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0. Introduction

Consider the functional di!erential equation

u′(t) = ‘(u)(t) + g(t); (0.1)

where ‘ :C!(R) → L!(R) is a linear bounded operator and g ∈ L!(R). An absolutely
continuous function u :R → R is said to be an !-periodic solution of Eq. (0.1) if u is
periodic with the period !¿ 0, i.e.,

u(t + !) = u(t) for t ∈ R;

and satis es Eq. (0.1) almost everywhere in R.
In the present paper, new optimal su=cient conditions are established for the ex-

istence of a unique !-periodic solution of Eq. (0.1). These conditions generalize and
make the known results of analogous type more complete (see, e.g., [1–9]).
Along with Eq. (0.1) consider the important particular case, where (0.1) is the

equation with deviating arguments:

u′(t) =
n∑

k=1

pk(t)u(�k(t)) + g(t): (0.2)
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Here pk ∈ L!(R), k =1; n, and �k :R → R, k =1; n, are measurable functions such that

�k(t + !) = �k(t) + !hk(t) for t ∈ R; k = 1; : : : ; n;

where the functions hk :R → R, k = 1; n, assume only integer values.
It is known (see, e.g., [6]) that Eq. (0.1), resp. Eq. (0.2), has a unique !-periodic

solution i! the corresponding homogeneous equation:

u′(t) = ‘(u)(t); (0.1a)

resp.

u′(t) =
n∑

k=1

pk(t)u(�k(t)); (0.2a)

has only a trivial !-periodic solution. On the other hand (in spite of ordinary di!er-
ential equations), for any natural m it is easy to construct a homogeneous equation
of the type (0.1a), which has at least m linearly independent !-periodic solutions.
Therefore, there naturally arises the question on the dimension of !-periodic solution
space of homogeneous equation (0.1a). In the sequel, we also give su=cient conditions
guaranteeing that the dimension of the above-mentioned space is not greater than one.
Throughout the paper the following notation will be used.
R is the set of all real numbers, R+ = [0;+∞[.
C([a; a+!];R) is the Banach space of continuous functions u : [a; a+!] → R with

the norm:

‖u‖C =max{|u(t)|: a6 t 6 a+ !}:
C!(R) is the Banach space of continuous !-periodic functions u :R → R with the
norm:

‖u‖C!
=max{|u(t)|: 06 t 6 !}:

C!(R+) = {u ∈ C!(R): u(t)¿ 0 for 06 t 6 !}.
C̃(I ;D), where I ⊂ R, D ⊂ R, is the set of absolutely continuous functions u : I → D.
L(]a; a+![;R) is the Banach space of Lebesgue integrable functions p : ]a; a+![ →

R with the norm:

‖p‖L =
∫ a+!

a
|p(s)| ds:

L!(R) is the Banach space of Lebesgue integrable, !-periodic functions p :R→R
with the norm:

‖p‖L! =
∫ !

0
|p(s)| ds:

L!(R+) = {p ∈ L!(R): p(t)¿ 0 for t ∈ R}.
L!(R) is the set of linear bounded operators ‘ :C!(R) → L!(R) such that

sup{|‘(v)(·)|: ‖v‖C!
= 1} ∈ L!(R+):

P!(R) is the set of linear operators ‘ ∈ L!(R) transforming C!(R+) into L!(R+).
[x]+ = 1

2 (|x|+ x), [x]− = 1
2(|x| − x).
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Everywhere in what follows, we will assume that the operator ‘ ∈ L!(R) is non-
trivial and admits the representation ‘ = ‘1 − ‘2, where

‘1; ‘2 ∈ P!(R):

It is obvious that for each x ∈ [0; ![ the operators ‘1 and ‘2 uniquely de ne the
corresponding operators:

‘̃ix : {u ∈ C([x; x + !];R): u(x) = u(x + !)} → L(]x; x + ![;R); (i = 1; 2):

In the sequel, we will assume that the linear bounded operators

‘ix :C([x; x + !];R) → L(]x; x + ![;R); (i = 1; 2)

are extensions of the operators ‘̃1x and ‘̃2x, respectively. Furthermore, we will assume
that ‘1x and ‘2x are nonnegative operators, i.e., they transform C([x; x + !];R+) into
L(]x; x + ![;R+).
In particular, if

‘(v)(t)
def
=

n∑
k=1

pk(t)v(�k(t));

then we will assume that pk(t) �≡ 0, k = 1; n, and

‘1x(v)(t)
def
=

n∑
k=1

[pk(t)]+v(�kx(t)); ‘2x(v)(t)
def
=

n∑
k=1

[pk(t)]−v(�kx(t));

where �kx(t) = �k(t) − �kx(t)! for t ∈ ]x; x + ![, and �kx(t) is the integer part of the
number 1

! (�k(t)− x).

1. Main results

1.1. Existence and uniqueness theorems

Theorem 1.1. Let i; j ∈ {1; 2}; i �= j and

‖‘i(1)‖L! ¡ 1; (1.1)

‖‘i(1)‖L!
1− ‖‘i(1)‖L!

¡ ‖‘j(1)‖L! : (1.2)

Let; moreover; one of the following items be ful8lled:
(a) for every x ∈ [0; ![ there exists �x ∈ C̃([x; x + !]; ]0;+∞[) such that

�′x(t)¿ ‘1x(�x)(t) + ‘2(1)(t) for t ∈ ]x; x + ![; (1.3)

�x(x + !)6 4; (1.4)
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(b) for every x ∈ [0; ![ there exists �x ∈ C̃([x; x + !]; ]0;+∞[) such that

−�′x(t)¿ ‘2x(�x)(t) + ‘1(1)(t) for t ∈ ]x; x + ![;

�x(x)6 4:

Then Eq. (0:1) has a unique !-periodic solution.

Corollary 1.1. Let either∫ !

0
|p1(s)| ds¡ 1;

∫ !
0 |p1(s)| ds

1− ∫ !0 |p1(s)| ds
¡

n∑
k=2

∫ !

0
|pk(s)| ds (1.5)

or
n∑

k=2

∫ !

0
|pk(s)| ds¡ 1;

∑n
k=2

∫ !
0 |pk(s)| ds

1−∑n
k=2

∫ !
0 |pk(s)| ds

¡
∫ !

0
|p1(s)| ds: (1.6)

Let; moreover; one of the following items be ful8lled:

(a) pk(t)6 0; k = 2; n; p1(t)¿ 0; �1(t) = t for t ∈ R,
n∑

k=2

∫ !

0
|pk(s)| exp

(∫ !

s
p1(�) d�

)
ds¡ 4; (1.7)

(b) pk(t)6 0; k = 2; n; p1(t)¿ 0 for t ∈ R; and either
n∑

k=2

∫ !

0
|pk(s)| ds¡ 4

(
1−

∫ !

0
|p1(s)| ds

)
(1.8)

or ∫ !

0
|p1(s)| ds¡ 4

(
1−

n∑
k=2

∫ !

0
|pk(s)| ds

)
; (1.9)

(c) pk(t)¿ 0; k = 2; n; p1(t)6 0; �1(t) = t for t ∈ R;
n∑

k=2

∫ !

0
pk(s) exp

(∫ s

0
|p1(�)| d�

)
ds¡ 4; (1.10)

(d) pk(t)¿ 0; k = 2; n; p1(t)6 0 for t ∈ R; and either (1:8) or (1:9) is ful8lled.
Then Eq. (0:2) has a unique !-periodic solution.

Theorem 1.2. Let i; j ∈ {1; 2}; i �= j; and conditions (1:1) and (1.2) be ful8lled. Let;
moreover; there exist � ∈ C̃([0; !]; ]0;+∞[) such that one of the following items is
ful8lled:
(a)

�′(t)¿ ‘10(�)(t) + ‘2(1)(t) for t ∈ ]0; ![; (1.11)

�(!)6 1; (1.12)
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(b)

−�(t)′ ¿ ‘20(�)(t) + ‘1(1)(t) for t ∈ ]0; ![; (1.11′)

�(0)6 1: (1.12′)

Then Eq. (0.1) has a unique !-periodic solution.

Remark 1.1. In the case where ‘ ∈ P!(R) (−‘ ∈ P!(R)) it is clear that ‘1 ≡ ‘
and ‘2 ≡ 0 (‘1 ≡ 0; ‘2 ≡ −‘). Then condition (1.12) (condition (1.12′)) becomes
unimportant and Theorem 1.2 coincides with the result obtained in [3].

Remark 1.2. As it will be clear from the proof, if assumptions of Theorem 1.2 are
ful lled and g(t) 6 0 for t ∈ R, g �≡ 0, then the unique !-periodic solution u of
Eq. (0.1) satis es the condition u(0)¿ 0.

Corollary 1.2. Let either
n∑

k=1

∫ !

0
[pk(s)]+ ds¡ 1;

∑n
k=1

∫ !
0 [pk(s)]+ ds

1−∑n
k=1

∫ !
0 [pk(s)]+ ds

¡
n∑

k=1

∫ !

0
[pk(s)]− ds

(1.13)

or
n∑

k=1

∫ !

0
[pk(s)]− ds¡ 1;

∑n
k=1

∫ !
0 [pk(s)]− ds

1−∑n
k=1

∫ !
0 [pk(s)]− ds

¡
n∑

k=1

∫ !

0
[pk(s)]+ ds:

(1.14)

Let; moreover; one of the following items be ful8lled:
(a)

n∑
k=1

∫ !

0
[pk(s)]− exp

(
n∑
i=1

∫ !

s
[pi(�)]+ d�

)
ds¡ 1; (1.15)

(t − �k0(t))[pk(t)]+ ¿ 0 for t ∈ ]0; ![; k = 1; : : : ; n; (1.16)

(b)
n∑

k=1

∫ !

0
[pk(s)]+ exp

(
n∑
i=1

∫ s

0
[pi(�)]− d�

)
ds¡ 1;

(�k0(t)− t)[pk(t)]− ¿ 0 for t ∈ ]0; ![; k = 1; : : : ; n;

(c) pk(t)¿ 0; k = 1; n for t ∈ R and
n∑

k=1

∫ �i0(t)

t
pk(s) ds6

1
e

for t ∈ ]0; ![; i = 1; : : : ; n; (1.17)

(d) pk(t)6 0; k = 1; n for t ∈ R and
n∑

k=1

∫ t

�i0(t)
|pk(s) ds6

1
e

for t ∈ ]0; ![; i = 1; : : : ; n;
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(e)
n∑

k=1

∫ !

0
[pk(s)]− ds+ �+  ¡ 1; (1.18)

where

�=
n∑

k=1

∫ !

0
[pk(s)]+

n∑
i=1

∫ �k0(s)

0
[pi(�)]− d� exp


 n∑

j=1

∫ !

s
[pj(�)]+ d�


 ds;

(1.19)

 =
n∑

k=1

∫ !

0
[pk(s)]+!k(s)

n∑
i=1

∫ �k0(s)

s
[pi(�)]+d� exp


 n∑

j=1

∫ !

s
[pj(�)]+ d�


 ds;

(1.20)

and !k(t) = 1
2 (1 + sgn(�k0(t)− t)) for t ∈ ]0; ![; k = 1; n;

(f )
n∑

k=1

∫ !

0
[pk(s)]+ ds+ �̃+  ̃¡ 1;

where

�̃=
n∑

k=1

∫ !

0
[pk(s)]−

n∑
i=1

∫ !

�k0(s)
[pi(�)]+d� exp


 n∑

j=1

∫ s

0
[pj(�)]− d�


 ds;

(1.19′)

 ̃ =
n∑

k=1

∫ !

0
[pk(s)]−!̃k(s)

n∑
i=1

∫ s

�k0(s)
[pi(�)]−d� exp


 n∑

j=1

∫ s

0
[pj(�)]− d�


 ds;

(1.20′)

and !̃k(t) = 1
2 (1 + sgn(t − �k0(t))) for t ∈ ]0; ![; k = 1; n.

Then Eq. (0.2) has a unique !-periodic solution.

Remark 1.3. According to [6], Eq. (0.1) has a unique !-periodic solution i! corre-
sponding homogeneous equation (0.1a) has only a trivial !-periodic solution. Conse-
quently, under the conditions of Theorems 1.1 and 1.2, the dimension of the space of
!-periodic solutions of Eq. (0.1a) is zero. In particular, under the conditions of Corol-
laries 1.1 and 1.2, the dimension of the space of !-periodic solutions of Eq. (0.2a) is
zero.

Remark 1.4. The conditions in Theorem 1.2 are optimal and they cannot be weakened
as shown in the following example.
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Let "0¿ 0 be an arbitrarily  xed number. Choose an integer n¿ 1 and " ∈
]0; (n− 1)=n(n+ 1)[ such that

1
n2

¡
"0
2
; (n+ 1)"¡

"0
2

and put:

$=
(
2 + n+

1
n2"

+
1
"

)−1(
"0 − 1

n2
− (n+ 1)"

)
; t1 = (n+ 1)";

t2 = 1 + (2n+ 1)"; t3 = 1 + (3n+ 1)"+
1
n
; != 2 + (2n+ 1)";

c1 =
(
1− $

"

)
t1 + $; c2 =

(
$
"
− $+ (n+ 1)"

n"

)
t2 + c1;

c3 =
(
$+ (n+ 1)"

n"
− 1
)
t3 + c2:

Consider the equation:

u′(t) = p(t)u(�(t)): (1.21)

Here

p(t) =




−1 for t ∈ [&!; t1 + &![ ∪ [t3 + &!; (&+ 1)!]

1
"

for t ∈ [t1 + &!; t2 + &![

1
n"

for t ∈ [t2 + &!; t3 + &![

;

�(t) =



t2 for t ∈ [&!; t1 + &![ ∪ [t3 + &!; (&+ 1)!]

0 for t ∈ [t1 + &!; t2 + &![

t1 for t ∈ [t2 + &!; t3 + &![

;

where & is an integer. Obviously, �0(t) = �(t) for t ∈ ]0; ![ and∫ !
0 [p(s)]− ds

1− ∫ !0 [p(s)]− ds
= n− 1;

∫ !

0
[p(s)]+ ds= 1 + n+

1
"
+

1
n2"

¿n− 1:

De ne the function � as follows:

�(t) =




t + $ for t ∈ [0; t1[

$
"
t + c1 for t ∈ [t1; t2[

$+ (n+ 1)"
n"

t + c2 for t ∈ [t2; t3[

t + c3 for t ∈ [t3; !]

:
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It is easy to verify that

�′(t) = [p(t)]+�(�0(t)) + [p(t)]− for t ∈ ]0; ![

and

�(!) = 1 + "0:

On the other hand, Eq. (1.21) has a nontrivial !-periodic solution

u(t) =



t − "− &! for t ∈ [&!; t1 + &![

−t + (2n+ 1)"− &! for t ∈ [t1 + &!; t2 + &![

t − 2− (2n+ 1)"− &! for t ∈ [t2 + &!; (&+ 1)!]

;

where & is an integer. This example shows that the inequality (1.12), resp. (1.12′) in
Theorem 1.2 cannot be replaced by the inequality

�(!)6 1 + "; resp: �(0)6 1 + ";

as small as "¿ 0 will be.

1.2. On the dimension of !-periodic solution space of Eq. (0:1a)

Theorem 1.3. Let there exist � ∈ C̃([0; !]; ]0;+∞[) such that one of the following
items is ful8lled:
(a) inequality (1.11) holds and �(!)6 4;
(b) inequality (1.11′) holds and �(0)6 4.
Then the space of !-periodic solutions of Eq. (0.1a) is no more than one-dimensional.

Corollary 1.3. Let one of the following items be ful8lled:
(a)

n∑
k=1

∫ !

0
[pk(s)]− exp

(
n∑
i=1

∫ !

s
[pi(�)]+ d�

)
ds¡ 4;

(t − �k0(t))[pk(t)]+ ≥ 0 for t ∈ ]0; ![; k = 1; : : : ; n;

(b)
n∑

k=0

∫ !

0
[pk(s)]+ exp

(
n∑
i=1

∫ s

0
[pi(�)]− d�

)
ds¡ 4;

(�k0(t)− t)[pk(t)]− ¿ 0 for t ∈ ]0; ![; k = 1; : : : ; n;

(c)
n∑

k=1

∫ !

0
[pk(s)]− ds+ �+ 4 ¡ 4;

where � and  are de8ned by (1.19) and (1.20) with !k(t) = 1
2 (1 + sgn(�k0(t) − t))

for t ∈ ]0; ![; k = 1; n;
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(d)
n∑

k=1

∫ !

0
[pk(s)]+ ds+ �̃+ 4 ̃¡ 4;

where �̃ and  ̃ are de8ned by (1.19′) and (1.20′) with !̃k(t) = 1
2 (1 + sgn(t − �k0(t)))

for t ∈ ]0; ![; k = 1; n.
Then the space of !-periodic solutions of Eq. (0.2a) is no more than one-dimensional.

Remark 1.5. The conditions in Theorem 1.3 are optimal and they cannot be weakened
as shown in the following example.
Let "¿ 0 be an arbitrarily  xed number. Consider the equation:

u′(t) = u(�(t))− u('(t)); (1.22)

with �(t) = 0 for t ∈ R, and

'(t) =

{
3 for t ∈ [4&; 1 + 4&[ ∪ [3 + 4&; 4 + 4&]

1 for t ∈ [1 + 4&; 3 + 4&[
;

where & is an integer. Obviously, �0(t) = �(t) for t ∈ ]0; 4[. De ne the function � as
follows:

�(t) =
( "
5
+ 1
)
t +

"
5
:

It is easy to verify that

�′(t) = �(�0(t)) + 1 for t ∈ ]0; ![

and

�(!) = 4 + ":

On the other hand, Eq. (1.22) has two linearly independent !-periodic solutions
u1(t) = 1 for t ∈ R, and

u2(t) =



t − 4& for t ∈ [4&; 1 + 4&[

2− t − 4& for t ∈ [1 + 4&; 3 + 4&[

t − 4− 4& for t ∈ [3 + 4&; 4 + 4&]

;

where & is an integer. This example shows that the inequality �(!)6 4, resp. �(0)6 4
in Theorem 1.3 cannot be replaced by the inequality:

�(!)6 4 + "; resp: �(0)6 4 + ";

as small as "¿ 0 will be.

2. Proofs

First we formulate, in a suitable for us form, the result proven in [2].
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Lemma 2.1. Let a ∈ [0; ![; ‘̂ : C([a; a+!];R) → L(]a; a+![;R) be a linear bounded
operator mapping C([a; a+!];R+) into L(]a; a+![;R+). Let; moreover; there exist
a function � ∈ C̃([a; a+ !]; ]0;+∞[) such that

�′(t)¿ ‘̂(�)(t) for t ∈ ]a; a+ ![:

Then for any g ∈ L(]a; a+ ![;R) the Cauchy problem:

u′(t) = ‘̂(u)(t) + g(t); u(a) = 0

has a unique solution. 1 Further; the inequalities

v(t)¿ 0 for t ∈ [a; a+ !]

and

v′(t)¿ 0 for t ∈ ]a; a+ ![

are ful8lled whenever the function v ∈ C̃([a; a+ !];R) satis8es the conditions

v′(t)¿ ‘̂(v)(t) for t ∈ ]a; a+ ![; v(a)¿ 0:

Remark 2.1. According to Lemma 2.1, the functions �x and � in Theorems 1.1–1.3 are
monotone.

Lemma 2.2. Let i; j ∈ {1; 2}; i �= j; and inequalities (1.1) and (1.2) be ful8lled. Then
an arbitrary nontrivial !-periodic solution of Eq. (0:1a) changes its sign.

Proof. Assume the contrary. Let there exist a nontrivial !-periodic solution u of
Eq. (0.1a) and let this solution be still nonpositive or still nonnegative. Put

u∗ =min{u(t): 06 t 6 !}; u∗ =max{u(t): 06 t 6 !}: (2.1)

Without loss of generality we can assume that

u∗ ¿ 0; u∗¿ 0: (2.2)

Choose t∗ ∈ [0; ![ and t∗ ∈ ]t∗; t∗ + ![ such that

u(t∗) = u∗; u(t∗) = u∗: (2.3)

Integrating (0.1a) from t∗ to t∗ and from t∗ to t∗ + ! and taking into account
(2.1)–(2.3), we obtain:

u∗ − u∗ =
∫ t∗

t∗
[‘1(u)(s)− ‘2(u)(s)] ds

6 u∗
∫ t∗

t∗
‘1(1)(s) ds6 u∗‖‘1(1)‖L! ; (2.4)

1 Under a solution of this problem we understand a function u ∈ C̃([a; a + !];R) satisfying the corre-
sponding equation almost everywhere in ]a; a + ![ and the initial condition.
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u∗ − u∗ =
∫ t∗+!

t∗
[‘2(u)(s)− ‘1(u)(s)] ds

6 u∗
∫ t∗+!

t∗
‘2(1)(s) ds6 u∗‖‘2(1)‖L! : (2.5)

On the other hand, the integration of (0.1a) from 0 to ! yields∫ !

0
‘1(u)(s) ds=

∫ !

0
‘2(u)(s) ds:

Hence by (2.1) and (2.2) it follows that

u∗‖‘2(1)‖L! 6 u∗‖‘1(1)‖L! ; (2.6)

u∗‖‘1(1)‖L! 6 u∗‖‘2(1)‖L! : (2.7)

Thus for i=1 in view of (1.1), (1.2), (2.4), and (2.6), and for i=2 in view of (1.1),
(1.2), (2.5), and (2.7), we successively get the contradictions

u∗ 6 u∗
(
‖‘1(1)‖L! +

‖‘1(1)‖L!
‖‘2(1)‖L!

)
¡u∗;

u∗ 6 u∗
(
‖‘2(1)‖L! +

‖‘2(1)‖L!
‖‘1(1)‖L!

)
¡u∗:

Proof of Theorem 1.1. Suppose that conditions (a) are ful lled (the case where (b) are
ful lled can be proved analogously). According to Theorem 1.1 in [6], it is su=cient to
show that homogeneous equation (0.1a) has only a trivial !-periodic solution. Assume
the contrary. Let there exist a nontrivial !-periodic solution u of Eq. (0.1a). Put

m=−min{u(t): 06 t 6 !}; M =max{u(t): 06 t 6 !}: (2.8)

By virtue of conditions (1.1), (1.2), and Lemma 2.2, the function u changes its sign.
Therefore,

m¿ 0; M ¿ 0; (2.9)

and there exists x ∈ [0; ![ such that

u(x) = 0: (2.10)

It is obvious that the function u satis es also the equality

u′(t) = ‘1x(u)(t)− ‘2x(u)(t) for t ∈ ]x; x + ![: (2.11)

According to condition (1.3) and Lemma 2.1, for any g ∈ L(]x; x+![;R) the problem:

y′(t) = ‘1x(y)(t) + g(t); y(x) = 0
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has a unique solution. Denote by � and  respectively the solutions of the problems:

�′(t) = ‘1x(�)(t) +
1
M
‘2x([u]+)(t); �(x) = 0; (2.12)

 ′(t) = ‘1x( )(t) +
1
m
‘2x([u]−)(t);  (x) = 0: (2.13)

Since the operators ‘1x and ‘2x are nonnegative, by (2.9), (2.12), (2.13), and Lemma
2.1 we have:

�(t)¿ 0;  (t)¿ 0 for t ∈ [x; x + !]; (2.14)

�′(t)¿ 0;  ′(t)¿ 0 for t ∈ ]x; x + ![: (2.15)

From (1.3) and (2.11)–(2.13) together with the nonnegativeness of the operator ‘2x
and the fact that

1
M
[u(t)]+ +

1
m
[u(t)]− 6 1 for t ∈ [x; x + !];

it immediately follows that almost everywhere in ]x; x + ![ the inequalities:

(m (t)− u(t))′ ¿ ‘1x(m − u)(t); (M�(t) + u(t))′ ¿ ‘1x(M�+ u)(t);

(�x(t)− �(t)−  (t))′ ¿ ‘1x(�x − �−  )(t)

are ful lled. The last inequalities according to Lemma 2.1 result in:

(�(t) +  (t))′ 6 �′x(t) for t ∈ ]x; x + ![; (2.16)

(u(t)− m (t))′ 6 0 for t ∈ ]x; x + ![; (2.17)

(u(t) +M�(t))′ ¿ 0 for t ∈ ]x; x + ![: (2.18)

Choose tm; tM ∈ ]x; x + ![ such that

u(tm) =−m; u(tM ) =M: (2.19)

Suppose tm ¡ tM (tm ¿ tM ). Integrating (2.17) and (2.18) from tm to tM (from tM to
tm) in view of (2.14), (2.15), and (2.19) we obtain:

M + m6 m( (tM )−  (tm))6 m (x + !);

(M + m6 M (�(tm)− �(tM ))6 M�(x + !)): (2.20)

On the other hand, if we integrate (2.18) and (2.17) from x to tm and from tM to x+!
(from x to tM and from tm to x + !), then we get:

m+ u(x)6 M�(tm); M − u(x + !)6 M (�(x + !)− �(tM ));

(M − u(x)6 m (tM ); m+ u(x + !)6 m( (x + !)−  (tm))):
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Summing the last two inequalities and taking into account (2.15), we  nd:

M + m6 M�(x + !) (M + m6 m (x + !)): (2.21)

Thus from (2.20) and (2.21) it immediately follows:

46 2 +
m
M

+
M
m
6 �(x + !) +  (x + !): (2.22)

However, according to (1.4) and (2.16):

�(x + !) +  (x + !)6
∫ x+!

x
�′x(s) ds¡�x(x + !)6 4;

whence in view of (2.22) we obtain a contradiction.

Proof of Corollary 1.1. (a) According to (1.7) we can choose "¿ 0 such that
n∑

k=2

∫ !

0
|pk(s)| exp

(∫ !

s
p1(�) d�

)
ds6 4− " exp

(∫ !

0
p1(�) d�

)
:

Let x ∈ [0; ![ and put for t ∈ [x; x + !]

�x(t) = " exp
(∫ t

x
p1(s) ds

)
+

n∑
k=2

∫ t

x
|pk(s)| exp

(∫ t

s
p1(�) d�

)
ds:

It is obvious that

�′x(t) = p1(t)�x(t) +
n∑

k=2

|pk(t)| for t ∈ ]x; x + ![

and �x(x+!)6 4. Consequently, the conditions (a) of Theorem 1.1 are ful lled with:

‘1(v)(t)
def
=p1(t)v(t); ‘2(v)(t)

def
=

n∑
k=2

|pk(t)|v(�k(t))

(b) According to (1.8) and (1.9), we can choose "¿ 0 such that

"6 4
(
1−

∫ !

0
p1(s) ds

)
−

n∑
k=2

∫ !

0
|pk(s)| ds

(
"6 4

(
1−

n∑
k=2

∫ !

0
|pk(s)| ds

)
−
∫ !

0
p1(s) ds

)
:

Let x ∈ [0; ![ and put:

�x(t) = "+ 4
∫ t

x
p1(s) ds+

n∑
k=2

∫ t

x
|pk(s)| ds for t ∈ [x; x + !];

(
�x(t) = "+ 4

n∑
k=2

∫ x+!

t
|pk(s)| ds+

∫ x+!

t
p1(s) ds for t ∈ [x; x + !]

)
:
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It is clear that �x(x + !)6 4 (�x(x)6 4) and

�′x(t) = 4p1(t) +
n∑

k=2

|pk(t)| for t ∈ ]x; x + ![(
�′x(t) =−4

n∑
k=2

|pk(t)| − p1(t) for t ∈ ]x; x + ![

)
:

Since �x is nondecreasing (nonincreasing), from the last equality we obtain:

�′x(t)¿ p1(t)�x(�1x(t)) +
n∑

k=2

|pk(t)| for t ∈ ]x; x + ![(
−�′x(t)¿

n∑
k=2

|pk(t)|�x(�kx(t)) + p1(t) for t ∈ ]x; x + ![

)
:

Consequently, conditions (a) (conditions (b)) of Theorem 1.1 are ful lled with:

‘1(v)(t)
def
=p1(t)v(�1(t)); ‘2(v)(t)

def
=

n∑
k=2

|pk(t)|v(�k(t)):

(c) According to (1.10), we can choose "¿ 0 such that
n∑

k=2

∫ !

0
pk(s) exp

(∫ s

0
|p1(�)| d�

)
ds6 4− " exp

(∫ !

0
|p1(�)| d�

)
:

Let x ∈ [0; ![ and put for t ∈ [x; x + !]:

�x(t) = " exp
(∫ x+!

t
|p1(s)| ds

)
+

n∑
k=2

∫ x+!

t
pk(s) exp

(∫ s

t
|p1(�)| d�

)
ds:

Obviously, �x(x)6 4 and

�′x(t) =−|p1(t)|�x(t)−
n∑

k=2

pk(t) for t ∈ ]x; x + ![:

Consequently, conditions (b) of Theorem 1.1 are ful lled with

‘1(v)(t)
def
=

n∑
k=2

pk(t)v(�k(t)); ‘2(v)(t)
def
= |p1(t)|v(t):

The case (d) can be proved analogously to (b).

Proof of Theorem 1.2. Let conditions (a) of Theorem 1.2 be ful lled. By Theorem
1.1 in [6], it is su=cient to show that homogeneous equation (0.1a) has only a triv-
ial !-periodic solution. Assume the contrary. Let there exist a nontrivial !-periodic
solution u of Eq. (0.1a). Without loss of generality we can assume that

u(0)6 0: (2.23)

It is evident that the function u satis es also the equality:

u′(t) = ‘10(u)(t)− ‘20(u)(t) for t ∈ ]0; ![: (2.24)

De ne M and m by equalities (2.8) and choose tm; tM ∈ [0; ![ such that equalities
(2.19) are ful lled. By virtue of conditions (1.1), (1.2), and Lemma 2.2, inequalities
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(2.9) hold. From (1.11) and (2.24) in view of (2.8), (2.9), and the nonnegativeness
of the operator ‘20 it immediately follows that

(m�(t)− u(t))′¿ ‘10(m�− u)(t) + ‘20(m+ u)(t)

¿ ‘10(m�− u)(t) for t ∈ ]0; ![:

Hence, according to Lemma 2.1 and conditions (2.9) and (2.23), we get:

u′(t)6 m�′(t) for t ∈ ]0; ![: (2.25)

Suppose that tm ¡ tM . Integrating (2.25) from tm to tM and taking into account the fact
that the function � is nondecreasing (see Remark 2.1) and satis es condition (1.12),
we obtain the contradiction:

M + m6 m(�(tM )− �(tm))6 m(�(!)− �(0))¡m: (2.26)

Suppose now that tm ¿ tM . Then the integration of (2.25) from 0 to tM and from tm
to !, respectively, yields:

M − u(0)6 m(�(tM )− �(0)); m+ u(!)6 m(�(!)− �(tm)):

Summing the last two inequalities and taking into account the fact that the function �
is nondecreasing and satis es condition (1.12), we obtain contradiction (2.26).

Proof of Corollary 1.2. Put

‘(v)(t)
def
=

n∑
k=1

pk(t)v(�k(t));

‘10(v)(t)
def
=

n∑
k=1

[pk(t)]+v(�k0(t)); ‘20(v)(t)
def
=

n∑
k=1

[pk(t)]−v(�k0(t)):

(a) Due to (1.15), we can choose "¿ 0 such that
n∑

k=1

∫ !

0
[pk(s)]−exp

(
n∑
i=1

∫ !

s
[pi(�)]+ d�

)
ds

6 1− " exp

(
n∑

k=1

∫ !

0
[pk(�)]+ d�

)
:

Put for t ∈ [0; !]:

�(t) = " exp

(
n∑

k=1

∫ t

0
[pk(s)]+ ds

)
+

n∑
k=1

∫ t

0
[pk(s)]−exp

(
n∑
i=1

∫ t

s
[pi(�)]+d�

)
ds:

It is obvious that �(!)6 1 and

�′(t) =
n∑

k=1

[pk(t)]+�(t) +
n∑

k=1

[pk(t)]− for t ∈ ]0; ![:

Since � is nondecreasing, from the last inequality in view of (1.16) it immediately
follows that inequality (1.11) is ful lled.
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(c) Put

�(t) = " exp


e n∑

j=1

∫ t

0
pj(s) ds


 for t ∈ [0; !];

where "¿ 0 is such that �(!)6 1. Clearly,

�′(t) = e
n∑

k=1

pk(t)�(t) =
n∑

k=1

pk(t)�(�k0(t)) exp


1 + e

n∑
j=1

∫ t

�k0(t)
pj(s) ds


 :

Hence together with (1.17) we get

�′(t)¿
n∑

k=1

pk(t)�(�k0(t)) for t ∈ ]0; ![:

Consequently, conditions (a) of Theorem 1.2 are ful lled.
(e) By (1.18), we have  ¡ 1, where  is de ned by (1.20). In view of this and

according to Corollary 1.1 (iii) in [2], for any g ∈ L(]0; ![;R) and c ∈ R the problem:

u′(t) =
n∑

k=1

pk(t)u(�k0(t)) + g(t); u(0) = c

is uniquely solvable and, moreover, the inequalities:

v(t)¿ 0; v′(t)¿ 0 for t ∈ ]0; ![

hold whenever the function v ∈ C̃([0; !];R) satis es the inequalities:

v′(t)¿
n∑

k=1

[pk(t)]+v(�k0(t)) for t ∈ ]0; ![; v(0)¿ 0:

Choose $¿ 0 and "¿ 0 such that

(1−  )−1

(
n∑

k=1

∫ !

0
[pk(s)]− ds+ �

)
6 1− $; (2.27)

"6 $(1−  ) exp

(
−

n∑
k=1

∫ !

0
[pk(s)]+ ds

)
: (2.28)

Denote by � the solution of the Cauchy problem:

u′(t) =
n∑

k=1

[pk(t)]+u(�k0(t)) +
n∑

k=1

[pk(t)]−; u(0) = ":

As said above, the function � is nondecreasing. Obviously, � is also a solution of the
equation:

u′(t) =
n∑

k=1

[pk(t)]+u(t) +
n∑

k=1

[pk(t)]+

n∑
i=1

∫ �k0(t)

t
[pi(s)]+�(�i0(s)) ds

+
n∑

k=1

[pk(t)]+

n∑
i=1

∫ �k0(t)

t
[pi(s)]− ds+

n∑
k=1

[pk(t)]−:
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Therefore, according to the Cauchy formula:

�(!)6  �(!) +
n∑

k=1

∫ !

0
[pk(s)]− ds+ �+ " exp

(
n∑

k=1

∫ !

0
[pk(s)]− ds

)
:

The last inequality together with (2.27) and (2.28) results in �(!)6 1. Consequently,
conditions (a) of Theorem 1.2 are ful lled.
The cases (b), (d), and (f) can be proved analogously.

Proof of Theorem 1.3. Assume the contrary. Let the dimension of !-periodic solution
space of Eq. (0.1a) is greater than one. Then there exists a nontrivial !-periodic
solution u of Eq. (0.1a) such that u(0)= u(!)=0. By virtue of Lemma 2.1, it is clear
that u changes sign. In the same way as in the proof of Theorem 1.1 (for the case
x = 0), we obtain the contradiction u ≡ 0.

The proof of Corollary 1.3 is analogous to that of Corollary 1.2.
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