Category-theoretic methods for constructing universal Banach spaces

Wiesław Kubiś

Czech Academy of Sciences (CZECH REPUBLIC)
and
Jan Kochanowski University, Kielce (POLAND)
http://www.pu.kielce.pl/~wkubis/

Castro Urdiales 21 – 24 February 2011

Outline

- The goal
- Categories
- Fraïssé sequences
 - The existence
 - Countable Fraïssé sequences
 - The back-and-forth argument
- 4 The Gurarii space
- Retractive pairs
- Banach spaces

- Complementably universal Banach space with a basis
- Complementably universal Banach space with finite-dimensional Schauder decomposition
- Uncountable versions of the above spaces

- Complementably universal Banach space with a basis
- Complementably universal Banach space with finite-dimensional Schauder decomposition
- Uncountable versions of the above spaces

- Complementably universal Banach space with a basis
- Complementably universal Banach space with finite-dimensional Schauder decomposition
- Uncountable versions of the above spaces

- Complementably universal Banach space with a basis
- Complementably universal Banach space with finite-dimensional Schauder decomposition
- Uncountable versions of the above spaces

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

$$\begin{array}{ccc}
y & \xrightarrow{g'} & w \\
g & & \uparrow \\
Z & \xrightarrow{f} & X
\end{array}$$

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

We say that \Re has the amalgamation property if

for every arrows $f: z \to x$, $g: z \to y$ there are arrows $f': x \to w$ and $g': y \to w$ such that $f' \circ f = g' \circ g$.

The pushout of $\langle f, g \rangle$

The pushout of $\langle f, g \rangle$

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x,y) \neq \emptyset$.
- An object $u \in \Re$ is cofinal in \Re if for every $x \in \Re$ there is an arrow $f: x \to u$ in \Re .
- Let £ be a subcategory of ℜ. An object u ∈ ℜ is £-homogeneous if for every arrow f: a → b in £ and for every arrows i: a → u, j: b → u in ℜ there exists an isomorphism h: u → u such that the diagram

$$\begin{array}{c|c}
u & \xrightarrow{h} & u \\
\downarrow i & & \uparrow \\
a & \xrightarrow{f} & b
\end{array}$$

commutes.

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x,y) \neq \emptyset$.
- An object $u \in \mathfrak{K}$ is cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is an arrow $f \colon x \to u$ in \mathfrak{K} .
- Let £ be a subcategory of ℜ. An object u ∈ ℜ is £-homogeneous if for every arrow f: a → b in £ and for every arrows i: a → u,
 j: b → u in ℜ there exists an isomorphism h: u → u such that the diagram

$$\begin{array}{c|c}
u & \xrightarrow{h} & u \\
\downarrow i & & \uparrow \\
a & \xrightarrow{f} & b
\end{array}$$

commutes

Cofinality and homogeneity

- A family \mathcal{F} of objects of \mathfrak{K} is said to be cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is $y \in \mathcal{F}$ such that $\mathfrak{K}(x, y) \neq \emptyset$.
- An object $u \in \mathfrak{K}$ is cofinal in \mathfrak{K} if for every $x \in \mathfrak{K}$ there is an arrow $f \colon x \to u$ in \mathfrak{K} .
- Let \(\mathcal{L}\) be a subcategory of \(\mathcal{K}\). An object \(u \in \mathcal{K}\) is \(\mathcal{L}\)-homogeneous if for every arrow \(f: a \to b\) in \(\mathcal{L}\) and for every arrows \(i: a \to u\), \(j: b \to u\) in \(\mathcal{K}\) there exists an isomorphism \(h: u \to u\) such that the diagram

commutes.

By a sequence in a category \Re we mean a functor \vec{x} from an ordinal λ

into \mathfrak{K} . A sequence \vec{x} of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}: x_{\alpha} \to x_{\beta}$ for $\alpha \leqslant \beta < \lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re

- \bigcirc $\varphi: \lambda \to \delta$ is increasing;
- ② $\vec{f} = \{f_{\alpha}\}_{{\alpha}<{\lambda}}$, where $f_{\alpha}: x_{\alpha} \to y_{\varphi(\alpha)}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant \beta<\lambda$, such that

- $\mathbf{u} \ \ x_{\alpha}^{\alpha} = \mathrm{id}_{x_{\alpha}}$

Let \vec{x} and \vec{y} be sequences in \Re .

- $\bigcirc \varphi : \lambda \to \delta \text{ is increasing};$
- ② $\vec{f} = \{f_{\alpha}\}_{{\alpha}<\lambda}$, where $f_{\alpha}: X_{\alpha} \to Y_{\varphi(\alpha)}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant \beta<\lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re .

- ① $\varphi: \lambda \to \delta$ is increasing;
- ② $\vec{f} = \{f_{\alpha}\}_{{\alpha}<\lambda}$, where $f_{\alpha}: X_{\alpha} \to Y_{\varphi(\alpha)}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant \beta<\lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re

- ② $\vec{f} = \{f_{\alpha}\}_{{\alpha}<\lambda}$, where $f_{\alpha}: X_{\alpha} \to Y_{\varphi(\alpha)}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant \beta<\lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re .

- \bullet $\varphi \colon \lambda \to \delta$ is increasing;
- ② $f = \{f_{\alpha}\}_{{\alpha}<{\lambda}}$, where $f_{\alpha}: X_{\alpha} \to Y_{\varphi({\alpha})}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant\beta<\lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re .

- \bullet $\varphi \colon \lambda \to \delta$ is increasing;
- ② $\vec{f} = \{f_{\alpha}\}_{{\alpha}<{\lambda}}$, where $f_{\alpha} : \mathbf{X}_{\alpha} \to \mathbf{y}_{\varphi(\alpha)}$;

By a sequence in a category $\mathfrak R$ we mean a functor $\vec x$ from an ordinal λ into $\mathfrak R$. A sequence $\vec x$ of length λ can be described as a sequence $\{x_{\alpha}\}_{{\alpha}<\lambda}$ together with arrows $x_{\alpha}^{\beta}\colon x_{\alpha}\to x_{\beta}$ for $\alpha\leqslant \beta<\lambda$, such that

Let \vec{x} and \vec{y} be sequences in \Re .

- \bullet $\varphi \colon \lambda \to \delta$ is increasing;
- $\vec{t} = \{f_{\alpha}\}_{\alpha < \lambda}, \text{ where } f_{\alpha} \colon \mathbf{X}_{\alpha} \to \mathbf{y}_{\varphi(\alpha)};$

Arrows between sequences

• Let \vec{x} , \vec{y} be sequences in $\mathfrak R$ and let $\langle \varphi, \vec{f} \rangle$, $\langle \psi, \vec{g} \rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.

• An arrow of sequences $\vec{x} \to \vec{y}$ is an equivalence class of this relation. We write $\vec{f} : \vec{x} \to \vec{y}$, having in mind the equivalence class of the transformation $\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$.

Arrows between sequences

• Let \vec{x} , \vec{y} be sequences in \Re and let $\langle \varphi, \vec{f} \rangle$, $\langle \psi, \vec{g} \rangle$ be transformations between them. We say that they are equivalent if all diagrams like

are commutative.

• An arrow of sequences $\vec{x} \to \vec{y}$ is an equivalence class of this relation. We write $\vec{f} \colon \vec{x} \to \vec{y}$, having in mind the equivalence class of the transformation $\vec{f} = \{f_{\alpha}\}_{\alpha < \lambda}$.

Let $\mathfrak K$ be a fixed category. A κ -Fraïssé sequence in $\mathfrak K$ is a sequence $\vec u$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

Let $\mathfrak R$ be a fixed category. A κ -Fraïssé sequence in $\mathfrak R$ is a sequence $\vec u$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

Let $\mathfrak R$ be a fixed category. A κ -Fraïssé sequence in $\mathfrak R$ is a sequence $\vec u$ satisfying the following conditions:

(U) For every $x \in \mathfrak{K}$ there exists $\xi < \kappa$ such that $\mathfrak{K}(x, u_{\xi}) \neq \emptyset$.

Let $\mathfrak R$ be a fixed category. A κ -Fraïssé sequence in $\mathfrak R$ is a sequence $\vec u$ satisfying the following conditions:

(U) For every $x \in \Re$ there exists $\xi < \kappa$ such that $\Re(x, u_{\xi}) \neq \emptyset$.

The existence

 $\mathfrak{S}_{<\kappa}(\mathfrak{K})=$ the category of all sequences in \mathfrak{K} of length $<\kappa.$

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{x} \in \mathfrak{S}_{<\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{x} \to a$.

Theorem

Let $\kappa>1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that \Re has at most κ isomorphic types of arrows.

Then there exists a Fraïssé sequence $\vec{u}: \kappa \to \Re$.

The existence

 $\mathfrak{S}_{<\kappa}(\mathfrak{K})=$ the category of all sequences in \mathfrak{K} of length $<\kappa$.

A category \mathfrak{K} is κ -bounded if for every sequence $\vec{x} \in \mathfrak{S}_{<\kappa}(\mathfrak{K})$ there are $a \in \mathfrak{K}$ and an arrow of sequences $F : \vec{x} \to a$.

Theorem

Let $\kappa > 1$ be a regular cardinal and let \Re be a κ -bounded category which has the amalgamation property and the joint embedding property. Assume further that \Re has at most κ isomorphic types of arrows.

Then there exists a Fraïssé sequence $\vec{u}: \kappa \to \mathfrak{K}$.

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \Re . Then for every countable sequence \vec{x} in \Re there exists an arrow $\vec{t} : \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} has the amalgamation property then \vec{u} is cofinal in $\mathfrak{S}_{\omega}(\mathfrak{K})$.

Countable Fraïssé sequences

Theorem (Countable Cofinality)

Assume \vec{u} is a Fraïssé sequence in a category with amalgamation \Re . Then for every countable sequence \vec{x} in \Re there exists an arrow $\vec{f} : \vec{x} \to \vec{u}$.

Corollary

Let \vec{u} be a countable Fraïssé sequence in a category \mathfrak{K} . If \mathfrak{K} has the amalgamation property then \vec{u} is cofinal in $\mathfrak{S}_{\omega}(\mathfrak{K})$.

Cofinality $\cdots \rightarrow u_{\ell_0} \longrightarrow \cdots \longrightarrow \cdots$

 $X_0 \longrightarrow X_1 \longrightarrow \cdots$

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are ω -Fraïssé sequences in a fixed category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

$$\vec{u} \xrightarrow{F} \vec{v} \qquad \vec{u} \xrightarrow{F} \vec{v}$$

$$\downarrow_{i_{k}} \qquad \downarrow_{j_{\ell}} \qquad \downarrow_{i_{k}} \qquad \downarrow_{j_{\ell}} \qquad \downarrow_{$$

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are ω -Fraïssé sequences in a fixed category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a,b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

Homogeneity & Uniqueness

Theorem

Assume that \vec{u} , \vec{v} are ω -Fraïssé sequences in a fixed category \Re .

- (a) Let $f: u_k \to v_\ell$, where $k, \ell < \omega$. Then there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ u_k = v_\ell \circ f$. In particular $\vec{u} \approx \vec{v}$.
- (b) Assume \Re has the amalgamation property. Then for every $a, b \in \Re$ and for every arrows $f: a \to b$, $i: a \to \vec{u}$, $j: b \to \vec{v}$ there exists an isomorphism $F: \vec{u} \to \vec{v}$ such that $F \circ i = j \circ f$.

Back-and-forth method $U_{k} \xrightarrow{g_{0}} U_{k_{1}} \xrightarrow{g_{1}} V_{\ell_{2}} \xrightarrow{y_{\ell_{2}}} \cdots$

Back-and-forth method $U_{k} \xrightarrow{g_{0}} U_{k_{1}} \xrightarrow{g_{1}} U_{k_{2}} \xrightarrow{g_{2}} \cdots$ $V_{\ell} \xrightarrow{V_{\ell_{1}}} V_{\ell_{1}} \xrightarrow{V_{\ell_{2}}} V_{\ell_{2}} \xrightarrow{V_{\ell_{3}}} \cdots$

Let \mathfrak{B}_{fd} denote the category of finite-dimensional Banach spaces with linear operators of norm \leqslant 1.

Claim

The subcategory of \mathfrak{B}_{fd} consisting of isometric embeddings has the amalgamation property.

The problem is that there are too many arrows...

Theorem (Gurarii, 1966)

There exists a separable Banach space $\mathbb G$ with the following property:

(UD) Given finite-dimensional spaces $X \subseteq Y$, given an isometric embedding $\underline{f}: X \to \mathbb{G}$, given $\varepsilon > 0$, there exists an ε -isometric embedding $\overline{f}: Y \to \mathbb{G}$ such that $\overline{f} \upharpoonright X = f$.

Let \mathfrak{B}_{fd} denote the category of finite-dimensional Banach spaces with linear operators of norm \leqslant 1.

Claim

The subcategory of $\mathfrak{B}_{\mathsf{fd}}$ consisting of isometric embeddings has the amalgamation property.

The problem is that there are too many arrows...

Theorem (Gurarii, 1966)

There exists a separable Banach space $\mathbb G$ with the following property:

(UD) Given finite-dimensional spaces $X \subseteq Y$, given an isometric embedding $\underline{f}: X \to \mathbb{G}$, given $\varepsilon > 0$, there exists an ε -isometric embedding $\overline{f}: Y \to \mathbb{G}$ such that $\overline{f} \upharpoonright X = f$.

Let \mathfrak{B}_{fd} denote the category of finite-dimensional Banach spaces with linear operators of norm \leqslant 1.

Claim

The subcategory of \mathfrak{B}_{fd} consisting of isometric embeddings has the amalgamation property.

The problem is that there are too many arrows...

Theorem (Gurarii, 1966)

There exists a separable Banach space \mathbb{G} with the following property:

(UD) Given finite-dimensional spaces $X \subseteq Y$, given an isometric embedding $\underline{f}: X \to \mathbb{G}$, given $\varepsilon > 0$, there exists an ε -isometric embedding $\overline{f}: Y \to \mathbb{G}$ such that $\overline{f} \upharpoonright X = f$.

Let \mathfrak{B}_{fd} denote the category of finite-dimensional Banach spaces with linear operators of norm \leqslant 1.

Claim

The subcategory of \mathfrak{B}_{fd} consisting of isometric embeddings has the amalgamation property.

The problem is that there are too many arrows...

Theorem (Gurarii, 1966)

There exists a separable Banach space ${\mathbb G}$ with the following property:

(UD) Given finite-dimensional spaces $X \subseteq Y$, given an isometric embedding $f: X \to \mathbb{G}$, given $\varepsilon > 0$, there exists an ε -isometric embedding $\overline{f}: Y \to \mathbb{G}$ such that $\overline{f} \upharpoonright X = f$.

Theorem (Lusky, 1976)

The Gurarii space is unique up to isometry.

Theorem (?)

The Gurarii space contains isometric copies of all separable Banach spaces.

Theorem (Lusky, 1976)

The Gurarii space is unique up to isometry.

Theorem (?)

The Gurarii space contains isometric copies of all separable Banach spaces.

Given a category \mathfrak{K} , define a new category \mathfrak{T} as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \mathfrak{K} \to \mathfrak{K}$ and $r: \ddagger \mathfrak{K} \to \mathfrak{K}$. A sequence \vec{x} in $\ddagger \mathfrak{K}$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \mathfrak{K} .

Example

Given a category \mathfrak{K} , define a new category \mathfrak{K} as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \Re$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \Re and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \mathfrak{K} \to \mathfrak{K}$ and $r: \ddagger \mathfrak{K} \to \mathfrak{K}$. A sequence \vec{x} in $\ddagger \mathfrak{K}$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \mathfrak{K} .

Example

Given a category \Re , define a new category $\mathop{\sharp} \Re$ as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \mathfrak{K}$ is a pair $\langle e, r \rangle$ such that $e: x \to y$, $r: y \to x$ are arrows of \mathfrak{K} and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \mathfrak{K} \to \mathfrak{K}$ and $r: \ddagger \mathfrak{K} \to \mathfrak{K}$. A sequence \vec{x} in $\ddagger \mathfrak{K}$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \mathfrak{K} .

Example

Given a category \Re , define a new category $\mathop{\ddagger}\Re$ as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \mathfrak{K}$ is a pair $\langle e, r \rangle$ such that $e \colon x \to y$, $r \colon y \to x$ are arrows of \mathfrak{K} and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \mathfrak{K} \to \mathfrak{K}$ and $r: \ddagger \mathfrak{K} \to \mathfrak{K}$.

A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Given a category \Re , define a new category $\mathop{\sharp} \Re$ as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \mathfrak{K}$ is a pair $\langle e, r \rangle$ such that $e \colon x \to y$, $r \colon y \to x$ are arrows of \mathfrak{K} and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Given a category \Re , define a new category $\mathop{\sharp} \Re$ as follows.

- The objects of $\ddagger \Re$ are the objects of \Re .
- An arrow from x into y in $\ddagger \mathfrak{K}$ is a pair $\langle e, r \rangle$ such that $e \colon x \to y$, $r \colon y \to x$ are arrows of \mathfrak{K} and $r \circ e = \mathrm{id}_x$.

There are two natural functors $e: \ddagger \Re \to \Re$ and $r: \ddagger \Re \to \Re$. A sequence \vec{x} in $\ddagger \Re$ will be called semicontinuous if $e[\vec{x}]$ is continuous in \Re .

Example

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f: u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f}: \vec{u} \to \vec{v}$ such that $\vec{f} \circ u_0^\infty = f$.

In particular $\vec{u} \approx \vec{v}$.

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f\colon u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f}\colon \vec{u} \to \vec{v}$ such that $\vec{f} \circ u_0^\infty = f$.

In particular $\vec{u} \approx \vec{v}$.

Theorem

Let \Re be a category and let \vec{u} and \vec{v} be semicontinuous Fraïssé sequences in $\ddagger \Re$ of the same regular length κ . Then for every arrow $f\colon u_0 \to \vec{v}$ there exists an isomorphism of sequences $\vec{f}\colon \vec{u} \to \vec{v}$ such that $\vec{f} \circ u_0^\infty = f$.

In particular $\vec{u} \approx \vec{v}$.

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\ddagger \mathfrak{K}$. If $\langle e(f), e(g) \rangle$ has a pushout in \mathfrak{K} , then $\langle f, g \rangle$ has a proper amalgamation in $\ddagger \mathfrak{K}$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\ddagger \mathfrak{K}$ such that the following diagrams commute in \mathfrak{K} .

Proposition

Let $f: z \to x$, $g: z \to y$ be arrows in $\ddagger \mathfrak{K}$. If $\langle e(f), e(g) \rangle$ has a pushout in \mathfrak{K} , then $\langle f, g \rangle$ has a proper amalgamation in $\ddagger \mathfrak{K}$. That is, there exist arrows $h: x \to w$, $k: y \to w$ in $\ddagger \mathfrak{K}$ such that the following diagrams commute in \mathfrak{K} .

Claim

If \Re has pullbacks or pushouts then $\mathop{\sharp} \Re$ has proper amalgamations.

Proof.

Claim

If \Re has pullbacks or pushouts then $\mathop{\sharp} \Re$ has proper amalgamations.

Proof.

Claim

If \Re has pullbacks or pushouts then $\mathop{\sharp} \Re$ has proper amalgamations.

Proof.

If \Re has pullbacks or pushouts then $\mathop{\sharp} \Re$ has proper amalgamations.

If \Re has pullbacks or pushouts then $\mathop{\sharp} \Re$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

If $\mathfrak R$ has pullbacks or pushouts then $\sharp \mathfrak R$ has proper amalgamations.

Theorem

Let \mathfrak{K} be a category such that $\ddagger \mathfrak{K}$ has proper amalgamations. Assume \vec{u} is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak{K}$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\leqslant \kappa}(\ddagger \mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \mathfrak{K}$.

Theorem

Let $\mathfrak R$ be a category such that $\ddagger \mathfrak R$ has proper amalgamations. Assume $\vec{\mathsf u}$ is a semi-continuous κ -Fraïssé sequence in $\ddagger \mathfrak R$.

Then for every semi-continuous sequence $\vec{x} \in \mathfrak{S}_{\leqslant \kappa}(\ddagger \mathfrak{K})$ there exists an arrow of sequences $\vec{f} : \vec{x} \to \vec{u}$ in $\ddagger \mathfrak{K}$.

Claim

Left-invertible arrows have pushouts in Bsep.

Claim

The category $\mathfrak{B}_{\mathsf{sep}}$ has $\mathsf{2}^{\aleph_0}$ many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\mathfrak{t}\mathfrak{B}_{sep}$.

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category $\mathfrak{B}_{\mathsf{sep}}$ has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in \mathfrak{P}_{sep} .

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in \mathfrak{P}_{sep} .

Claim

Left-invertible arrows have pushouts in \mathfrak{B}_{sep} .

Claim

The category \mathfrak{B}_{sep} has 2^{\aleph_0} many isomorphic types of arrows.

Theorem

Assume $2^{\aleph_0} = \aleph_1$. Then there exists a semicontinuous ω_1 -Fraïssé sequence in $\ddagger \mathfrak{B}_{sep}$.

Theorem

Assume $2^{\aleph_0} = \aleph_1$.

There exists a Banach space E with a PRI $\{P_{\alpha}\}_{\alpha<\omega_1}$ and of density \aleph_1 , which has the following properties:

- (a) The family $\{X \subseteq E : X \text{ is 1-complemented in } E\}$ is, modulo linear isometries, the class of all Banach spaces of density $\leqslant \aleph_1$ with a PRI.
- (b) Given separable subspaces X, Y ⊆ E, norm one projections P: E → X, Q: E → Y, both compatible with {P_α}_{α<ω1}, and given a linear isometry T: X → Y, there exist a linear isometry H: E → E extending T and satisfying H ∘ P = Q ∘ H.

Moreover, the above properties describe the space E uniquely, up to a linear isometry.

Selected bibliography

- DROSTE, M.; GÖBEL, R., A categorical theorem on universal objects and its application in abelian group theory and computer science, Proceedings of the International Conference on Algebra, Part 3 (Novosibirsk, 1989), 49–74, Contemp. Math., 131, Part 3, Amer. Math. Soc., Providence, RI, 1992
- FRAÏSSÉ, R., Sur quelques classifications des systèmes de relations, Publ. Sci. Univ. Alger. Sér. A. 1 (1954) 35–182
- IRWIN, T.; SOLECKI, S., *Projective Fraïssé limits and the pseudo-arc*, Trans. Amer. Math. Soc. **358**, no. 7 (2006) 3077–3096
- JÓNSSON, B., *Homogeneous universal relational systems*, Math. Scand. 8 (1960) 137–142
- Kubiś, W., Fraïssé sequences: category-theoretic approach to universal homogeneous structures, preprint http://arxiv.org/abs/0711.1683