OSCILLATION AND NONOSCILLATION CRITERIA FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS

A. LOMTATIDZE

ABSTRACT. Sufficient conditions for oscillation and nonoscillation of second-order linear equations are established.

1. Statement of the Problem and Formulation of Basic Results

Consider the differential equation

$$u'' + p(t)u = 0, (1)$$

where $p: [0, +\infty[\rightarrow [0, +\infty[$ is an integrable function. By a solution of equation (1) is understood a function $u: [0, +\infty[\rightarrow] -\infty, +\infty[$ which is locally absolutely continuous together with its first derivative and satisfies this equation almost everywhere.

Equation (1) is said to be oscillatory if it has a nontrivial solution with an infinite number of zeros, and nonoscillatory otherwise.

It is known (see [1]) that if for some $\lambda < 1$ the integral $\int^{+\infty} s^{\lambda} p(s) ds$ diverges, then equation (1) is oscillatory. Therefore, we shall always assume below that

$$\int^{+\infty} s^{\lambda} p(s) ds < +\infty \quad \text{for } \lambda < 1.$$

129

1072-947X/97/0300-0129\$12.50/0 © 1997 Plenum Publishing Corporation

¹⁹⁹¹ Mathematics Subject Classification. 34C10.

 $Key\ words\ and\ phrases.$ Second-order linear equation, oscillatory and nonoscillatory solutions.

Introduce the notation

$$h_{\lambda}(t) = t^{1-\lambda} \int_{t}^{\infty} s^{\lambda} p(s) ds \quad \text{for} \quad t > 0 \quad \text{and} \quad \lambda < 1,$$

$$h_{\lambda}(t) = t^{1-\lambda} \int_{1}^{t} s^{\lambda} p(s) ds \quad \text{for} \quad t > 0 \quad \text{and} \quad \lambda > 1,$$

$$p_{*}(\lambda) = \liminf_{t \to +\infty} h_{\lambda}(t), \quad p^{*}(\lambda) = \limsup_{t \to +\infty} h_{\lambda}(t).$$
(2)

In [1] it is proved that equation (1) is oscillatory if $p^*(0) > 1$ or $p_*(0) > \frac{1}{4}$, and nonoscillatory if $p^*(0) < \frac{1}{4}$. The oscillation criteria for equation (1) written in terms of the numbers $p_*(\lambda)$ and $p^*(\lambda)$ have been established in [2]. Below we shall give the sufficient conditions for oscillation and nonoscillation of equation (1) which make the above-mentioned results of papers [1, 2] more precise and even extend them in some cases.

First of all, for the completenes of the picture we give a proposition, which slightly generalizes one of E. Hille's theorems [1].

Proposition. Let either $p_*(0) > \frac{1}{4}$ or $p_*(2) > \frac{1}{4}$. Then equation (1) is oscillatory.

Theorem 1. Let $p_*(0) \leq \frac{1}{4}$ and $p_*(2) \leq \frac{1}{4}$. Moreover, let either

$$p^*(\lambda) > \frac{\lambda^2}{4(1-\lambda)} + \frac{1}{2} \left(1 + \sqrt{1-4p_*(2)} \right)$$
(3)

for some $\lambda < 1$ or

$$p^*(\lambda) > \frac{\lambda^2}{4(\lambda - 1)} - \frac{1}{2} \left(1 - \sqrt{1 - 4p_*(0)} \right) \tag{4}$$

for some $\lambda > 1$. Then equation (1) is oscillatory.

Corollary 1. Let either

$$\lim_{\lambda \to 1^{-}} (1 - \lambda) p^*(\lambda) > \frac{1}{4}$$
(5)

or

$$\lim_{\lambda \to 1+} (\lambda - 1)p^*(\lambda) > \frac{1}{4} \tag{6}$$

Then equation (1) is oscillatory.

Corollary 2 ([2]). For some $\lambda \neq 1$ let

$$|1 - \lambda| p_*(\lambda) > \frac{1}{4} \tag{7}$$

Then equation (1) is oscillatory.

Remark 1. Inequalities (5)–(7) are exact and cannot be weakened. Indeed, let $p(t) = \frac{1}{4t^2}$ for $t \ge 1$. Then $|1 - \lambda| p_*(\lambda) = \frac{1}{4}$, and equation (1) has oscillatory solution $u(t) = \sqrt{t}$ for t > 1.

Theorem 2. Let $p_*(0) \leq \frac{1}{4}$ and $p_*(2) \leq \frac{1}{4}$. Moreover, let either

$$p_*(0) > \frac{\lambda(2-\lambda)}{4} \quad and$$

$$p^*(\lambda) > \frac{p_*(0)}{1-\lambda} + \frac{1}{2} \left(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)} \right) \tag{8}$$

for some $\lambda < 1$ or

$$p_*(2) > \frac{\lambda(2-\lambda)}{4} \quad and$$

$$p^*(\lambda) > \frac{p_*(2)}{\lambda-1} + \frac{1}{2} \left(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)} \right)$$
(9)

for some $\lambda > 1$. Then equation (1) is oscillatory.

Theorem 3. Let $p_*(0) \neq 0$ and $p_*(2) \leq \frac{1}{4}$. Moreover, for some $0 < \lambda < 1$ let $p_*(\lambda) < \frac{1-\lambda^2}{4}$ and either

$$p_*(\lambda) > \frac{p_*(0)}{1-\lambda} + \frac{\lambda}{2(1-\lambda)} \left(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)}\right)$$

and

$$p^{*}(\lambda) > p_{*}(\lambda) + \frac{1}{2} \left(\lambda + \sqrt{1 - 4p_{*}(2)} \right) + \sqrt{\lambda^{2} + 1 - 4(1 - \lambda)p_{*}(\lambda) + 2\lambda\sqrt{1 - 4p_{*}(2)}}$$

or

$$p_*(\lambda) < \frac{p_*(0)}{1-\lambda} + \frac{\lambda}{2(1-\lambda)} \left(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)}\right)$$

and

$$p^*(\lambda) > \frac{p_*(0)}{1-\lambda} + \frac{1}{2(1-\lambda)} \Big(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)}\Big).$$
(10)

Then equation (1) is oscillatory.

A. LOMTATIDZE

Theorem 3'. Let $p_*(0) \leq \frac{1}{4}$ and $p_*(2) \leq \frac{1}{4}$. Moreover, for some $0 < \lambda < 1$ let condition (10) be fulfilled, and let $p_*(0) > \frac{1-\lambda^2}{4}$. Then equation (1) is oscillatory.

Corollary 3. Let $p_*(0) \le \frac{1}{4}$, $p_*(2) \le \frac{1}{4}$ and

$$p^*(0) > p_*(0) + \frac{1}{2} \left(\sqrt{1 - 4p_*(0)} + \sqrt{1 - 4p_*(2)} \right).$$

Then equation (1) is oscillatory.

Corollary 4. For some $\lambda \in [0, \frac{1}{4}[$ let

$$\frac{\lambda}{1-\lambda} < p_*(\lambda) < \frac{1}{4(1-\lambda)}$$

and

$$p^*(\lambda) > 1 + p_*(\lambda) - \frac{1}{2} \left(1 - \lambda - \sqrt{(1+\lambda)^2 - 4(1-\lambda)p_*(\lambda)} \right)$$

Then equation (1) is oscillatory.

Theorem 4. For some $\lambda \neq 1$ let

$$p_*(\lambda) > \frac{(2\lambda - 1)(3 - 2\lambda)}{4|1 - \lambda|} \quad and \quad p^*(\lambda) < \frac{1}{4|1 - \lambda|}.$$
 (11)

Then equation (1) is nonoscillatory.

Remark 2. As will be seen from the proof, Theorem 4 remains also valid when the function p, generally speaking, does not have a constant sign. For such a case this result for $\lambda = 0$ is described in [3].

Corollary 5. Let $p_*(0) < \frac{1}{4}$ and $p_*(2) < \frac{1}{4}$, and let the inequality

$$p^*(\lambda) < \frac{1}{4|1-\lambda|}$$

hold for some $\lambda \in]-\infty, 1-\sqrt{\frac{1}{4}-p_*(0)}[\cup]1+\sqrt{\frac{1}{4}-p_*(2)}, +\infty[$. Then equation (1) is nonoscillatory.

2. Some Auxiliary Propositions

Lemma 1. For equation (1) to be nonoscillatory, it is necessary and sufficient that for some $\lambda \neq 1$ the equation

$$v'' = \frac{1}{t^2} \left(-h_{\lambda}^2(t) + \lambda \operatorname{sgn}(1-\lambda)h_{\lambda}(t) \right) v - \frac{2\operatorname{sgn}(1-\lambda)}{t} h_{\lambda}(t)v', \quad (12)$$

where h_{λ} is the function defined by (2), be nonoscillatory.

Proof. The equality $\rho(t) = t^{\lambda} \frac{u'(t)}{u(t)} - t^{\lambda-1} h_{\lambda}(t) \operatorname{sgn}(1-\lambda)$ determines the relation between the nonoscillatory solution u of equation (1) and the solution ρ , defined in some neighborhood of $+\infty$, of the equation

$$\rho' = -t^{-\lambda}\rho^2 + \lambda t^{-1}\rho - 2\operatorname{sgn}(1-\lambda)t^{-1}h_{\lambda}^2(t)\rho - t^{\lambda-2}h_{\lambda}^2(t) + \lambda\operatorname{sgn}(1-\lambda)t^{\lambda-1}h_{\lambda}(t).$$
(13)

On the other hand, the equality $\rho(t) = t^{\lambda} \frac{v'(t)}{v(t)}$ determines the relation between the nonoscillatory solution v of equation (11) and the solution ρ defined in some neighborhood $+\infty$ of equation (13). Thus nonoscillation of either of equation (1) or (12) results in nonoscillation of the other. \Box

Lemma 2. Let equation (1) be nonoscillatory. Then there exists $t_0 > 0$ such that the equation

$$\rho' + p(t)\rho + \rho^2 = 0 \tag{14}$$

has a solution $\rho:]t_0, +\infty[\rightarrow [0, +\infty[; moreover,$

$$\rho(t_0 +) = +\infty, (t - t_0)\rho(t) < 1 \quad for \quad t_0 < t < +\infty,$$
(15)

$$\lim_{t \to +\infty} t^{\lambda} \rho(t) = 0 \quad for \quad \lambda < 1 \tag{16}$$

and

$$\liminf_{t \to +\infty} t\rho(t) \ge A, \quad \limsup_{t \to +\infty} t\rho(t) \le B, \tag{17}$$

where

$$A = \frac{1}{2} \left(1 - \sqrt{1 - 4p_*(0)} \right), \quad B = \frac{1}{2} \left(1 + \sqrt{1 - 4p_*(2)} \right)^1.$$
(18)

¹Since equation (1) is nonoscillatory, we have $p_*(0) \leq \frac{1}{4}$ and $p_*(2) \leq \frac{1}{4}$.

A. LOMTATIDZE

Proof. Since equation (1) is nonoscillatory, there exists $t_0 > 0$ such that the solution u of equation (1) under the initial conditions $u(t_0) = 0$, $u'(t_0) = 1$ satisfies the inequalities

$$u(t) > 0, \quad u'(t) \ge 0 \quad \text{for} \quad t_0 < t < +\infty.$$

Clearly, the function $\rho(t) = \frac{u'(t)}{u(t)}$ for $t_0 < t < +\infty$ is the solution of equation (14), and $\lim_{t \to t_o +} = +\infty$. From (14) we have

$$\frac{-\rho'(t)}{\rho^2(t)} > 1$$
 for $t_0 < t < +\infty$.

Integrating the above inequality from t_0 to t, we obtain $(t - t_0)\rho(t) < 1$ for $t_0 < t < +\infty$. In particular, equality (16) holds for any $\lambda < 1$.

Let us now show that inequalities (17) are valid. Assume $p_*(0) \neq 0$ and $p_*(2) \neq 0$ (inequalities (17) are trivial, otherwise). Let us introduce the notation

$$r = \liminf_{t \to +\infty} t\rho(t), \quad R = \limsup_{t \to +\infty} t\rho(t).$$

From (14) we easily find that for any $t_1 > t_0$

$$t\rho(t) = t \int_{t}^{+\infty} p(s)ds + t \int_{t}^{+\infty} \rho^{2}(s)ds,$$

$$t\rho(t) = \frac{t_{1}^{2}\rho(t_{1})}{t} - t^{-1} \int_{t_{1}}^{t} s^{2}p(s)ds + t^{-1} \int_{t_{1}}^{t} s\rho(s)(2 - s\rho(s))ds$$
for $t_{1} < t < +\infty.$
(19)

This implies that $r \ge p_*(0)$ and $R \le 1 - p_*(2)$.

It is easily seen that for any $0<\varepsilon<\min\{r,1-R\}$ there exists $t_\varepsilon>t_1$ such that

$$r - \varepsilon < t\rho(t) < R + \varepsilon, \quad t \int_{t}^{+\infty} p(s)ds > P_*(0) - \varepsilon,$$
$$\frac{1}{t} \int_{t_1}^{t} s^2 p(s)ds > p_*(2) - \varepsilon \quad \text{for} \quad t_{\varepsilon} < t < +\infty.$$

Taking into account the above argument, from (19) we have

$$t\rho(t) > p_*(0) - \varepsilon + (r - \varepsilon)^2 \quad \text{for} \quad t_\varepsilon < t < +\infty,$$

$$t\rho(t) < \frac{t_\varepsilon^2 \rho(t_\varepsilon)}{t} - p_*(2) + \varepsilon + (R + \varepsilon)(2 - R - \varepsilon) \quad \text{for} \quad t_\varepsilon < t < +\infty,$$

whence

$$r \ge p_*(0) + r^2, \quad R \le -p_*(2) + R(2 - R),$$

that is, $r \ge A$ and $R \le B$, where A and B are the numbers defined by equalities (18). Hence (17) holds. \Box

Lemma 3. Let the functions $g, q : [a, +\infty[\rightarrow R \text{ be integrable in every finite interval, and let <math>v : [a, +\infty[\rightarrow]0, +\infty[$ be absolutely continuous together with its first derivative on every compactum contained in $[a, +\infty[$. Moreover, let the inequality

$$v''(t) \le g(t)v(t) + q(t)v'(t)$$
(20)

hold almost everywhere in $[a, +\infty[$. Then the equation u'' = g(t)u + q(t)u' is nonoscillatory.

3. PROOF OF THE BASIC RESULTS

Proof of Theorem 1. Assume the contrary. Let equation (1) be nonoscillatory. Then, according to Lemma 2, equation (14) has the solution ρ : $]t_0, +\infty[\rightarrow [0, +\infty[$ satisfying conditions (15)–(17). Suppose $\lambda < 1$ ($\lambda > 1$). Because of (17) we have that for any $\varepsilon > 0$ there exists $t_{\varepsilon} > t_0$ such that

$$A - \varepsilon < t\rho(t) < B + \varepsilon \quad \text{for} \quad t_{\varepsilon} < t < +\infty.$$
(21)

Multiplying equality (14) by t^{λ} , integrating it from t to $+\infty$ (from t_{ε} to t), and taking into account (15)–(17), we get

whence we have $p^*(\lambda) \leq \frac{\lambda^2}{4(1-\lambda)} + \frac{1}{2}(1+\sqrt{1-4p_*(2)}) \ (p^*(\lambda) \leq \frac{\lambda^2}{4(\lambda-1)} - \frac{1}{2}(1-\sqrt{1-4p_*(0)}))$, which contradicts equality (3) ((4)). \Box

A. LOMTATIDZE

To convince ourselves that Corollary 1 is valid, let us note that (5) ((6)) imply

$$\lim_{\lambda \to 1+} \left[(1-\lambda)p^*(\lambda) - \frac{\lambda^2}{4} - \frac{1-\lambda}{2}(1+\sqrt{1-4p_*(2)}) \right] > 0$$
$$\left(\lim_{\lambda \to 1-} \left[(\lambda-1)p^*(\lambda) - \frac{\lambda^2}{4} - \frac{\lambda-1}{2}(1+\sqrt{1-4p_*(0)}) \right] > 0 \right)$$

Consequently, (3) ((4)) is fulfilled for some $\lambda < 1$ ($\lambda > 1$). Thus, according to Theorem 1, equation (1) is oscillatory. As for Corollary 2, taking into account that the mapping $\lambda \mapsto (1-\lambda)p_*(\lambda)$ for $\lambda < 1$ ($\lambda \mapsto (\lambda-1)p_*(\lambda)$ for $\lambda > 1$) is non-decreasing (non-increasing), we easily find from (7) that (5) ((6)) is fulfilled for some λ .

Proof of Theorem 2. Assume the contrary. Let equation (1) be nonoscillatory. Then according to Lemma 2, equation (14) has the solution ρ : $]t_0, +\infty[\rightarrow [0, +\infty[\text{ satisfying conditions (15)-(17). Suppose } \lambda < 1 \ (\lambda > 1).$ By the conditions of the theorem, $p_*(0) > \frac{\lambda(2-\lambda)}{4} \ (p_*(2) > \frac{\lambda(2-\lambda)}{4})$, which implies that $A > \frac{\lambda}{2} \ (B < \frac{\lambda}{2})$. On account of (17), for any $0 < \varepsilon < A - \frac{\lambda}{2} \ (0 < \varepsilon < \frac{\lambda}{2} - B)$ there exists $t_{\varepsilon} > t_0$ such that (21) holds.

Multiplying equality (14) by t^{λ} , integrating it from t to $+\infty$ (from t_{ε} to t), and taking into account (15)–(17), we easily find that

$$\begin{split} t^{1-\lambda} & \int_{t}^{+\infty} s^{\lambda} p(s) ds = t\rho(t) + t^{1-\lambda} \int_{t}^{+\infty} s^{\lambda-2} s\rho(s) (\lambda - s\rho(s)) ds < \\ & < B + \varepsilon + \frac{1}{1-\lambda} (A - \varepsilon) (\lambda - A + \varepsilon) \quad \text{for} \quad t_{\varepsilon} < t < +\infty \end{split}$$
$$& \left(t^{1-\lambda} \int_{t_{\varepsilon}}^{t} s^{\lambda} p(s) ds < \varepsilon - A + \frac{1}{\lambda - 1} (B + \varepsilon) (\lambda - B - \varepsilon) + \right. \\ & + t^{1-\lambda} t_{\varepsilon} \rho(t_{\varepsilon}) \quad \text{for} \quad t_{\varepsilon} < t < +\infty \end{split}$$

This implies

$$p^*(\lambda) \le \frac{p_*(0)}{1-\lambda} + \frac{1}{2} \Big(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)} \Big) \\ \Big(p^*(\lambda) \le \frac{p_*(2)}{\lambda-1} + \frac{1}{2} \Big(\sqrt{1-4p_*(0)} + \sqrt{1-4p_*(2)} \Big) \Big),$$

which contradicts condition (8) ((9)). \Box

Proof of Theorems 3 and 3'. Assume the contrary. Let equation (1) be nonoscillatory. Then according to Lemma 2, equation (14) has the solution $\rho:]t_0, +\infty[\rightarrow [0, +\infty[$ satifying conditions (15)–(17). Multiplying equality (14) by t^{λ} , integrating it from t to $+\infty$, and taking into account (16), we easily obtain

$$t\rho(t) = h_{\lambda}(t) - \lambda t^{1-\lambda} \int_{t}^{+\infty} s^{\lambda-1}\rho(s)ds + t^{1-\lambda} \int_{t}^{+\infty} s^{\lambda}\rho^{2}(s)ds \quad \text{for} \quad t_{0} < t < +\infty,$$
(22)

where h_{λ} is the function defined by equality (2).

Introduce the notation

$$r = \liminf_{t \to +\infty} t\rho(t).$$

On account of (17) we have r > 0. Therefore for any $0 < \varepsilon < \max\{r, p_*(\lambda)\}$ there exists $t_{\varepsilon} > t_0$ such that

$$r - \varepsilon < t\rho(t) < B + \varepsilon, h_{\lambda}(t) > p_*(\lambda) - \varepsilon \text{ for } t_{\varepsilon} < t < +\infty.$$

Owing to the above arguments, we find from (22) that

$$(1-\lambda)h_{\lambda} < B + \varepsilon - (r-\varepsilon)^{2} \quad \text{for} \quad t_{\varepsilon} < t < +\infty,$$

$$t\rho(t) > p_{*}(\lambda) - \varepsilon - \frac{\lambda}{1-\lambda}(B+\varepsilon) + \frac{1}{1-\lambda}(r-\varepsilon)^{2} \quad \text{for} \quad t_{\varepsilon} < t < +\infty,$$

which implies

$$p^{*}(\lambda) \leq \frac{B - r^{2}}{1 - \lambda},$$

$$r \geq p_{*}(\lambda) - \frac{\lambda}{1 - \lambda}B + \frac{r^{2}}{1 - \lambda}.$$
(23)

The latter inequality results in $r \ge x_1$, where x_1 is the least root of the equation

$$\frac{1}{1-\lambda}x^2 - x + p_*(\lambda) - \frac{\lambda}{1-\lambda}B = 0.$$

Thus $r \ge \max\{A, x_1\}$. From (23) we have that if $A < x_1$, then

$$p^*(\lambda) \le B + p_*(\lambda) - x_1$$

but if $A \ge x_1$, then

$$p^*(\lambda) \le \frac{1}{1-\lambda}B - \frac{1}{1-\lambda}A^2,$$

which contradicts the conditions of the theorem. $\hfill\square$

Proof of Theorem 4. From (11) we have that for some $t_0 > 0$

$$\frac{(2\lambda - 1)(3 - 2\lambda)}{4|1 - \lambda|} < h_{\lambda}(t) < \frac{1}{4|1 - \lambda|} \quad \text{for} \quad t_0 < t < +\infty,$$

whence

$$h_{\lambda}^{2}(t) + \frac{2\lambda^{2} - 4\lambda + 1}{2|1 - \lambda|}h_{\lambda}(t) + \frac{(2\lambda - 1)(3 - 2\lambda)}{16(1 - \lambda)^{2}} < 0 \quad \text{for} \quad t_{0} < t < +\infty.$$

Taking into consideration the latter inequality, we can easily see that (20) holds, where

$$v(t) = t^{\frac{1-2\lambda}{4(1-\lambda)}} \quad \text{for} \quad t_0 < t < +\infty,$$

$$g(t) = -\frac{1}{t^2} \left(h_{\lambda}^2(t) - \lambda \operatorname{sgn}(1-\lambda) h_{\lambda}(t) \right) \quad \text{for} \quad t_0 < t < +\infty,$$

and

$$q(t) = -\frac{2}{t}\operatorname{sgn}(1-\lambda)h_{\lambda}(t) \quad \text{for} \quad t_0 < t < +\infty.$$

Consequently, according to Lemmas 1 and 3, equation (1) is nonoscillatory. \Box

References

1. E. Hille, Non-oscillation theorems. Trans. Amer. Math. Soc., **64**(1948), 234–252.

2. Z. Nehari, Oscillation criteria for second order-linear differential equations. *Trans. Amer. Math. Soc.*, **85**(1957), 428–445.

3. A. Wintner, On the non-existence of conjugate points. Amer. J. Math., **73**(1951), 368–380.

(Received 03.05.1995)

Author's address: N. Muskhelishvili Institute of Computational Mathematics Georgian Academy of Sciences 8, Akuri St., Tbilisi 380093 Georgia