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Existence and uniqueness criteria are established for the solution of the equation
u" = pDu + pyDi’ + pyln),

satisfying the boundary conditions
b
u(a+) =, ub—) = f u(x) dulx) + ¢,

where the coefficients p; :la, b{— R (k = 0, 1, 2) are locally integrable and
wu:la, b] — R is a function of bounded variation. These criteria include the case
when the functions py :la, b[— R (k = 0, 1, 2) are not integrable on [a, 4], having
singularitics in a and b. © 1995 Academic Press, Inc.

1. STATEMENT OF MAIN RESULTS

The following notation is used throughout.

R is the set of all real numbers.

L([a, b)) is the set of functions p :]a, b[— R which are Lebesque
integrable on [a, b].

L,,.(Ja, b)) is the set of functions p :]a, b[— R which are Lebesque
integrable on [a + &, b — ¢] for any sufficiently small £ > 0.
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890 A. LOMTATIDZE

o:L,a, b)) — L, (Ja, bl) is the operator defined by

H

a(p)(1) = exp [ j( p(s) ds].

a+b)2

If o(p) € L(a, b)), &« € {a, b], and B E€]a, b], then

o (p)O) = f op(s)ds|,

o )(t)

T PIE) = ———r J opls) ds f op(s) ds|.

(p)(t)

u(s+) and wu(s—) are the right-hand and the left-hand limits of the
function u in s.

[p), = H|p®)] + p(), [p(O). = K| p(®)| — p(r)).

By a solution of the equation
u" = pi(Ou + p(Du’ + py(t), (1.

where p, :la, b[— R (k = 0, 1, 2), we mean a function u :]a, b[— R which
is absolutely continuous on any closed subinterval of la, b[ along with its
derivative and satisfies (1.1) almost everywhere in Ja, b[.

Letc, € R (¢ =1, 2) and u:{a, b] — R be a function of bounded
variation. This paper is concerned with finding the a solution of Eq. (1.1)
satisfying boundary conditions

wa+)=c,,  ulb~)= jb u(s) dpuls) + ¢ (1.2)

a

Parallel with (1.1), (1.2) we shall also consider the corresponding homo-
geneous problem

U =pHu + p,(u’, (1.1y)

b
ua) =0,  utb=)= | u(s)du(s). (1.2,)

a

In the case when u is a piecewise constant function, the problems of the
type (1.1), {1.2) were studied by many authors (cf., for example, [1-3, 5,
6, 8] and the references indicated therein). In particular, in [1, 2, 8) the
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problem (1.1), (1.2) was studied in the regular case (i.e., when p, €
L({a, b)), k = 0, 1, 2) with boundary conditions

ula+)=cy,  ub-)=2Y aut)+ c,,
i=1

wherea < ) <t < - <1, <b, o, €RG=T,n,c,ERG=1,2).

The criteria of solvability of the problem (1.1), (1.2) given in [5, 6]
include also the singular case (i.e., when, in general, p, & L({a, b])). But
the boundary conditions there are of very specific type

ula+) = ¢y, u(b—) = hu(ty) + c,

where a < t; < b, A € [0, .

As for the general case (i.e., when p, in general, is not piecewise
constant), this problem has not been studied even in the regular case.

In this paper we are going to investigate the problem of the unique
solvability of the problem (1.1), (1.2) including the possibility when p, &
L(la, b))k = 0, 1, 2).

Below we state the conditions under which the homogeneous problem
(1.1y), (1.2,) has only the zero solution. It is also shown that the latter is
necessary and sufficient for the unique solvability of the problem (1.1),
(1.2) if only

U(pZ) e IL([a’ b])a gab(pZ)pi E ']_([a, b]) (i = 09 l)'

Before we go on to formulate the main results, we introduce the follow-
ing definitions

DEFINITION 1.1. We say that a vector-function (p,, p,) :la, b[— R?
belongs to the class V(la, bf) if

U(DZ) € ﬂ—([ay b])a Uab(pZ)p] € ﬂ_([a, b])’

and Eq. (1.1y) has no nonzero solution satisfying the conditions u(a+) =
0, u(b—-) = 0.

DEFINITION 1.2. We say that a vector-function (p,, p,) :la, b[— R?
belongs to the class U(la, bl) if (p,, p,) € V(a, b,[) for any b, €la, b).

Criteria for a vector-function (p,, p,) :1a, b[— R? to belong to the classes
V(a, b]) or U(la, b]) can be found in [3, 4, 7].
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DerFiniTiON 1.3, A function g :]a, b{x]a, b[— R is said to be the
Green function of the problem (1.1;), (1.2;) if for any fixed v €]a, b|:

(1) the function u(f) = g(¢, 7) is continuous on Ja, b[ and satisfies
the boundary conditions (1.2);

(2) the restrictions of u on Ja, 7] and Jr, b[ are the solutions of (1.1,);
() w@t)—uw(E-)=1,

1.1. The Green Formula
THEOREM 1.1. Let

a(p) €L(a, b)),  oulp)p€L1a, b)) (=0,1). (1.3)

Then the problem (1.1), (1.2) is uniquely solvable if and only if the corre-
sponding homogeneous problem (1.1y), (1.2,) has only the zero solution.
If the latter (s fulfilled, then the unique Green function g of the problem
(1.1y), (1.2, exists and the solution u of (1.1), (1.2) is represented by the
Green formula

b
u(t) = uglt) + f gt, Dpr)ydr  fora<i<b,

where u, is the solution of (1.1g), (1.2).

As it will be shown below (see Lemma 2.10), the Green function of the
problem (1.1y), (1.2;) admits the estimate

lg(t, 7)| = co,(p)r)  fora<t,r<b.

Therefore, the integral appearing in the right side of the Green formula
does exist.

{.2. Existence and Uniqueness Theorems

For further convenience we introduce the following notation. Let u be
a function of bounded variation, o(p,) € L([a, b]), and

b
5= [ (1 + () = b (p)s) ds #0. (1.4)

Then put

b
hpa)it) = 87! (oa( PO [ w()a (p(s) ds

— a(p) ) f ‘ u(s)a(p)(s) ds) fora <t <b.
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THEOREM 1.2. Let the conditions (1.3), (1.4), and

b
f T (p)($)a (PN, (p,)(s)py(s)]. ds

a

b b (1.5)
+ [ oI pN_ds = [ o(p)(s)ds

hold. Then the problem (1.1), (1.2) has a unique solution.

This theorem, in particular, implies that if (1.3) is fulfilled, p,(r) = 0 for
a <t < b, p is increasing, and 8 > 0, then the problem (1.1), (1.2) has a
unique solution.

Note that if the conditions of Theorem 1.2 are satisfied, then every
nonzero solution of Eq. (1.1,) has at most one zero in [a, b),' i.e.,

(plaPZ)eu(]a, b[)~ (1.6)
THEOREM 1.3. Let the conditions (1.3), (1.4), (1.6), and

b
0 [ U (p)5)p\(s)])- ds

| b (1.7
x exp | ———— f a, (PSP ds [ <1
f a(p)s)ds™®
hold. Then the problem (1.1), (1.2) has a unique solution.
In the case when
p(y=0 fora<t<b (1.8)

the condition (1.6) in Theorem 1.3 can somewhat be weakened. More
precisely, the following theorem is valid

THEOREM 1.3'. Let vy € {—1, 1} and the conditions (1.3), (1.4), (1.8),

(p, P?) € V(a, bD), (1.9

U Cf., for example, [7, Theorem 1.1].
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and

b
0# [ (POlyhu (PO ds

b
X exp [T—l——m f TS| ()] dsjl <1
[[otpards™

a

hold. Then the problem (1.1), (1.2) has a unique solution.

Consider, as an example, the problem
u" = p(Hu; u(a+) =0, u(b—) = ru(ty) +c, (1.10)

wherea <ty <b,c#0,AER, k€ {1,2,3, ..}, and —k*7¥(b — a)* <
p() < —(k — 1’w*(b — a)* for a < t < b. According to Theorem 1.3’,
the problem (1.10) is uniquely solvable if only either

0<A< ?-‘t’:—}g—)f [2(b —a) + (b= tgk'm’ exp (4(';27_':))]_1
or
A > 2_(f:—:—;’—)3 [Z(b —a) = (b~ tk*w* exp (4(’;27:2“))]4 >0
or
A<0 and  2(b—a)<(b- t)k*nlexp ( 4(57:20))
or

_2(b —ap PN (kzwz -
0>)\/—---———t0_a [Z(b a) — (b — tk*m-exp Ab—a) .

In addition the solution of the problem (1.10) has exactly & zeros in [a, b[.

THEOREM 1.3". Let the conditions (1.3), (1.4), (1.9), and
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b
[ 1P i) ds

b

X exp le—l———J'
L o(p)s)ds™

hold. Then the problem (1.1), (1.2) has a unique solution.

ou(PS)|p(s)] ds] <1

THEOREM 1.4. Let p be nondecreasing and the conditions (1.3),
(1.6), and

b b
[ ) = 1) (p:) ds x exp| ——— [ T pSIp (5] ds
“ ag(p)s)yds™ ‘

a

b
<f o (po)s) ds (1.11)

hold. Then the problem (1.1), (1.2) has a unique solution.

Consider, as an example, the problem
b
W =plw,  ula+)=0, ulb-)= f u(s) du(s) + ¢, (1.12)

where u is increasing and | p(£)] < 2/(t — a)(b — 1) for a < t < b. According
to Theorem 1.4 the problem (1.12) is uniquely solvable if

b
[ (utb) = wisn ds = (b — ae.

THEOREM 1.4'. Let u be nondecreasing and the conditions (1.3),
(1.9), and

b
[ (w®) = w510 (p)s5) ds

1 b b
x exp | [ 0PI pi(s)lds [ < [ 7 (p)s) ds
[[otpasds “

hold. Then the problem (1.1), (1.2) has a unique solution.
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THEOREM 1.5. Let the conditions (1.3), (1.6), (1.8) hold and for some
natural n one of the inequalities

b b
j a,(s) dpals) + r j T (P)E)T,(Po)s) dpay(5) < 1, (1.13)

a

b b
f a,(s) du,(s) + rf o (p)($)o,(pr)(s) du,y(s) > 1, (1.14)

be fulfilled where p\(f) + u(t) = p(t) for a < t < b, p, and p, are
respectively nondecreasing and nonincreasing functions and

b
| 0P| pis)] ds

r=—3 1 exp | ,
| o pa)s) ds [ oo ds
al(t) =3 J'l o (p)(s) ds,
| o pa)syds (1.15)

() = () + TZ("p'Z)‘(i_
o (py)(s) ds

a

[Ub( P j , o (P pi(s)|as) ds

&
+ oa(Pz)(t)f T, (P)(S)|pi(s)]a(s) dsjl fora<t<b.

Then the problem (1.1), (1.2) has a unique solution.

Consider, zs an example, the problem
b
u=pu, uat)=c, wub-)=-ut)+ j u(s)ds + c,, (1.16)

where a <ty < b,A>0,c¢,¢, ER,and 0 = p(t) > -2/(t — a)b — 1)
for a < t < b. According to Theorem 1.5, the problem (1.16) is uniquely
solvable if orly either

eXb—a)l—2Nty—a)<2b—a)

or

(b~ a)? — 2\(ty — a)e? = 2(b — a).
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As an another example, consider the problem

"=pu;  ulat)=c, ulb-)= fb u(s) ds + c,,

a

where p(1) < 0 for a < ¢ < b and the function ¢ — (t — a)(b — 1)p(}) is
integrable. According to Theorem 1.5 this problem is uniquely solvable
if only b — a > 2 and (p, 0) € U(la, b)), in particular, if

b
b—a>2 and j (s—a)b—-sps)|ds<b-a,
orb—a<2, (p,0 & Uda, b, and

2
b—-a’

b
[ s = a6 - 9|p(s)] ds < (b~ a)ln

Remark 1.1. Let the conditions of either Theorem 1.2 or Theorem 1.3
be fulfilled. Then the solution u, of the problem

"o__ ', _ : u'(t) —
u' =p,(Ou + py(Hu’; u(a+) =0, ,1_131 —_——U(Pz)(t) 1 (1.17)

satisfies the inequality
b
8 (u,(b—) —j ,(s) d,u(s)) >0
and if the conditions of Theorem 1.4 are fulfilled, then

b
u(b-) >f u,(s) dus(s).

2. AUXILIARY STATEMENTS

In this section some properties of solutions of Egs. (1.1) and (1.1,) are
established. Here and in the sequel we assume that

pi€lylla,bh)  (=0,1,2).
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LEMMA 2.1. Let
o(py) € L(a, b)), o.(p)p € Ula, b). 2.0

Then any solution u of Eq. (1.1y) having finite limits u(a+) and u(b—) sat-

isfies

liminf o, (p,)()]e' ()] =0 2.2)
and
limbinfcra,,( PO =0 2.3)

Proof. We shall prove only the inequality (2.2); (2.3) can be proved
analogously.

Suppose on the contrary, that (2.2) is not fulfilled. Then ¢ > 0 and
a, €la, b[ can be found such that

. -1
lu'(1)] > ea(p)(t) [f a (p)(s) ds] fora <t < ay.

Thus
lu(n)| = J’rao lu’(s)| ds — |u(ag)]
=g | In Fuo-(pz)(s) ds —In Jl a(p)(s) ds] fora <t <aq,

which is impossible in view of boundedness of u. The contradiction thus
obtained shows that (2.2) is true. And so the lemma is proved.

Remark 2.1. Taking into account Lemma 2.1 of (3], it is easy to be
verify that

llirbr: o, (p)|ui(0)] =0,

where u, is a solution of the problem (1.17).
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LEMMA 2.2. Let the conditions (1.4) and (2.1) be fulfilled. Then any
solution u of (1.1y), (1.2,) satisfies

b
[ h )P shuts) ds = —uth-). 2.4)

Proof. 1t is easy to see that
[h,(P)(D)] = coy(p)(2) fora<t<b, (2.5

where ¢ > 0 is a constant. Hence according to Lemma 2.1, the sequences
(a2, and (by){Z, can be found such that they tend monotonically to a

and b, respectively, and

kliT u'(aph,(p)a) = lerP u'(bph,(p)b) = 0. (2.6)
Integration by parts and the differential equation now yield
by by
[ hp) o uts) ds = = [ w @k p)(s) ds
a; a;
b
—f kpz(s)u'(s)h,‘(Pz)(S) ds + u’(bk)hy(pz)(bk) - u’(ak)h“(Pz)(ak)
ai

b
= =87 (u(by) - (@) [ p(s)o(po)(s) ds
by b
+5°! f w(s)u'(s) ds j T (p () ds + u' (bh, (p )by

— u'(ah,(p)ay).

Then (2.5) and (2.6) imply
b
f h(p)(s)p\(s)u(s) ds
1 ? b b
=5 (f w(s) du(s)f o(py)(s)ds — u(b—)f () (p)(s) ds).

Since

b b
[ () duts) = w(byutb=) ~ [ u(s) dp(s) = ulb=)u®) = 1),
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the last inequality can be written as
b b
f h(p)($)p()uls) ds = =8 'u(b—) f (1 + pu(s) = wbDo(ps) ds = —u(b—).

Therefore, (2.4) is valid and the lemma is proved.

Before we go on to formulate the next lemma, we introduce the following
notation. Let (2.1) hold and ¢ € L({a, b]). Then put

b
b | [ swpps) ds
‘PO(PI’Pz):l:f U(Pz)(s)ds] exp | =

b
[ otp) ds

a

b
¢l(pl9p2’ CI) = ‘Po(Pl,Pz)’- q(s) dS.

LeMMA 2.3. Let (1.6) be fulfilled. Then the solution u of the problem
"=pu+pu’;  ul@+)=0, wub-)=c (2.7)

admits the estimate
t
) =lcleolp.p) [ o(p))ds  forast=b.  (28)

Proof. Suppose, without loss of generality, that ¢ > 0 and w(¢) > 0
for a < t = . Then the Green formula (see [3]) implies

b -1
u(t) = ( [ a(ps) ds) o (P (coa(pz)(r)

~ ) [ 0PI (uls) ds 2.9)
b
o, (p)() ] T p)(s)py($)u(s) ds) forast=<b.

Hence we have

p -1 b -1
lu(t)l(f O'(Pz)(s)ds> S(f o(pz)(s)ds> [IC(

b s -1
+f Gt‘b(Pz)(s)[Pl(S)L[u(sN(f U(pz)(T)d‘r) ds] fora<1<b.
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Applying the Gronwall-Bellman lemma we obtain the estimate (2.8). The
lemma is proved.

The following four lemmas are proved analogously.

LEMMA 2.4. Let (1.6) be fulfilled, q € L(la, b]), and g(t) = 0 for
a <t < b. Then the solution u of the problem

u'=p(Ou+ pu’ + g)o(p)t);  wl@+)=0, wub-)=0 (2.10)
admits the estimate
lu(®)] = ¢)([pi]-, P2, |aDo (p) (O ()0 forast=b.

LEMMA 2.5. Let (1.9) be fulfilled. Then the solution u of (2.7) admits
the estimate

l()] = el pyl, P2 f’U(pz)(s)ds fora<t=<b.

LEMMA 2.6. Let (1.9) be fulfilled, q € L({a, b)), and p,(t) = 0 for a <
t < b. The solution u of (2.10) admits the estimate

(), = ([P, P2, @) ) (P ) D0 (P fora=r=b.

LEMMA 2.7. Let (1.9) be fulfilled and q € U([a, b]). Then the solution
u of (2.10) admits the estimate

()] = o (| pi], P2y AN (PDDo W P fora<t=<b.

LEMMA 2.8. Let (1.6) and (1.8) be fulfilled. Then for any natural n the
solution u of (2.7) admits the estimate

lu(| = |cla )  forast<b,

where the functions a, are defined by the recurrent relations (1.15).

Proof. We shall assume without loss of generality that u(f) > 0 for
a < t = b. According to the Green formula the representation (2.9) is
valid. Hence

|u()| = |clay(ry fora=st<b.
Suppose now that for some k € {1, 2, ..., n — 1}

lu())| = |clar) forast<b.
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Then in virtue of (2.9) we have

b -1
()] = [clo (p)(e) ( [ o(p2s) ds) [a,,( p2)(®)

+0y(p)D) [ o)W PO las) ds

b
+ cra(pz)(t)f g (P pi(s)|as) ds] =|clag () forasrt=<b.

Therefore, the lemma is proved by induction.
It can immediately be verified that the following lemma is valid.

LEMMA 2.9. Let (2.1) be fulfilled and the problem (1.1y), (1.2;) have
only the zero solution. Then there exists the unique Green function g of
the problem and

gl ) = L [ [ ets. m dus) - et r)]
w(b-) ~ [ u(s) duts) L

+n(r, Dclt, )  fora<t,v<b,
where

1 fort=x

it x) = {0 fort>x,

and u, is the solution of (1.17) and c is the Cauchy function of Eq. (1.1p).

Taking intc account Lemma 2.1 of [3], it is easy to verify that the
following lemma is valid.

LEMMA 2.10. Let (2.1) be fulfilled and the problem (1.1,), (1.2;) have
only the zero solution. Then the Green function g of the problem admits
the estimate

lg(t, 7)| = co(p)(T) f g(p,)s)ds fora<t=7<b,
lg(t, )| = co(p)r)  fora<t<t<b,

where ¢ > 0 is a constant.
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3. PROOF OF THE MAIN RESULTS

Proof of Theorem 1.1. It is clear that if the problem (1.1,), (1.2,) has
a honzero solution, then the problem (1.1), (1.2) has either no solution or
infinitely many of them. Suppose now that the problem (1.1g), (1.2,) has
only the zero solution. Then the problem (1.1), (1.2) has at most one
solution. Therefore, it suffices to prove that the function v defined by

b
) = f gt, pm) dr  fora<it<b

is the solution of the problem (1.1), (1.2,).
Taking into account Lemmas 2.9 and 2.10, we find out that v is the
solution of (1.1) and

b
v(b—) = j u(s) duls).

a

On the other hand, according to Lemma 2.10,
?
| =c J o P2)S)| pols)| ds
t b
+c j o (p)(s) ds f o (P)S) po(s)|ds  fora<t<b.
a H
It is easy to see that
t b
f a(p,)s)ds f o (P pols) ds— 0 fort—a+.
a ¢

Hence v(a+) = 0. Therefore, v is the solution of (1.1), (1.2;). And the
theorem is proved.

Proof of Theorem 1.2. By (1.5) we have that
b b
[ s PPN ds = [ o (po)s) ds.

Therefore (see [4, 7]) the solution «, of the problem (1.17) is positive in
la, b].
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Suppose now that Remark 1.1 is not true. Then for a positive ¢
b
ub=) = | u,(s) dusts),

where c = 1if 8 = 0and ¢ > 1 if 8 < 0, 8 being the number defined by (1.4).
According to the Green formula, the representation

b
u(t) = [ gt Ip (D@ dr fora=<t=b 3.1)
is valid, where g, is the Green function of the problem

u" = py(thu; u(a+) =0, ub-)=rc Jb u(s) duls).

a

It immediately can be verified that

2ot ) = h(o) [ o (po)Gs) ds

g (PO (p) D)oy (p)(7) fora<t<r=<b,

)
f o (p)(s) ds
o 3.2)

golt. 1) = h(e) [ o (ps) ds

-3 T (p)Do(p)@oy(p)r) forasrt=t=<b,
J o (py)(s) ds
where

cd
b
5+ (1 - c)j o (p,)(s) ds

h(t) = h,(p)(1) fora<t<b. (3.3)
and

cd
b
6+ (-0 j a(p)(s) ds

0< <1. (3.4)
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According to (1.5) and (3.2)—-(3.4), from (3.1) we obtain the contradiction
b
o) = [ o (TP AS)P(5)]-vls) ds
b -1 b
+ [ f a(p)(s) dSJ f 0w (P pil-v(s) ds
b
<A [ [ (P IT PSP ds

b =1 b
+ [ | a(pz)(s)ds] | oa,,(pz)(s)[p.(sn-ds]sx,

where v(t) = u,(t)(far a(p,)(s)dsy ' fora <t <band A = sup{v(f):a <
t < b}. The theorem is proved.

Proof of Theorem 1.3. In order to prove the theorem it suffices to be
convinced that Remark 1.1 is valid. Assume, on the contrary, that Remark
1.1 is not true. Then by (1.6) for a positive ¢ we have

b
u(t)<0 fora<t=b, ub-)=c f u(s) du(s),

where ¢ = 1if8 > 0 and ¢ > 1 if 8 < 0, 8 being the number defined by
(1.4). Denote by v the solution of the problem

v = p (v — p(W' — o (p) DA p (D)

va+) =0, v(b-) =0,
where &- is the function defined by (3.3).
Let
o - B VD
It is easy to see that
p' (1) = [h(O)p ()] _u ) fora<it<b. 3.5)

Therefore, according to Lemma 2.3 of [3], the finite limit p(a+) = 0 exists.
Integrating (3.5) and taking into account (3.3), (3.4), Remark 2.1, and
Lemma 2.2, we find

v ___
—b- T(p)(D)
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Hence, we sez that for any n large enough there exists ¢, €10, (b — a)/
2[ such that

b
o) > (1 - 1/n)[ o(p,)s)ds forb—g,<t=b.
1
On the other hand according to (3.4) and Lemma 2.4 the estimate

|U(t) = ‘pl([pl]—,p27 [hp,(pZ)p]]—
t b
X f a(py)(s) dsf o (py)(s)ds fora=t<b

a H

is valid. The last two inequalities imply that
b
ei(Lpi)-, P, [h“(pz)m]-.)f a(p)s)ds =1,
which contradict inequality (1.7). This contradiction proves the theorem.
Proof of Theorem 1.4. It suffices to be convinced that Remark 1.1 is

valid. Suppose on the contrary that this remark is not true. Then the
solution u, of the problem (1.7) satisfies the inequalities

b
w()>0 fora<t=<bh, ul(b—)SJ u,(s) du(s).
According to Lemma 2.3, the estimate
14
(1) = u,(b=Yeo(L ), P2) f a(p)(s)ds forast=b
holds. Integration by parts and the above two inequalities yield
b
u,(b--) sj 1, (s) du(s)
b
= u (b= Pl pD) | () = ()T (py)(s) ds.
This together with condition (1.11) and the fact that & is nondecreasing

yields the contradiction 1 < 1. The theorem is proved.

Proof of Theorem 1.5. Suppose the contrary. Then the problem (1.1,),
(1.2y) has a nonzero solution «. Without loss of generality we can assume
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that «(f) > 0 for ¢ < + =< b. We shall carry out the proof only in the
case when (1.13) is fulfilled. The case when (1.14) is fulfilled can be
treated analogously.

According to Lemmas 2.3 and 2.8, the estimates

u(b—)a, () = u(r)

<utb-deepi.p) [ o(p)Ods  fora=t=b
hold. Hence we easily find that
[ uts) diuts) = w6 =)ol p) J (P (PIS) dir(s)
and

b b
| uts) duts) = ub=) [ a(5) dpat).

a

Adding these inequalities and taking into account (1.13), we obtain the
contradiction 1 < 1. The theorem is proved.

Theorems 1.3’ and 1.3" can be proved similarly to Theorem 1.3. Instead
of Lemma 2.4, Lemmas 2.6 and 2.7 are to be applied, respectively. Theo-
rem 1.4’ can be proved similarly to Theorem 1.4, The only difference is
that Lemma 2.5 is to be applied instead of Lemma 2.3.
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