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OSCILLATION AND NONOSCILLATION CRITERIA FOR
SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

A. LOMTATIDZE

Abstract. Sufficient conditions for oscillation and nonoscillation of
second-order linear equations are established.

1. Statement of the Problem and Formulation of Basic
Results

Consider the differential equation

u′′ + p(t)u = 0, (1)

where p : [0, +∞[→ [0, +∞[ is an integrable function. By a solution of
equation (1) is understood a function u : [0,+∞[→] − ∞, +∞[ which is
locally absolutely continuous together with its first derivative and satisfies
this equation almost everywhere.

Equation (1) is said to be oscillatory if it has a nontrivial solution with
an infinite number of zeros, and nonoscillatory otherwise.

It is known (see [1]) that if for some λ < 1 the integral
∫ +∞ sλp(s)ds

diverges, then equation (1) is oscillatory. Therefore, we shall always assume
below that

+∞
∫

sλp(s)ds < +∞ for λ < 1.
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Introduce the notation

hλ(t) = t1−λ

∞
∫

t

sλp(s)ds for t > 0 and λ < 1,

hλ(t) = t1−λ

t
∫

1

sλp(s)ds for t > 0 and λ > 1,

(2)

p∗(λ) = lim inf
t→+∞

hλ(t), p∗(λ) = lim sup
t→+∞

hλ(t).

In [1] it is proved that equation (1) is oscillatory if p∗(0) > 1 or p∗(0) > 1
4 ,

and nonoscillatory if p∗(0) < 1
4 . The oscillation criteria for equation (1)

written in terms of the numbers p∗(λ) and p∗(λ) have been established in [2].
Below we shall give the sufficient conditions for oscillation and nonoscillation
of equation (1) which make the above-mentioned results of papers [1, 2] more
precise and even extend them in some cases.

First of all, for the completenes of the picture we give a proposition,
which slightly generalizes one of E. Hille’s theorems [1].

Proposition. Let either p∗(0) > 1
4 or p∗(2) > 1

4 . Then equation (1) is
oscillatory.

Theorem 1. Let p∗(0) ≤ 1
4 and p∗(2) ≤ 1

4 . Moreover, let either

p∗(λ) >
λ2

4(1− λ)
+

1
2

(

1 +
√

1− 4p∗(2)
)

(3)

for some λ < 1 or

p∗(λ) >
λ2

4(λ− 1)
− 1

2

(

1−
√

1− 4p∗(0)
)

(4)

for some λ > 1. Then equation (1) is oscillatory.

Corollary 1. Let either

lim
λ→1−

(1− λ)p∗(λ) >
1
4

(5)

or

lim
λ→1+

(λ− 1)p∗(λ) >
1
4

(6)

Then equation (1) is oscillatory.
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Corollary 2 ([2]). For some λ 6= 1 let

|1− λ|p∗(λ) >
1
4

(7)

Then equation (1) is oscillatory.

Remark 1. Inequalities (5)–(7) are exact and cannot be weakened. In-
deed, let p(t) = 1

4t2 for t ≥ 1. Then |1− λ|p∗(λ) = 1
4 , and equation (1) has

oscillatory solution u(t) =
√

t for t > 1.

Theorem 2. Let p∗(0) ≤ 1
4 and p∗(2) ≤ 1

4 . Moreover, let either

p∗(0) >
λ(2− λ)

4
and

p∗(λ) >
p∗(0)
1− λ

+
1
2

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

(8)

for some λ < 1 or

p∗(2) >
λ(2− λ)

4
and

p∗(λ) >
p∗(2)
λ− 1

+
1
2

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

(9)

for some λ > 1. Then equation (1) is oscillatory.

Theorem 3. Let p∗(0) 6= 0 and p∗(2) ≤ 1
4 . Moreover, for some 0 < λ <

1 let p∗(λ) < 1−λ2

4 and either

p∗(λ) >
p∗(0)
1− λ

+
λ

2(1− λ)

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

and

p∗(λ) > p∗(λ) +
1
2

(

λ +
√

1− 4p∗(2)
)

+

+
√

λ2 + 1− 4(1− λ)p∗(λ) + 2λ
√

1− 4p∗(2)

or

p∗(λ) <
p∗(0)
1− λ

+
λ

2(1− λ)

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

and

p∗(λ) >
p∗(0)
1− λ

+
1

2(1− λ)

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

. (10)

Then equation (1) is oscillatory.
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Theorem 3′. Let p∗(0) ≤ 1
4 and p∗(2) ≤ 1

4 . Moreover, for some 0 <
λ < 1 let condition (10) be fulfilled, and let p∗(0) > 1−λ2

4 . Then equation
(1) is oscillatory.

Corollary 3. Let p∗(0) ≤ 1
4 , p∗(2) ≤ 1

4 and

p∗(0) > p∗(0) +
1
2

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

.

Then equation (1) is oscillatory.

Corollary 4. For some λ ∈ [0, 1
4 [ let

λ
1− λ

< p∗(λ) <
1

4(1− λ)

and

p∗(λ) > 1 + p∗(λ)− 1
2

(

1− λ−
√

(1 + λ)2 − 4(1− λ)p∗(λ)
)

.

Then equation (1) is oscillatory.

Theorem 4. For some λ 6= 1 let

p∗(λ) >
(2λ− 1)(3− 2λ)

4|1− λ|
and p∗(λ) <

1
4|1− λ|

. (11)

Then equation (1) is nonoscillatory.

Remark 2. As will be seen from the proof, Theorem 4 remains also valid
when the function p, generally speaking, does not have a constant sign. For
such a case this result for λ = 0 is described in [3].

Corollary 5. Let p∗(0) < 1
4 and p∗(2) < 1

4 , and let the inequality

p∗(λ) <
1

4|1− λ|

hold for some λ ∈ ] − ∞, 1 −
√

1
4 − p∗(0)[∪]1 +

√

1
4 − p∗(2), +∞[ . Then

equation (1) is nonoscillatory.
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2. Some Auxiliary Propositions

Lemma 1. For equation (1) to be nonoscillatory, it is necessary and
sufficient that for some λ 6= 1 the equation

v′′ =
1
t2

(

− h2
λ(t) + λ sgn(1− λ)hλ(t)

)

v − 2 sgn(1− λ)
t

hλ(t)v′, (12)

where hλ is the function defined by (2), be nonoscillatory.

Proof. The equality ρ(t) = tλ u′(t)
u(t) − tλ−1hλ(t) sgn(1−λ) determines the re-

lation between the nonoscillatory solution u of equation (1) and the solution
ρ, defined in some neighborhood of +∞, of the equation

ρ′ = −t−λρ2 + λt−1ρ− 2 sgn(1− λ)t−1h2
λ(t)ρ−

− tλ−2h2
λ(t) + λ sgn(1− λ)tλ−1hλ(t). (13)

On the other hand, the equality ρ(t) = tλ v′(t)
v(t) determines the relation

between the nonoscillatory solution v of equation (11) and the solution ρ
defined in some neighborhood +∞ of equation (13). Thus nonoscillation of
either of equation (1) or (12) results in nonoscillation of the other.

Lemma 2. Let equation (1) be nonoscillatory. Then there exists t0 > 0
such that the equation

ρ′ + p(t)ρ + ρ2 = 0 (14)

has a solution ρ : ]t0, +∞[→ [0, +∞[; moreover,

ρ(t0+) = +∞, (t− t0)ρ(t) < 1 for t0 < t < +∞, (15)

lim
t→+∞

tλρ(t) = 0 for λ < 1 (16)

and

lim inf
t→+∞

tρ(t) ≥ A, lim sup
t→+∞

tρ(t) ≤ B, (17)

where

A =
1
2

(

1−
√

1− 4p∗(0)
)

, B =
1
2

(

1 +
√

1− 4p∗(2)
)

1. (18)

1Since equation (1) is nonoscillatory, we have p∗(0) ≤ 1
4 and p∗(2) ≤ 1

4 .
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Proof. Since equation (1) is nonoscillatory, there exists t0 > 0 such that the
solution u of equation (1) under the initial conditions u(t0) = 0, u′(t0) = 1
satisfies the inequalities

u(t) > 0, u′(t) ≥ 0 for t0 < t < +∞.

Clearly, the function ρ(t) = u′(t)
u(t) for t0 < t < +∞ is the solution of equation

(14), and limt→to+ = +∞. From (14) we have

−ρ′(t)
ρ2(t)

> 1 for t0 < t < +∞.

Integrating the above inequality from t0 to t, we obtain (t− t0)ρ(t) < 1 for
t0 < t < +∞. In particular, equality (16) holds for any λ < 1.

Let us now show that inequalities (17) are valid. Assume p∗(0) 6= 0 and
p∗(2) 6= 0 (inequalities (17) are trivial, otherwise). Let us introduce the
notation

r = lim inf
t→+∞

tρ(t), R = lim sup
t→+∞

tρ(t).

From (14) we easily find that for any t1 > t0

tρ(t) = t

+∞
∫

t

p(s)ds + t

+∞
∫

t

ρ2(s)ds,

tρ(t) =
t21ρ(t1)

t
− t−1

t
∫

t1

s2p(s)ds + t−1

t
∫

t1

sρ(s)(2− sρ(s))ds

for t1 < t < +∞.

(19)

This implies that r ≥ p∗(0) and R ≤ 1− p∗(2).
It is easily seen that for any 0 < ε < min{r, 1 − R} there exists tε > t1

such that

r − ε < tρ(t) < R + ε, t

+∞
∫

t

p(s)ds > P∗(0)− ε,

1
t

t
∫

t1

s2p(s)ds > p∗(2)− ε for tε < t < +∞.

Taking into account the above argument, from (19) we have

tρ(t) > p∗(0)− ε + (r − ε)2 for tε < t < +∞,

tρ(t) <
t2ερ(tε)

t
− p∗(2) + ε + (R + ε)(2−R− ε) for tε < t < +∞,
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whence

r ≥ p∗(0) + r2, R ≤ −p∗(2) + R(2−R),

that is, r ≥ A and R ≤ B, where A and B are the numbers defined by
equalities (18). Hence (17) holds.

Lemma 3. Let the functions g, q : [a, +∞[→ R be integrable in every
finite interval, and let v : [a, +∞[→]0, +∞[ be absolutely continuous together
with its first derivative on every compactum contained in [a, +∞[. Moreover,
let the inequality

v′′(t) ≤ g(t)v(t) + q(t)v′(t) (20)

hold almost everywhere in [a, +∞[. Then the equation u′′ = g(t)u + q(t)u′

is nonoscillatory.

3. Proof of the Basic Results

Proof of Theorem 1. Assume the contrary. Let equation (1) be nonoscil-
latory. Then, according to Lemma 2, equation (14) has the solution ρ :
]t0,+∞[→ [0,+∞[ satisfying conditions (15)–(17). Suppose λ < 1 (λ > 1).
Because of (17) we have that for any ε > 0 there exists tε > t0 such that

A− ε < tρ(t) < B + ε for tε < t < +∞. (21)

Multiplying equality (14) by tλ, integrating it from t to +∞ (from tε to
t), and taking into account (15)–(17), we get

+∞
∫

t

sλp(s)ds = tλρ(t) +
λ2tλ−1

4(1− λ)
−

+∞
∫

t

(s
λ
2 ρ(s)− 1

2
s

λ
2−1)2ds <

< tλ−1(B + ε +
λ2

4(1− λ)
)

for tε < t < +∞

(
t

∫

tε

sλp(s)ds < tλ−1( λ2

4(1− λ)
−A + ε + tλε ρ(tε)

)

for tε < t < +∞
)

,

whence we have p∗(λ) ≤ λ2

4(1−λ) + 1
2 (1 +

√

1− 4p∗(2)) (p∗(λ) ≤ λ2

4(λ−1) −
1
2 (1−

√

1− 4p∗(0))), which contradicts equality (3) ((4)).
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To convince ourselves that Corollary 1 is valid, let us note that (5) ((6))
imply

lim
λ→1+

[

(1− λ)p∗(λ)− λ2

4
− 1− λ

2
(1 +

√

1− 4p∗(2))
]

> 0

(

lim
λ→1−

[

(λ− 1)p∗(λ)− λ2

4
− λ− 1

2
(1 +

√

1− 4p∗(0))
]

> 0
)

.

Consequently, (3) ((4)) is fulfilled for some λ < 1 (λ > 1). Thus, according
to Theorem 1, equation (1) is oscillatory. As for Corollary 2, taking into
account that the mapping λ 7−→ (1− λ)p∗(λ) for λ < 1 (λ 7−→ (λ− 1)p∗(λ)
for λ > 1 ) is non-decreasing (non-increasing), we easily find from (7) that
(5) ((6)) is fulfilled for some λ.

Proof of Theorem 2. Assume the contrary. Let equation (1) be nonoscil-
latory. Then according to Lemma 2, equation (14) has the solution ρ :
]t0, +∞[→ [0,+∞[ satisfying conditions (15)–(17). Suppose λ < 1 (λ > 1).
By the conditions of the theorem, p∗(0) > λ(2−λ)

4 (p∗(2) > λ(2−λ)
4 ), which

implies that A > λ
2 (B < λ

2 ). On account of (17), for any 0 < ε < A − λ
2

(0 < ε < λ
2 −B) there exists tε > t0 such that (21) holds.

Multiplying equality (14) by tλ, integrating it from t to +∞ (from tε to
t), and taking into account (15)–(17), we easily find that

t1−λ

+∞
∫

t

sλp(s)ds = tρ(t) + t1−λ

+∞
∫

t

sλ−2sρ(s)(λ− sρ(s))ds <

< B + ε +
1

1− λ
(A− ε)(λ−A + ε) for tε < t < +∞

(

t1−λ

t
∫

tε

sλp(s)ds < ε−A +
1

λ− 1
(B + ε)(λ−B − ε) +

+ t1−λtερ(tε) for tε < t < +∞
)

.

This implies

p∗(λ) ≤ p∗(0)
1− λ

+
1
2

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
)

(

p∗(λ) ≤ p∗(2)
λ− 1

+
1
2

(
√

1− 4p∗(0) +
√

1− 4p∗(2)
))

,

which contradicts condition (8) ((9)).
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Proof of Theorems 3 and 3′. Assume the contrary. Let equation (1) be
nonoscillatory. Then according to Lemma 2, equation (14) has the solution
ρ : ]t0, +∞[→ [0,+∞[ satifying conditions (15)–(17). Multiplying equality
(14) by tλ, integrating it from t to +∞, and taking into account (16), we
easily obtain

tρ(t) = hλ(t)− λt1−λ

+∞
∫

t

sλ−1ρ(s)ds +

+ t1−λ

+∞
∫

t

sλρ2(s)ds for t0 < t < +∞, (22)

where hλ is the function defined by equality (2).
Introduce the notation

r = lim inf
t→+∞

tρ(t).

On account of (17) we have r > 0. Therefore for any 0<ε<max{r, p∗(λ)}
there exists tε > t0 such that

r − ε < tρ(t) < B + ε, hλ(t) > p∗(λ)− ε for tε < t < +∞.

Owing to the above arguments, we find from (22) that

(1− λ)hλ < B + ε− (r − ε)2 for tε < t < +∞,

tρ(t) > p∗(λ)− ε− λ
1− λ

(B + ε) +
1

1− λ
(r − ε)2 for tε < t < +∞,

which implies

p∗(λ) ≤ B − r2

1− λ
, (23)

r ≥ p∗(λ)− λ
1− λ

B +
r2

1− λ
.

The latter inequality results in r ≥ x1, where x1 is the least root of the
equation

1
1− λ

x2 − x + p∗(λ)− λ
1− λ

B = 0.

Thus r ≥ max{A, x1}. From (23) we have that if A < x1, then

p∗(λ) ≤ B + p∗(λ)− x1,

but if A ≥ x1, then

p∗(λ) ≤ 1
1− λ

B − 1
1− λ

A2,
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which contradicts the conditions of the theorem.

Proof of Theorem 4. From (11) we have that for some t0 > 0

(2λ− 1)(3− 2λ)
4|1− λ|

< hλ(t) <
1

4|1− λ|
for t0 < t < +∞,

whence

h2
λ(t) +

2λ2 − 4λ + 1
2|1− λ|

hλ(t) +
(2λ− 1)(3− 2λ)

16(1− λ)2
< 0 for t0 < t < +∞.

Taking into consideration the latter inequality, we can easily see that (20)
holds, where

v(t) = t
1−2λ

4(1−λ) for t0 < t < +∞,

g(t) = − 1
t2

(

h2
λ(t)− λ sgn(1− λ)hλ(t)

)

for t0 < t < +∞,

and
q(t) = −2

t
sgn(1− λ)hλ(t) for t0 < t < +∞.

Consequently, according to Lemmas 1 and 3, equation (1) is nonoscilla-
tory.
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