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Introduction

Throughout the paper the following notation will be used. R is the set of all real
numbers, R, = [0, +oo[.

C’loc(]a,b[;R) is the set of functions u : Ja,b[ — R which are absolutely continuous
on every compact interval contained in ]a, b[.

CN‘IOC(I;R), where I C Ja,b[, is the set of functions u# : / — R which are abso-
lutely continuous together with their first derivative on every compact interval contained
in /.

L(Ja,b[; D), where D C R, is the set of Lebesgue integrable functions p : la,b[ — D.

Lioc(Ja,b[; D), where D C R, is the set of functions p : ]la,b[ — D, which are
Lebesgue integrable on every compact interval contained in ]a, bl[.

K(la,b[ x R*;R) is the class of Carathéodory.

Kioc(Ja,b[ x R%;R) is the set of functions f : Ja,b[ x R> — R such that f €
K(la+ &b — e[ x R%;R) for any small & > 0.
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v Lise(Ja, b[; R) — Lioc(]a, b[; R.) is the operator defined by

7(p)(t) =exp H p(s)ds
f

] fora <t <b.

If y(p) € L(Ja,b[; R+), then

1 t b
PO = s / J(p)(s)ds / Wp)s)ds fora<t<b.

u(s+) and u(s—) are the right-hand side and left-hand side limits of the function u
at the point s.
Consider the boundary value problem

u" = f(t,uu), (0.1)

ua+)=0, u(b—)=0, 0.2)

where f € Kioe(Ja,b[ x R*;R). By a solution of problem (0.1), (0.2) we understand
a function u € C’;oc(]a, b[; R) satisfying (0.1) almost everywhere in ]a,b[ and also
conditions (0.2).

The investigation of the question on the solvability of (0.1), (0.2)’s type problems
originates from the works of Picard [10], Tonelli [11], Epheser [4], Bernstein [1], and
Nagumo [9]. Nowadays there exists a sufficiently developed theory on singular prob-
lems of the type (0.1), (0.2) (see [6]). In this paper we give new sufficient conditions
for the solvability of problem (0.1), (0.2) which make the results obtained in [6] more
complete. However (as in [6]) we do not exclude the possibility for the function f
having nonintegrable singularities with respect to the first argument at the points t =a
and ¢t =b.

Before we formulate the main results, we introduce some definitions.

Definition 0.1. A function y € Cioc(Ja, b[; R) is said to be a lower (an upper) function
of Eq. (0.1) if 9" admits the representation

V') =y(t) + (1) fora<it<b,

where 79 € Cioc(]a,b[;R) and 7, : Ja,b[ — R is nondecreasing (nonincreasing) function
such that y{(¢) = 0 almost everywhere in ]a,b[, and, moreover, the inequality

V) = [0,y (@) @) < 60,7 (1))

holds almost everywhere in ]a, b[.

Definition 0.2. We say that the vector function (p,g) : Ja,b[ — R2 belongs to the set
Vi(la,bl) if

y(9) € L(Ja,b[;Ry),  yar(g)p € L(Ja,b[;R ) (0.3)
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and for any a| € [a,b[, b; € ]a;,b] and measurable function ¢ : Ja,b[ — R satisfying
the inequality |q(¢)| < g(¢) for a <t < b, the problem

' =—pOu+q, u(a+)=0, u(b;—)=0
has only the trivial solution.
Definition 0.3. Let (p,g) : Ja,b[ — R%, p(t) >0 for a <t <b, u € 10,1[, and

7(9) € L(la, bl Ry), vi(9)p € L(Ja, b R+). 0.4)
Let, moreover, u; and u, be solutions of the equation

W' = = p(Olul" | sgnu — g()]| (0.5)

satisfying the conditions

mes{t € Ja,b[ - wl(1) =0} =0, i=1,2, (0.6)
_ L@

u(a+)=0, tli‘}lw(;)(t) =1, (0.7)

w(b—) =0, ) _ (0.8)

5 9(g) ()

We say that the vector function (p,g) belongs to the set V,(Ja,b[) if at least one
of the following three conditions is fulfilled:

b, n
u(t)>0 fora<t<b, / ) on () ds = 0, (0.9)
a ul(S)
b, Iz
w(t)>0 fora<t<b, / 150 | Sony(s) ds = 0, (0.10)
a le(S)
b / n
u(t)>0 fora<t<b, (—1)"/ % senul(s)ds <0, i=1,2. (0.11)

Remark 0.1. Condition (0.3) (resp. (0.4)) is fulfilled, e.g., if for a <t < b,

g(t) < + ho(1),

o
(t—a)b—1)
h(t) ( h(t) )
POsi=ae-n \P S i—av-or
where 1 € 10,6 — a[ and ho,hy € L(Ja,b[; R,).
Remark 0.2. From Lemma 2.1 and Remark 2.4 in [2] it immediately follows that

condition (0.4) guarantees the existence of solutions of problems (0.5), (0.7) and (0.5),
(0.8) defined on the whole segment [a, b] and satisfying conditions (0.6).
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Remark 0.3. The effective sufficient conditions for the vector function ( p,g) to belong
to the sets V1(Ja,b[) and V,(Ja,b[) can be found in [2,3,5-8].

1. Main results

Theorem 1.1. Let o and [ be, respectively, lower and upper functions of the equation
(0.1), a(t) < p(¢t) for a <t < b, and

ala+)=0, oub—)=0, Pplat)=0, pBb-)=0. (1.1)
Let, moreover,

f(tx,y) = —hi(6) = ha(0)]y| —hoy? for a <t <bu(t) <x < f(t), y€R

(1.2)
(f(t,x,y) < () + ha(O)|y| + hoy® fora <t <b, a(t) < x < B(t), y €R)
(1.3)
where hy € Ry and h; € Li,c(la,b[; Ry), i = 1,2, satisfy the conditions
Y(h2) € L(Ja,b[; R1),  yap(h2)hy € L(Ja, b[; R). (1.4)
Then problem (0.1), (0.2) has at least one solution u such that
a(t) < u(t) < p(t) fora <t <b. (1.5)
Corollary 1.1. Let
f(tx,y) = —hi(t) = hy(t)|y| — hoy* fora<t<b, x,y€R, (1.6)

[tx,y) < pi(0) + paO|y + pol " fora<i<b, x<0, yeR, (1.7)
(f(tx, ) < M) + )|y +hoy* fora<t<b, x,y€R, (1.8)

ftx,y) = —p1(t) — p(D)|y| — p0|y|”] fora<t<b, x>0, yER),
(1.9)

where A = 1, hy, po € R, and
(hohi,h2) € Vi(Qa,bD), (X4 pi” pi,dps) € V15(la,BL). (1.10)

Then problem (0.1), (0.2) has at least one solution.

Remark 1.1. Both of conditions (1.10) are essential and they cannot be omitted (see
On Remark 1.1 below).
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Corollary 1.2. Let inequalities (1.6) and (1.7), ((1.8) and (1.9)) be fulfilled, with
hy >0, p0>0and

lllh()_1 ) v a+b

h(t)= U= a)p” hy(t) = (—ay + P fora<t< —
Iihy! l b
h(t) = (bll (;)2", hy(1) = G 12t)v for <t<b, (L.11)
Iy =D/ p U Iy27"! I a+b
pi(t) = W’ Pat) = T 2 5 + — fora<t< —
B lzlff(ﬂl)/;'}’oil/Z At u b
pi(t) = W, p(t) = (b t)/M + — for <t<b.
(1.12)

where v € [0,1[, 1> 1, u € [O,li[ and I;; € 10,4+o00[, i,j = 1,2.
Let, moreover,

oo ds 1 b—a\'""
1.13
/0 111+112S+s2>1v( 2 ) . (1.13)

400 1 . 1—Ap
/ ds — > : <b “) . (1.14)
o D+ los+sE T (1= Au) 2

Then problem (0.1), (0.2) has at least one solution.

2. Auxiliary propositions

Lemma 2.1. Let ro,hy € Ry, and h; € Lic(Ja,b[; Ry), i = 1,2, satisfy conditions (1.4).
Then for any a; € la,(a+ b)/2[,by € [(a+ b)/2,b[ and u € C’{oc(]al,b][;R) satisfying
the inequalities

lu()| <y forar <t < by, (2.1)

W (t) = —hi(t) — ho(O)|u' ()| — hole! (1))* for ay <t < by (2.2)

u"(t) < hi(t) + ha(O|u' ()] + ho[/ (1) for ay <t < by, 2.3)
the estimate

|/ ()| < @(t,a1,b1,70) for ay <t <b (2.4)

holds, where

b b
o(1,x, y,z) = ' (22/ V(hz)(S)dS+/ Vab(hz)(S)hl(S)dS> P(h2)(2)

‘ ) -1
( [ tthesnes | [V(hz)(s)]_lds> forx<t<y.
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Proof. We will prove the lemma in the case where condition (2.2) is fulfilled. The

case where (2.3) is fulfilled can be proved analogously.

Let u € C;OC(]al,bl[;R) satisfy conditions (2.1) and (2.2). Put

go(t) = —hou'(t) — hy(t) sgnu'(t) for a; <t < by,

gl(l) = u”(t) + hz(l)|ul(t)| + ]’l()[u/(t)]2 for a; <t < b.

It is clear that

u"(t) = go(u'(t) + g1(t) for a; <t < by.
According to (2.2) and (2.6), we have

g1(t) = —h(¢t) for a; <t <b.

Put

o(go)(1) = exp ( /( . go(S)dS) ,
a+

t by
o(go)(s)ds / o(g0)(s) ds,

Gab, (go)(t) = m

) = s 5(g0 () ds,
1 b
onan)0) =~ [ o)) ds
Let ¢, € ]ay, bi[ be an arbitrary point such that u/(#;) # 0. Then either
W(t) >0
or
u'(1) < 0.

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

Suppose that condition (2.9) (condition (2.10)) is fulfilled. Multiplying both sides of
(2.7) by a5,(g0)(t) (by 04,(go)(t)) and integrating from # to b; (from a; to #), we

obtain

by
u'(11)0p,(go)(t1) = u(by) — u(t)) — / ap,(90)(s)g1(s) ds

t

(— (1)00 (o)1) = u(ar) — u(tr) — / G (90)(5)g1(5) ds).

aip

Hence, in view of (2.1), (2.8) and (2.9) ((2.10)), we get

by
(1), (g0)(11) < 2r0 + / 0, (90)(s)h1 () ds

41

([’ ()] 60, (g0)(t1) < 270 + /] Ta, (90 )(s)h1(s) ds).

aj
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Multiplying the last inequality by fat]l a(go)(s)ds (by f:l a(go)(s)ds), we easily find
that for any ¢ € Jay, bi],

by by
|t/ (£)]Gay, (g0)(1) < 2”0/ 0(90)(S)ds+/ Oayb, (90)($)h1(s) ds. (2.11)

ai ap

In view of (2.1) and (2.5) it is not difficult to verify that

Ga16,(90)(t) < Vap(h2)(t) exp(4rohg) for a; <t < by,

[7(h2)(t) exp(2roho)] ™" < a(go)(t) < (ha)(t)exp(2rohy) for ay <t < by,

exp(—6rohy)
P(h2)(2)

for a; <t < by.

t by
Gt (G0)(0) > / LU ds [ [0h)s) ™ ds

Taking into account these estimates, from (2.11) it can be easily seen that estimate
(2.4) holds. O

Lemma 2.2. Let hg € R, h; € Lioc(Jla,b[;Ry), i = 1,2, and

(hoh1,h2) € Vi(la, b]). (2.12)
Then there exists 6 € (t’lloc(]a,b[;R) such that

o(t)y>0 fora<t<b, a+)=0, ob—)=0, (2.13)
and

8"(t) = —h(t) — ha(1)|8'(t)| — ho[6'(t))* for a <t <b. (2.14)

Proof. Let iy > 0. According to (2.12) and Theorem 2.2 in [6], the problem
' = —hohy(D|u| — ha(O)[u'| — hohi (1), u(a+)=0, u(b—)=0

has at least one solution u. Since u”(¢) <0 for a <t < b, we have u(t) >0 for
a <t <b. It is easy to verify that the function

5(t) = hl—oln(l +u(t)) fora<t<b

satisfies conditions (2.13) and (2.14).
Suppose now that 4y = 0. Then according to Theorem 2.2. in [6], the problem

W' =—hi(t) = (O], u(a+)=0, u(b—)=0

has at least one solution u. Since u’/(t) <0 for a <t <b, we have u(t) >0 for
a <t <b. It is obvious that 5(¢) = u(t) for a <t < b satisfies conditions (2.13) and
(2.14). O
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Lemma 2.3. Let u €10,1[, p,g € Lioc(la,b[;Ry), and (p,g) € V,(la,b[). Then there
exist ¢ € la,b[ and y € CN’I/OC(]a,c[ Ule, b[; R) such that

wW(t)>0 fora<t<b, v(at+)=0, pb-)=0, (2.15)

—00 <y (c+) € Y(c—) <+ (2.16)
and

(1) = —up(t) — ug(Oy' (O] = uly O for a <t <b. (2.17)

Proof. Let u; and u; be solutions of problems (0.5), (0.7) and (0.5), (0.8), respec-
tively, satisfying conditions (0.6). Put

uj ()" ub(t) "
p1(t) = uiEt; sgnui(t), pa(t)= ujgt; sgnuy(t) fora<t<bh.
It is clear that
(1) = —pp(1) = ug()] p1(1)] — ulpr (1) *TIH - for a <t < b, (2.18)
Ph() = —pp(t) — pg(D)]p2(0)] — ulp2()|# I for a <1 <b. (2.19)
Show now that for any b; € ]a,b],
p1 € L(Ja,bi[; R). (2.20)
Since
’ t d
o) Jie)sds
=atp(g)t) () ’
there exists My, > 0 such that
n
[p1(8)| < My, M for a <t < by. (2.21)
J, 7(9)(s)ds

However, since u € 10, 1[, we have (y(g)(¢))* < y(g)(¢) for a < t < b, which together
with (2.21) results in (2.20). Analogously we can find that p, € L(Ja,b[; R) for any
ay € la,bl.

Suppose that conditions (0.11) are fulfilled. Choose ¢ € ]a, b[ such that

c b
/pl(s)ds:—/ p2(s)ds (2.22)
and put

t
/ p1(s)ds fora <t <ec,
()= ¢ b
7/ pa2(s)ds forc <t < b.
t
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In view of (0.11), (2.18), (2.19) and (2.22) we can easily verify that y satisfies con-
ditions (2.15)—(2.17).
Suppose now that condition (0.9), (0.10)) holds. Put ¢ = (a + »)/2 and

¢ b
y(t):/ pi1(s)ds <y(t):/ pz(s)ds> for a <t <b.

In view of (0.9) and (2.18) ((0.10) and (2.19)) we can easily verify that y satisfies
the conditions (2.15)—(217). O

Finally, to make the reference more convenient we will formulate a lemma from [2]
(see [2, Lemma 2.5]).

Lemma 2.4. Let u be a nontrivial solution of the equation
u" = p(o)[ul*|u’|' " sgnu

satisfying the condition
u(a+)=0, (u(b—)=0)

and let v € él/oc(]a,c];R) (v € é:oc([c,b[;R)), where ¢ € la,b[, have a finite limit
v(a+) = 0 (v(b—) = 0) and satisfy the conditions

V(t)>0 fora<t<c (W(@)<0 forc<t<b),

V(1) < pOo)|MY(@))'TF fora<t<c (forc<t<b).
Then u'(t) #0 for a <t < ¢ (for ¢ <t <b).
3. Proofs

Proof of Theorem 1.1. Choose sequences (#;); > and (si); 57, i = 1,2 such that

a+b
a < tip+1 < hyg <T <ty <ty <b, k=12,...,

Hirl < Stht < tig, bk <SSt < by, k=1,2,...,

H <s11 <821 <1y, lim #; =a, lim fty =b.
k—+o0 k—+o0
Put
ro = sup{|o(®)| + |p()]: a <t < b} 3.1

and let ¢ be the function appearing in Lemma 2.1. Let, moreover,
o(t, 111,21, 79) for ¢ € Isi1,s21[,

o= { O(t, tik+1, takv1,70)  for ¢ € Jsipqr, Sie[ U 12k, S2x41[,
p(t) =1 + |/ ()| +Y(t) fora<t<b, (3.3)

(3.2)
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f(tx,y) for [y| < p(2),

ftx,y)= (2 - ,l(yj)) f(tx,y) for p(t) < |y| <2p(2), (34)
0 for [y = 2p(2),
F(ta(t),y) forx < ar),

fot.x,y)=< f(tx, ) for a(t) < x < B(t), (3.5)

J(&p(),y) forx = p().

Consider the boundary value problem

u" = fo(t,u,u'), (3.6)

u(tip) = oltix),  u(tor) = otk ). (3.7)
In view of (3.1) and (3.3)—(3.5), it can be easily seen that f € Kjo.(]a,b[ x R*;R)
and for any natural k there exists q; € L(Jtik, t2c[; R+ ) such that |fo(s,x, ¥)| < qi(?)
for t), <t < ty, x,y € R. It is also obvious that « and f§ are lower and upper functions
of Eq. (3.6). Therefore, according to Scorza—Dragoni theorem (see, e.g., [6, Lemma
3.7]), problem (3.6), (3.7) has at least one solution u; such that

oa(t) < u(t) < B(¢) for tix <t < ity (3.8)
Taking into account (3.5), (3.6) and (3.8), we obtain

w (1) = J(tu(0), (1)) for e <1 <ty (3.9)

Hence, due to (3.1), (3.4), (3.8) and (1.2) ((1.13)), we conclude that the function
u(t) = ur(t) for t1p < t < ty; satisfies the conditions of Lemma 2.1 with a; = ¢y,
by = ty, and consequently, the estimate

lup (O] < @t t, tar,70) - for tyy <t <ty (3.10)
holds. The latter inequality, according to (3.2)—(3.4) and (3.9), yields

up(t) = f(tup(t),up (1)) for sy <t < sy (3.11)

From (3.8), (3.10) and (3.11) it follows that the sequences (u;);>Y and (u} )Y
are uniformly bounded and equicontinuous in ]a,b[ (i.e., on every compact interval
contained in ]a,b[). Therefore, according to Arzela—Ascoli lemma, without loss of
generality we can assume that

. . . / o
im () =w(),  Timui(0) = ()

uniformly in Ja, b[. It is also evident that uy € C‘{OC(]a, b[;R). Due to (3.11) we have
that ug is a solution of Eq. (0.1), and by (1.1), (3.7) and (3.8) we find that u satisfies
also the boundary conditions (0.2). [
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Proof of Corollary 1.1. We will prove the corollary in the case where 4 > 1. The case
A=1 can be proved analogously.

Since (hohy,hy) € Vi(la,b[), according to Lemma 2.2 there exists J € C{OC(]a,b[;R)
satisfying conditions (2.13) and (2.14). In view of (2.14) and (1.6) ((1.8)) it is clear
that f(¢)=4(¢) for a <t < b (a(t)=—0(¢) for a < t < b) is an upper (a lower) function
of Eq. (0.1).

On the other hand, since

QO pil by aps) € Viji(la, L),

according to Lemma 2.3 there exist ¢ € ]a,b[ and y € C’lloc(]a,c[ U Je, b[; R) satisfying
conditions (2.15)—(2.17) with

1 s
= p(t) = 29V pl pi(1), and  g(t) = Apa(t).

Hence by (1.7) ((1.9)) it is obvious that
w(t)=—(Apo) Vip(t) fora<t<b (B(t)=(Apo) *p(t) fora<t<b)

is a lower (an upper) function of Eq. (0.1). Consequently, the assumptions of Theorem
1.1 are fulfilled. O

On Remark 1.1: Suppose hy € L(]a,b[; R, ) and (41,0) & Vi(la,b[). Then there exist
a) € [a,b[ and by € Ja;,b] such that the problem

v = —hi(t)v,
oar+)=0, v(bi—)=0 (3.12)

has a nontrivial solution. Let f(¢,x,y)=—h(t)—y* for a < t < b. Let, moreover, p; €
L(Ja,b[;10,+ oo[) be such that for some A > 1, the inclusion (1'% p;,0) € Vy/;(la, b[)
holds (for the existence of such a function see [3, Theorem 3.2]). Then, obviously,
conditions (1.6) and (1.7) with #, =0, p, = 0 are fulfilled. We will show that in that
case problem (0.1), (0.2) has no solution. Assume the contrary that u is a solution
of problem (0.1), (0.2). It can be easily verified that the function v(z) = exp(u(z)) for
a <t < b satisfies Eq. (3.12). It is also clear that v(¢) > 0 for a < t < b. But this
contradicts Sturm’s separation theorem.
Now let p; € L(]a,b[;]0,+ co[) be such that a solution u; of the problem

"n_ _

W' =—pi@ul"u’]' " sgnu,  ua+) =0, [Jim /() = 1,

where u € ]0,1[, satisfies the conditions u;(¢) >0 for a <¢ < b, mes{t € Ja,b[:
uj(t)=0} =0 and

/b i (s)

uy(s)

u
sgnu(s)ds < 0.
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Then, clearly,
(G py pr,dpa) & Vija(la b,

where py = 0, A= 1/u, po = u. Put f(t,x,y) = upi(t) + p|ly|“V* for a <t < b,
X,y € R. We will show that in that case problem (0.1), (0.2) has no solution. Assume
the contrary. Let u be a solution of the problem

W’ = pupi(6) + pl |“TVR u(a+) =0, u(b—)=0.
Define the functions p; and p by

/ H
(1) sgnu|(t), p(t)=—u'(t) fora<t<b.
u (1)

p1(t) =

It is clear that

pL(t) = —upi () — ulpr ()| “HH,
p'(t) = —pupi(1) — plp()|FVE - for a <t < b, (3.13)

b b
/pl(s)ds<0, /p(s)ds:O. (3.14)

Show now that
p1(t) < p(t) fora<t<b. (3.15)

Assume the contrary that p;(¢;) > p(t;) for some ¢, € Ja,b[. Then in view of (3.14)
there exist #) € Ja,b[ and ¢ > 0 such that either

0> pi(t) > p(t) for tg— &<t <to, pilte) = plto) (3.16)
or

0<p(t)y<pi(t) fortgy<t<ty+e pi(ty)=p(ty). (3.17)
Let condition (3.16), ((3.17)) be fulfilled. Then from (3.13) we get

to )
() = pilio) + 1 / pi(s)ds 4 / 1) ds
t t

to t
< p(to)+,u/ pl(s)ds+u/ |p(s)| D ds = p(t)  for ty—e <t <t
t

t

(p1(2) = pl(fo)—u/ pl(s)ds—M/ o1 ()| DIk g

to

t t
< p(to)f,u/ pl(s)dsf,u/ lp()| D ds = p(1)  for tg <t <ty+e),
ty t

which contradicts (3.16), ((3.17)) Therefore, (3.15) is fulfilled.
Since p is nonincreasing, according to (3.15) there exists a finite limit p(b—) and,
consequently, |p|'* € L(]ay,b[; R, ) for any a; € ]a,b[.
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Put
b
v(t) = exp —/ |p(s)]* sgn p(s)ds fora <t <b.
t

It can be easily verified that v € C’lloc(]a,b[;R+) and
V'(t) = — pr(O|v@)|*]0' ()], sgnv/(t) =sgnp(t) fora<t<b.

According to (3.15), there exists ag € ]a, b[ such that

“ 1 “ 1 u(ao)
/ |p(s)]"* sgn p(s)ds > / lp1(s)[ " sgn pi(s)ds = In for a <t < ay.

t t u(t

Hence we have v(a+) = 0. Therefore, according to Lemma 2.4 it is easy to see that
there exists ¢ € ]a, b[ such that

pi(c)=0, p(c)=0.
Thus the functions p; and p are solutions of the Cauchy problem
w' = —ppi(t) — ulw| TV w(e) = 0.
However, this problem is uniquely solvable. Consequently, p; = p, which contradicts

condition (3.14).

Proof of Corollary 1.2. According to (1.11), (1.13) and Theorem 4.4 in [5] we have
that (hohy,hy) € V1(Ja,b[). We will show that conditions (1.12) and (1.14) guarantee
the inclusion (ATV/% pi/* b1 py) € Vy:(1a, bL).

Without loss of generality, we can assume that

/+°° ds B 1 bh—a\ ™
o Dy lps+stth (1 —p) \ 2 ‘

Define the functions p; and p, by the equalities

+o00
/ ds _ 1 (t— a) fora<t<a+b’
pi(0) Dy + Ips + 514 A1 — Ap) 5
+o0 ds | A . ,
- = b— )V <i<b
‘/ﬂz(t) b1 + lns + glt+4 /L(l . /l,u) ( )1 or >

Obviously,

a+b

b
p1(2) >0 fora<t<%, p2(t) >0 for <t<b,

a+b a+b
pi(a+)=+o0, p () =0, Pz( > =0, pa(b—)=+00,

2 2

+b
pr(a+b—1)=py(t) for 2

<t<b. (3.18)
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Let
(a+b)/2 b
exp —/ pi(s)(s —a) ds| fora<t < %,
"= . +b
exp (—/ pi(s)(b — 5)~ ds) for 222 <4 < b
(a+b)/2
Then
b b
v(t) >0 fora<t<b, V()t)>0 forte }a,a; {u] anr ,b[,
b
oat)=0, v(b—)=0, o (“;r ) -0,
0"(£) = =20V Ut b (o)A ()] = dpa(0)|' (1) for a <t < b,
and
b
()| POt —ay ™ fora<t< 22
S| ose V(1) = 4t b 2
o(t) —pa(t)(b — )" for <t<bh.

In view of (3.18) we have

/b v(s)|"

o) sgnv'(s)ds = 0.

Hence (A4TV%pl” p1 Jpy) € V1,,(Ja,b[) and the assumptions of Corollary 1.1 are
fulfilled. O
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