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OSCILLATION AND NONOSCILLATION CRITERIA
FOR TWO-DIMENSIONAL SYSTEMS OF FIRST ORDER

LINEAR ORDINARY DIFFERENTIAL EQUATIONS

A. LOMTATIDZE AND N. PARTSVANIA

Abstract. Sufficient conditions are established for the oscillation
and nonoscillation of the system

u′ = p(t)v ,
v′ = −q(t)u ,

where p, q : [0, +∞[→ [0, +∞[ are locally summable functions.

§ 1. Statement of the Problem and Formulation of the Main
Results

Consider the system

u′ = p(t)v ,
v′ = −q(t)u , (1)

where p, q : [0, +∞[→ [0,+∞[ are locally summable functions. Under a
solution of system (1) is understood a vector-function (u, v) : [0, +∞[→
] − ∞, +∞[ with locally absolutely continuous components satisfying (1)
almost everywhere.

A nontrivial solution (u, v) of system (1) is said to be oscillatory if the
function u has at least one zero in any neighbourhood of +∞; otherwise it
is said to be nonoscillatory.

It is known (cf., for example, [1]) that if system (1) has an oscillatory
solution, then everyone of its solutions is oscillatory.

Definition. System (1) is said to be oscillatory if it has at least one
oscillatory solution; otherwise it is said to be nonoscillatory.

1991 Mathematics Subject Classification. 34C10, 34K15, 34K25.
Key words and phrases. Two-dimensional system of first order linear ordinary diffe-

rential equations, oscillatory system, nonoscillatory system.

285
1072-947X/99/0500-0285$12.50/0 c© 1997 Plenum Publishing Corporation



286 A. LOMTATIDZE AND N. PARTSVANIA

It is known (cf., for example, [2]) that if
∫ +∞

p(s) ds = +∞ and
∫ +∞

q(s) ds = +∞,

then system (1) is oscillatory, and if
∫ +∞

p(s) ds < +∞ and
∫ +∞

q(s) ds < +∞,

then system (1) is nonoscillatory (see also Remark 5).
Therefore we will assume that either

∫ +∞
p(s) ds = +∞ and

∫ +∞
q(s) ds < +∞ (2)

or
∫ +∞

p(s) ds < +∞ and
∫ +∞

q(s) ds = +∞.

It is easily seen that if (u, v) is an oscillatory solution of (1), then the
function v also has zero in any neighbourhood of +∞, and the vector-
function (u, v) ≡ (v,−u) is an oscillatory solution of the system

u ′ = q(t)v ,
v ′ = −p(t)u .

In view of this fact, it is sufficient to consider the case where conditions
(2) are fulfilled.

It results from [3] that if conditions (2) are fulfilled and for some λ < 1
∫ +∞

fλ(s)q(s) ds = +∞,

where

f(t) =
∫ t

0
p(s) ds for t ≥ 0, (3)

then system (1) is oscillatory (for the second order linear equation, i.e.,
when p(t) ≡ 1, this assertion goes back to W. B. Fite [4] and E. Hille [5]).

Therefore, unless the contrary is specified, throughout the paper we will
assume that

∫ +∞
p(s) ds = +∞ and

∫ +∞
fλ(s)q(s) ds < +∞ for λ < 1, (4)

where f is defined by (3).
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Introduce the notation

g∗(λ) = lim inf
t→+∞

f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds,

g∗(λ) = lim sup
t→+∞

f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds for λ < 1,

g∗(λ) = lim inf
t→+∞

f1−λ(t)
∫ t

0
fλ(s)q(s) ds,

g∗(λ) = lim sup
t→+∞

f1−λ(t)
∫ t

0
fλ(s)q(s) ds for λ > 1.

Below the new criteria for the oscillation and nonoscillation of system
(1) are given in terms of the numbers g∗(λ) and g∗(λ). Analogous results
for second order linear equations, second order nonlinear equations of the
Emden–Fowler type and third order linear equations are contained in [6],
[7] and [8], respectively.

Proposition 1. If either g∗(0) > 1
4 or g∗(2) > 1

4 , then system (1) is
oscillatory.

In the case of the second order equation, i.e., when p(t) ≡ 1, this result
slightly generalizes E. Hille’s theorem [5].

According to Proposition 1, it is natural to restrict our investigation to
the case where

g∗(0) ≤ 1
4

and g∗(2) ≤ 1
4

. (5)

Theorem 1. Let (5) be fulfilled and

g∗(0) > g∗(0) +
1
2

(
√

1− 4g∗(0) +
√

1− 4g∗(2)
)

. (6)

Then system (1) is oscillatory.

From this theorem we obtain in particular that if g∗(0) > 1, then (1)
is oscillatory (for the second order equation this assertion goes back to
E. Hille [5]).

Theorem 2. Let (5) be fulfilled and either

g∗(λ) >
λ2

4(1− λ)
+

1
2

(

1 +
√

1− 4g∗(2)
)

(7)

for some λ < 1 or

g∗(λ) >
λ2

4(λ− 1)
− 1

2

(

1−
√

1− 4g∗(0)
)

(8)
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for some λ > 1. Then system (1) is oscillatory.

For the second order linear equation, this theorem generalizes Z. Nehari’s
theorem [9].

Remark 1. Below we will show (see Lemma 5 and Lemma 6) that the
mapping λ 7−→ |1 − λ|g∗(λ) does not increase for λ < 1 and does not
decrease for λ > 1, while the mapping λ 7−→ |1− λ|g∗(λ) does not decrease
for λ < 1 and does not increase for λ > 1. Moreover,

lim
λ→1−

|1− λ|g∗(λ) = lim
λ→1+

|1− λ|g∗(λ)

and

lim
λ→1−

|1− λ|g∗(λ) = lim
λ→1+

|1− λ|g∗(λ).

Corollary 1. Let (5) be fulfilled and

lim
λ→1

|1− λ|g∗(λ) >
1
4

. (9)

Then system (1) is oscillatory.

Corollary 2. Let (5) be fulfilled and for some λ 6= 1

|1− λ|g∗(λ) >
1
4

. (10)

Then system (1) is oscillatory.

Corollary 3. Let (5) be fulfilled and

lim sup
t→+∞

1
ln f(t)

∫ t

1
f(s)q(s) ds >

1
4

. (11)

Then system (1) is oscillatory.

Corollary 4. Let (5) be fulfilled and

lim sup
λ→1−

(1− λ)
∫ +∞

1
fλ(s)q(s) ds >

1
4

. (12)

Then system (1) is oscillatory.

Remark 2. Inequalities (9)–(12) are exact and cannot be weakened. In-

deed, let p(t) > 0 for t > 0 and
+∞
∫

p(s) ds = +∞. Suppose that q(t) =
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f ′(t)
4f2(t) for t > 1, where the function f is defined by (3). It is easy to check
that

|1− λ|g∗(λ) =
1
4

, |1− λ|g∗(λ) =
1
4

,

lim
t→+∞

1
ln f(t)

∫ t

1
f(s)q(s) ds =

1
4

,

lim
λ→1−

(1− λ)
∫ +∞

1
fλ(s)q(s) ds =

1
4

.

However system (1) has the nonoscillatory solution (
√

f, 1
2
√

f
).

Theorem 3. Let for some λ 6= 1

|1− λ|g∗(λ) >
(2λ− 1)(3− 2λ)

4
and |1− λ|g∗(λ) <

1
4

. (13)

Then system (1) is nonoscillatory.

Remark 3. As it will be seen from the proof, this theorem is also valid
for the case where q is not, in general, of constant sign.

Corollary 5. Let conditions (5) hold and for some λ ∈ ] − ∞,

1−
√

1
4 − g∗(0)[∪]1 +

√

1
4 − g∗(2), +∞[ the inequality

|1− λ|g∗(λ) <
1
4

be fulfilled. Then system (1) is nonoscillatory.

Remark 4. Consider the system

u′ = p1(t)u + p2(t)v ,
v′ = q1(t)u + q2(t)v , (14)

where pi, qi : [0,+∞[→ ]−∞, +∞[ (i = 1, 2) are locally summable functions
such that p2(t) ≥ 0 and q1(t) ≤ 0 for t > 0. It is easy to see that system
(14) is equivalent to system (1) with

p(t) = p2(t) exp
[ ∫ t

0

(

q2(s)− p1(s)
)

ds
]

,

q(t) = −q1(t) exp
[

−
∫ t

0

(

q2(s)− p1(s)
)

ds
]

for t > 0.

Therefore from Theorems 1–3 the oscillation and nonoscillation criteria
for system (14) can be obtained.
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§ 2. Some Auxiliary Statements

Throughout this section, we will assume that q 6≡ 0 in any neighbourhood
of +∞ and p(t) > 0 for 0 < t < 1.

Lemma 1. Let (u, v) be a nonoscillatory solution of (1). Then there
exists t0 > 0 such that

u(t)v(t) > 0 for t > t0.

Proof. For the sake of definiteness, we assume that u(t) > 0 for t > t0.
Suppose that v(t1) < 0 for some t1 > t0. Then from (1) we find that
v(t) ≤ v(t1) for t > t1 and

u(t) = u(t1) +
∫ t

t1
p(s)v(s) ds ≤ u(t1) + v(t1)

∫ t

t1
p(s) ds for t > t1.

According to (4), from the latter inequality we obtain the contradiction
u(t2) < 0 for some t2 > t1.

Lemma 2. Let (5) be fulfilled and system (1) be nonoscillatory. Then
there exists t0 > 0 such that the equation

ρ′ = −q(t)− p(t)ρ2 (15)

has the solution ρ : [t0, +∞[→ ]0, +∞[ . Moreover,

lim inf
t→+∞

f(t)ρ(t) ≥
1−

√

1− 4g∗(0)
2

,

lim sup
t→+∞

f(t)ρ(t) ≤
1 +

√

1− 4g∗(2)
2

,
(16)

where f is defined by (3).

Proof. Let (u, v) be a nonoscillatory solution of system (1). Choose a > 0
so that u(t) 6= 0 for t > a. It is easy to see that the function ρ(t) = v(t)

u(t)
satisfies equation (15) for t > a. By Lemma 1, there exists t0 > a such that
ρ(t) > 0 for t > t0.

Introduce the notation

r = lim inf
t→+∞

f(t)ρ(t), R = lim sup
t→+∞

f(t)ρ(t). (17)

From (15), we have

− ρ′(t)
ρ2(t)

=
q(t)
ρ2(t)

+ p(t) for t > t0.
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Integrating this equality from t0 to t, we obtain

ρ(t)
∫ t

t0
p(s) ds < 1 for t > t0.

Hence, by (4), we have

lim
t→+∞

ρ(t) = 0. (18)

Taking into account (18) and integrating (15) from t to +∞, we obtain

f(t)ρ(t) = f(t)
∫ +∞

t
q(s) ds + f(t)

∫ +∞

t
p(s)ρ2(s) ds for t > t0. (19)

Hence we easily find that

r ≥ g∗(0). (20)

Multiplying (15) by f2 and integrating from t0 to t, we obtain

f(t)ρ(t) =
1

f(t)
f2(t0)ρ(t0)−

1
f(t)

∫ t

t0
f2(s)q(s) ds +

+
1

f(t)

∫ t

t0
p(s)f(s)ρ(s)

(

2− f(s)ρ(s)
)

ds for t > t0, (21)

whence we get

R ≤ 1− g∗(2). (22)

Now suppose that g∗(0) 6= 0 and g∗(2) 6= 0 (otherwise, estimates (16)
follow from (20) and (22)). Let 0 < ε < min{g∗(0), g∗(2)}. Choose tε > t0
so that

r − ε < f(t)ρ(t) < R + ε for t > tε,

f(t)
∫ +∞

t
q(s)ds > g∗(0)− ε,

1
f(t)

∫ t

t0
f2(s)q(s) ds > g∗(2)− ε for t > tε.

From (19) and (21) we have

f(t)ρ(t) ≥ g∗(0)− ε + (r − ε)2 for t > tε,

f(t)ρ(t) ≤ 1
f(t)

f2(t0)ρ(t0)− g∗(2) + ε + (R + ε)(2−R− ε) for t > tε.

These inequalities readily imply

r ≥ g∗(0) + r2, R ≤ R(2−R)− g∗(2). (23)
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Therefore

r ≥ 1
2

(

1−
√

1− 4g∗(0)
)

, R ≤ 1
2

(

1 +
√

1− 4g∗(2)
)

.

Thus the lemma is proved.

Lemma 3. For the nonoscillation of system (1) it is necessary and
sufficient that for some λ 6= 1 the system

u′ = p(t)v ,

v′ = lλ(t)u + hλ(t)v
(24)

be nonoscillatory, where

lλ(t) =
p(t)
f2(t)

[

λFλ(t) sgn(1− λ)− F 2
λ(t)

]

,

hλ(t) = − 2p(t)
f2−λ(t)

Fλ(t) sgn(1− λ) for t > 0,
(25)

Fλ(t) = f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds for t ≥ 0 and λ < 1,

Fλ(t) = f1−λ(t)
∫ t

0
fλ(s)q(s) ds for t ≥ 0 and λ > 1.

(26)

Proof. The equality

ρ(t) = fλ(t)
v(t)
u(t)

− Fλ(t)
f1−λ(t)

sgn(1− λ)

establishes a correlation between a nonoscillatory solution (u, v) of system
(1) and a solution ρ (defined in some neighbourhood of +∞) of the equation

ρ′ = − p(t)
fλ(t)

ρ2 +
(λp(t)

f(t)
− 2p(t)Fλ(t)

f2−λ(t)
sgn(1− λ)

)

ρ +

+
p(t)

f2−λ(t)
(

λFλ(t) sgn(1− λ)− F 2
λ(t)

)

. (27)

On the other hand, the equality

ρ(t) = fλ(t)
v(t)
u(t)

establishes a correlation between a nonoscillatory solution of system (24)
and a solution ρ (defined in some neighbourhood of +∞) of equation (27).
Consequently the nonoscillation of each of systems (1) and (24) implies the
nonoscillation of the other.
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In the next lemma a sufficient condition is established for the nonoscilla-
tion of the system

u′ = p(t)v ,
v′ = l(t)u + h(t)v , (28)

where l, h : [0, +∞[→ ]−∞, +∞[ are locally summable functions.

Lemma 4. Let the function ρ : [t0,+∞[→ ] −∞, 0[∪ ]0,+∞[ be locally
absolutely continuous and

ρ′(t) ≤ l(t) + h(t)ρ(t)− p(t)ρ2(t) for t > t0.

Then system (28) is nonoscillatory.

Proof. Assume the contrary. Let (u, v) be an oscillatory solution of system
(28). Let t2 > t1 > t0 be chosen so that

u(t) > 0 for t1 < t < t2, u(t1) = 0, u(t2) = 0.

It is clear that
v(t1) > 0 and v(t2) < 0.

Introduce the notation

ϕ(t) = exp
[

−
∫ t

t1
h(s) ds

]

, σ(t) =
v(t)
u(t)

ϕ(t), ρ0(t) = ρ(t)ϕ(t),

l0(t) = l(t)ϕ(t), p0(t) =
p(t)
ϕ(t)

for t1 ≤ t ≤ t2.

It is easily seen that

σ′(t) = l0(t)− p0(t)σ2(t) for t1 < t < t2,

ρ′0(t) ≤ l0(t)− p0(t)ρ2
0(t) for t1 < t < t2.

(29)

For the sake of definiteness, we assume that ρ(t) > 0 for t > t0. Since
σ(t1+) = +∞ and σ(t2−) = −∞, there exist t3 ∈ ]t1, t2[ and ε ∈ ]0, t2 − t3[
such that σ(t3) = ρ0(t3) and

0 < σ(t) < ρ0(t) for t3 < t < t3 + ε. (30)

Due to this fact, from (29) we have

σ(t) = σ(t3) +
∫ t

t3
l0(s) ds−

∫ t

t3
p0(s)σ2(s) ds ≥

≥ ρ0(t3) +
∫ t

t3
l0(s) ds−

∫ t

t3
p0(s)ρ2

0(s) ds ≥ ρ0(t) for t3 < t < t3 + ε.

But the latter inequality contradicts (30). The obtained contradiction
proves the validity of the lemma.
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Remark 5. Let
∫ +∞

q(s) ds < +∞,
∫ +∞

p(s) ds < +∞

and

ρ(t) =
∫ +∞

t
q(s) ds +

∫ +∞

t
p(s) ds for t > 0.

Choose t0 > 0 so that ρ(t) < 1 for t > t0. Then it is obvious that

ρ′(t) ≤ −q(t)− p(t)ρ2(t) for t > t0.

Consequently, according to Lemma 4, system (1) is nonoscillatory.

Lemma 5. Let g∗(λ) < +∞ for λ 6= 1. Then the mapping λ 7−→
|1 − λ|g∗(λ) (λ 7−→ |1 − λ|g∗(λ)) does not increase (does not decrease) for
λ < 1 and does not decrease (does not increase) for λ > 1.

Proof. We prove this lemma only for the case where λ < 1. For λ > 1 the
lemma is proved in a similar way. Let ε > 0. Choose tε > 0 such that

g∗(λ)− ε < f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds < g∗(λ) + ε for t > tε. (31)

It is easy to see that

f1−µ(t)
∫ +∞

t
fµ(s)q(s) ds = f1−λ(t)

∫ +∞

t
fλ(s)q(s) ds +

+(µ− λ)f1−µ(t)
∫ +∞

t
fλ−2(s)p(s)

[

f1−λ(s)
∫ +∞

s
fλ(ξ)q(ξ) dξ

]

ds

for µ < 1 and t > 0.

Hence we find

(

g∗(λ)− ε
)

(

1 +
µ− λ
1− µ

)

< f1−µ(t)
∫ +∞

t
fµ(s)q(s) ds <

<
(

g∗(λ) + ε
)

(

1 +
µ− λ
1− µ

)

for λ < µ and t > tε.

Consequently

(1− λ)g∗(λ) ≤ (1− µ)g∗(µ), (1− µ)g∗(µ) ≤ (1− λ)g∗(λ) for λ < µ.

Thus the lemma is proved.

Lemma 6. Let g∗(λ) < +∞ for λ 6= 1. Then

lim
λ→1−

(1− λ)g∗(λ) = lim
λ→1+

(λ− 1)g∗(λ),

lim
λ→1−

(1− λ)g∗(λ) = lim
λ→1+

(λ− 1)g∗(λ).
(32)
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Proof. Let λ < 1, µ > 1 and ε > 0. Choose tε > 0 such that inequalities
(31) be fulfilled and

g∗(µ)− ε < f1−µ(t)
∫ t

0
fµ(s)q(s) ds < g∗(µ) + ε for t > tε.

It is easy to see that

f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds = −f1−µ(t)

∫ t

0
fµ(s)q(s) ds +

+(µ− λ)f1−λ(t)
∫ +∞

t
p(s)fλ−2(s)

[

f1−µ(s)
∫ +∞

s
fµ(ξ)q(ξ) dξ

]

ds for t>0,

f1−µ(t)
∫ t

0
fµ(s)q(s) ds = −f1−λ(t)

∫ +∞

t
fλ(s)q(s) ds +

+(µ− λ)f1−µ(t)
∫ t

1
p(s)fµ−2(s)

[

f1−λ(s)
∫ +∞

s
fλ(ξ)q(ξ) dξ

]

ds for t>0.

From these equalities we have

µ− λ
1− λ

(

g∗(µ)− ε
)

−f1−µ(t)
∫ t

0
fµ(s)q(s) ds < f1−λ(t)

∫ +∞

t
fλ(s)q(s) ds<

<
µ− λ
1− λ

(

g∗(µ) + ε
)

for t>tε,

µ− λ
µ− 1

(

g∗(λ)− ε
)

− f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds<f1−µ(t)

∫ t

0
fµ(s)q(s) ds<

<
µ− λ
µ− 1

(

g∗(λ) + ε
)

for t > tε.

Hence we obtain

(µ− λ)g∗(µ)− (1− λ)g∗(µ) ≤ (1− λ)g∗(λ), (1− λ)g∗(λ) ≤ (µ− λ)g∗(µ),

(µ− λ)g∗(λ)− (µ− 1)g∗(λ) ≤ (µ− 1)g∗(µ), (µ− 1)g∗(µ) ≤ (µ− λ)g∗(λ).

Now by Lemma 5 we can conclude that equalities (32) are valid.

The next lemma can be proved similarly by using the equalities

1
ln f(t)

∫ t

1
f(s)q(s) ds=−f1−λ(t)

ln f(t)

∫ +∞

t
fλ(s)q(s) ds +

+
1

ln f(t)
f1−λ(t)

∫ +∞

1
fλ(s)q(s) ds +

+
1− λ
ln f(t)

∫ +∞

1

f ′(s)
f(s)

[

f1−λ(s)
∫ +∞

s
fλ(ξ)q(ξ) dξ

]

ds for t>1 and λ<1,
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∫ +∞

1
fλ(s)q(s) ds = (µ− λ)

∫ +∞

1
fλ−2(s)f ′(s)

[

f1−µ(s)
∫ s

1
fµ(ξ)q(ξ) dξ

]

ds

for λ < 1 and µ > 1.

Lemma 7. Let g∗(λ) < +∞ for some λ < 1 and g∗(µ) < +∞ for some
µ > 1. Then

lim sup
t→+∞

1
ln f(t)

∫ t

1
f(s)q(s) ds ≤ (1− λ)g∗(λ),

lim sup
λ→1−

(1− λ)
∫ +∞

1
fλ(s)q(s) ds ≤ (µ− 1)g∗(µ).

§ 3. Proof of the Main Results

Proof of Proposition 1. Assume the contrary. Let (u, v) be a nonoscillatory
solution of system (1). Then according to Lemma 1, there exists t0 > 0 such
that u(t)v(t) > 0 for t0 > 0. It is easy to see that the function ρ(t) = v(t)

u(t)
for t > t0 satisfies equation (15). Similarly to the proof Lemma 2, we can
see that inequalities (23) are fulfilled, where r and R are defined by (17).
However from (23) we have

g∗(0) ≤ 1
4

and g∗(2) ≤ 1
4
.

But this contradicts the conditions of the proposition.

Proof of Theorem 1. Assume the contrary. Let system (1) be nonoscillatory.
Then according to Lemma 2, equation (15) has the solution ρ : [t0,+∞[→
]0, +∞[ satisfying (16). Integrating (15) from t to +∞ and taking into
account (18), we can conclude that equality (19) is valid. Suppose that
g∗(0) 6= 0. Let 0 < ε < g∗(0). Choose tε > t0 so that

1
2

(

1−
√

1− 4g∗(0)
)

− ε < f(t)ρ(t) <
1
2

(

1 +
√

1− 4g∗(2)
)

+ ε for t > tε.

From (19) we easily find that

f(t)
∫ +∞

t
q(s) ds <

1
2

(

1 +
√

1− 4g∗(2)
)

+ ε−

−
[1
2

(

1−
√

1− 4g∗(0)
)

− ε
]2

for t > tε.

Hence we have

g∗(0) ≤ g∗(0) +
1
2

(
√

1− 4g∗(0) +
√

1− 4g∗(2)
)

.
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For g∗(0) = 0 the validity of the latter inequality is proved in a similar way.
On the other hand, this inequality contradicts condition (6).

Proof of Theorem 2. Suppose that system (1) is nonoscillatory. Then ac-
cording to Lemma 2, equation (15) has the solution ρ : [t0, +∞[→ ]0,+∞[
satisfying estimates (16). Multiplying (15) by fλ and integrating from t to
+∞ if λ < 1 or from t0 to t if λ > 1, we get

f1−λ(t)
∫ +∞

t
fλ(s)q(s) ds = f(t)ρ(t) +

+f1−λ(t)
∫ +∞

t
f ′(s)fλ−1(s)ρ(s)

(

λ− f(s)ρ(s)
)

ds ≤ f(t)ρ(t) +
λ2

4(1− λ)
for t > t0 and λ < 1,

f1−λ(t)
∫ t

t0
fλ(s)q(s) ds = −f(t)ρ(t) + fλ(t0)ρ(t0)f1−λ(t) +

+f1−λ(t)
∫ t

t0
f ′(s)fλ−1(s)ρ(s)

(

λ− f(s)ρ(s)
)

ds ≤

≤ −f(t)ρ(t) + fλ(t0)ρ(t0)f1−λ(t) +
λ2

4(λ− 1)

(

1− f1−λ(t)fλ−1(t0)
)

for t > t0 and λ > 1.

Taking into account (16), from these inequalities we find

g∗(λ) ≤ λ2

4(1− λ)
+

1
2

(

1 +
√

1− 4g∗(2)
)

for λ < 1,

g∗(λ) ≤ λ2

4(λ− 1)
− 1

2

(

1−
√

1− 4g∗(0)
)

for λ > 1.

But this contradicts inequalities (7) and (8).

Proof of Corollary 1. Suppose that g∗(λ) < +∞ for λ 6= 1 (otherwise, by
Theorem 2 system (1) is oscillatory). By Lemma 6, the limit in the left-hand
side of (9) exists. Obviously,

lim
λ→1−

[

(1− λ)g∗(λ)− λ2

4
− 1− λ

2

(

1 +
√

1− 4g∗(2)
)]

> 0.

This implies that (7) is fulfilled for some λ < 1. Therefore by Theorem 2
system (1) is oscillatory.

Taking into account Corollary 1, Lemma 5 and Lemma 7, we can easily
make sure that Corollaries 2–4 are valid.
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Proof of Theorem 3. Define the functions lλ, hλ and Fλ by (25) and (26).
According to (13), there exists t0 > 0 such that

F 2
λ(t) +

2λ2 − 4λ + 1
2|1− λ|

Fλ(t) +
(2λ− 1)(3− 2λ)

16(1− λ)2
< 0 for t > t0.

Consequently

ρ′(t) ≤ lλ(t) + hλ(t)ρ(t)− p(t)ρ2(t) for t > t0,

where ρ(t) = 1−2λ
4(1−λ)f(t) for t > t0. In view of this fact, by Lemma 3 and

Lemma 4 system (1) is nonoscillatory.
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