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CONJUGACY AND DISCONJUGACY CRITERIA FOR SECOND
ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS

T. CHANTLADZE, A. LOMTATIDZE, AND D. UGULAVA

Abstract. Conjugacy and disconjugacy criteria are established for the equa-

tion
u′′ + p(t)u = 0 ,

where p :]−∞,+∞[→]−∞,+∞[ is a locally summable function.

Introduction

Consider the equation

u′′ + p(t)u = 0 ,(1)

where p : R → R (R =] − ∞,+∞[) is Lebesgue integrable on every compact
subinterval of R. By a solution of the equation (1) we understand the function
u : R → R which is absolutely continuous together with its first derivative on
every segment contained in R, and almost everywhere satisfies the equation (1).

The equation (1) is said to be conjugate if it has a nontrivial solution with at
least two zeros, and disconjugate otherwise. If there exists a nontrivial solution of
(1) with a sequence of zeros tending to +∞ (to −∞), then the equation (1) is said
to be oscillatory in the neighbourhood of +∞ (in the neighbourhood of −∞).

The history of the problem on conjugacy of (1) begins from the paper of S. W.
Hawking and R. Penrose [8], where has been proved that conditions p(t) ≥ 0 for
t ∈ R and p 6≡ 0, guarantee conjugacy of (1). In [13] F. J. Tipler pointed out
an interesting relevance of the study of conjugacy of (1) to general relativity and
improved Hawking–Penrose’s criterion, showing that (1) is conjugate whenever

lim inf
t→−∞

lim inf
τ→+∞

τ∫
t

p(s) ds > 0

is fulfilled. Later these results were generalized in various directions (see, e.g., [1,
2, 5, 6, 9 - 12]). However, the investigation of conjugacy of the equation (1) is not
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still completed. Below we establish new conditions for conjugacy and disconjugacy
of the equation (1) which generalize and make the results obtained in [1, 5, 6, 8 -
10] more complete.

Put

c(t) =
1
|t|

t∫
0

s∫
0

p(ξ) dξ ds for t ∈ R \ {0} .

According to Theorem 7.3 in [7, p. 367], if either

lim
t→+∞

c(t) = +∞ or −∞ < lim inf
t→+∞

c(t) < lim sup
t→+∞

c(t) ,

resp. if either

lim
t→−∞

c(t) = +∞ or −∞ < lim inf
t→−∞

c(t) < lim sup
t→−∞

c(t) ,

then the equation (1) is oscillatory in the neighbourhood of +∞, resp. in the
neighbourhood of −∞. Therefore, below we suppose that there exist finite limits

c(−∞) def= lim
t→−∞

c(t) , c(+∞) def= lim
t→+∞

c(t) .

Denote

Q1(t) =

t∫
0

p(s) ds− c(+∞) , Q2(t) =

t∫
0

p(s) ds + c(−∞) for t ∈ R ,

Fi(t) = exp

2

t∫
0

Qi(s) ds

 for t ∈ R , i = 1, 2 .

To formulate the main results, we need two propositions. The first one is the
special case of Theorem 1.2 proved in [14], and the second one we prove in §3.

Proposition 1. Let

+∞∫
Q2

1(s)
F1(s)

ds = +∞ , resp.
∫
−∞

Q2
2(s)

F2(s)
ds = +∞ .

Then the equation (1) is oscillatory in the neighbourhood of +∞, resp. in the
neighbourhood of −∞.

Proposition 2. If∫
−∞

F1(s) ds < +∞ , resp.

+∞∫
F2(s) ds < +∞(2)
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and ∫
−∞

[
Q1(s)

∫ s
−∞ F1(ξ) dξ

]2
F1(s)

ds = +∞ , resp.

+∞∫ [
Q2(s)

∫ +∞
s

F2(ξ) dξ
]2

F2(s)
ds = +∞ ,

(3)

then the equation (1) is oscillatory in the neighbourhood of −∞, resp. in the
neighbourhood of +∞.

1. Main Results

Theorem 1. Let p 6≡ 0 and

c(−∞) + c(+∞) ≥ 0 .(4)

Then the equation (1) is conjugate.

Remark 1. It can be easily seen that Theorem 1 generalizes above-mentioned
Tipler’s result as well as Corollary 1 in [6] and Corollary 3.2 and Proposition 3 in
[9].

Remark 2. From Theorem 1 and above-mentioned Theorem 7.3 in [7] it follows
that at least one of the equations u′′ + p(t)u = 0 and u′′ − p(t)u = 0, where p 6≡ 0,
is conjugate whenever either

lim inf
t→−∞

c(t) > −∞ or lim sup
t→−∞

c(t) < +∞

or
lim inf
t→+∞

c(t) > −∞ or lim sup
t→+∞

c(t) < +∞ .

According to Theorem 1, it is natural to assume in the following that

c(−∞) + c(+∞) < 0 .(5)

Note that the inequality (5) guarantees the conditions (2). Consequently, in view
of Propositions 1 and 2 it is also natural to assume that

+∞∫
Q2

1(s)
F1(s)

ds < +∞,
∫
−∞

[
Q1(s)

∫ s
−∞ F1(ξ) dξ

]2
F1(s)

ds < +∞ ,(6)

∫
−∞

Q2
2(s)

F2(s)
ds < +∞,

+∞∫ [
Q2(s)

∫ +∞
s

F2(ξ) dξ
]2

F2(s)
ds < +∞ .(7)
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Theorem 2. Let the conditions (5), (6), and

sup


t∫

−∞

F1(s) ds

+∞∫
t

Q2
1(s)

F1(s)
ds+

+
1∫ t

−∞ F1(s) ds

t∫
−∞

[
Q1(s)

∫ s
−∞ F1(ξ) dξ

]2
F1(s)

ds : t ∈ R

 > 1

(8)

be fulfilled. Then the equation (1) is conjugate.

Theorem 2′. Let the conditions (5), (7), and

sup


+∞∫
t

F2(s) ds

t∫
−∞

Q2
2(s)

F2(s)
ds+

+
1∫ +∞

t
F2(s) ds

+∞∫
t

[
Q2(s)

∫ +∞
s

F2(ξ) dξ
]2

F2(s)
ds : t ∈ R

 > 1

be fulfilled. Then the equation (1) is conjugate.

Finally we formulate disconjugacy theorems.

Theorem 3. Let the conditions (5) and (6) hold. Let, moreover, at least one of
the following three inequalities be fulfilled:

sup


t∫

−∞

F1(s) ds

+∞∫
t

Q2
1(s)

F1(s)
ds : t ∈ R

 ≤ 1
4

;(9)

sup

 1∫ t
−∞ F1(s) ds

t∫
−∞

[
Q1(s)

∫ s
−∞ F1(ξ) dξ

]2
F1(s)

ds : t ∈ R

 ≤ 1
4

;(10)

sup


t∫

−∞

F1(s) ds

+∞∫
t

Q2
1(s)

F1(s)
ds+

+
1∫ t

−∞ F1(s) ds

t∫
−∞

[
Q1(s)

∫ s
−∞ F1(ξ) dξ

]2
F1(s)

ds : t ∈ R

 ≤ √2− 1 .

(11)

Then the equation (1) is disconjugate.
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Theorem 3′. Let the conditions (5) and (7) hold. Let, moreover, at least one of
the following three inequalities be fulfilled:

sup


+∞∫
t

F2(s) ds

t∫
−∞

Q2
2(s)

F2(s)
ds : t ∈ R

 ≤ 1
4

;

sup

 1∫ +∞
t F2(s) ds

+∞∫
t

[
Q2(s)

∫ +∞
s

F2(ξ) dξ
]2

F2(s)
ds : t ∈ R

 ≤ 1
4

;

sup


+∞∫
t

F2(s) ds

t∫
−∞

Q2
2(s)

F2(s)
ds+

+
1∫ +∞

t F2(s) ds

+∞∫
t

[
Q2(s)

∫ +∞
s

F2(ξ) dξ
]2

F2(s)
ds : t ∈ R

 ≤ √2− 1 .

Then the equation (1) is disconjugate.

2. Auxiliary Propositions

Lemma 1. Let the equation (1) be disconjugate. Then it has a solution not having
a zero.

Proof. Let ṽn and w̃n, where n ∈ N , be solutions of the equation (1) satisfying
the initial conditions

ṽn(−n) = 0, ṽ′n(−n) = 1 ,
w̃n(n) = 0, w̃′n(n) = −1 .

Evidently, ṽn(0) 6= 0 and w̃n(0) 6= 0 for n ∈ N . Put

vn(t) =
ṽn(t)
ṽn(0)

, wn(t) =
w̃n(t)
w̃n(0)

for t ∈ R, n ∈ N .

It is clear that for any n ∈ N , vn and wn are solutions of the equation (1) and

vn(t) sgn(t + n) > 0 for t ∈ R \ {−n} ,
wn(t) sgn(t− n) < 0 for t ∈ R \ {n} ,(12)

vn(0) = 1, wn(0) = 1 .(13)

Since the equation (1) is disconjugate, we can easily verify that for t ∈ R\{0} and
n,m ∈ N,

(vn+1(t)− vn(t)) sgn t < 0 , (wn+1(t) − wn(t)) sgn t > 0 ,(14)

(vn(t) − wm(t)) sgn t > 0 .(15)

(14) and (15) result in

v′n+1(0) < v′n(0) , w′n+1(0) > w′n(0) for n ∈ N ,(16)
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v′n(0) > w′m(0) for n,m ∈ N .(17)

Put λ = |w′1(0)|+ |v′1(0)| and

Ma = max{w1(t) : −a ≤ t ≤ 0}+ max{v1(t) : 0 ≤ t ≤ a} ,
where a > 0. Then by (14), (16), and (17) we have

|v′n(0)| ≤ λ, |w′n(0)| ≤ λ for n ∈ N ,(18)

|vn(t)| ≤Ma, |wn(t)| ≤Ma for − a ≤ t ≤ a, n > a.(19)

Since vn and wn are solutions of the equation (1), in view of (18) and (19), we
obtain

|v′n(t)| ≤ λa , |w′n(t)| ≤ λa for − a ≤ t ≤ a , n > a ,(20)

where λa = λ+ Ma

∫ a
−a |p(s)| ds.

By (19) and (20), it is clear that the sequences (v(i)k )+∞
k=1 and (w(i)

k )+∞
k=1, i = 0, 1,

are uniformly bounded and equicontinuous in R (i.e., on every segment contained
in R). Therefore, according to the Arzelà–Ascoli lemma, without loss of generality
we can assume that

lim
k→+∞

v
(i)
k (t) = v(i)(t) , lim

k→+∞
w

(i)
k (t) = w(i)(t) , i = 0, 1

uniformly in R. It is easy to see that the functions v and w are solutions of the
equation (1).

In view of (12), (14), and (15) we have

v(t) > 0 for t < 0, w(t) > 0 for t > 0 ,

(v(t) − w(t)) sgn t ≥ 0 for t 6= 0 .
Consequently, v(t) > 0 for t 6= 0. However, according to (13), v(0) = 1. Thus v
has no zero. 2

Lemma 2. Let a solution u of the equation (1) have no zero in the interval
[a,+∞[, resp. in the interval ]−∞, a]. Then

+∞∫
a

ρ2(s) ds < +∞ , resp.

a∫
−∞

ρ2(s) ds < +∞ ,

and the equality

ρ(t) = c(+∞)−
t∫

0

p(s) ds +

+∞∫
t

ρ2(s) ds for t ≥ a , resp.

ρ(t) = −c(−∞) +

0∫
t

p(s) ds −
t∫

−∞

ρ2(s) ds for t ≤ a

holds, where ρ(t) = u′(t)
u(t)

for t ≥ a, resp. for t ≤ a.

For the proof of this lemma see [7], p. 365, Lemma 7.1.
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Lemma 3. Let the function g :]a, b[→ [0,+∞[ be integrable on every segment
contained in ]a, b], and

b∫
a

(s − a)2g(s) ds = +∞ .

Then every nontrivial solution of the equation v′′ + g(x)v = 0 has a sequence of
zeros tending to a.

Lemma 3 immediately follows from Theorem 1.1 in [3].

3. Proofs

Proof of Proposition 2. Put

ϕ(t) =

t∫
0

F1(s) ds for t ∈ R.(21)

According to (2) there exists a finite limit

a
def= lim

t→−∞
ϕ(t) ,(22)

and a < 0.
Define the function g by the equalities

g(x) =
Q2

1(t)
F 2

1 (t)
, x = ϕ(t) for t ∈ R ,(23)

and in the interval ]a, 0[ consider the equation

v′′ + g(x)v = 0 .(24)

In view of (23), from (3) we get
0∫
a

(x− a)2g(x)dx = +∞ .

Consequently, by Lemma 3, every nontrivial solution of the equation (24) has a
sequence of zeros tending to a. It can be dirrectly verify that if v is a solution of
the equation (24), then the function u defined by the equality

u(t) = v(ϕ−1(t)) exp

− t∫
0

Q1(s) ds

 for t ∈ R(25)

is a solution of the equation (1). Obviously, u has a sequence of zeros tending to
−∞. 2

Proof of Theorem 1. According to Lemma 1, to prove the theorem it is sufficient
to show that the equation (1) has no solution without zeros. Assume the contrary.
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Suppose u is a solution of the equation (1) with no zero in R. Then, by virtue of
Lemma 2, the equalities

ρ(t) = c(+∞) −
t∫

0

p(s) ds +

+∞∫
t

ρ2(s) ds for t ≥ 0 ,

ρ(t) = −c(−∞) +

0∫
t

p(s) ds −
t∫

−∞

ρ2(s) ds for t ≤ 0

are fulfilled, where ρ(t) = u′(t)
u(t) for t ∈ R. Set in the latter equalities t = 0. If we

subtract the second equality from the first one, we obtain

c(+∞) + c(−∞) = −
+∞∫
−∞

ρ2(s) ds .(26)

Since p 6≡ 0, then ρ 6≡ 0 and, consequently,
∫ +∞
−∞ ρ2(s) ds > 0. Hence, on account

of (4) and (26), we get the contradiction 0 < 0. 2

Proof of Theorem 2. According to Theorem 1.1 in [4], if

lim sup
t→+∞

t

ln t

(
c(+∞)− c(t)

)
>

1
4
,

then the equation (1) is oscillatory in the neighbourhood of +∞. Therefore we
assume that

lim sup
t→+∞

t

ln t

(
c(+∞)− c(t)

)
≤ 1

4
.(27)

Define the function ϕ by (21). Due to (27), it is easy to see that

lim
t→+∞

ϕ(t) = +∞ .(28)

According to (5) we have

lim
t→−∞

|t|
ln |t|

(
− c(+∞)− c(t)

)
= +∞ .(29)

Therefore there exists a finite limit (22). Consequently, the function ϕ monotonicly
transforms R into ]a,+∞[.

Define the function g by (23), and in the interval ]a,+∞[ consider the equation
(24). It is clear that if v is a solution of the equation (24), then the function u
defined by (25) is a solution of the equation (1). Therefore, according to Lemma 1,
to prove the theorem it is sufficient to show that the equation (24) has no solution
without zeros in ]a,+∞[. Assume the contrary, let v be a solution of the equation
(24) with no zero in ]a,+∞[. Put σ(x) = v′(x)

v(x)
for x > a. Taking into account (6)
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and Lemma 2, we find

σ(x) =

+∞∫
x

g(τ )dτ +

+∞∫
x

σ2(τ )dτ for x > a .(30)

Evidently, σ′(x) = −g(x) − σ2(x) for x > a. Multiplying both sides of the last
equality by x− λ, where λ > a, and integrating from λ to x, we get

σ(x) = − 1
(x− λ)2

x∫
λ

(τ − λ)2g(τ )dτ +
1

(x− λ)2

x∫
λ

(τ − λ)σ(τ )(2 − (τ − λ)σ(τ ))dτ

≤ − 1
(x− λ)2

x∫
λ

(τ − λ)2g(τ )dτ +
1

x− λ for x > λ .

Hence, on account of (6) and (23), it immediately follows

σ(x) ≤ − 1
(x− a)2

x∫
a

(τ − a)2g(τ )dτ +
1

x− a for x > a .(31)

From (30) and (31) we have

(x−a)

+∞∫
x

g(τ )dτ+
1

(x− a)2

x∫
a

(τ−a)2g(τ )dτ ≤ 1−(x−a)

+∞∫
x

σ2(τ )dτ for x > a .

Consequently,

sup

(x− a)

+∞∫
x

g(τ )dτ +
1

(x− a)2

x∫
a

(τ − a)2g(τ )dτ : x > a

 ≤ 1 .

Taking now into account (8) and (23), we obtain the contradiction 1 < 1. 2

The proof of Theorem 2′ is analogous to that of Theorem 2.

Proof of Theorem 3. Define the function ϕ by (21) and show that (28) is
fulfilled. Indeed, if there exists M > 0 such that

ϕ(t) ≤M for t > 0 ,(32)

then according to (6) and the Hölder inequality we have∣∣∣∣∣∣
t∫

0

Q1(s) ds

∣∣∣∣∣∣ ≤√ϕ(t)

√√√√√ t∫
0

Q2
1(s)

F1(s)
ds ≤

√
M

√√√√√ +∞∫
0

Q2
1(s)

F1(s)
ds < +∞ for t > 0 ,

which contradicts (32). Consequently, (28) is fulfilled.
In view of (5) we have (29). Therefore there exists a finite limit (22). Thus the

function ϕ monotonicly transforms R into ]a,+∞[.
Define the function g by (23), and in the interval ]a,+∞[ consider the equation

(24). It is clear that if v is a solution of the equation (24), then the function u
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defined by (25) is a solution of the equation (1). Therefore, to prove the theorem it
is sufficient to show that the equation (24) has a solution with no zero in ]a,+∞[.
However, to prove this fact it is sufficient to show that there exists a function
ρ :]a,+∞[→ R which is absolutely continuous on every segment contained in
]a,+∞[ and satisfies the inequality

ρ′(x) ≤ −g(x) − ρ2(x) for x > a .(33)

Suppose that (9) is fulfilled. On account of (23), from (9) we obtain

(x− a)

+∞∫
x

g(s) ds ≤ 1
4

for x > a .

It can be easily verified that the function

ρ(x) =
1

4(x− a)
+

+∞∫
x

g(s) ds for x > a

satisfies the inequality (33).
Now suppose that (10) is fulfilled. Then in view of (23) we have

1
x− a

x∫
a

(s − a)2g(s) ds ≤ 1
4

for x > a.

It is easy to verify that the function

ρ(x) =
3

4(x− a)
− 1

(x− a)2

x∫
a

(s − a)2g(s) ds for x > a

satisfies the inequality (33).
Finally suppose that (11) is fulfilled. Then by (23) we get

(x − a)

+∞∫
x

g(s) ds +
1

x− a

x∫
a

(s − a)2g(s) ds ≤
√

2− 1 for x > a .

We can easily verify that the function

ρ(x) =
1

2(x− a)
+

1
2

 +∞∫
x

g(s) ds − 1
(x− a)2

x∫
a

(s − a)2g(s) ds

 for x > a

satisfies the inequality (33). 2

Theorem 3′ can be proved analogously.
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