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1. INTRODUCTION

Consider the equation
u′′′ + p(t)u = 0, (1.1)

where p : [0,+∞[ → ]−∞,+∞[ is a locally integrable function. A solution of Eq. (1.1) is defined
as a function u : [0,+∞[ → ] −∞,+∞[ locally absolutely continuous together with its first- and
second-order derivatives and satisfying the equation almost everywhere.

A nontrivial solution of Eq. (1.1) is said to be oscillating if it has infinitely many zeros and
nonoscillating otherwise. Equation (1.1) is oscillating if it has at least one oscillating solution
and nonoscillating otherwise.

In the present paper, we prove integral oscillation criteria for Eq. (1.1), which generalize and
supplement some results of [1–6]. Throughout the following, we assume that p is of constant sign,
i.e., either

p(t) ≤ 0 for t > 0, (1.2)
or

p(t) ≥ 0 for t > 0. (1.3)

We set

h(t) = t2

[
|p(t)| − 2

√
3

9t3

]
, H(t) =

1
ln2 t

t∫
1

1
s

s∫
1

1
ξ

ξ∫
1

h(η)dη dξ ds for t > 1.

Theorem 1.1. If

lim sup
t→+∞

t∫
1

h(s)ds = +∞, (1.4)

then Eq. (1.1) is oscillating.

This theorem generalizes Theorem 1 in [5].

Theorem 1.2. Suppose that either limt→+∞H(t) = +∞ or −∞ < lim inf
t→+∞

H(t) < lim sup
t→+∞

H(t).
Then Eq. (1.1) is oscillating.

By this theorem, for further investigation of the oscillation of Eq. (1.1), it suffices to consider
the case in which either lim inf

t→+∞
H(t) = −∞ or there exists a finite limit

lim
t→+∞

H(t) = C. (1.5)
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Theorem 1.3. Suppose that condition (1.5) is satisfied and

lim sup
t→+∞

ln t
ln ln t

(C −H(t)) >
√

3
2
. (1.6)

Then Eq. (1.1) is oscillating.

Remark 1.1. Let p(t) = 2
√

3/(9t3) + ε/(t3 ln2 t) for t > 1. By Theorem 1.3, Eq. (1.1) is
oscillating for ε >

√
3/2. We can readily see that this equation satisfies neither the assumptions of

Theorem 2.11 in [4, p. 57] nor those of Theorem 1.3(a) in [1].

Corollary 1.1. Suppose that condition (1.5) is satisfied and

lim inf
t→+∞

ln t

2C −
t∫

1

h(s)ds

 > √3
2
.

Then Eq. (1.1) is oscillating.

Corollary 1.2. Suppose that the integral
∫ +∞

1
h(s)ds converges and

lim inf
t→+∞

ln t

+∞∫
t

h(s)ds >
√

3
2
.

Then Eq. (1.1) is oscillating.

2. AUXILIARY ASSERTIONS

We introduce the following notation: x0 = 1− 2/
√

3, x1 = 1− 1/
√

3, x2 = 1 + 1/
√

3, and

H(τ, t) =

t∫
τ

1
s

s∫
τ

1
ξ

ξ∫
τ

h(η)dη dξ ds for t, τ > 0.

In addition, for an arbitrary solution u of Eq. (1.1) nonvanishing on some interval [t0,+∞[ , we set

%(t) = u′(t)/u(t), σ(t) = u′′(t)/u(t) for t > t0,

α0(t) = 3t%(t)− (3/2)(t%(t))2, α(t) = t2σ(t)− 2t%(t) + (1/2)(t%(t))2 for t > t0,

G(τ, t) =

t∫
τ

(s%(s)− x2)2 (s%(s)− x0)
s

ds for t0 < τ < t ≤ +∞.

Lemma 2 in [2] implies the following assertion.

Lemma 2.1. Suppose that condition (1.3) is satisfied, t0 > 0, and u is a solution of Eq. (1.1)
satisfying the inequalities

u(t) > 0, u′(t) > 0, u′′(t) > 0 for t > t0. (2.1)

Then

lim sup
t→+∞

tu′(t)
u(t)

< +∞, lim sup
t→+∞

t2u′′(t)
u(t)

< +∞. (2.2)
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Lemma 2.2. If the assumptions of Lemma 2.1 are valid, then

t2%′(t) = −
t∫

τ

h(s)ds −G(τ, t) + 2t%(t)− 3
2

(t%(t))2 + α(τ) for t > τ > t0, (2.3)

t∫
τ

s%(s)− x2

s
ds = −H(τ, t)−

t∫
τ

1
s

s∫
τ

G(τ, ξ) − α0(ξ)
ξ

dξ ds+
α(τ) ln2 t

2

+ δ0(τ) ln t+ δ1(τ) for t > τ > t0,

(2.4)

where δ0(τ) = τ%(τ)− α(τ) ln τ − x2 and δ1(τ) = −(1/2)α(τ) ln2 τ − δ0(τ) ln τ for τ > t0.

Proof. Obviously,
%′(t) = σ(t)− %2(t) for t > t0 (2.5)

and σ′(t) = −p(t)− σ(t)%(t) for t > t0. Consequently, σ′(t) = −p(t)− %(t) (%′(t) + %2(t)) for t > t0.
Multiplying both sides of the last relation by t2 and integrating the resulting expressions from τ
to t, we obtain

t2σ(t) = −
t∫

τ

s2p(s)ds+

t∫
τ

s%(s)(s%(s)− 1)(2 − s%(s))
s

ds

+ 2t%(t)− 1
2

(t%(t))2 + α(τ) for t > τ > t0.

This, together with (2.5), implies that

t2%′(t) = −
t∫

τ

h(s)ds +

t∫
τ

s%(s)(s%(s)− 1)(2− s%(s))− 2
√

3/9
s

ds

+ 2t%(t)− 1
2

(t%(t))2 + α(τ) for t > τ > t0.

Now, since x(x− 1)(2 − x)− 2
√

3/9 = − (x− x2)2 (x− x0), we see that relation (2.3) is valid.
Multiplying both sides of (2.3) by t−1 and integrating the resulting expressions from τ to t,

we obtain

t%(t)− x2 = −
t∫

τ

1
s

s∫
τ

h(η)dη ds−
t∫

τ

G(τ, s) − α0(s)
s

ds+ α(τ) ln t+ δ0(τ) for t > τ > t0.

Multiplying both sides of the resulting relation once more by t−1 and integrating from τ to t,
we obtain (2.4). The proof of the lemma is complete.

Lemma 2.3. Suppose that condition (1.3) is satisfied, lim inf
t→+∞

H(t) > −∞, t0 > 0, and u is a

solution of Eq. (1.1) satisfying inequalities (2.1). Then

+∞∫
t0

1
s

(s%(s)− x2)2
ds < +∞. (2.6)

Proof. Suppose the contrary; namely, let inequality (2.6) fail. Then, by (2.1),

t%(t)− x0 > |x0| for t > t0 (2.7)
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and G(τ,+∞) = +∞ for τ > t0. Therefore,

lim
t→+∞

1
ln2 t

t∫
τ

1
s

s∫
τ

G(τ, ξ)
ξ

dξ ds = +∞ for t > τ > t0. (2.8)

By Lemma 2.1, the function α0 is bounded on the interval [t0,+∞[. Consequently, there exists an
r > 0 such that

1
ln2 t

∣∣∣∣∣∣
t∫

τ

1
s

s∫
τ

α0(ξ)
ξ

dξ ds

∣∣∣∣∣∣ < r for t > τ > t0. (2.9)

Taking into account relations (2.8) and (2.9) and the lower boundedness of the function H,
from (2.4), we obtain the inequality

t∫
t0

s%(s)− x2

s
ds < −1

2

t∫
t0

1
s

s∫
t0

G (t0, ξ)
ξ

dξ ds for t > t1 (2.10)

for some t1 > t0. By the Hölder inequality,∣∣∣∣∣∣
t∫

t0

(s%(s)− x2) s−1ds

∣∣∣∣∣∣ ≤ √ln t

 t∫
t0

(s%(s)− x2)2
s−1ds

1/2

for t > t1.

If, in addition, we use inequality (2.7), then from (2.10), we obtain

t ln t (tv′(t))′ > λv2(t) for t > t1, (2.11)

where

λ =
x2

0

4
, v(t) =

t∫
t0

1
s

s∫
t0

1
ξ

ξ∫
t0

(η%(η) − x2)2

η
dη dξ ds.

In addition, by the above assumption, limt→+∞ v(t)/ ln2 t = +∞. Therefore, without loss of gener-
ality, we can assume that v(t) > ln2 t for t > t1; then from (2.11), we obtain

tv′(t) (tv′(t))′ > λv3/2(t)v′(t) for t > t1.

The integration of the last inequality from t1 to t gives

(tv′(t))2
> (4λ/5)

[
v5/2(t)− v5/2 (t1)

]
+ [t2v′ (t1)]2 for t > t1.

Since v is unbounded, it follows that there exists a t2 > t1 such that v−5/4(t)v′(t) > 2λ/(5t)
for t > t2. Integrating this inequality from t2 to t, we arrive at a contradiction; namely,

v−1/4 (t2) > (λ/10) ln (t/t2) for t ≥ t2.

This contradiction completes the proof of the lemma.

Lemma 2.4. Let condition (1.3) be satisfied, and let Eq. (1.1) have a solution u satisfying
conditions (2.1) and (2.6). Then there exists a finite limit (1.5).
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Proof. By Lemma 2.1 and condition (2.6), we have

G(τ,+∞) < +∞,
+∞∫
τ

(s%(s)− x2)2 (s%(s)− x1)2

s
ds < +∞ for τ > t0. (2.12)

On the other hand, by Lemma 2.2, relation (2.4) is valid. This, together with (2.6) and the
relation (3/2)x2 − 3x+ 1 = (3/2) (x− x1) (x− x2), implies that

t∫
τ

s%(s)− x2

s
ds = −H(τ, t) + I1(τ, t) + I2(τ, t) + γ(τ, t) +

1
2
α(τ) ln2 t

+ δ0(τ) ln t+ δ1(τ) for t > τ > t0,

(2.13)

where

I1(τ, t) =

t∫
τ

1
s

s∫
τ

G(ξ,+∞)
ξ

dξ ds, γ(τ, t) = (1/2) ln2(t/τ)(1 −G(τ, t)) for t > τ > t0,

I2(τ, t) = −1
2

t∫
τ

1
s

s∫
τ

(η%(η) − x1) (η%(η) − x2)
η

dη ds for t > τ > t0.

By virtue of the Hölder inequality, we obtain

1
ln2 t

∣∣∣∣∣∣
t∫

τ

s%(s)− x2

s
ds

∣∣∣∣∣∣ ≤ 1
ln3/2 t

 t∫
τ

(s%(s)− x2)2

s
ds

1/2

for t > τ > t0,

∣∣∣∣∣∣
s∫
τ

(η%(η) − x1)(η%(η) − x2)
η

dη

∣∣∣∣∣∣ ≤ √ln s

 s∫
τ

(η%(η) − x2)2(η%(η) − x1)2

η
dη

1/2

for s > τ > t0.

Therefore, from (2.12), we obtain

lim
t→+∞

1
ln2 t

t∫
τ

s%(s)− x2

s
ds = 0, lim

t→+∞

1
ln2 t

Ii(τ, t) = 0 for τ > t0 (i = 1, 2).

This, together with (2.13), means that there exists a finite limit

lim
t→+∞

(
H(τ, t)/ ln2 t

)
= [α(τ) + 1−G(τ,+∞)]/2 for τ > t0.

If we now use the relation

H(τ, t) = H(t) ln2 t−H(τ) ln2 τ − ln
t

τ

τ∫
1

1
s

s∫
1

h(η)dη ds− 1
2

ln2 t

τ

τ∫
1

h(s)ds for t > τ > 0,

then we observe the existence of the finite limit

lim
t→+∞

H(t) =
1
2

α(τ) +

τ∫
1

h(s)ds+ 1−G(τ,+∞)

 for τ > t0.

The proof of the lemma is complete.
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Lemmas 2.3 and 2.4 readily imply the following assertion.

Lemma 2.5. Suppose that conditions (1.3) and (1.5) are satisfied, t0 > 0, and u is a solution
of Eq. (1.1) satisfying condition (2.1). Then

t2%′(t) +
3
2

(t%(t))2 − 2t%(t) + 1 = 2C −
t∫

1

h(s)ds+G(t,+∞) for t > t0. (2.14)

From Lemma 2.8′ and Theorem 1.3 in [4], we obtain the following assertions.

Lemma 2.6. Let condition (1.3) be satisfied. Equation (1.1) is nonoscillating if and only if it
has a solution u satisfying relation (2.1) for some t0 > 0.

Lemma 2.7. Let condition (1.2) be satisfied. Equation (1.1) is oscillating if and only if so is
the equation u′′′ − p(t)u = 0.

Lemma 2.8. Let

F (x, y) = y
[
3x2 − 6x+ 2− y

(
x(x− 1)(x− 2) + 2

√
3/9
)]

for x, y > 0. (2.15)

Then
lim sup
y→+∞

F (x, y) ≤
√

3 for x ≥ 0. (2.16)

Proof. We choose y0 > 3
√

3 large enough to ensure that

λ1(y) def= 1 + 1/y −
√

1/3 + 1/y2 < 1, λ2(y) def= 1 + 1/y +
√

1/3 + 1/y2 < 2 (2.17)

for y > y0. We can readily see that ∂F (x, y)/∂x = −3y2 (x− λ1(y)) (x− λ2(y)).
Since F (0, y) < 0 and F (1, y) < 0 for y > y0, it follows from (2.17) that

F (x, y) ≤ F (λ2(y), y) = y (λ2(y)− x2)
[
3 (λ2(y)− x1)

− y (λ2(y)− x2) (λ2(y)− x0)
]

for x ≥ 0, y ≥ y0.
(2.18)

Obviously,

lim
y→+∞

y (λ2(y)− x2) = 1, lim
y→+∞

(λ2(y)− x1) = 2/
√

3, lim
y→+∞

(λ2(y)− x0) =
√

3.

This, together with (2.18), implies (2.16). The proof of the lemma is complete.

3. PROOF OF THE MAIN RESULTS

By Lemma 2.7, it suffices to prove all assertions for the case in which condition (1.3) is satisfied.
Proof of Theorem 1.1. Suppose the contrary: Eq. (1.1) is nonoscillating. Then, by Lem-

mas 2.1, 2.2, and 2.6, it has a solution u satisfying conditions (2.1)–(2.3). If, in addition, we use
the relation t2%′(t) = t2σ(t)− (t%(t))2, then from (2.3), we obtain

lim sup
t→+∞

t∫
1

h(s)ds < +∞,

which contradicts condition (1.4). The proof of the theorem is complete.
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Proof of Theorem 1.2. Suppose the contrary. Then, by Lemma 2.6, Eq. (1.1) has a solution u
satisfying condition (2.1). Since the function H is bounded below, it follows from Lemma 2.3 that
relation (2.6) is valid; therefore, by Lemma 2.4, there exists a finite limit (1.5). This contradicts
the assumptions of the theorem and completes the proof.

Proof of Theorem 1.3. Suppose the contrary. Then Eq. (1.1) is nonoscillating. By Lemma 2.6,
it has a solution u satisfying condition (2.1). Relation (1.5) and Lemma 2.5 imply (2.14). Multi-
plying both sides of this relation by t−1 and integrating from τ to t, we obtain

t%(t) +

t∫
τ

1− α0(s)
s

ds

= 2C ln t −
t∫

1

1
s

s∫
1

h(η)dη ds +

t∫
τ

G(s,+∞)
s

ds + β0(τ) for t > τ > t0,

(3.1)

where β0(τ) =
∫ τ

1
h(s)ds + τ%(τ) + 2C ln τ for τ > t0. On the other hand, multiplying both sides

of (2.14) by t−1 ln t and integrating the resulting expressions from τ to t, we obtain

t%(t) +
1

ln t

t∫
τ

(1− α0(s)) ln s
s

ds− 1
ln t

t∫
τ

%(s)ds

= C ln t− 1
ln t

t∫
τ

ln s
s

s∫
1

h(η)dη ds+
1

ln t

t∫
τ

G(s,+∞) ln s
s

ds+
1

ln t
β1(τ) for t > τ > t0,

(3.2)

where

β1(τ) = τ%(τ) ln τ − C ln2 τ +

τ∫
1

ln s
s

s∫
1

h(η)dη ds for τ > t0.

Subtracting (3.2) from (3.1) and using the relations

t∫
1

ln(t/s)
s

s∫
1

h(η)dη ds = H(t) ln2 t for t > 0,

1
ln t

t∫
τ

ln(t/s)
s

G(s,+∞)ds =

t∫
τ

1
s ln2 s

s∫
τ

G(ξ,+∞) ln ξ
ξ

dξ ds for t > τ > t0,

1
ln t

t∫
τ

(1− α0(s)) ln(t/s)
s

ds =

t∫
τ

1
s ln2 s

t∫
τ

(1− α0(η)) ln η
η

dη ds for t > τ > t0,

we obtain

ln t(C −H(t)) + β0(τ)− β1(τ)
ln t

=
1

ln t

t∫
τ

%(s)ds+ I0(τ, t) for t > τ > t0, (3.3)

where

I0(τ, t) =

t∫
τ

Q(τ, s)
s ln2 s

ds, Q(τ, t) =

t∫
τ

[1− α0(s)−G(s,+∞)] ln s
s

ds for t > τ > t0. (3.4)
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Obviously,

2

t∫
τ

G(s,+∞) ln s
s

ds = G(t,+∞) ln2 t

+

t∫
τ

(s%(s)− x2)2 (s%(s)− x0) ln2 s

s
ds− β2(τ) for t > τ > t0,

where β2(τ) = G(τ,+∞) ln2 τ for τ > t0. Therefore, from (3.4), we obtain

Q(τ, t) ≤ 1
2

t∫
τ

1
s
F (s%(s), ln s)ds+ β2(τ) for t > τ > t0, (3.5)

where F is the function given by (2.15).
Using relation (2.1) and Lemma 2.8, from (3.5), we find that, for each ε > 0, there exists a τε > t0

such that Q(τ, t) <
(√

3/2 + ε
)

ln t+ β2(τ) for t > τ > τε. This, together with (3.4), implies that

I0(τ, t) <
(√

3/2 + ε
)

ln ln t+ β2(τ) for t > τ > τε. (3.6)

By (2.2), the first term on the right-hand side in (3.3) is bounded. This, together with (3.6)
and (3.3), implies that

lim sup
t→+∞

ln t
ln ln t

(C −H(t)) ≤
√

3/2.

We have arrived at a contradiction with condition (1.6). The proof of the theorem is complete.
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