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Main goal

@ Complementably universal Banach space with a basis
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@ Complementably universal Banach space with a basis

@ Complementably universal Banach space with finite-dimensional
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Main goal

@ Complementably universal Banach space with a basis

@ Complementably universal Banach space with finite-dimensional
Schauder decomposition

@ Uncountable versions of the above spaces
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Categories with amalgamations

We say that 8 has the amalgamation property if

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Category-theoretic methods for constructing u



Categories with amalgamations

We say that 8 has the amalgamation property if

for every arrows f: z — x, g: z — y there are arrows f': x — w and
g:y—wsuchthatfof=9g og.
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We say that 8 has the amalgamation property if

for every arrows f: z — x, g: z — y there are arrows f': x — w and
g:y—wsuchthatfof=9g og.
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Categories with amalgamations

We say that & has the amalgamation property if

for every arrows f: z — x, g: z — y there are arrows f': x — w and
g:y—wsuchthatfof=9g og.

/
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The arrows (f', g') provide a pushout of (f, g) if moreover for every f
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The pushout of (f, g)
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The pushout of (f, g)
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The pushout of (f, g)

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Category-theoretic methods for constructing u



Cofinality and homogeneity

@ A family F of objects of £ is said to be cofinal in R if for every
x € Rthereis y € F such that &(x, y) # 0.
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Cofinality and homogeneity

@ A family F of objects of £ is said to be cofinal in R if for every
x € Rthereis y € F such that &(x, y) # 0.

@ Anobject u € R is cofinal in 8 if for every x € & there is an arrow
f:x—uin &
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Cofinality and homogeneity

@ A family F of objects of £ is said to be cofinal in R if for every
x € Rthereis y € F such that R(x, y) # 0.

@ An object u € Ris cofinal in K if for every x € 8 there is an arrow
f:x—uin &,

@ Let £ be a subcategory of K. An object u € R is £-homogeneous if
for every arrow f: a — bin £ and for every arrows i: a — u,
j: b— uin K there exists an isomorphism h: u — u such that the

diagram
u—"ou
1o
a—=b
commutes.
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into R.
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows X5 Xo — xs for a < B < A, such that
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows X5 Xo — xs for a < B < A, such that

o Xaa - iany
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows X5 Xo — xs for a < B < A, such that
o Xaa - iany
Qa<f<y = xi=x]oxi.
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows X5 Xo — xs for a < B < A, such that

o Xaa - iany
Qa<f<y = xi=x]oxi.
Let X and y be sequences in A.

-

A transformation of X into y is a pair (¢, f) such that
@ o: )\ — disincreasing;
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A
into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows X5 Xo — xs for a < B < A, such that

o Xaa - iany
Qa<f<y = xi=x]oxi.
Let X and y be sequences in A.

-

A transformation of X into y is a pair (¢, f) such that
@ o: )\ — disincreasing;
Q 7= {fy,}acr, Where f,: X, — Yoo(a)s
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Sequences

By a sequence in a category & we mean a functor X from an ordinal A

into &. A sequence X of length \ can be described as a sequence
{Xa}a<) together with arrows x5 Xo — Xg for a < B < A, such that

o Xaa - iany
Qa<f<y = xi=x]oxi.
Let X and y be sequences in A.

—

A transformation of X into y is a pair (¢, f) such that
@ o: )\ — disincreasing;
Q 7= {fy,}acr, Where f,: X, — Yoo(a)s

@ a<i = fhoxd =yl ok
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Arrows between sequences

@ Let X, y be sequences in £ and let (¢, ?), (1, g) be transformations
between them. We say that they are equivalent if all diagrams like

X Tga QET %
Xo R X3

are commutative.
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Arrows between sequences

@ Let X, y be sequences in £ and let (¢, ?), (v, g) be transformations
between them. We say that they are equivalent if all diagrams like

o= Yop(a) Yip() E Yy(B) Yeo(8)
\ Tga o | %
Xa e XB

are commutative.

@ An arrow of sequences X — y is an equivalence class of this
relation. We write f: X — y, having in mind the equivalence class
of the transformation f = {f, }o<x.
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Definition:
Let R be a fixed category.
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Definition:
Let & be a fixed category. A x-Fraissé sequence in £ is a sequence U
satisfying the following conditions:
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Definition:

Let & be a fixed category. A x-Fraissé sequence in £ is a sequence U
satisfying the following conditions:

(U) For every x € 8 there exists ¢ < « such that &(x, ug) # 0.

Ue

“"3hn
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Definition:

Let & be a fixed category. A x-Fraissé sequence in £ is a sequence U
satisfying the following conditions:

(U) For every x € 8 there exists ¢ < « such that &(x, ug) # 0.

Ue
-7 3n
X

(A) Forevery £ < « and for every arrow f € R(ug, y), where y € &,
there exist n > ¢ and g € R(y, uy) such that u/ = gof.
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The existence

S<«(R) = the category of all sequences in £ of length < . |

A category R is x-bounded if for every sequence X € G, (8) there are
a € R and an arrow of sequences F: X — a.
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The existence

S<«(R) = the category of all sequences in £ of length < . ]

A category R is x-bounded if for every sequence X € G, (8) there are
a € R and an arrow of sequences F: X — a.

Theorem

Let x > 1 be a regular cardinal and let ! be a «-bounded category
which has the amalgamation property and the joint embedding
property. Assume further that & has at most x isomorphic types of
arrows.

Then there exists a Fraissé sequence U: k — .
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Countable Fraissé sequences

Theorem (Countable Cofinality)

Assume U is a Fraissé sequence in a category with amalgamation f.

Then for every countable sequence X in £ there exists an arrow
f: X — 0.

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Category-theoretic methods for constructing

21 — 24 February 2011 11/24



Countable Fraissé sequences

Theorem (Countable Cofinality)

Assume U is a Fraissé sequence in a category with amalgamation f.
Then for every countable sequence X in £ there exists an arrow
f: X — 0.

Corollary

Let U be a countable Fraissé sequence in a category K. If & has the
amalgamation property then u is cofinal in &,(8).
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Cofinality
. er .
X0 X1 o000 Ce
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Cofinality
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XO X1 oo
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Cofinality
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Cofinality

B Ue1

X0 X1
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Cofinality

Uy, Uy, 000 U

n

Xo X1 090 Xn Xn+1
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Cofinality

e,

Xn+1
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Cofinality

u£n+1 _ > ...

e

Xn+‘| —
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Cofinality

Ugn+1 _ .

Y

Xn+1é-a.
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Homogeneity & Uniqueness

Theorem

Assume that U, v are w-Fraissé sequences in a fixed category f.

(a) Letf: ux — vy, where k,{ < w. Then there exists an isomorphism
F: G — vV such that F o ux = v, o f. In particular t ~ V.
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Homogeneity & Uniqueness

Theorem

Assume that U, v are w-Fraissé sequences in a fixed category f.

(a) Letf: ux — vy, where k,{ < w. Then there exists an isomorphism
F: U — V such that F o ux = v, o f. In particular i ~ V.

(b) Assume & has the amalgamation property. Then for every a,b € &
and for every arrows f: a— b, i: a— U, j: b — V there exists an
isomorphism F: G — vV suchthat Foi=jof.
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Homogeneity & Uniqueness

Theorem

Assume that U, v are w-Fraissé sequences in a fixed category f.

(a) Letf: ux — vy, where k,{ < w. Then there exists an isomorphism
F: U — V such that F o ux = v, o f. In particular i ~ V.

(b) Assume & has the amalgamation property. Then for every a,b € &
and for every arrows f: a— b, i: a— U, j: b — V there exists an
isomorphism F: G — vV suchthat Foi=jof.

F
—_—

- P o = =
u—>Vv u %4
ikT Tle iT T/
f f
Uy ——=Vyp a—-s=»p
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Back-and-forth method

Uk

{

Ve
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Back-and-forth method
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Back-and-forth method

Uk Uk,

g f;
1N S
Ve Ve,
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Back-and-forth method

Uk Uk,

g f g
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Back-and-forth method

Uk Uk Uk,
N
f

Ve VZ1 Vfg
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Back-and-forth method

Uk U, U,
N N N
Ve Ve, Ve, Vi

W.Kubi$ (http://www.pu.kielce.pl/~wkubis/) Category-theoretic methods for constructing u



Back-and-forth method

Uy U, Uk, o
N N N S
Ve Ve, Ve, Vi, . e
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The Gurarii space

Let B¢y denote the category of finite-dimensional Banach spaces with
linear operators of norm < 1.
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The Gurarii space

Let B¢y denote the category of finite-dimensional Banach spaces with
linear operators of norm < 1.

Claim

The subcategory of Bty consisting of isometric embeddings has the
amalgamation property.
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The Gurarii space

Let B¢y denote the category of finite-dimensional Banach spaces with
linear operators of norm < 1.

Claim
The subcategory of Bty consisting of isometric embeddings has the
amalgamation property.

The problem is that there are too many arrows...
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The Gurarii space

Let B¢y denote the category of finite-dimensional Banach spaces with
linear operators of norm < 1.

Claim
The subcategory of By consisting of isometric embeddings has the
amalgamation property.

The problem is that there are too many arrows...

Theorem (Gurarii, 1966)
There exists a separable Banach space G with the following property:

(UD) Given finite-dimensional spaces X C Y, given an isometric
embedding f: X — G, given e > 0, there exists an e-isometric
embedding f: Y — G such thatf | X = f.
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Theorem (Lusky, 1976)
The Gurarii space is unique up to isometry. J
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Theorem (Lusky, 1976)
The Gurarii space is unique up to isometry.

Theorem (?)

The Gurarii space contains isometric copies of all separable Banach
spaces.
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Retractive pairs

Given a category 8, define a new category 11 as follows.
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Retractive pairs

Given a category 8, define a new category 11 as follows.

@ The objects of 1R are the objects of K.
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Retractive pairs

Given a category 8, define a new category 11 as follows.

@ The objects of 1R are the objects of K.

@ An arrow from x into y in 1R is a pair (e, r) such that e: x — y,
r: y — x are arrows of f and r o e = idy.
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Retractive pairs

Given a category R, define a new category 18 as follows.

@ The objects of 1R are the objects of K.

@ An arrow from x into y in 1R is a pair (e, r) such that e: x — y,
r: y — x are arrows of f and r o e = idy.

There are two natural functors e: 18 — Kand r: 1R — R
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Retractive pairs

Given a category R, define a new category 18 as follows.

@ The objects of 1R are the objects of K.

@ An arrow from x into y in 1R is a pair (e, r) such that e: x — y,
r: y — x are arrows of f and r o e = idy.

There are two natural functors e: 18 — Kand r: 1R — R

A sequence X in 11 will be called semicontinuous if e[X] is continuous
in R
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Retractive pairs

Given a category R, define a new category 18 as follows.

@ The objects of 1R are the objects of K.

@ An arrow from x into y in 1R is a pair (e, r) such that e: x — y,
r: y — x are arrows of  and r o e = idy.

There are two natural functors e: 18 — Kand r: 1R — R

A sequence X in 11 will be called semicontinuous if e[X] is continuous
in R.

Example

Let 98 be the category of Banach spaces with linear transformations of
norm < 1. A semicontinuous sequence X in 18 corresponds to a PRI
in X, where X is the colimit of e[X] in the category 5.
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Theorem

Let & be a category and let U and v be semicontinuous Fraissé
sequences in 1R of the same regular length . Then for every arrow

f: uy — V there exists an isomorphism of sequences f: U — V such
that f o U3 = f.
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Theorem

Let & be a category and let U and v be semicontinuous Fraissé
sequences in 1R of the same regular length . Then for every arrow
f: uy — V there exists an isomorphism of sequences f: U — V such

that f o ug® = f.
gt
el

Uo

v
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Theorem

Let & be a category and let U and v be semicontinuous Fraissé
sequences in 1R of the same regular length . Then for every arrow
f: uy — V there exists an isomorphism of sequences f: U — V such

that f o ug® = f.
gt
el

Uo

%

—

In particular G ~ v.
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Proposition

Letf: z— x,g: z— y be arrows in tR. If (e(f), e(g)) has a pushout in
R, then (f, g) has a proper amalgamation in 1R. That is, there exist
arrows h: x — w, k: y — w in 1R such that the following diagrams
commute in K.

w2y w0y
e(h)T Te(g r(h)i lr(g
x<0_; x 0, 7
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Proposition

Letf: z— x,g: z— y be arrows in tR. If (e(f), e(g)) has a pushout in
R, then (f, g) has a proper amalgamation in 1R. That is, there exist
arrows h: x — w, k: y — w in 1R such that the following diagrams
commute in K.

e(h)T Te(g f(h)i if(g e(h)T Te(g) f(h)l J/f(g)
ot o 18 o ML Joo o) L
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Claim

If & has pullbacks or pushouts then t] has proper amalgamations.
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
f f
7 r(f) X e(f) 7
e(g)
e(g) Y
Y r(g)
r(9)
f f
2 r(f) X e(f) Z
O

v
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
f f
7 r(f) X e(f) 7
e(9)
e(g) Y
r(9)
f \ f
r(f) X e(f) >
O
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
f f
7 r(f) X e(f) 7
e(g)
e(g) Y
Y<T w r(g)
r(9) h
f f
7 r(f) X e(f) 7
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
f f
7 r(f) x e(f) 7
idy e(g)
e(9) Y
Y<T w r(g)
r(9) h
f f
7 r(f) % e(f) 7
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
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Claim
If & has pullbacks or pushouts then t] has proper amalgamations.

Proof.
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Claim
If & has pullbacks or pushouts then 1 & has proper amalgamations.

Proof.
f f
7 r(f) X e(f) Z
e(g)
e(9) e(f') Y
/ %
y 29 )
r(g) lf(f’)
f f
r(f) X e(f) Z
DJ
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Theorem

Let & be a category such that 1] has proper amalgamations. Assume
U is a semi-continuous x-Fraissé sequence in 1 1.
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Theorem
Let & be a category such that 1] has proper amalgamations. Assume
U is a semi-continuous x-Fraissé sequence in 1 1.

Then for every semi-continuous sequence X € S, (1) there exists an
arrow of sequences f: X — U in 1.
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Let Bsep be the category of all separable Banach spaces with linear
transformations of norm < 1.
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Let Bsep be the category of all separable Banach spaces with linear
transformations of norm < 1.

Claim
Left-invertible arrows have pushouts in Bsep. J
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Let Bsep be the category of all separable Banach spaces with linear
transformations of norm < 1.

Claim
Left-invertible arrows have pushouts in Bsep.

Claim
The category Bsep has 2% many isomorphic types of arrows.
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Let Bsep be the category of all separable Banach spaces with linear
transformations of norm < 1.

Claim
Left-invertible arrows have pushouts in Bsep.

Claim
The category Bsep has 2% many isomorphic types of arrows.

Theorem

Assume 2% = Xy. Then there exists a semicontinuous w1 -Fraissé
sequence in {Bsep.
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Theorem

Assume 2% = Ry,
There exists a Banach space E with a PRI { P, }a<., and of density X1,
which has the following properties:

(a) The family {X C E: X is 1-complemented in E} is, modulo linear
isometries, the class of all Banach spaces of density < Xy with a
PRI.

(b) Given separable subspaces X,Y C E, norm one projections
P: E— X, Q: E—Y, both compatible with { P, }.<.,, and given
alinear isometry T: X — Y, there exist a linear isometry
H: E — E extending T and satisfying Ho P = Qo H.

Moreover, the above properties describe the space E uniquely, up to a
linear isometry.
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