{n \in \omega}$ such that $X_n = P_n X$ for $n \in \omega$.
- Solution For each $n \in \omega$, X_n is 1-complemented in X_{n+1} .

- Chain of closed subspaces is an inductive sequence in the category of Banach spaces.
- Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n \in \omega}$. TFAE:

- There exists a normalized PRI $\{P_n\}_{n \in \omega}$ such that $X_n = P_n X$ for $n \in \omega$.
- Solution For each $n \in \omega$, X_n is 1-complemented in X_{n+1} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Chain of closed subspaces is an inductive sequence in the category of Banach spaces.
- Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n \in \omega}$. TFAE:

There exists a normalized PRI {P_n}_{n∈ω} such that X_n = P_nX for n ∈ ω.

3 For each $n \in \omega$, X_n is 1-complemented in X_{n+1} .

・ロン ・四 ・ ・ ヨン ・ ヨン

- Chain of closed subspaces is an inductive sequence in the category of Banach spaces.
- Projectional resolution is an inverse sequence of right-invertible arrows, "compatible" with the given inductive sequence.

Claim

Let X be a Banach space, represented as the closure of the union of a chain $\{X_n\}_{n \in \omega}$. TFAE:

There exists a normalized PRI {P_n}_{n∈ω} such that X_n = P_nX for n ∈ ω.

イロト 不得 トイヨト イヨト 三日

• The objects of ‡R are the objects of R.

• An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .

• The objects of ‡R are the objects of R.

• An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .

- The objects of ‡R are the objects of R.
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .

- The objects of \$\overline{\mathcal{K}}\$ are the objects of \$\varkal{K}\$.
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .
Given a category \Re , define a new category $\ddagger \Re$ as follows.

- The objects of ‡R are the objects of R.
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \rightarrow \Re$ and $r: \ddagger \Re \rightarrow \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .

イロト 不得 トイヨト イヨト 三日

Given a category \Re , define a new category $\ddagger \Re$ as follows.

- The objects of ‡R are the objects of R.
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = id_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Let \mathfrak{B} be the category of Banach spaces with linear transformations of norm ≤ 1 . A semicontinuous sequence \vec{x} in $\ddagger \mathfrak{B}$ corresponds to a normalized PRI in X, where X is the colimit of $e[\vec{x}]$ in the category \mathfrak{B} .

 $\vec{u} \in \langle \mathfrak{K} \rangle$ will be a called a Fraïssé sequence if it satisfies the following two conditions.

If For every $x \in \Re$ there is an arrow from x into some element of \vec{u} .

② Given an arrow $f: u_{\xi} \to y$ in \Re , there are $\eta \ge \xi$ and an arrow $g: y \to u_{\eta}$ in \Re such that $g \circ f = u_{\xi}^{\eta}$.

 $\vec{u} \in \langle \mathfrak{K} \rangle$ will be a called a Fraïssé sequence if it satisfies the following two conditions.

For every *x* ∈ ℜ there is an arrow from *x* into some element of *u*.
 Given an arrow *f*: *u*_ξ → *y* in ℜ, there are η ≥ ξ and an arrow

 $g \colon y \to u_\eta$ in \mathfrak{K} such that $g \circ f = u_\xi^\eta$.

 $\vec{u} \in \langle \mathfrak{K} \rangle$ will be a called a Fraïssé sequence if it satisfies the following two conditions.

For every *x* ∈ 𝔅 there is an arrow from *x* into some element of *u*.
Given an arrow *f*: *u*_ξ → *y* in 𝔅, there are η ≥ ξ and an arrow *g*: *y* → *u*_η in 𝔅 such that *g* ∘ *f* = *u*^η_ξ.

 $\vec{u} \in \langle \mathfrak{K} \rangle$ will be a called a Fraïssé sequence if it satisfies the following two conditions.

So For every $x \in \mathfrak{K}$ there is an arrow from x into some element of \vec{u} .

2 Given an arrow $f: u_{\xi} \to y$ in \mathfrak{K} , there are $\eta \ge \xi$ and an arrow $g: y \to u_{\eta}$ in \mathfrak{K} such that $g \circ f = u_{\xi}^{\eta}$.

 $\vec{u} \in \langle \mathfrak{K} \rangle$ will be a called a Fraïssé sequence if it satisfies the following two conditions.

So For every $x \in \mathfrak{K}$ there is an arrow from x into some element of \vec{u} .

2 Given an arrow $f: u_{\xi} \to y$ in \Re , there are $\eta \ge \xi$ and an arrow $g: y \to u_{\eta}$ in \Re such that $g \circ f = u_{\xi}^{\eta}$.

for every arrows $f: z \to x, g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every $\overline{f}, \overline{g}$ satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow *h* such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

for every arrows $f: z \to x, g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every f, \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

for every arrows $f: z \to x, g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every f, \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

for every arrows $f: z \to x, g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

The arrows $\langle f', g' \rangle$ provide a pushout of $\langle f, g \rangle$ if moreover for every f, \overline{g} satisfying $\overline{f} \circ f = \overline{g} \circ g$ there exists a unique arrow h such that $h \circ f' = \overline{f}$ and $h \circ g' = \overline{g}$.

The pushout of $\langle f, g \rangle$

AAAAZ 1		
W KIIDIC I	$(\Delta \leq x, \ K\)$	۱.

-2

The pushout of $\langle f, g \rangle$

W Kubić J	
VV.RUDIS	CAS & JNU

-2

The pushout of $\langle f, g \rangle$

AAT IZ. J. 12	
VV KIIDIS I	LAS & .IKIT
1.1.1.0.00	0/10/0/10/

-2

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\ddagger \Re$. If $\langle e(f), e(g) \rangle$ has a pushout in \Re , then $\langle f, g \rangle$ has a proper amalgamation in $\ddagger \Re$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\ddagger \Re$ such that the following diagrams commute in \Re .

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\ddagger \Re$. If $\langle e(f), e(g) \rangle$ has a pushout in \Re , then $\langle f, g \rangle$ has a proper amalgamation in $\ddagger \Re$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\ddagger \Re$ such that the following diagrams commute in \Re .

$$W \stackrel{e(k)}{\leftarrow} Y \qquad W \stackrel{r(k)}{\longrightarrow} Y \qquad W \stackrel{r(k)}{\longrightarrow} Y \qquad W \stackrel{e(k)}{\longrightarrow} Y \qquad W \stackrel{e(k)}{\longrightarrow} Y$$

$$e(h) \uparrow \uparrow e(g) \quad r(h) \downarrow \qquad \downarrow r(g) \quad e(h) \uparrow \uparrow e(g) \quad r(h) \downarrow \qquad \downarrow r(g)$$

$$X \stackrel{e(f)}{\leftarrow} Z \qquad X \stackrel{r(f)}{\longrightarrow} Z \qquad X \stackrel{r(f)}{\longrightarrow} Z \qquad X \stackrel{e(f)}{\longrightarrow} Z \qquad X \stackrel{e(f)}{\longrightarrow} Z$$

Theorem

Let & be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- (Homogeneity) Given arrows $f : a \to \vec{u}, g : a \to \vec{u}$ there exists an automorphism $\vec{H} : \vec{u} \to \vec{u}$ such that $g = \vec{H} \circ f$.
- (Uniqueness) The sequence \vec{u} is unique, up to isomorphism.

Theorem

Let \Re be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- ③ (Homogeneity) Given arrows f: a → u, g: a → u there exists an automorphism H: u → u such that g = H ∘ f.
- (**Uniqueness**) The sequence \vec{u} is unique, up to isomorphism.

A (10) A (10) A (10)

Theorem

Let \Re be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- ③ (Homogeneity) Given arrows f: a → u, g: a → u there exists an automorphism H: u → u such that g = H ∘ f.
- (**Uniqueness**) The sequence \vec{u} is unique, up to isomorphism.

A (10) A (10)

Theorem

Let \Re be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- ③ (Homogeneity) Given arrows f: a → u, g: a → u there exists an automorphism H: u → u such that g = H ∘ f.
- (Uniqueness) The sequence \vec{u} is unique, up to isomorphism.

Theorem

Let \Re be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- Solution (Homogeneity) Given arrows f: a → u, g: a → u there exists an automorphism H: u → u such that g = H ∘ f.
 - (Uniqueness) The sequence \u00fc is unique, up to isomorphism.

Theorem

Let \Re be a category with the amalgamation property and with an initial object.

- (Universality) For every countable sequence $\vec{x} \in \langle \mathfrak{K} \rangle$ there is an arrow $\vec{F} : \vec{x} \to \vec{u}$.
- (Homogeneity) Given arrows f: a → u, g: a → u there exists an automorphism H: u → u such that g = H ∘ f.
- (Uniqueness) The sequence \vec{u} is unique, up to isomorphism.

A B A A B A

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Universal Banach spaces

October 3, 2008 15 / 22

Universal Banach spaces

October 3, 2008 15 / 22

-2

Universal Banach spaces

October 3, 2008 15 / 22

Universal Banach spaces

October 3, 2008 15 / 22

<ロト < 回 > < 回 > < 回 > < 三 > - 三 -

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Universality

W.Kubiś (CAS & JKU)

Universal Banach spaces

October 3, 2008 15 / 22

(日)

Universality

W.Kubiś (CAS & JKU)

Universal Banach spaces

October 3, 2008 15 / 22

Universality

W.Kubiś (CAS & JKU)

Universal Banach spaces

October 3, 2008 15 / 22

October 3, 2008 16 / 22

Back-and-forth method

October 3, 2008 16 / 22

Universal Banach spaces

October 3, 2008 16 / 22

Universal Banach spaces

October 3, 2008 16 / 22

October 3, 2008 16 / 22

W.Kubiś (CAS & JKU)

Universal Banach spaces

October 3, 2008 16 / 22

-2

イロン イ理 とく ヨン イ ヨン・

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Let \vec{u} be a κ -Fraïssé sequence in $\ddagger \Re$.

Let $\mathfrak{L} \supseteq \mathfrak{K}$ be such that

 $U_{\infty} = \lim e[\vec{u}]$

exists in \mathfrak{L} . Then for every $X \in \mathfrak{L}$ such that $X = \lim e[\vec{x}]$, where \vec{x} is a semicontinuous sequence of length $\leq \kappa$ in $\ddagger \mathfrak{K}$, there exists arrows $i: X \to U_{\infty}$ and $p: U_{\infty} \to X$ such that

 $p \circ i = \mathrm{id}_X.$

A (10) A (10) A (10)

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Let \vec{u} be a κ -Fraïssé sequence in $\ddagger \Re$. Let $\mathfrak{L} \supseteq \mathfrak{K}$ be such that

$$U_{\infty} = \lim e[ec{u}]$$

exists in £.

Then for every $X \in \mathfrak{L}$ such that $X = \lim e[\vec{x}]$, where \vec{x} is a semicontinuous sequence of length $\leq \kappa$ in $\ddagger \mathfrak{K}$, there exists arrows $i: X \to U_{\infty}$ and $p: U_{\infty} \to X$ such that

 $p \circ i = \mathrm{id}_X.$

A (10) A (10) A (10)

Let \Re be a category such that $\ddagger \Re$ has proper amalgamations. Let \vec{u} be a κ -Fraïssé sequence in $\ddagger \Re$. Let $\mathfrak{L} \supseteq \mathfrak{K}$ be such that

$$U_{\infty} = \lim e[ec{u}]$$

exists in £.

Then for every $X \in \mathfrak{L}$ such that $X = \lim e[\vec{x}]$, where \vec{x} is a semicontinuous sequence of length $\leq \kappa$ in $\ddagger \mathfrak{K}$, there exists arrows $i: X \to U_{\infty}$ and $p: U_{\infty} \to X$ such that

$$p \circ i = \mathrm{id}_X.$$

(B)

Application I: Pełczyński's result

Example

Call a Banach space rational if it is isometric to a space of the form $\langle \mathbb{R}^d, \| \cdot \| \rangle$, where $d \in \omega$ and the unit ball

$$B = \{x \in \mathbb{R}^d \colon ||x|| \leq 1\}$$

is the convex hull of a finite subset of \mathbb{Q}^d . Call a linear transformation $T : \mathbb{R}^d \to \mathbb{R}^k$ rational if $T\mathbb{Q}^d \subseteq \mathbb{Q}^k$.

Denote by \mathfrak{R} the category of all rational Banach spaces with rational linear transformations of norm $\leqslant 1$.

Claim

Left-invertible arrows have pushouts in R.

< ロ > < 同 > < 回 > < 回 >

Application I: Pełczyński's result

Example

Call a Banach space rational if it is isometric to a space of the form $\langle \mathbb{R}^d, \| \cdot \| \rangle$, where $d \in \omega$ and the unit ball

$$B = \{x \in \mathbb{R}^d \colon ||x|| \leq 1\}$$

is the convex hull of a finite subset of \mathbb{Q}^d . Call a linear transformation $T : \mathbb{R}^d \to \mathbb{R}^k$ rational if $T\mathbb{Q}^d \subseteq \mathbb{Q}^k$.

Denote by \mathfrak{R} the category of all rational Banach spaces with rational linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in R.

イロト 不得 トイヨト イヨト 三日

Application I: Pełczyński's result

Example

Call a Banach space rational if it is isometric to a space of the form $\langle \mathbb{R}^d, \| \cdot \| \rangle$, where $d \in \omega$ and the unit ball

$$B = \{x \in \mathbb{R}^d \colon ||x|| \leq 1\}$$

is the convex hull of a finite subset of \mathbb{Q}^d . Call a linear transformation $T : \mathbb{R}^d \to \mathbb{R}^k$ rational if $T\mathbb{Q}^d \subseteq \mathbb{Q}^k$.

Denote by \mathfrak{R} the category of all rational Banach spaces with rational linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in \Re .

Claim

Let \vec{u} be a Fraïssé sequence in $\ddagger \Re$. Then the colimit

 $U_{\omega} = \lim e[\vec{u}]$

in the category of Banach spaces is a separable Banach space with a normalized PRI onto finite-dimensional subspaces.

Theorem

The space U_{ω} is complementably universal for the class of Banach spaces with a Schauder basis.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Claim

Let \vec{u} be a Fraïssé sequence in $\ddagger \mathfrak{R}$. Then the colimit

 $U_{\omega} = \lim e[\vec{u}]$

in the category of Banach spaces is a separable Banach space with a normalized PRI onto finite-dimensional subspaces.

Theorem

The space U_{ω} is complementably universal for the class of Banach spaces with a Schauder basis.

Example

Let $\mathfrak{B}_{\text{sep}}$ be the category of all separable Banach spaces with linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\ddagger \mathfrak{B}_{sep}$.

W.Kubiś (CAS & JKU)

Universal Banach spaces

Example

Let $\mathfrak{B}_{\text{sep}}$ be the category of all separable Banach spaces with linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\ddagger \mathfrak{B}_{sep}$.

W.Kubiś (CAS & JKU)

Universal Banach spaces

Example

Let $\mathfrak{B}_{\text{sep}}$ be the category of all separable Banach spaces with linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category $\mathfrak{B}_{\mathsf{sep}}$ has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\ddagger \mathfrak{B}_{sep}$.

W.Kubiś (CAS & JKU)

Example

Let $\mathfrak{B}_{\text{sep}}$ be the category of all separable Banach spaces with linear transformations of norm \leqslant 1.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\ddagger \mathfrak{B}_{sep}$.

W.Kubiś (CAS & JKU)

Universal Banach spaces

Assume the continuum hypothesis. Then there exists a Banach space U_{ω_1} which is complementably universal for the class of all Banach spaces of density $\leq \aleph_1$ with a countably norming Markushevich basis.

A (10) A (10)

THE END

W.Kubiś (CAS & JKU)

Universal Banach spaces

October 3, 2008 22 / 22

◆□→ ◆圖→ ◆理→ ◆理→ ○理