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Abstract

Nonimprovable e%ective su4cient conditions for solvability and unique solvability of the
boundary value problem

u′(t) = F(u)(t); u(a) = h(u);

where F : C([a; b];R) → L([a; b];R) is a continuous operator satisfying the Carath<eodory condi-
tion and h : C([a; b];R) → R is a continuous functional, are established.
? 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The following notation is used throughout. R is the set of all real numbers, R+ =
[0;+∞[. C([a; b];R) is the Banach space of continuous functions u : [a; b] → R with
the norm ‖u‖C =max{|u(t)|: a6 t6 b}.

C([a; b];R+) = {u∈C([a; b];R): u(t)¿ 0 for t ∈ [a; b]};
Ca([a; b];R) = {u∈C([a; b];R): u(a) = 0}:
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C̃([a; b];R) is the set of absolutely continuous functions u: [a; b] → R: Bc([a; b];R) =
{u∈C([a; b];R): |u(a)|6 c}, where c∈R+. L([a; b];R) is the Banach space of
Lebesgue integrable functions p : [a; b] → R with the norm ‖p‖L =

∫ b
a |p(s)| ds.

L([a; b];R+)p= {p∈L([a; b];R): p(t)¿ 0 for almost all t ∈ [a; b]}.
Mab is the set of measurable functions � : [a; b] → [a; b].
L̃ab is the set of linear operators ‘ : C([a; b];R) → L([a; b];R) for which there is a

function �∈L([a; b];R+) such that

|‘(v)(t)|6 �(t)‖v‖C for t ∈ [a; b]; v∈C([a; b];R):

Pab is the set of linear operators ‘∈ L̃ab transforming the set C([a; b];R+) into the
set L([a; b];R+). Kab is the set of continuous operators F :C([a; b];R) → L([a; b];R)
satisfying the Carath<eodory conditions, i.e., for each r ¿ 0 there exists qr ∈L([a; b];R+)
such that

|F(v)(t)|6 qr(t) for t ∈ [a; b]; ‖v‖C6 r:

K([a; b] × A;B), where A ⊆ R2; B ⊆ R, is the set of functions f : [a; b] × A → B
satisfying the Carath<eodory conditions, i.e., f(·; x) : [a; b] → B is a measurable function
for all x∈A; f(t; ·) : A → B is a continuous function for almost all t ∈ [a; b], and for
each r ¿ 0 there exists qr ∈L([a; b];R+) such that

|f(t; x)|6 qr(t) for t ∈ ; x∈A; ‖x‖6 r:

[x]+ = 1
2 (|x|+ x); [x]− = 1

2(|x| − x).
By a solution of the equation

u′(t) = F(u)(t); (1)

where F ∈Kab, we understand a function u∈ C̃([a; b];R) satisfying Eq. (1) almost
everywhere in [a; b].

Consider the problem on the existence and uniqueness of a solution of (1) satisfying
the boundary condition

u(a) = h(u); (2)

where h : C([a; b];R) → R is a continuous functional.
For ordinary di%erential equations, i.e., when the operator F is so-called Nemitsky’s

operator, problem (1), (2) and analogous problems for systems of linear and nonlinear
ordinary di%erential equations have been studied in details (see [8,16–19] and the
references therein). Foundation of the theory of general boundary value problems for
functional di%erential equations was laid in monographs [30,1] (see also [2,3,9,15,20–
29,31]). In spite of a large number of papers devoted to the boundary value problems
for functional di%erential equations, nowadays only a few e%ective su4cient conditions
for the solvability are known even for the linear case

u′(t) = ‘(u)(t) + q0(t); (3)

u(a) = c0; (4)
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where ‘∈ L̃ab; q0 ∈L([a; b];R) and c0 ∈R (see [5–7,9–14,20–28,31]). In the present
paper, we try to #ll this gap in a certain way. More precisely, in Sections 1 and 2
there are established nonimprovable e%ective su4cient conditions for the solvability
and unique solvability of problems (3), (4) and (1), (2), respectively. These results
make theorems in [5,6] more complete. Section 3 is devoted to the examples verifying
the optimality of the main results.
All results will be concretized for the di%erential equation with deviating arguments

of the form

u′(t) = p(t)u(�(t))− g(t)u(�(t)) + q0(t) (5)

and

u′(t) = p(t)u(�(t))− g(t)u(�(t)) + f(t; u(t); u(�(t))); (6)

where p; g∈L([a; b];R+); q0 ∈L([a; b];R), �; �; �∈Mab, and f∈K([a; b]× R2;R).

2. Linear problem

From the general theory of linear boundary value problems for functional di%erential
equations we need the following well-known result (see, e.g., [4,20,30]).

Theorem 2.1. Problem (3), (4) is uniquely solvable i; the corresponding homogeneous
problem

u′(t) = ‘(u)(t); (30)

u(a) = 0 (40)

has only the trivial solution.

Remark 2.1. From the Riesz–Schauder theory it follows that if ‘∈ L̃ab and the prob-
lem (30); (40) has a nontrivial solution, then there exist q0 ∈L([a; b];R) and c0 ∈R
such that problem (3), (4) has no solution.

De�nition 2.1. We will say that an operator ‘∈ L̃ab belongs to the set Sab(a) if
the homogeneous problem (30), (40) has only the trivial solution, and for arbitrary
q0 ∈L([a; b];R+) and c0 ∈R+, the solution of problem (3), (4) is nonnegative.

Remark 2.2. From De#nition 2.1 it immediately follows that ‘∈Sab(a) i% for Eq. (3)
the classical theorem on di%erential inequalities holds (see, e.g., [16]), i.e., whenever
u; v∈ C̃([a; b];R) satisfy the inequalities

u′(t)6 ‘(u)(t) + q0(t); v′(t)¿ ‘(v)(t) + q0(t) for t ∈ [a; b];

u(a)6 v(a);

then

u(t)6 v(t) for t ∈ [a; b]:
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Theorem 2.2. Let there exist ‘0; ‘1 ∈Pab such that on the set Ca([a; b];R) the
inequality

|‘(v)(t) + ‘1(v)(t)|6 ‘0(|v|)(t) for t ∈ [a; b] (7)

holds. Let, moreover,

‘0 ∈Sab(a); − 1
2‘1 ∈Sab(a): (8)

Then problem (3), (4) has a unique solution.

Remark 2.3. Theorem 2.2 is nonimprovable in the sense that condition (7) cannot be
replaced by the condition

|‘(v)(t) + ‘1(v)(t)|6 (1 + �)‘0(|v|)(t) for t ∈ [a; b]; (9)

and assumption (8) can be replaced neither by the assumption

‘0 ∈Sab(a); − 1
2 + �

‘1 ∈Sab(a);

nor by the assumption

(1− �)‘0 ∈Sab(a); − 1
2‘1 ∈Sab(a);

no matter how small �¿ 0 would be (see Examples 4.1 and 4.2).

Remark 2.4. In [13] (see also [5]) e%ective nonimprovable su4cient conditions are
established for an operator ‘∈ L̃ab to belong to the set Sab(a). Therefore from Theo-
rem 2.2 it immediately follows.

Corollary 2.1. Let �(t)6 t for t ∈ [a; b], the functions p; � satisfy one of the following
conditions:
(a) ∫ t

a
p(s)

∫ �(s)

a
p( ) d ds6 !

∫ t

a
p(s) ds for t ∈ [a; b];

where !∈ ]0; 1[;
(b)

∫ b

a
p(s)"(s)

∫ �(s)

s
p( ) d exp

[∫ b

s
p(�) d�

]
ds¡ 1;

where "(t) = 1
2 (1 + sgn(�(t)− t)) for t ∈ [a; b];

(c)
∫ �∗

a p(s) ds �= 0 and

ess sup

{∫ �(t)

t
p(s) ds: t ∈ [a; b]

}
¡$∗;
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where

$∗ = sup

{
1
x
ln

(
x +

x

exp(x
∫ �∗

a p(s) ds)− 1

)
: x¿ 0

}
;

�∗ = ess sup{�(t): t ∈ [a; b]};
and let the functions g; � satisfy one of the following conditions:
(d) ∫ b

a
g(s) ds6 2;

(e) ∫ b

a
g(s)

(∫ s

�(s)
g( ) exp

[
1
2

∫ s

�( )
g(�) d�

]
d 
)

ds6 4;

(f) g �≡ 0 and

ess sup
{∫ t

�(t)
g(s) ds: t ∈ [a; b]

}
¡ 2�∗;

where

�∗ = sup

{
1
x
ln

(
x +

x

exp((x=2)
∫ b
a g(s) ds)− 1

)
: x¿ 0

}
:

Then problem (5), (4) has a unique solution.

Remark 2.5. The condition �(t)6 t for t ∈ [a; b] is also necessary condition for an

operator ‘(v)(t)def= − g(t)v(�(t)) to belong to the set Sab(a) (see [7]).

Proof of Theorem 2.2. According to Theorem 2.1 it is su4cient to show that problem
(30); (40) has only the trivial solution.
Let u be a solution of (30); (40). Then in view of (30); u satis#es

u′(t) =−1
2
‘1(u)(t) +

[
‘(u)(t) +

1
2
‘1(u)(t)

]
; u(a) = 0: (10)

By virtue of the assumption − 1
2‘1 ∈Sab(a) and Theorem 2.1, the problem

!′(t) =− 1
2‘1(!)(t) + ‘0(|u|)(t) + 1

2‘1(|u|)(t); !(a) = 0 (11)

has a unique solution !. Moreover, since ‘0; ‘1 ∈Pab,

!(t)¿ 0 for t ∈ [a; b]: (12)

In view of (7) and the condition ‘1 ∈Pab, from (11) we have

!′(t)¿− 1
2‘1(!)(t) + ‘(u)(t) + 1

2‘1(u)(t) for t ∈ [a; b];

(−!(t))′6− 1
2‘1(−!)(t) + ‘(u)(t) + 1

2‘1(u)(t) for t ∈ [a; b]:
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The last two inequalities and (10), on account of the assumption − 1
2‘1 ∈Sab(a) and

Remark 2.2, yield

|u(t)|6 !(t) for t ∈ [a; b]: (13)

On the other hand, due to (13) and the conditions ‘0; ‘1 ∈Pab, (11) results in

!′(t)6 ‘0(!)(t) for t ∈ [a; b]:

Since ‘0 ∈Sab(a), the last inequality together with !(a) = 0 yields !(t)6 0 for t
∈ [a; b], which, in view of (12), implies ! ≡ 0. Consequently, from (13) it follows
that u ≡ 0.

3. Nonlinear problem

Throughout this section we assume that q∈K([a; b] × R+;R+) is nondecreasing in
the second argument, and satis#es

lim
x→+∞

1
x

∫ b

a
q(s; x) ds= 0: (14)

3.1. Main results

Theorem 3.1. Let c∈R+; ‘0; ‘1 ∈Pab,

h(v) sgn v(a)6 c for v∈C([a; b];R); (15)

and on the set Bc([a; b];R) the inequality

[F(v)(t) + ‘1(v)(t)] sgn v(t)6 ‘0(|v|)(t) + q(t; ‖v‖C) for t ∈ [a; b] (16)

be ful@lled. Let, moreover,

‘0 ∈Sab(a); −‘1 ∈Sab(a): (17)

Then problem (1), (2) has at least one solution.

Remark 3.1. Theorem 3.1 is nonimprovable in the sense that condition (17) can be
replaced neither by the condition

‘0 ∈Sab(a); −(1− �)‘1 ∈Sab(a)

nor by the condition

(1− �)‘0 ∈Sab(a); −‘1 ∈Sab(a);

no matter how small �¿ 0 would be (see on Remark 3.1).

Theorem 3.2. Let ‘1; ‘0 ∈Pab,

[h(v)− h(w)] sgn(v(a)− w(a))6 0 for v; w∈C([a; b];R) (18)

and on the set Bc([a; b];R), where c = |h(0)|, the inequality
[F(v)(t)− F(w)(t) + ‘1(v− w)(t)] sgn(v(t)− w(t))6 ‘0(|v− w|)(t)
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be ful@lled. Let, moreover, condition (17) be satis@ed. Then problem (1), (2) has a
unique solution.

Remark 3.2. Theorem 3.2 is nonimprovable in a certain sense (see on Remark 3.2).

Corollary 3.1. Let c∈R+, condition (15) be ful@lled, and

f(t; x; y) sgn x6 q(t; |x|) for t ∈ [a; b]; x; y∈R:

Let, moreover, �(t)6 t for t ∈ [a; b], the functions p; � satisfy one of conditions (a)
–(c) in Corollary 2.1, and the functions g; � satisfy one of the following conditions:
(d) ∫ b

a
g(s) ds6 1;

(e) ∫ b

a
g(s)

(∫ s

�(s)
g( ) exp

[ ∫ s

�( )
g(�) d�

]
d 
)

ds6 1;

(f) g �≡ 0 and

ess sup
{∫ t

�(t)
g(s) ds: t ∈ [a; b]

}
¡�∗;

where

�∗ = sup

{
1
x
ln

(
x +

x

exp(x
∫ b
a g(s) ds)− 1

)
: x¿ 0

}
:

Then problem (6), (2) has at least one solution.

Corollary 3.2. Let condition (18) be ful@lled, and

[f(t; x1; y1)− f(t; x2; y2)] sgn(x1 − x2)6 0 for t ∈ [a; b]; x1; y1; x2; y2 ∈R:

Let, moreover, �(t)6 t for t ∈ [a; b], the functions p; � satisfy one of conditions (a)
–(c) in Corollary 2.1, and the functions g; � satisfy one of conditions (d)–(f) in
Corollary 3.1. Then problem (6), (2) has a unique solution.

3.2. Auxiliary propositions and the proof of the main results

First, we formulate a result from [23, Theorem 1] in a form suitable for us.

Lemma 3.1. Let there exist ‘1 ∈ L̃ab and a positive number ( such that the problem

u′(t) + ‘1(u)(t) = 0; u(a) = 0 (19)

has only the trivial solution and for every )∈ ]0; 1[ and for an arbitrary function
u∈ C̃([a; b];R) satisfying

u′(t) + ‘1(u)(t) = )[F(u)(t) + ‘1(u)(t)]; u(a) = )h(u); (20)
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the estimate

‖u‖C6 ( (21)

holds. Then problem (1), (2) has at least one solution.

De�nition 3.1. We say that the pair of operators (‘0; ‘1) belongs to the set A if
‘0 ∈Pab, ‘1 ∈ L̃ab, and there exists a positive number r such that for any q∗ ∈L([a; b];
R+) and c∈R+, every function u∈ C̃([a; b];R) satisfying the inequalities |u(a)|6 c and

[u′(t) + ‘1(u)(t)] sgn u(t)6 ‘0(|u|)(t) + q∗(t) for t ∈ [a; b] (22)

admits the estimate

‖u‖C6 r(c + ‖q∗‖L): (23)

Lemma 3.2. Let (‘0; ‘1)∈A, there exist c∈R+ such that

h(v) sgn v(a)6 c for v∈C([a; b];R) (24)

and on the set Bc([a; b];R) the inequality

[F(v)(t) + ‘1(v)(t)] sgn v(t)6 ‘0(|v|)(t) + q(t; ‖v‖C) for t ∈ [a; b] (25)

be ful@lled. Then problem (1), (2) has at least one solution.

Proof. First note that due to the condition (‘0; ‘1)∈A, the homogeneous problem (19)
has only the trivial solution.
Let r be the number appearing in De#nition 3.1. According to (14) there exists

(¿ 2rc such that

1
x

∫ b

a
q(s; x) ds¡

1
2r

for x¿(:

Now assume that a function u∈ C̃([a; b];R) satis#es (20) for some )∈ ]0; 1[. Then
according to (24), u satis#es the inequality |u(a)|6 c, i.e., u∈Bc([a; b];R). By (25)
the inequality (22) is ful#lled for q∗(t) = q(t; ‖u‖C). Hence, by condition (‘0; ‘1)∈A
and the de#nition of the number (, we get estimate (21).
Since ( depends neither on u nor on ), from Lemma 3.1 it follows that problem

(1), (2) has at least one solution.

Lemma 3.3. Let (‘0; ‘1)∈A,

[h(v)− h(w)] sgn(v(a)− w(a))6 0 for v; w∈C([a; b];R); (26)

and on the set Bc([a; b];R), where c = |h(0)|, the inequality
[F(v)(t)− F(w)(t) + ‘1(v− w)(t)] sgn(v(t)− w(t))

6 ‘0(|v− w|)(t) for t ∈ [a; b] (27)

be ful@lled. Then problem (1), (2) has a unique solution.
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Proof. From (26) it follows that condition (24) is ful#lled with c= |h(0)|. By (27) we
get that on the set Bc([a; b];R) inequality (25) holds, where q ≡ |F(0)|. Consequently,
all the assumptions of Lemma 3.2 are ful#lled which guarantees that problem (1), (2)
has at least one solution. It remains to show that problem (1), (2) has at most one
solution.
Let u1; u2 be solutions of problem (1), (2). Put u(t) = u1(t) − u2(t) for t ∈ [a; b].

By (26) and (27) it is clear that

[u′(t) + ‘1(u)(t)] sgn u(t)6 ‘0(|u|)(t) for t ∈ [a; b]; u(a) = 0:

Thus, the condition (‘0; ‘1)∈A implies u ≡ 0, and consequently, u1 ≡ u2.

Lemma 3.4. Let ‘0 ∈ L̃ab and the homogeneous problem

v′(t) = ‘0(v)(t); v(a) = 0

have only the trivial solution. Then there exists a positive number r0 such that for
any q∗ ∈L([a; b];R) and c∈R, every solution v of the problem

v′(t) = ‘0(v)(t) + q∗(t); v(a) = c (28)

admits the estimate

‖v‖C6 r0(|c|+ ‖q∗‖L): (29)

Proof. Denote by

R× L([a; b];R) = {(c; q∗): c∈R; q∗ ∈L([a; b];R)}
the Banach space with the norm

‖(c; q∗)‖R×L = |c|+ ‖q∗‖L
and denote by * the operator mapping every (c; q∗)∈R× L([a; b];R) to the solution v
of problem (28). According to Theorem 1.4 in [20], * : R×L([a; b];R) → C([a; b];R)
is a linear bounded operator. Denote by r0 the norm of *. Then clearly for any
(c; q∗)∈R× L([a; b];R), the inequality

‖*(c; q∗)‖C6 r0(|c|+ ‖q∗‖L)
holds. Consequently, an arbitrary solution v of problem (28) admits estimate (29).

Lemma 3.5. Let ‘0; ‘1 ∈Pab, ‘0 ∈Sab(a), and −‘1 ∈Sab(a). Then (‘0; ‘1)∈A.

Proof. Let q∗ ∈L([a; b];R+); c∈R+, and u∈ C̃([a; b];R) satisfy inequalities |u(a)|
6 c and (22). We show that (23) holds, where r = r0 is the number appearing in
Lemma 3.4.
It is clear that

u′(t) =−‘1(u)(t) + q̃(t); (30)

where

q̃(t) = u′(t) + ‘1(u)(t) for t ∈ [a; b]:
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According to (22), we evidently have

q̃(t) sgn u(t)6 ‘0(|u|)(t) + q∗(t) for t ∈ [a; b]: (31)

Furthermore, from (30), in view of the assumption ‘1 ∈Pab and inequality (31), it
follows that

[u(t)]′+6 ‘1([u]−)(t) + ‘0(|u|)(t) + q∗(t)

= −‘1([u]+)(t) + ‘1(|u|)(t) + ‘0(|u|)(t) + q∗(t) for t ∈ [a; b] (32)

and

[u(t)]′−6 ‘1([u]+)(t) + ‘0(|u|)(t) + q∗(t)

= −‘1([u]−)(t) + ‘1(|u|)(t) + ‘0(|u|)(t) + q∗(t) for t ∈ [a; b]: (33)

Since −‘1 ∈Sab(a), according to Theorem 2.1, the problem

!′(t) =−‘1(!)(t) + ‘1(|u|)(t) + ‘0(|u|)(t) + q∗(t); !(a) = c (34)

has a unique solution !. Moreover, from (32)–(34), on account of conditions −‘1 ∈
Sab(a) and |u(a)|6 c, we get

[u(t)]+6 !(t); [u(t)]−6 !(t) for t ∈ [a; b]

and consequently,

|u(t)|6 !(t) for t ∈ [a; b]: (35)

By (35) and the condition ‘0; ‘1 ∈Pab, (34) results in

!′(t)6 ‘0(!)(t) + q∗(t) for t ∈ [a; b]:

Since ‘0 ∈Sab(a) and !(a) = c, the latter inequality yields

!(t)6 v(t) for t ∈ [a; b]; (36)

where v is a solution of problem (28). Now from (35) and (36), according to Lemma
3.4, we have estimate (23).

Theorem 3.1 follows from Lemmas 3.2 and 3.5, Theorem 3.2 follows from Lemmas
3.3 and 3.5.

4. On Remarks 2.3, 3.1 and 3.2

On Remark 2.3. In Examples 4.1 and 4.2, there are constructed operators ‘∈ L̃ab

such that homogeneous problem (30); (40) has a nontrivial solution. Then, according
to Theorem 2.1, problem (3), (4) has either no solution or has in#nitely many solutions.
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Example 4.1. Let the operators ‘; ‘0 ∈ L̃ab be de#ned by

‘(v)(t) def= (1 + �)p(t)v(b); ‘0(v)(t)
def=p(t)v(b); (37)

where �¿ 0; p∈L([a; b];R+) and∫ b

a
p(s) ds=

1
1 + �

: (38)

According to Corollary 1.1(b) in [13] we have ‘0 ∈Sab(a). Obviously, all the assump-
tions of Theorem 2.2 are ful#lled where ‘1 ≡ 0, except of condition (7), instead of
which condition (9) is satis#ed.
On the other hand, problem (30); (40) has the nontrivial solution

u(t) = (1 + �)
∫ t

a
p(s) ds for t ∈ [a; b]:

Example 4.1 shows that inequality (7) cannot be replaced by inequality (9), no matter
how small �¿ 0 would be. This example also shows that condition ‘0 ∈Sab(a) cannot
be replaced by condition (1− �)‘0 ∈Sab(a), no matter how small �¿ 0 would be.
Furthermore, this example shows that in condition (a) in Corollary 2.1, the assump-

tion !∈ ]0; 1[ cannot be replaced by the assumption !∈ ]0; 1], and in condition (b) in
Corollary 2.1, the strict inequality cannot be replaced by the nonstrict one.

Example 4.2. Let �¿ 0; x0 ∈ [0; 1[, and ‘∈ L̃02 be an operator de#ned by

‘(v)(t) def=p(t)v(�(t)); (39)

where

p(t) =




− 1
1 + �

for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 1[;

−(2 + �) for t ∈ [1; 2];

�(t) =

{
2 for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 2]:

Let, moreover,

‘0(v)(t)
def=p0(t)v(�0(t)); ‘1(v)(t)

def=p1(t)v(�1(t)); (40)

where

p0(t) =




1
1 + �

for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 1[;

0 for t ∈ [1; 2];

�0(t) =

{
2 for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 2];

p1(t) =

{
0 for t ∈ [0; 1[;

2 + � for t ∈ [1; 2];
�1(t) =

{
0 for t ∈ [0; 1[;

1 for t ∈ [1; 2]:



402 R. Hakl et al. / Nonlinear Analysis 53 (2003) 391–405

It is clear that ‘0; ‘1 ∈P02; ‘1 is a 0-Volterra operator, and condition (7) is ful#lled.
Moreover,∫ 2

0
‘0(1)(s) ds=

∫ 1

0
p0(s) ds=

1 + �x0
1 + �

¡ 1

and

1
2 + �

∫ 2

0
‘1(1)(s) ds=

1
2 + �

∫ 2

1
p1(s) ds= 1:

Consequently, according to Corollary 1.1(b) and Theorem 1.3 in [13],

‘0 ∈S02(0); − 1
2 + �

‘1 ∈S02(0):

On the other hand, the function

u(t) =

{
t for t ∈ [0; 1[;

−(2 + �)(t − 1) + 1 for t ∈ [1; 2]

is a nontrivial solution of problem (30); (40).

Example 4.2 shows that the assumption − 1
2‘1 ∈Sab(a) in Theorem 2.2 cannot be

replaced by −[1=(2 + �)]‘1 ∈Sab(a), no matter how small �¿ 0 would be.
This example also shows that condition (d) in Corollary 2.1 cannot be replaced by

the condition∫ b

a
g(s) ds6 2 + �

and condition (e) in Corollary 2.1 cannot be replaced by condition∫ b

a
g(s)

(∫ s

�(s)
g( ) exp

[
1
2

∫ s

�( )
g(�) d�

]
d 
)

ds6 4 + �;

no matter how small �¿ 0 would be.

On Remark 3.1. Let ‘∈ L̃ab be de#ned by (37), where �¿ 0, and p∈L([a; b];R+)
satis#es (38). According to Example 4.1, problem (30); (40) has a nontrivial solution.
By Remark 2.1 there exist q0 ∈L([a; b];R) and c0 ∈R such that problem (1), (2), where

F(v)(t)def=‘(v)(t)+q0(t) for t ∈ [a; b], h(v) ≡ c0, has no solution, while conditions (15)
and (16) are ful#lled, where c = |c0|; q ≡ |q0|, ‘0 ≡ ‘; ‘1 ≡ 0. On the other hand,
according to Corollary 1.1(b) in [13] we have (1− �)‘0 ∈Sab(a). Thus Example 4.1
shows that the condition ‘0 ∈Sab(a) in Theorem 3.1 cannot be replaced by condition
(1− �)‘0 ∈Sab(a), no matter how small �¿ 0 would be.
This example also shows that in condition (a) in Corollary 3.1, the assumption

!∈ ]0; 1[ cannot be replaced by the assumption !∈ ]0; 1], and in condition (b) in Corol-
lary 3.1, the strict inequality cannot be replaced by the nonstrict one.
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Example 4.3. Let �¿ 0; x0 ∈ [0; 1[, ‘∈ L̃03 be an operator de@ned by (39), where

p(t) =




− 2
2 + �

for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 1[;

0 for t ∈ [1; 2[;

−(1 + �) for t ∈ [2; 3];

�(t) =

{
3 for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 3]

and ‘0; ‘1 be de#ned by (40), where

p0(t) =




2
2 + �

for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 1[;

0 for t ∈ [1; 3];

�0(t) =

{
3 for t ∈ [0; 1− x0[;

1 for t ∈ [1− x0; 3]:

p1(t) =

{
0 for t ∈ [0; 2[;

1 + � for t ∈ [2; 3];
�1(t) =

{
0 for t ∈ [0; 2[;

1 for t ∈ [2; 3]:

Put

z(t) =




0 for t ∈ [0; 1[ ∪ [2; 3];

−(1− �=2)
1− (1− �=2)(t − 1)

for t ∈ [1; 2[:

It is clear that −z ∈L([0; 3];R+), ‘0; ‘1 ∈P03; ‘1 is a 0-Volterra operator, and condition
(7) is ful#lled. Moreover,∫ 3

0
‘0(1)(s) ds=

∫ 1

0
p0(s) ds=

2 + �x0
2 + �

¡ 1

and

(1− �)
∫ 3

0
‘1(1)(s) ds= (1− �)

∫ 3

2
p1(s) ds= 1− �2 ¡ 1:

Consequently, according to Corollary 1.1(b) and Theorem 1.3 in [13],

‘0 ∈S03(0); −(1− �)‘1 ∈S03(0):

On the other hand, the function

u(t) =




t for t ∈ [0; 1[;

−(1− �
2 )(t − 1) + 1 for t ∈ [1; 2[;

−(1 + �)(t − 2) + �
2 for t ∈ [2; 3]

is a nontrivial solution of the problem

u′(t) = p(t)u(�(t)) + z(t)u(t); u(a) = 0:
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Therefore, according to Remark 2.1, there exist q0 ∈L([a; b];R) and c0 ∈R such that

problem (1), (2) with F(v)(t)def=p(t)v(�(t)) + z(t)v(t) + q0(t) for t ∈ [a; b]; h(v) ≡ c0
has no solution, while conditions (15) and (16) are ful#lled, where c = |c0|, q ≡ |q0|.

Example 4.3 shows that the assumption −‘1 ∈Sab(a) in Theorem 3.1 cannot be
replaced by −(1− �) ‘1 ∈Sab(a), no matter how small �¿ 0 would be.
This example also shows that condition (d) in Corollary 3.1 cannot be replaced by

the condition∫ b

a
g(s) ds6 1 + �

and condition (e) in Corollary 3.1 cannot be replaced by the condition∫ b

a
g(s)

(∫ s

�(s)
g( ) exp

[ ∫ s

�( )
g(�) d�

]
d 
)

ds6 1 + �;

no matter how small �¿ 0 would be.

On Remark 3.2. Examples 4.1 and 4.3 also show that the assumptions imposed on the
operators ‘0 and ‘1 in Theorem 3.2, resp. on the functions p; g; �, and � in Corollary
3.2, cannot be weakened.
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