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1. Introduction

The following notation is used throughou.

R is the set of all real numbers, R, =[0,+ ool.

C([a,b]; R) is the Banach space of continuous functions u:[a,b] — R with the norm
lullc = max{|u(?)|: a <t < b}

C([a,b]; R )={ue C([a,b];R): u(t) = 0 for ¢ € [a, b]}.

C([a,b]; R) is the set of absolutely continuous functions u: [a,b] — R.

B! ([a,b]; R) = {u € C([a,b]; R) : (—1)*" (u(a) — Ju(b)) sgn((2—i)u(a) + (i—u(b))
< c}, where c€R, i=1,2.

L([a,b]; R) is the Banach space of Lebesgue integrable functions p:[a,b] — R with
the norm || pll. = [, | p(s)] ds.

L([a,b]; Ry ) ={p€L([a,b];R): p(t) = 0 for almost all ¢ € [a,b]}.

M 4 1s the set of measurable functions 7:[a,b] — [a,b].
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P is the set of linear operators /: C([a,b];R) — L([a,b]; R) for which there is a
function # € L([a, b]; R+) such that

[Z()@)] < n()[v]lc  for ¢ €[a,b], ve C([a,b];R).

P is the set of linear operators / € %, transforming the set C([a,b]; R} ) into the
set L([a,b]; R+).

K, is the set of continuous operators F : C([a,b];R) — L([a,b];R) satisfying the
Carathéodory conditions, i.e., for every r > 0 there exists ¢, € L([a, b]; R+ ) such that

|F(v)(t)| < q.(¢) fortc[a,b], |v||c <

K([a,b] x A;B), where 4 C R?>, B C R, is the set of functions f:[a,b] x A — B
satisfying the Carath¢odory conditions, i.e., f(-,x):[a,b] — B is a measurable function
for all x€ A, f(¢t,-):A — B is a continuous function for almost all ¢ € [a,b], and for
every r > 0 there exists g, € L([a,b]; R+) such that

|f(t,x)| < g-(t) fortelab], x€d, |x]| <r.

[x], = 3 (x| +x), K] = 3] = x).
By a solution of the equation

u' (1) =F(u)(?), (1)

where F €K, we understand a function u e C([a,b];R) satisfying Eq. (1) almost
everywhere in [a, b].

Consider the problem on the existence and uniqueness of a solution of (1) satisfying
the boundary condition

u(a) — Ju(b) = h(u), (2)

where 2€R, and /&:C([a,b];R) — R is a continuous functional.

The general boundary value problems for functional differential equations have been
studied very intensively. There are a lot of interesting general results (see, e.g., [1-27]
and the references therein), but still only a few effective criteria for the solvability of
special boundary value problems for functional differential equations are known even in
the linear case. In the present paper, we try to fill to some extent the existing gap. More
precisely, in Section 2 there are established non-improvable effective sufficient condi-
tions for the solvability and unique solvability of the problem (1), (2). Sections 3, 4
and 5 are devoted, respectively, to the auxiliary propositions, the proofs of the main
results and the examples verifying their optimality.

All results will be concretized for the differential equation with deviating arguments
of the form

u' (1) = p(Hu(e(t)) — g(Ou(u(t)) + f(t,u(®), u(v(1))), 3)

where p,g € L([a,b];R.), T, 14,V E M4, and f € K([a,b] X R*;R).

The special cases of the discussed boundary value problem are the Cauchy problem
(for =0 and & = Const.) and the periodic boundary value problem (for A=1 and
h = Const.). In these cases, the theorems below coincide with the results obtained
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in [5,10]. The antiperiodic-type boundary value problem (i.c., the case 4 < 0) for the
linear equation and for the nonlinear one is studied, respectively, in [13] and [15].

From the general theory of linear boundary value problems for functional differential
equations we need the following well-known result (see, e.g., [3,19,27]).

Theorem 1.1. Let / € Z,p. Then the problem

W () =£4()(t) +qo(t),  u(a) — du(b)=co, (4)

where qo € L([a,b]; R), co €R, is uniquely solvable if and only if the corresponding
homogeneous problem

u'(t) = (u)(t), (1o)
u(a) — iu(b)=0 (20)
has only the trivial solution.

Remark 1.1. From the Riesz—Schauder theory it follows that if / € %, and problems
(lp) and (2¢) has a non-trivial solution, then there exist gy € L([a,b];R) and ¢y €R
such that problem (4) has no solution.

2. Main results

Throughout the paper we assume that ¢ € K([a,b] X R; R, ) is non-decreasing in the
second argument, and satisfies

b
lim l/ q(s,x)ds=0. (5)

XxX—+ 00 X

Theorem 2.1. Let 2€]0,1], c€R,,

h(v)sgnov(a) <c forve C([a,b];R) (6)
and let there exist

Lo, 01 €EPup (7)

such that on the set B} ([a,b);R) the inequality

[F(v)(?) — £o(u)(@) + £1(0) ()] sgnv(t) < q(t, [|v]lc)  for t €[a,b] (8)
holds. If, moreover,
IZo(D)]lz < 1, ©
Zo(1 14
e = 152 <14 <2V T=TADT, 10

then problem (1), (2) has at least one solution.
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Remark 2.1. Theorem 1.1 is non-improvable in a certain sense. More precisely, the first
inequality in (10) cannot be replaced by the non-strict one, and the second inequality
in (10) cannot be replaced by

141 (Dlz < e+24/1—||Zo(D)]|2

no matter how small ¢ > 0 would be (see Examples 5.1-5.3).

Theorem 2.2. Let 2€]0,1], c€R,,
h(v)sgnuv(b) = —c for ve C([a,b];R), (11)
and let there exist {y,{\ € Py, such that on the set Bﬁc([a, b]; R) the inequality
[F(0)(t) = £o(u)(®) + £1(v)(1)] sgnov(t) = — q(t|[v]lc)  for t€[a,b] (12)
holds. If, moreover,
141D < 4, (13)
T~ < 1AMl <2VE=TADTL (14)
then problem (1), (2) has at least one solution.
Remark 2.2. Theorem 2.2 is non-improvable in a certain sense. More precisely, the first

inequality in (14) cannot be replaced by the non-strict one, and the second inequality
in (14) cannot be replaced by

I1Zo(D]le < e+ 24— |41,

no matter how small ¢ > 0 would be (see Examples 5.4-5.6).

Remark 2.3. Let A€[1,4 oo[. Define operator V : L([a,b]; R) — L([a,b];R) by
YO E w(a+b—1t) for t€[a,b].

Let ¢ be a restriction of y to the space C([a,b];R). Put ¥ =1/4, and

F(w)(1)

def

= — YFE@WN1).  h(w)

L Ih(p(w)).

It is clear that if u is a solution of problem (1), (2), then the function udéf(p(u) is a
solution of the problem

() =F(o)(t), v(a)—du(b)=h(v) (15)

and vice versa, if v is a solution of problem (15), then the function u o(v) is a
solution of problem (1), (2).

Therefore, from Theorems 2.1 and 2.2 it immediately follows
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Theorem 2.3. Let A€[1,+o0[, c€R,, condition (11) be fulfilled, and there exist
lo,l1 € Py, such that on the set Bﬁc([a, bl; R) inequality (12) holds. Let, moreover,

11D <1, 06
1£1(D)]
m+1_3<|\50(1)|h<2 1= 1Dz (17

Then, problem (1), (2) has at least one solution.

Theorem 2.4. Let A€[1,+o00[, c € Ry, condition (6) be fulfilled, and there exist £y,
€ Py, such that on the set B) ([a,b]; R) inequality (8) holds. Let, moreover,

[£0(D)][z < 1 (18)
A

T < 1Al <2y 3 = 1 (19)

Then, problem (1), (2) has at least one solution.

Remark 2.4. On account of Remarks 2.1-2.3 it is clear that Theorems 2.3 and 2.4 are
also non-improvable.

Next we establish theorems on the unique solvability of problem (1), (2).

Theorem 2.5. Ler 21€]0,1],
[A(v) — h(w)]sgn (v(a) — w(a)) <0 for v,we C([a,b];R) (20)

and let there exist {y,{ € Py, such that on the set B}VC([a,b];R), where ¢ = |h(0)],
the inequality

[F(0)(?) = F(w)(®) = Zo(v = w)(#) 4+ /1(0 = w)(@)] sgn (v(2) —w(2)) <O (21)

holds. Let, moreover, (9) and (10) be fulfilled. Then, problem (1), (2) is uniquely
solvable.

Theorem 2.6. Let 1€]0,1],
[A(v) — h(w)]sgn (v(b) — w(b)) =0 for v,w e C([a,b];R) (22)

and let there exist (o,{1 € Py, such that on the set Bﬁc([a,b];R), where ¢ = |h(0)|,
the inequality

[F(0)(2) = F(w)(1) = £o(v —w)(t) + /1(0 = w)(@)] sgn (v(z) —w(z)) =0 (23)

holds. Let, moreover, (13) and (14) be fulfilled. Then, problem (1), (2) is uniquely
solvable.

According to Remark 2.3, from Theorems 2.5 and 2.6 we have
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Theorem 2.7. Let /. € [1,+ oo[, condition (22) be satisfied, and there exist £y,{1 € Py
such that on the set B3 ([a,b];R), where ¢ =|h(0)|, inequality (23) holds. Let, more-
over, (16) and (17) be fulfilled. Then, problem (1), (2) is uniquely solvable.

Theorem 2.8. Let 4 €[1,+ o[, condition (20) be satisfied, and there exist £y,{1 € P 4
such that on the set B} ([a,b]; R), where ¢ = |h(0)|, inequality (21) holds. Let, more-
over, (18) and (19) be fulfilled. Then, problem (1), (2) is uniquely solvable.

Remark 2.5. Theorems 2.5-2.8 are non-improvable in a certain sense (see Examples
5.1-5.6).

For the equation of type (3) from Theorems 2.1-2.8 we get the following assertions.
Corollary 2.1. Let 41€]0,1], c € R, condition (6) be fulfilled, and

f(t,x,y)sgnx < q(t) fortela,b], x,yER, (24)

where g € L([a,b]; Ry). Let, moreover,

b

/ p(s)ds < 1, (25)
b b b
—J, p(s)ds ‘ a “

Then, problem (3), (2) has at least one solution.
Corollary 2.2. Let A1€1]0,1], c € R, condition (11) be fulfilled, and
f(t,x,y)sgnx = —q(t) fort€la,b], x,yER, (27)

where g € L([a,b]; Ry). Let, moreover,

b
/ g(s)ds < 4, (28)

1 b b
o i .

Then, problem (3), (2) has at least one solution.

Corollary 2.3. Let A€[l,4+00[, c€R,, and conditions (11) and (27), where q¢&
L([a,b]; R.), be fulfilled. Let, moreover,

b
/ g(s)ds < 1, (30)
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b b b
m+1—z</ p(s)ds<2m- G
—J, 9(s)ds a a

Then, problem (3), (2) has at least one solution.

Corollary 2.4. Let L€[l,+ o0, c€Ry, and conditions (6) and (24), where q¢&
L([a,b]; R.), be fulfilled. Let, moreover,

b

| pores <. (32)
! 1 ' d 2 ! ' d 33

W— </HH(S)S< E—/QP(S) s. (33)

Then, problem (3), (2) has at least one solution.

Corollary 2.5. Let /. €]0,1], conditions (20) and

Lf(t,x1,y1) — f(t,x2, 2)]sgn(x; —x2) <O for t €[a,b], x1,X%2, 1,2 ER
(34)

be fulfilled. Let, moreover, (25) and (26) hold. Then, problem (3), (2) is uniquely
solvable.

Corollary 2.6. Let /.€]0,1], conditions (22) and

[f(t,x1, 1) — f(tx2, y2)]sgn(x1 —x2) =0 for t€[a,bl, x1,x2, 1,2 €R
(35)

be fullfiled. Let, moreover, (28) and (29) hold. Then, problem (3), (2) is uniquely
solvable.

Corollary 2.7. Let L €[1,+ oo[, and conditions (22), (30), (31) and (35) hold. Then,
problem (3), (2) is uniquely solvable.

Corollary 2.8. Let 1€ [1,+ o[, and conditions (20), (32), (33), and (34) hold. Then,
problem (3), (2) is uniquely solvable.

3. Auxiliary propositions
First, we formulate the result from [22, Theorem 1] in a suitable form for us.

Lemma 3.1. Let there exist a positive number p and an operator £ € Ly such
that homogeneous problem (1y), (20) has only the trivial solution, and let for every
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5€10,1[ and for an arbitrary function u e C([a,b];R) satisfying

u'(£) =2 (u)(t) + O[F (u)(t) — £(u)(?)], u(a) — Au(b) = dh(u), (36)
the estimate
ullc <p (37)

hold. Then, problem (1), (2) has at least one solution.

Definition 3.1. We say that the operator / € Pab belongs to the set U;(4), i € {1,2}, if
there exists a positive number 7 such that for any ¢* € L([a,b];R.) and ¢ € R, every
function u € C([a, b]; R), satisfying the inequalities

(=)' u(a) — Zu(b)] sgn((2 — iju(a) + (i — Du(b)) < ¢, (38)

(—1)i+1[u’(t) —L(u)(@)]sgnu(t) < q*(¢) for t€Ja,b], (39)
admits the estimate

lulle < r(e+lg"lw). (40)

Lemma 3.2. Let i€ {1,2}, c€R,,

(=) h(v)sgn((2 — D)v(a) + (i — Do(b)) < ¢ for ve C([a,b];R) (41)
and let there exist £ € Uy()) such that on the set B’ ([a,b];R) the inequality
(=DIF o)) = L)) sgno(r) < g1, ||vllc)  for t €[a,b] (42)

is fulfilled. Then, problem (1), (2) has at least one solution.

Proof. First note that due to the condition ¢ € U;(4), homogeneous problem (1¢), (29)
has only the trivial solution.

Let » be the number appearing in Definition 3.1. According to (5) there exists
p > 2rc such that

I 1
- / q(s,x)ds < — for x > p.
x J, 2r

Now assume that a function u € C([a,b];R) satisfies (36) for some 6 € ]0, 1[. Then
according to (41), u satisfies inequality (38), i.e., u € B} ([a,b]; R). By (42) we obtain
that inequality (39) is fulfilled for ¢*(¢) = q(¢, ||u||c). Hence by the condition £ € U;(1)
and the definition of the number p we get estimate (37).

Since p depends neither on u nor on ¢, from Lemma 3.1 it follows that problem
(1), (2) has at least one solution. [J

Lemma 3.3. Let i €{1,2},

(=1 h(ur) — h(uz)]sgn((2 — i)(ui (@) — ux(a))
+ (= D(ui(b) —u2(b))) <0 for uy,uz € C([a,b];R) (43)
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and let there exist / € Ui(1) such that on the set B' ([a,b];R), where ¢ =|h(0)|, the
inequality

(=)™ F @ )(#) = F(ua)(2) = £(ur — up)(0)] sgn(uy (1) — ua(2)) < 0 (44)
holds. Then problem (1), (2) is uniquely solvable.

Proof. From (43) it follows that condition (41) is fulfilled, where ¢=|h(0)|. By
(44) we get that on the set B ([a,b];R) inequality (42) holds, where ¢ = |F(0)|.
Consequently, all the assumptions of Lemma 3.2 are fulfilled and this guarantees that
problem (1), (2) has at least one solution. It remains to show that problem (1), (2)
has at most one solution.

Let u;, up, be arbitrary solutions of problem (1), (2). Put u(z) =u;(t) — uy(¢) for
t € [a,b]. Then, by (43) and (44) we get

(=) u(a) — (b)) sgn((2 — iyu(a) + (i — Du(b)) <0,
(=1 [/ (¢) — £(u)(t)] sgnu(t) < 0, for ¢ € [a, b].

This together with the condition 7 € U;(4) results in u = 0. Consequently, u; = u,. [

Lemma 3.4. Let 2€]0,1], the operator ¢ admit the representation { ={y—{, where
to and ¢ satisfy conditions (7), (9) and (10). Then ¢ belongs to the set Uy(2).

Proof. Let ¢* € L([a,D];R:),c€ER; and u e C([a,b];R) satisfy (38) and (39) for i=1.
We show that (40) holds, where
- /1H/1(1)||L+2—i
(1= [[Zo(DI)A[A (D[ + 1= 2) = A 4o(D)]2

141 (D]l + 1

= Dl ~ HAME )

It is clear that

u'(t)=Co(u)(t) — (1(u)(t) + 4(2), (46)
where

Gg(t)y=u'(t) — L(u)(t) for t € [a,b]. (47)
Obviously,

g(t)ysgnu(t) < q*(¢t) for t€(a,bl, (48)
and

[u(a) — Au(b)]sgnu(a) < c. (49)

First, suppose that u does not change its sign. According to (49) and the assumption
A€1]0,1], we obtain

lu(a)| — [u(b)| <c, (50)
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@) — (b)) < futa)) 5+ 1)
Put

M =max{|u(t)|: t € [a,b]}, m=min{|u(t)|: t € [a,b]} (52)
and choose 11,1, € [a,b] such that #; # ¢, and

()| =M, ()| = . (53)
Obviously, M >0, /i > 0, and either

Hh <t (54)
or

> b. (55)
Due to (7), (48) and (52), (46) implies

()" < Mo(1)(2) — mr(1)(1) + q*(¢)  for 1 € [a,b]. (56)

If (54) holds, then the integration of (56) from a to #; and from #, to b, in view of
(7) and (53), results in

i1 - @] <3 [ aeds+ [ g

b b
|u(b)|—n'1<M/ /0(1)(s)ds+/ 7" (s)ds.

Summing the last two inequalities and taking into account (7) and (50), we obtain

M —ii—c <M —n+ub)| — |ua)] <M||to(D|+ g2

If (55) is fulfilled, then the integration of (56) from #, to ¢, on account of (7) and
(53), yields

1 4l
M_r;z_c<M—na:M/ /0(1)(s)ds+/ a*(s)ds < M||co(Dllz + 1" 1.
15}

15}

Therefore, in both cases (54) and (55), the inequality
M — it —c < M||/6(D)]|z+ g™l (57)

holds.
On the other hand, the integration of (56) from a to b, yields

|u(b)] — |u(@)] < M|Zo(D)]l — @l /1Dl + llg* Iz
Hence, by (51) and the assumption 4 € ]0, 1],

- - A—1
ml| /i (Dl < M|Zo(D]z + [u(a)]

2
- _A—1 N c
S M||Zo(D)||z +m 7 + Ilq ||+z~

+ 5497
1 q L
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From the last inequality and (57), in view of (9) and the assumption 1€]0,1], it
follows that

_ 1—-4 - N ¢
i (Il + 152 ) <Ml + a7l + 5,

M1 = [[4o(D)l|z) <+ [lg* |l +e.
Thus, on account of (10),
lulle =M < ro(A|l/1(D2 +2 = (e + [lg* (1),

where 7o = [(1—||Zo(D)||)(A||Z1(D)||z +1—2)— 2||Zo(1)||.]™". Therefore, estimate (40)
holds.
Now suppose that u changes its sign. Put

M =max{u(t) : t €[a,b]}, m=—min{u(t):t€[a,bl}, (58)
and choose ty, t, € [a,b] such that

u(ty) =M, u(t,)=—m. (59)
Obviously, M > 0, m > 0, and either

ty <ty (60)
or

b > ty. (61)

First suppose that (60) is fulfilled. It is clear that there exists oy € |t,, t)/[ such that

u(t) >0 foroay <t <ty, u(up)=0. (62)
Let
oy =inf{t €[a,t,,] s u(s) <0 forz <s <t}
Obviously,
u(t)<0 foro; <t<t, and u(o)=0 if ¢ >a. (63)
Put
b if u(b) =0,
- { inf{r € 1tar,b] : u(s) < 0 for t <s <b} if u(b) <0.

It is clear that if a3 < b, then
u(t) <0 foraz <t<b, u(ouz)=0. (64)

The integration of (46) from o, to ¢,, from o, to #); and from o to b, in view of (7),
(48), (58), (59), (62), (63) and (64), yields

(o) + m <M/m /1(1)(S)ds+m/m/0(1)(s)ds+/mq*(s)ds, (65)

o o
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M <M/M /o(l)(s)ds—i—m/M /1(1)(s)ds—|—/Mq*(s)ds, (66)
b b b
u(otg)—u(b)<M/ /1(1)(s)ds—|—m/ /0(1)(s)ds—|—/ q*(s)ds. (67)

If u(b) = 0 or u(a) > 0, then according to (49), (63) and the assumption . > 0, we
obtain u(o;) = — ¢ and from (65) we find

—c+m <M/{’1(1)(s)ds—|—m//0(l)(s)ds—|—/q*(s)ds, (68)
I I I

where I =[oy,t,] U [o3,b].
If u(b) < 0 and u(a) < 0, then multiplying both sides of (67) by . and taking into
account (7), (58), (64) and the assumption A€ ]0,1], we get

b b b
—),u(b)SM/ /1(1)(s)ds+m/ /0(1)(s)ds+/ q*(s)ds.

a3 o3

Summing the last inequality and (65), according to (63) and the condition
u(a) — Au(b) = — (u(a) — Ju(b))sgnu(a) = —c,

we obtain that inequality (68), where [ = [y, ,] U [o3,b], holds.
From (66) and (68) we have

M1 —-C) <mdAi+ ¢l +¢, m(1 —Dy) <MBy + ||q"||. +c, (69)

where

AI:/MA(l)(s)ds, BI:/A(I)(s)ds,

o 1

C1=/M £o(1)(s)ds, D1=//0(1)(s)ds.
o 1

2

Due to (9), C; < 1, Dy < 1. Consequently, (69) implies
0<M(1—C)(1—Dy) <AMBi+|g*[lc +)+ g7l +¢
< MA1By + (lg* [l + (|1 (D[ + 1),

0 <m(1—C\)(1—D1)<Bi(mdr +||¢" | + )+ ||¢" [l + ¢
< mA1By + ([|¢7 |2 + o)([[£1(D[2 + 1) (70)
Obviously,
(1=C)A=D1)=1—(Cir+Di)=1—[[4o(D)]r >0,

44,B; < (41 + B> < |14 (D)]]3.
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By the last inequalities and (10), from (70) we get

M < r(I/iM)l + Die + llg™[lo),

m < ri([[41(D]z + De + [lg" o), (71)
where

n= (1= oDl = HIamz) (72)

Therefore, estimate (40) holds.
If (61) holds, the validity of estimate (40) can be proved analogously. [

Lemma 3.5. Let 12€]0,1], the operator ¢ admit the representation { ={y—{,, where
to and ¢ satisfy conditions (7), (13) and (14). Then, ¢ belongs to the set Uy(1).

Proof. Let ¢* € L([a,b];R,), cER, andu e C([a,b]; R) satisfy (38) and (39) for i =2.
We show that (40) holds, where

o oDl + 1
(=1l = 121Dl — 1+ 2
1 1
ol +1 o)
A= 11Mll = /o
Obviously, u satisfies (46), where ¢ is defined by (47). Clearly,
—qg(t)sgnu(t) < q*(t) forte€a,b] (74)
and
— (u(a) — Ju(b))sgnu(b) < c. (75)

First suppose that u does not change its sign. According to (75) and the assumption
2.€1]0,1], we obtain

Au(b)| — |u(a)| < c, (76)

u(D)| — |u(a)] < |u(b)I(1 = 2) +c. (77)

Define numbers M and m by (52) and choose 71, € [a,b] such that #; #1, and (53)
is fulfilled. Obviously, M > 0, m > 0, and either (54) or (55) holds. Due to (7), (52)
and (74), (46) implies

—|u()|" < M1 Q)(1) — it o(1)(2) + ¢* (1) for 1 € [a,b]. (78)

If (55) holds, then the integration of (78) from a to #, and from #; to b, in view of
(7) and (53), results in

|u(a)| —m SM/2/1(1)(S)ds—|—/zq*(s)ds, (79)
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b b
M—|u(b)|<M/ /1(1)(s)ds+/ q*(s)ds. (80)

Multiplying both sides of (80) by 4 and taking into account (7) and the condition
A€1]0,1], we obtain

b b
IM — A|u(b)| <M/ /1(1)(s)ds+/ g% (s)ds.

Summing the last inequality and (79), in view of (76), we get
IM — it — ¢ < IM — i+ |u(a)| — Au(b)| < M]|4(D)| + llg* |-

If (54) is fulfilled, then the integration of (78) from #; to £, on account of (7) and
(53), yields

153 15}
IM —i—c<M—m <M/ /1(1)(s)ds—|—/ q*(s)ds < M||Z1(D)||.+]1g" 2.
n

4]

Therefore, in both cases (54) and (55), the inequality
IM — i — e < MM+ g™ (81)

holds.
On the other hand, the integration of (78) from a to b implies

Ju@)| = Ju(b)| < M/l = /oDl + gl
Hence, by (77) and the assumption A€ ]0, 1], we get
mllfo(Dle < M|z + [u®I(1 = 2) +c+ llg"]2
SM| L)l +MA = 2) + [lg*|| +e.
From the last inequality and (81), in view of (13), it follows that
aill/o(D)ll < M4+ 1= 2)+ llg*[lz + ¢,
MG~ 4 <+ g™l +c.
Thus, on account of (14),
lulle =M < ro([|£o(D)llz + 1)(e + [lg*[|e),

where ro=[(/ — [|£x(D|)IIZo(Dlz — |£1(D)]|lz — 1 + 217", Therefore, estimate (40)
holds.

Now suppose that u changes its sign. Define numbers M and m by (58) and choose
tys tn € [a,b] such that (59) is fulfilled. Obviously, M > 0, m > 0, and either (60) or
(61) holds.

First suppose that (60) is fulfilled. It is clear that there exists o € ]¢,, [ such that

u(t) <0 fort, <t<ua, u(e)=0. (82)



R. Hakl et al. | Nonlinear Analysis 51 (2002) 425—447 439

Let
o =sup{z € [tyr,b] : u(s) > 0 for tyy < s <t}
Obviously,
u(t) >0 forty, <t<oy and u(op)=0 if oy <b. (83)
Put
a if u(a) <0,
e { sup{t € [a,t,[: u(s) >0 for a <s <t} if u(a) > 0.

It is clear that if a3 > a, then
u(t)>0 fora<t<os, u(az)=0. (84)

The integration of (46) from ¢, to o;, from #); to o and from a to oz, in view of (7),
(58), (59), (74), (82), (83) and (84), yields

m<M ) /()(l)(s)ds—|—m/ml /1(1)(s)ds + /m1 q*(s)ds, (85)
M — u(op) SM/OCZ fl(l)(s)ds+m/m2 lo(1)(s)ds + /%2 q"(s)ds, (86)

u(a) —u(oz) < M/m3 1(1)(s)ds + m/053 Lo(1)(s)ds + /0‘3 q*(s)ds. (87)

If u(b) <0 or u(a) <0, then according to (75) and (83), we obtain u(oy) < ¢/4,
and from (86), in view of (7), (58) and the assumption A€ ]0, 1], it follows that

M — ¢ SM//1(1)(s)ds—|—m//o(l)(s)ds—|—/q*(s)ds, (88)
1 I I

where I =[a, 03] U [ty, 2]
If u(b) = 0 and u(a) > 0, then multiplying both sides of (86) by A and taking into
account (7), (58), (83) and the assumption A€ ]0,1], we get

M — Ju(b) < M/“z £1(1)(s)ds + m/a2 o(1)(s)ds + /o<2 q*(s)ds.

th tv

Summing the last inequality and (87), according to (84) and the condition
u(a) — Au(b) = (u(a) — Ju(b))sgnu(b) = —c,

we obtain that the inequality (88), where / =[a, 03] U [y, 22], holds.
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From (85) and (88) we find
m(l —A4) SMCy + [lg"[lL + ¢, M(Z—B1) <mDy + [lg"[|2 + ¢,

where

Alz/'ml)(s)ds, Blz/fl(lxs)ds,
1, I

m

CI:/ /o(1)(s)ds, Dlz//()(l)(s)ds.
1 1

m

Due to (13), 4; < 4, By < A. Consequently, (89) implies
0 <m(l —A1)(A—B1) < Ci(mDy + ||g* |l + )+ gL + ¢
< mCDy +(llg” [z + e)((I£o(Dl + 1),
0 <M —A1)(4—B1) < DiI(MCy + |g* ||l + )+ [lg*[[L + ¢
< MCiDy+ ([lg" [ + o)([[£o(D)]|L + 1)

Obviously, in view of the assumption 4 € ]0, 1],

(1 —Al)(),—Bl) >)—J4 — B = )\._(Al +Bl) > 1 — ||/1(1)HL >0,

4C\D; < (Cy + Dy ) < |[4o(D)3.
By the last inequalities, from (90) we get

M < ri([|o(D)e + (e + [lg*[2),

m < ri([[£o(D)]|z + D(e + llg™ )
where

r=0G =4l = 4D ™"
Therefore, estimate (40) holds.

If (61) holds, the validity of estimate (40) can be proved analogously. [

4. Proofs of the main results

(89)

(90)

O1)

(92)

Theorem 2.1 follows from Lemmas 3.2 and 3.4, Theorem 2.2 follows from Lemmas
3.2 and 3.5, Theorem 2.5 follows from Lemmas 3.3 and 3.4, and Theorem 2.6 follows

from Lemmas 3.3 and 3.5.

Proof of Corollary 2.1. Obviously, conditions (24), (25) and (26) yield conditions (8),

(9) and (10), where
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def
F()(1) = p(t)v(e(t)) — g()v(u(@)) + f (L, v(2), v(¥(1))),
def def
Lo()() S p(yu((),  £1(0)(1) = g()o(u()). (93)
Consequently, all the assumptions of Theorem 2.5 are fulfilled. [
Proof of Corollary 2.5. Obviously, conditions (34), (25) and (26) yield conditions

(21), (9) and (10), where F, /¢ and /; are defined by (93). Consequently, all the
assumptions of Theorem 2.5 are fulfilled. [J

Corollaries 2.2-2.4 and 2.6-2.8 can be proved analogously.

5. On Remarks 2.1 and 2.2

On Remark 2.1. Let 1€]0,1] (for the case 2=0, see [5]). Denote by G the set of
pairs (x,y) € Ry x R such that

1-4
al —— < y<2Vvl—ux

<1,
o 1 —x A

According to Theorem 2.1, if (6) is fulfilled and there exist /y,/; € 2, such that
(1Zo(D)|,1I1£1(1)]|2) € G, and on the set B} ([a,b]; R) inequality (8) holds, then prob-
lem (1), (2) is solvable.

Put Go={(x,y)ER X R: 0 <x <x1,y=2v1—x}, where x; €]0, 1] is such that

L
AL - * /1 —x.

1—X1

Below we give the examples which show that for any pair (xo, y0) € G U Gy, xo = 0,
yo = 0, there exist functions pg € L([a,b];R), —p1 € L([a,b];R+), and Tt € .#,, such
that

b b
/ [p0(s)], ds =xo. / [po(s)]__ds = 3o (94)
and the problem

u' (1) = po(Du(r(t)) + pr()u(t),  u(a) — Au(b)=0 (95)

has a non-trivial solution. Then by Remark 1.1, there exist gy € L([a,b]; R) and ¢y €R
such that problem (1), (2), where

Fo) ()= po(0)u(x(t)) + pi(6)o(t) + qo(e).  h(v) = co, (96)

has no solution, while conditions (6) and (8) are fulfilled, where /0(0)(t)d§f[ po(t)],

o(x()), 1)) E [po()]_1(x(1)), ¢ = |qo|, and ¢ =|eq|.
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It is clear that if xg, yo € R and (xg, y9) € G U Gy, then (xo, yo) belongs to at least
one of the following sets:

GI:{(x’y)ER+ XR+: 1 Sx, OS)/},

-
Gzz{(x,y)eR+><R+:1—2<x<1,y<lx —)},
— X L

Gi={(x,y)ER xR :0<x <1, 2Vl —x <y}

Example 5.1. Let (xg, ) € Gy. Put a=0, b=3, e=1/(1 + ),

—yo for t€[0,1], 0 for ¢t €[0,2[,
pO(t): X0 for t6[1>2[7 pl(t): - — 1
e for 1€[2,3],
0 forze[2,3], I—(xo+e—1)zt—-3)
1 forte]0,1],
(1) =
3 forre[l,3]
Then (94) holds, and problem (95) has the non-trivial solution
(A—e)p—4 for t € [0, 1],
ut)y=q —xo(t—1)—¢ for t €[1,2],
(xo+e—1)(z—-3)—1 forzte[2,3].
Example 5.2. Let (xg, yo) € G,. Put a=0, b=3,
X0 for ¢t € [0, 1[,
o . 0.2 o 1 fort€[0,1],
H=<{ — or t€[1,2[, (¢)=
o Yo 0 forre[l,3],
0 forre[2,3],
0 for t €0, 2],

pt)= (4= 1+x) — Apo(1 — xp))

1 —x0— (A= 1+x0— Zyo(1 — x0))(t — 3)
Then (94) holds, and problem (95) has the non-trivial solution

for t €[2,3].

,
AX0

t— 4 for t € [0, 1],
A

— Xp

_1 — X0

wt)=q Aot = 1) =5 for 1€ [1,2][,

j—1
(/u-i-X() —/1y0> (f_3)_1 for f€[2,3]'
1—X()
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Example 5.3. Let (xg, o) € G3, and choose & > 0 such that A — ¢ >0, 2y/1 —xo +
2¢ < yo. Put a=0, b=6, ty=¢/(/1 —xo+¢)+ 1,

0 for 1 €[0, 1],
~(WT—xo+e)  forre[l,2], 5 for 1€[0,2[,
0 for t €[2,3[, 2 for te[2,4],
0= ~(V/1=x0+¢) for t € [3,4[, = 5 forte[4,5],
Xo for t €[4,5], ty for t€[5,6],
2¢/1—xo+2e—yy for 1€[5,6],
—% for 1€ [0, 1[,
0 for t €[1,2],
pi(t)= (-0
—(1_8)(2_”_’_1 for t €[2,3],
0 for 1 €[3,6].
Then (94) holds, and problem (95) has the non-trivial solution
(A—e)—4 for t €0, 1[,
(e+V1—x)t—1)—¢ for € [1,2[,
Ja=ovT-x@-n+V1-x for 1 €[2,3],
= (1 —xo+ &1 —x0)3—t)+e/1—xo forr€[3,4],
xo(5—1)—1 for t €[4,5],
-1 for 1 €[5, 6].

On Remark 2.2. Let 21€]0,1]. Denote by H the set of pairs (x, y) € Ry X R such that
1
—1l<x<2y/A—y.

A—y
According to Theorem 2.2, if (11) is fulfilled and there exist /y,/; € 24 such that
(II£o(D)[z, [|£1(1)||L) € H, and on the set B2 ([a, b]; R) inequality (12) holds, then prob-
lem (1), (2) is solvable.

y<)»,

Put Ho={(x,»)ERxR: 0 < y < y1, x=2y/A— y}, where y, €]0, [ is such that
1
— 1= 2\/ A— Vi
A— Vi
Below, we give the examples which show that for any pair (xg, yo) &€ H U Hy, xo = 0,
yo = 0, there exist functions pgy € L([a,b];R), p1 € L([a,b];R}), and T € .4 4 such that
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(94) is fulfilled and problem (95) has a non-trivial solution. Then by Remark 1.1,
there exist gy € L([a,b]; R) and ¢y € R such that problem (1), (2), where F' and / are
defined by (96), has no solution, while conditions (11) and (12) are fulfilled with

def def
o)1) = [po(0)], v(2(1)), £1(0)(1) S [ po(1)]_v(x(2)), q = |qo|, and ¢ =|col.
It is clear that if x¢, yo € R, and (xo, yo) & H U Hy, then (xg, y9) belongs to at least
one of the following sets:
Hi={(x,y)€R. XR;: A<y, 0<x},

1
HZ:{(x,y)€R+xR+:0<y<Z,x<}—1},
L=y

Hy={(x,y)ERy x Ry: 0< y <A 2/7i—y<x}.

Example 5.4. Let (xg, yo) € Hy. Put a=0, b=3, e=1/(1 +xp),

0 forre]0,1], Yo +e— 2
———— for r€[0,1],
po(t)={ —yo forte[1,2[, pi(t)=< (o+e—A)y+4
xo for 1€[2,3], 0 for 1 €[1,3],

1 for te[0,1],
(t)=<¢ 3 fortell,2],
2 forte[2,3].

Then (94) holds, and problem (95) has the non-trivial solution
(vo+e—)t+ A fortelo,l1],
u®)=< »2—-1t)+e¢ for t€[1,2],
(1=-¢e)t—=3)+1 forre[2,3].

Example 5.5. Let (xg, 19) € Hy. Put a=0, b=3,

—yo for t€]0,1],
0 . (.2[ o 3 forte€]0,1],
po(t)= X0 orte|l, 2], (1) =
1 for re[L,3],
0 forre2,3],

0 for 1 €0, 2],

P = L= (A= y0)(1+%)
(=G =301 +x)( —3)+ 1

for 1 €[2,3].
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Then (94) holds, and problem (95) has the non-trivial solution
—yot + 4 for t € [0, 1,

u(t)= xo(A—yo)(t—1)+ 21—y for t €[1,2[,
(1 —=(A—y)(1+x0))(¢t—3)+1 forte[2,3]

Example 5.6. Let (xg, yo) € H3, and choose ¢ > 0 such that 1 —& >0, 24/4A— yo +
2¢ < x9. Put a=0, b=6, ty=4 —¢/(\/1— yo +¢),

-0 for t €[0, 1],
A=yote for t € [1,2], 6 forte[0,1],
0 for t €[2,3], 3 fortel,3],
po(t) = i (1) =
A—yo+e for t €[3,4], 5 fort€][3,5],
0 for t € [4,5], ty for t€[5,6],
X0 —2+/A—yg—2¢ forte[s,6],

0 for 1 €0, 2],
1—e¢
for r€[2,3
—(—oG_p orrelzsl
pi(t)=< 0 for t €[3,4],
1—¢
fi 4
A= —5+1 or t€[4,5],
0 for t € [5,6].

Then (94) holds, and problem (95) has the non-trivial solution

—Yot + 4 for 1 €0, 1],
A=y +evVi—yo)l —t)+A—yy forre[l,2],
(I —e)/A—yo(B3—1t)— /12— for 1 €[2,3],

u(t)=
(VAi—yo+e)t—4)+e¢ for ¢ € [3,4],
(1—e)t—5)+1 for t €[4,5],

1 for t €[5, 6].
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