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Background

Theorem (Pełczyński, 1969)
There exists a complementably universal Banach space for the class
of Banach spaces with a Schauder basis.

A Banach space E is complementably universal for a class of spaces
K if

E ∈ K.
Every X ∈ K is isomorphic to a complemented subspace of E .
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A Schauder basis in X is a sequence {xn}n∈ω ⊆ X such that for every
x ∈ X there are uniquely determined scalars {λn}n∈ω such that the
series

∞∑
n=0

λnxn

converges to x in the norm.

Define Pn : X → X by

Pn

( ∞∑
i=0

λixi

)
=
∑
i<n

λixi .

Then Pn is a bounded projection and limn→∞ Pnx = x for x ∈ X .
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Proposition
Given a Banach space X, the following properties are equivalent.

1 X has a Schauder basis.
2 There exists a sequence {Pn}n∈ω of bounded projections of X

onto finite-dimensional subspaces, converging pointwise to the
identity and such that

PnPm = Pmin{n,m}

holds for every n, m ∈ ω.
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Markushevich bases

Let X be a Banach space of density ℵ1. A Markushevich basis in X is
a bi-orthogonal system 〈xα, yα〉, α < ω1, such that

1 {xα : α < ω1} is linearly dense in X ,
2 {yα : α < ω1} is total for X .
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Projectional resolutions

A projectional resolution of the identity (PRI for short) in a Banach
space X is a sequence {Pα}α<δ of bounded projections of X such that

δ is a limit ordinal (a well-ordered set with no maximum),
PαPβ = Pmin{α,β},
limα<δ Pαx = x for every x ∈ X ,
limα<% Pαx = P%x for every limit ordinal % < δ.

We say that the PRI {Pα}α<δ is
regular, if

dens(PαX ) < dens(X )

for every α < δ;
normalized, if ‖Pα‖ = 1 for each α < δ.
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Theorem
Given a Banach space X of density ℵ1, the following conditions are
equivalent:

1 X has a regular PRI.
2 X has a countably norming Markushevich basis 〈xα, yα〉α<ω1 , i.e.

the space
{y ∈ X ∗ : |{α : y(xα) 6= 0}| 6 ℵ0}

is norming for X .
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W.Kubiś (CAS & JKU) Universal Banach spaces October 3, 2008 7 / 22



Theorem
Given a Banach space X of density ℵ1, the following conditions are
equivalent:

1 X has a regular PRI.
2 X has a countably norming Markushevich basis 〈xα, yα〉α<ω1 , i.e.

the space
{y ∈ X ∗ : |{α : y(xα) 6= 0}| 6 ℵ0}

is norming for X .
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How to interpret a PRI in the language of category theory?

Chain of closed subspaces is an inductive sequence in the
category of Banach spaces.
Projectional resolution is an inverse sequence of right-invertible
arrows, “compatible” with the given inductive sequence.

Claim
Let X be a Banach space, represented as the closure of the union of a
chain {Xn}n∈ω. TFAE:

1 There exists a normalized PRI {Pn}n∈ω such that Xn = PnX for
n ∈ ω.

2 For each n ∈ ω, Xn is 1-complemented in Xn+1.
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Given a category K, define a new category ‡K as follows.

The objects of ‡K are the objects of K.
An arrow from x into y in ‡K is a pair 〈e, r〉 such that e : x → y ,
r : y → x are arrows of K and r ◦ e = idx .

There are two natural functors e : ‡K → K and r : ‡K → K.
A sequence ~x in ‡K will be called semicontinuous if e[~x ] is continuous
in K.

Example
Let B be the category of Banach spaces with linear transformations of
norm 6 1. A semicontinuous sequence ~x in ‡B corresponds to a
normalized PRI in X , where X is the colimit of e[~x ] in the category B.
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Given a category K, denote by 〈K〉 the category of all inductive
sequences in K.
~u ∈ 〈K〉 will be a called a Fraı̈ssé sequence if it satisfies the following
two conditions.

1 For every x ∈ K there is an arrow from x into some element of ~u.
2 Given an arrow f : uξ → y in K, there are η > ξ and an arrow

g : y → uη in K such that g ◦ f = uη
ξ .

. . . // uξ
uη

ξ //

f ��?
??

??
??

?
uη // . . .

y
g

??
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We say that K has the amalgamation property if

for every arrows f : z → x , g : z → y there are arrows f ′ : x → w and
g′ : y → w such that f ′ ◦ f = g′ ◦ g.

y g′
// w

z

g

OO

f
// x

f ′

OO

The arrows 〈f ′, g′〉 provide a pushout of 〈f , g〉 if moreover for every f , g
satisfying f ◦ f = g ◦ g there exists a unique arrow h such that h ◦ f ′ = f
and h ◦ g′ = g.

W.Kubiś (CAS & JKU) Universal Banach spaces October 3, 2008 11 / 22



We say that K has the amalgamation property if

for every arrows f : z → x , g : z → y there are arrows f ′ : x → w and
g′ : y → w such that f ′ ◦ f = g′ ◦ g.

y g′
// w

z

g

OO

f
// x

f ′

OO

The arrows 〈f ′, g′〉 provide a pushout of 〈f , g〉 if moreover for every f , g
satisfying f ◦ f = g ◦ g there exists a unique arrow h such that h ◦ f ′ = f
and h ◦ g′ = g.
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The pushout of 〈f , g〉

y
g′

// w

z
f

//

g

OO

x

f ′

OO
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Proposition
Let f : z → x, g : z → y be arrows in ‡K. If 〈e(f ), e(g)〉 has a pushout in
K, then 〈f , g〉 has a proper amalgamation in ‡K. That is, there exist
arrows h : x → w, k : y → w in ‡K such that the following diagrams
commute in K.

w ye(k)oo

x

e(h)

OO

z
e(f )oo

e(g)

OO w
r(k) //

r(h)

��

y

r(g)

��
x

r(f ) // z

w
r(k) // y

x

e(h)

OO

r(f ) // z

e(g)

OO w

r(h)

��

y

r(g)

��

e(k)oo

x z
e(f )oo
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Fraı̈ssé limits

Theorem
Let K be a category with the amalgamation property and with an initial
object.

1 Assume that K has countably many isomorphic types of arrows.
Then there exists a Fraı̈ssé sequence ~u of length ω in K.

2 (Universality) For every countable sequence ~x ∈ 〈K〉 there is an
arrow ~F : ~x → ~u.

3 (Homogeneity) Given arrows f : a → ~u, g : a → ~u there exists an
automorphism ~H : ~u → ~u such that g = ~H ◦ f .

4 (Uniqueness) The sequence ~u is unique, up to isomorphism.
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W.Kubiś (CAS & JKU) Universal Banach spaces October 3, 2008 14 / 22



Fraı̈ssé limits
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Universality

. . . // u`0
// . . . // . . .

x0

EE�������������
// x1 // . . . // . . .
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Universality

. . . // u`0

!!C
CC

CC
CC

C
// . . . // . . .

w

x0 //

FF��������������
x1 //

==zzzzzzzz
. . . // . . .
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Universality
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DD

DD
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D
// u`1

// . . . // . . .

w
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x0 //
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Universality
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Universality
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W.Kubiś (CAS & JKU) Universal Banach spaces October 3, 2008 15 / 22



Universality

. . . // u`0
// u`1

// . . . // u`n
//

""F
FFFFFFF

. . .

w

x0 //

FF��������������
x1 //

FF��������������
. . . // xn //

EE���������������
xn+1

<<xxxxxxxx
// . . .
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Back-and-forth method

uk // . . .

v` //

f

OO

. . .
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Back-and-forth method

uk
g0

!!B
BB

BB
BB

B
// . . .

v` //

f

OO

v`1
// . . .
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Back-and-forth method
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  A
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AA
AA

A
uk1

// . . .

v` //

f
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v`1
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==||||||||
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W.Kubiś (CAS & JKU) Universal Banach spaces October 3, 2008 16 / 22



Back-and-forth method

uk //

g0

  A
AA

AA
AA

A
uk1

g1

!!C
CC

CC
CC

C
// . . .

v` //

f

OO

v`1
//

f1
==||||||||

v`2
// . . .
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Back-and-forth method
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Back-and-forth method
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Theorem
Let K be a category such that ‡K has proper amalgamations. Let ~u be
a κ-Fraı̈ssé sequence in ‡K.
Let L ⊇ K be such that

U∞ = lim e[~u]

exists in L.
Then for every X ∈ L such that X = lim e[~x ], where ~x is a
semicontinuous sequence of length 6 κ in ‡K, there exists arrows
i : X → U∞ and p : U∞ → X such that

p ◦ i = idX .
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Application I: Pełczyński’s result

Example
Call a Banach space rational if it is isometric to a space of the form
〈Rd , ‖ · ‖〉, where d ∈ ω and the unit ball

B = {x ∈ Rd : ‖x‖ 6 1}

is the convex hull of a finite subset of Qd . Call a linear transformation
T : Rd → Rk rational if TQd ⊆ Qk .
Denote by R the category of all rational Banach spaces with rational
linear transformations of norm 6 1.

Claim
Left-invertible arrows have pushouts in R.
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Example
Call a Banach space rational if it is isometric to a space of the form
〈Rd , ‖ · ‖〉, where d ∈ ω and the unit ball

B = {x ∈ Rd : ‖x‖ 6 1}

is the convex hull of a finite subset of Qd . Call a linear transformation
T : Rd → Rk rational if TQd ⊆ Qk .
Denote by R the category of all rational Banach spaces with rational
linear transformations of norm 6 1.

Claim
Left-invertible arrows have pushouts in R.
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Claim
Let ~u be a Fraı̈ssé sequence in ‡R. Then the colimit

Uω = lim e[~u]

in the category of Banach spaces is a separable Banach space with a
normalized PRI onto finite-dimensional subspaces.

Theorem
The space Uω is complementably universal for the class of Banach
spaces with a Schauder basis.
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Application II: A non-separable complementably
universal Banach space

Example
Let Bsep be the category of all separable Banach spaces with linear
transformations of norm 6 1.

Claim
Left-invertible arrows have pushouts in Bsep.

Claim
The category Bsep has 2ℵ0 many isomorphic types of arrows.

Theorem
Assume 2ℵ0 = ℵ1. Then there exists a semicontinuous ω1-Fraı̈ssé
sequence in ‡Bsep.
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Theorem
Assume the continuum hypothesis.
Then there exists a Banach space Uω1 which is complementably
universal for the class of all Banach spaces of density 6 ℵ1 with a
countably norming Markushevich basis.
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***

THE END

***
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