Corson compact semilattices

Wiesław Kubiś

Czech Academy of Sciences, Prague http://www.math.cas.cz/~kubis/

38th Winter School in Abstract Analysis Klenčí pod Čerchovem, 16 – 23 January 2010

W.Kubiś (http://www.math.cas.cz/~kubis/)

Motivations

Theorem (Gruenhage 1986)

Let T be a tree and let P(T) denote the space of all initial segments of

T. Then P(T) is Eberlein compact if and only if T is special.

A partially ordered set $\langle T, \langle \rangle$ is special if

$T=\bigcup_{n\in\omega}T_n$

where each T_n consists of pairwise incomparable elements.

Motivations

Theorem (Gruenhage 1986)

Let T be a tree and let P(T) denote the space of all initial segments of T. Then P(T) is Eberlein compact if and only if T is special.

A partially ordered set $\langle T, < \rangle$ is special if

$T=\bigcup_{n\in\omega}T_n$

where each T_n consists of pairwise incomparable elements.

Motivations

Theorem (Gruenhage 1986)

Let T be a tree and let P(T) denote the space of all initial segments of T. Then P(T) is Eberlein compact if and only if T is special.

A partially ordered set $\langle T, \langle \rangle$ is special if

$$T=\bigcup_{n\in\omega}T_n$$

where each T_n consists of pairwise incomparable elements.

A compact space K is Eberlein if it is homeomorphic to a weakly compact subset of some Banach space.

Proposition

Let K be a 0-dimensional compact space. Then K is Eberlein if and only if the space

 $\mathcal{C}_{p}(K,2)$

is σ -compact.

A compact space K is Eberlein if it is homeomorphic to a weakly compact subset of some Banach space.

Proposition

Let K be a 0-dimensional compact space. Then K is Eberlein if and only if the space

 $C_{p}(K,2)$

is σ -compact.

A tree is a partially ordered set $\langle T, \leqslant \rangle$ which is a meet semilattice, i.e.

 $x \wedge y = \inf\{x, y\}$

exists for every $x, y \in T$ and for each $y \in T$ the set

 $\{x \in T \colon x < y\}$

is well ordered.

Fact

Assume T is a tree. Then P(T) is a compact tree.

A tree is a partially ordered set $\langle T, \leqslant \rangle$ which is a meet semilattice, i.e.

 $x \wedge y = \inf\{x, y\}$

exists for every $x, y \in T$ and for each $y \in T$ the set

 $\{x \in T \colon x < y\}$

is well ordered.

Fact

Assume T is a tree. Then P(T) is a compact tree.

Compact semilattices

A topological semilattice is a structure of the form

$$\mathbb{X} = \langle \boldsymbol{X}, \wedge, \boldsymbol{0}, \tau \rangle,$$

such that $\langle X, \wedge \rangle$ is a semilattice, 0 is the minimal element of X and τ is a Hausdorff topology on X for which \wedge is continuous.

3 > 4 3

Theorem

Let $\langle K, \wedge, 0, \tau \rangle$ be as above with $\langle K, \tau \rangle$ compact, assuming that \wedge is only separately continuous. Then \wedge is continuous and the topology τ is uniquely determined by the semilattice operation \wedge .

< 同 ト < 三 ト < 三 ト

Let $\mathbb{K} = \langle K, \wedge, \mathbf{0}, \tau \rangle$ be a topological 0-dimensional semilattice. Define

 $\mathbb{K}^* = \mathsf{hom}(\mathbb{K}, \mathbf{2}),$

where

$$\mathbf{2} = \langle \{\mathbf{0},\mathbf{1}\}, \wedge, \mathbf{0}, \tau_{\mathbf{2}} \rangle$$

is the unique discrete two-element semilattice.

Endow \mathbb{K}^* with the obvious semilattice operation and with the pointwise topology.

Claim

• If K is discrete then K* is compact.

• If \mathbb{K} is either discrete or compact then $\mathbb{K}^{**} = \mathbb{K}$.

・ロン ・四 ・ ・ ヨン ・ ヨン

Let $\mathbb{K} = \langle K, \wedge, 0, \tau \rangle$ be a topological 0-dimensional semilattice. Define

 $\mathbb{K}^* = hom(\mathbb{K}, 2),$

where

$$\mathbf{2} = \langle \{\mathbf{0},\mathbf{1}\}, \wedge, \mathbf{0}, \tau_\mathbf{2} \rangle$$

is the unique discrete two-element semilattice. Endow \mathbb{K}^* with the obvious semilattice operation and with the pointwise topology.

Claim

• If K is discrete then K* is compact.

• If \mathbb{K} is either discrete or compact then $\mathbb{K}^{**} = \mathbb{K}$.

Let $\mathbb{K} = \langle K, \wedge, \mathbf{0}, \tau \rangle$ be a topological 0-dimensional semilattice. Define

 $\mathbb{K}^* = hom(\mathbb{K}, 2),$

where

$$\mathbf{2} = \langle \{\mathbf{0},\mathbf{1}\}, \wedge, \mathbf{0}, \tau_\mathbf{2} \rangle$$

is the unique discrete two-element semilattice. Endow \mathbb{K}^* with the obvious semilattice operation and with the pointwise topology.

Claim

• If K is discrete then K* is compact.

• If \mathbb{K} is either discrete or compact then $\mathbb{K}^{**} = \mathbb{K}$.

Let $\mathbb{K} = \langle K, \wedge, \mathbf{0}, \tau \rangle$ be a topological 0-dimensional semilattice. Define

 $\mathbb{K}^* = hom(\mathbb{K}, 2),$

where

$$\mathbf{2} = \langle \{\mathbf{0},\mathbf{1}\}, \wedge, \mathbf{0}, \tau_\mathbf{2} \rangle$$

is the unique discrete two-element semilattice.

Endow \mathbb{K}^* with the obvious semilattice operation and with the pointwise topology.

Claim

● If K is discrete then K* is compact.

• If \mathbb{K} is either discrete or compact then $\mathbb{K}^{**} = \mathbb{K}$.

< 回 > < 三 > < 三 >

The duality comes from

K.H. Hofmann, M. Mislove, A. Stralka: *The Pontryagin duality of compact 0-dimensional semilattices and its applications*, Lectures Notes in Mathematics, Vol. **396**, Springer-Verlag, Berlin-New York, **1974**.

Proposition

Let \mathbb{K} be a modest compact semilattice. Then $\mathbb{K}^* \setminus \{0\}$ is discrete.

Theorem

Let \mathbb{K} be a modest 0-dimensional compact semilattice. Then \mathbb{K} is Eberlein compact if and only if

$$\mathbb{K}^*\setminus\{0\}=\bigcup_{n\in\omega}S_n,$$

where for each $n \in \omega$:

• no infinite subset of S_n is centered.

Proposition

Let $\mathbb K$ be a modest compact semilattice. Then $\mathbb K^*\setminus\{0\}$ is discrete.

Theorem

Let $\mathbb K$ be a modest 0-dimensional compact semilattice. Then $\mathbb K$ is Eberlein compact if and only if

$$\mathbb{K}^*\setminus\{0\}=\bigcup_{n\in\omega}S_n,$$

where for each $n \in \omega$:

• no infinite subset of S_n is centered.

Proposition

Let \mathbb{K} be a modest compact semilattice. Then $\mathbb{K}^* \setminus \{0\}$ is discrete.

Theorem

Let $\mathbb K$ be a modest 0-dimensional compact semilattice. Then $\mathbb K$ is Eberlein compact if and only if

where for each $n \in \omega$:

• no infinite subset of *S_n* is centered.

・ロト ・四ト ・ヨト ・ヨト

Proposition

Let \mathbb{K} be a modest compact semilattice. Then $\mathbb{K}^* \setminus \{0\}$ is discrete.

Theorem

Let $\mathbb K$ be a modest 0-dimensional compact semilattice. Then $\mathbb K$ is Eberlein compact if and only if

$$\mathbb{K}^*\setminus\{\mathbf{0}\}=\bigcup_{n\in\omega}S_n,$$

where for each $n \in \omega$:

• no infinite subset of *S_n* is centered.

Proposition

Let \mathbb{K} be a modest compact semilattice. Then $\mathbb{K}^* \setminus \{0\}$ is discrete.

Theorem

Let $\mathbb K$ be a modest 0-dimensional compact semilattice. Then $\mathbb K$ is Eberlein compact if and only if

$$\mathbb{K}^*\setminus\{\mathbf{0}\}=\bigcup_{n\in\omega}S_n,$$

where for each $n \in \omega$:

• no infinite subset of S_n is centered.

Assume \mathbb{K} is Eberlein.

- $\mathbb{K}^* \subseteq \mathcal{C}_p(\mathbb{K}, 2)$ is closed, hence σ -compact.
- An infinite compact subset of \mathbb{K}^* is of the form

$A \cup \{0\}$

where for each $x \in K$ the set $\{a \in A : a(x) = 1\}$ is finite.

- Let $\mathbb{K}^* = \bigcup_{n \in \omega} S_n$, where each S_n is compact.
- Then no infinite subset of S_n is centered.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< 🗇 🕨

Assume \mathbb{K} is Eberlein.

- $\mathbb{K}^* \subseteq \mathcal{C}_p(\mathbb{K}, 2)$ is closed, hence σ -compact.
- An infinite compact subset of K* is of the form

$A \cup \{0\}$

where for each $x \in K$ the set $\{a \in A : a(x) = 1\}$ is finite.

- Let $\mathbb{K}^* = \bigcup_{n \in \omega} S_n$, where each S_n is compact.
- Then no infinite subset of S_n is centered.

(B)

< 🗇 🕨

Assume \mathbb{K} is Eberlein.

- $\mathbb{K}^* \subseteq \mathcal{C}_p(\mathbb{K}, 2)$ is closed, hence σ -compact.
- An infinite compact subset of \mathbb{K}^* is of the form

$\textit{A} \cup \{0\}$

where for each $x \in K$ the set $\{a \in A : a(x) = 1\}$ is finite.

- Let $\mathbb{K}^* = \bigcup_{n \in \omega} S_n$, where each S_n is compact.
- Then no infinite subset of *S_n* is centered.

A B >
A B >
A

< 17 ▶

Assume \mathbb{K} is Eberlein.

- $\mathbb{K}^* \subseteq \mathcal{C}_p(\mathbb{K}, 2)$ is closed, hence σ -compact.
- An infinite compact subset of \mathbb{K}^* is of the form

 $\textit{A} \cup \{0\}$

where for each $x \in K$ the set $\{a \in A : a(x) = 1\}$ is finite.

• Let $\mathbb{K}^* = \bigcup_{n \in \omega} S_n$, where each S_n is compact.

• Then no infinite subset of *S_n* is centered.

A B >
A B >
A

< 17 ▶

Assume \mathbb{K} is Eberlein.

- $\mathbb{K}^* \subseteq \mathcal{C}_p(\mathbb{K}, 2)$ is closed, hence σ -compact.
- An infinite compact subset of \mathbb{K}^* is of the form

$\textit{A} \cup \{0\}$

where for each $x \in K$ the set $\{a \in A : a(x) = 1\}$ is finite.

- Let $\mathbb{K}^* = \bigcup_{n \in \omega} S_n$, where each S_n is compact.
- Then no infinite subset of *S_n* is centered.

3

(B)

< 17 ▶

Proposition

Let K be a 0-dimensional compact. Then K is Eberlein iff there exists a T_0 -separating family of clopen sets

$$\mathcal{U} = \bigcup_{n \in \omega} \mathcal{U}_n$$

such that each U_n is point-finite.

4 3 > 4 3

< 6 b

Let $\langle T, \leqslant \rangle$ be a tree. Define

$$S(T)=T\cup\{\infty\},$$

where $\infty \notin T$ and consider the following ordering \leq on S(T):

• $s \leq t$ iff either $s = \infty$ or $s \geq t$.

Claim

 $\langle S(T), \wedge, \infty \rangle$ is a semilattice and

 $S(T)^* = P(T).$

Claim

P(T) is a modest semilattice.

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Let $\langle T, \leqslant \rangle$ be a tree. Define

$$S(T)=T\cup\{\infty\},$$

where $\infty \notin T$ and consider the following ordering \leq on S(T):

• $s \leq t$ iff either $s = \infty$ or $s \geq t$.

Claim

 $\langle S(T), \wedge, \infty \rangle$ is a semilattice and

 $S(T)^* = P(T).$

Claim

P(T) is a modest semilattice.

W.Kubiś (http://www.math.cas.cz/~kubis/)

3

< 日 > < 同 > < 回 > < 回 > < □ > <

Let $\langle T, \leqslant \rangle$ be a tree. Define

$$S(T)=T\cup\{\infty\},$$

where $\infty \notin T$ and consider the following ordering \leq on S(T):

• $s \leq t$ iff either $s = \infty$ or $s \geq t$.

Claim

 $\langle S(T), \wedge, \infty \rangle$ is a semilattice and

 $S(T)^* = P(T).$

Claim

P(T) is a modest semilattice.

W.Kubiś (http://www.math.cas.cz/~kubis/)

Let $\langle T, \leqslant \rangle$ be a tree. Define

$$S(T)=T\cup\{\infty\},$$

where $\infty \notin T$ and consider the following ordering \leq on S(T):

• $s \leq t$ iff either $s = \infty$ or $s \geq t$.

Claim

 $\langle S(T), \wedge, \infty \rangle$ is a semilattice and

 $S(T)^* = P(T).$

Claim

P(T) is a modest semilattice.

W.Kubiś (http://www.math.cas.cz/~kubis/)

イロト 不得 トイヨト イヨト 二日

Corollary

Let T be a tree. Then P(T) is Eberlein compact if and only if

$$T=\bigcup_{n\in\omega}S_n,$$

where each S_n is an antichain.

3

A B < A B </p>

Image: A matrix and a matrix

An adequate compact is a space $K \subseteq \mathcal{P}(\kappa)$ satisfying

 $x \in K \iff [x]^{<\omega} \subseteq K.$

Claim

Let $K \subseteq \mathcal{P}(\kappa)$ be adequate. Then K^* is isomorphic to

 $\langle \mathbf{K} \cap [\kappa]^{<\omega}, \cap, \emptyset, \tau \rangle,$

where all nonempty sets are isolated and a basic neighborhood of \emptyset is of the form

$$K^* \setminus \{ x \colon x \subseteq a \},\$$

where $a \in K$.

An adequate compact is a space $K \subseteq \mathcal{P}(\kappa)$ satisfying

$$x \in K \iff [x]^{<\omega} \subseteq K.$$

Claim

Let $K \subseteq \mathcal{P}(\kappa)$ be adequate. Then K^* is isomorphic to

 $\langle K \cap [\kappa]^{<\omega}, \cap, \emptyset, \tau \rangle,$

where all nonempty sets are isolated and a basic neighborhood of \emptyset is of the form

$$K^* \setminus \{ x \colon x \subseteq a \},\$$

where $a \in K$.

An adequate compact is a space $K \subseteq \mathcal{P}(\kappa)$ satisfying

$$x \in K \iff [x]^{<\omega} \subseteq K.$$

Claim

Let $K \subseteq \mathcal{P}(\kappa)$ be adequate. Then K^* is isomorphic to

 $\langle \mathbf{K} \cap [\kappa]^{<\omega}, \cap, \emptyset, \tau \rangle,$

where all nonempty sets are isolated and a basic neighborhood of \emptyset is of the form

$$K^* \setminus \{ x \colon x \subseteq a \},\$$

where $a \in K$.

An adequate compact is a space $K \subseteq \mathcal{P}(\kappa)$ satisfying

$$x \in K \iff [x]^{<\omega} \subseteq K.$$

Claim

Let $K \subseteq \mathcal{P}(\kappa)$ be adequate. Then K^* is isomorphic to

 $\langle \mathbf{K} \cap [\kappa]^{<\omega}, \cap, \emptyset, \tau \rangle,$

where all nonempty sets are isolated and a basic neighborhood of \emptyset is of the form

$$K^* \setminus \{ x \colon x \subseteq a \},\$$

where $a \in K$.

3

(B)

Image: A matrix and a matrix

Corollary

Let $K \subseteq \mathcal{P}(\kappa)$ be an adequate compact. Then K is Eberlein if and only if

$$\kappa = \bigcup_{n \in \omega} S_n$$

where $\mathcal{P}(S_n) \cap K \subseteq [\kappa]^{<\omega}$ for every $n \in \omega$.

(B)

Image: A mathematical states in the second states in the second

Spaces of chains

Let *P* be a partially ordered set. Denote by K(P) the family of all chains of *P*.

Claim

K(P) is an adequate compact.

Corollary (Leiderman & Sokolov)

Let P be a partially ordered set. Then K(P) is Eberlein if and only if P is special.

4 3 > 4 3

Image: A matrix and a matrix

Spaces of chains

Let *P* be a partially ordered set. Denote by K(P) the family of all chains of *P*.

Claim

K(P) is an adequate compact.

Corollary (Leiderman & Sokolov)

Let P be a partially ordered set. Then K(P) is Eberlein if and only if P is special.

Spaces of chains

Let *P* be a partially ordered set. Denote by K(P) the family of all chains of *P*.

Claim

K(P) is an adequate compact.

Corollary (Leiderman & Sokolov)

Let P be a partially ordered set. Then K(P) is Eberlein if and only if P is special.

3

A B < A B </p>

Image: A matrix and a matrix

Assume K(P) is Eberlein. Write $P = \bigcup_{n \in \omega} P_n$ so that no P_n contains an infinite chain.

A little bit of work shows that each P_n is special.

Assume K(P) is Eberlein. Write $P = \bigcup_{n \in \omega} P_n$ so that no P_n contains an infinite chain. A little bit of work shows that each P_n is special.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example (Alster & Pol)

Let $P \subseteq \mathbb{R}$ be uncountable and let \leq be a well order on P. Define $x \leq y$ iff both $x \leq y$ and $x \leq y$. Then P is a poset in which all chains are countable.

Claim

K(P) is Corson and not Eberlein compact.

Proof.

Suppose K(P) is Eberlein. Then $P = \bigcup_{n \in \omega} P_n$ where each P_n is an antichain.

Let P_k be uncountable. There is $t_0 < t_1 < t_2 < \dots$ in P_k .

But then $\ldots \leq t_2 \leq t_1 \leq t_0$, which contradicts the fact that \leq is a well order.

Example (Alster & Pol)

Let $P \subseteq \mathbb{R}$ be uncountable and let \leq be a well order on P. Define $x \leq y$ iff both $x \leq y$ and $x \leq y$. Then P is a poset in which all chains are countable.

Claim

K(P) is Corson and not Eberlein compact.

Proof.

Suppose K(P) is Eberlein. Then $P = \bigcup_{n \in \omega} P_n$ where each P_n is an antichain.

Let P_k be uncountable. There is $t_0 < t_1 < t_2 < \dots$ in P_k .

But then $\ldots \preceq t_2 \preceq t_1 \preceq t_0$, which contradicts the fact that \preceq is a well order.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Example (Alster & Pol)

Let $P \subseteq \mathbb{R}$ be uncountable and let \leq be a well order on P. Define $x \leq y$ iff both $x \leq y$ and $x \leq y$. Then P is a poset in which all chains are countable.

Claim

K(P) is Corson and not Eberlein compact.

Proof.

Suppose K(P) is Eberlein. Then $P = \bigcup_{n \in \omega} P_n$ where each P_n is an antichain.

Let P_k be uncountable. There is $t_0 < t_1 < t_2 < \ldots$ in P_k .

But then $\ldots \leq t_2 \leq t_1 \leq t_0$, which contradicts the fact that \leq is a well order.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

THE END

W.Kubiś (http://www.math.cas.cz/~kubis/)

2

ヘロン 人間と 人間と 人間と