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ON A BOUNDARY-VALUE PROBLEM OF ANTIPERIODIC TYPE FOR FIRST-ORDER
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF NON-VOLTERRA TYPE

R. Hakl,! A. Lomtatidze,2 and J.Sremr! UDC 517.948

We establish unimprovable (in a certain sense) sufficient conditions for the solvability and unique solv-
ability of the boundary-value problem

W (1) = Fu)(t), u(a) + Mu(b) = hu),

where F': C([a,b]; R) — L([a,b]; R) is a continuous operator satisfying the Caeattiory conditions,
h: C(Ja,b]; R) — R is a continuous functional, and € R .

Introduction

The following notation is used throughout the paper:

R is the set of all real numbers anfl; = [0, +oo.

C([a,b]; R) is the Banach space of continuous functiens|a, b — R with the norm ||u||c = max{|u(t)|
a <t <b}.

C(la,b); Ry) = {u € C(ja,b; R): u(t) > 0 for ¢ € [a,b]}.

C([a,b]; R) is the set of absolutely continuous functioas [a, ] — R.

B ([a,b]; R) = {u € C([a,b]; R): (u(a) + Au(b))sgn((2 — i)u(a) + (i — 1)u(d)) < c}, wherec € R,
i=1,2.

L([a,b]; R) is the Banach space of Lebesgue-integrable functiong:, b)) — R with the norm ||p||; =
b

J 1p(s)|ds.

a

L([a,b]; Ry) = {p € L([a,b]; R): p(t) > 0 foralmostall t € [a,b]}.
M.y, is the set of measurable functions [a, b] — [a, b].

Ly isthe set of linear operators C([a, b]; R) — L(]a, b]; R) for which there is a functiom € L([a, b]; R+)
such that

(L)) < n(@)|vllc for ¢ €a,b], veC(la,b]; R).

Pa is the set of linear operatorse Lab transforming the se€([a, b]; R;.) into the setL([a,b]; R).
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K, is the set of continuous operatofs: C([a, b]; R) — L([a, b]; R) satisfying the Caragodory conditions,
i.e., for everyr > 0, there existsg, € L([a,b]; R+) such that

F(0)(t)] < gr(t) Tor te [a,b], [loflc <

K([a,b] x A;B), where A C R?> and B C R, is the set of functionsf: [a,b] x A — B satisfying the
Caratleodory conditions, i.e.f(-,z): [a,b] — B is a measurable function for alt € A, f(¢t,-): A — Bisa
continuous function for almost al € [a, b], and, for everyr > 0, there existsg, € L([a, b]; R+) such that

1f(t,x)] < g (t) for telab], z €A, |z <r

1

= 5(lel - )

1
(2l = (2l + ), [a]-
A solution of the equation
() = F(u)(t), (0.)

where F' € K, is understood as a functiom € 5([a, b]; R) satisfying Eq. (0.1) almost everywhere i, b|.

Consider the problem of the existence and uniqueness of a solution of Eq. (0.1) satisfying the boundary condi-
tion

u(a) + Au(b) = h(u), (0.2)

where A € Ry and h: C([a,b]; R) — R is a continuous functional.

General boundary-value problems for functional differential equations were studied very extensively. Numer-
ous interesting general results were obtained (see, e.g., [1-27] and references therein), but only a few efficient
criteria for the solvability of special boundary-value problems for functional differential equations are known even
in the linear case. In the present paper, we try to fill the existing gap to a certain extent. More precisely, in Sec. 1, we
give unimprovable efficient sufficient conditions for the solvability and unique solvability of problem (0.1), (0.2).
Sections 2, 3, and 4 are devoted to auxiliary propositions, the proofs of the main results, and examples verifying
their optimality, respectively.

All results are concretized for a differential equation with deviating arguments of the form

u'(t) = p(t)u(r(t)) — g()u(u(t)) + f (¢t u(t), u(v(t))), (0.3)

wherep, g € L([a,b]; Ry), T,1u,v € Mgy, and f € K([a,b] x R?; R).

A special case of the boundary-value problem considered is a Cauchy problem£dr and h = Const).
In this case, the theorems presented below coincide with the results obtained in [5]. Boundary-value problems of
periodic type (i.e., forA < 0) for linear and nonlinear equations were studied in [14] and [15], respectively.

The following result is known from the general theory of linear boundary-value problems for functional dif-
ferential equations (see, e.g., [3, 19, 27]):
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Theorem 0.1. Let ¢ € L. Then the problem
u'(t) = L(u)(t) + qo(t), u(a)+ Au(b) = co, (0.4)
where qp € L([a,b]; R) and ¢y € R, is uniquely solvable if and only if the corresponding homogeneous problem

u'(t) = (u)(t), (0.10)

u(a) + Au(b) =0 (0.2)
has only the trivial solution.

Remark 0.1 It follows from the Riesz—Schauder theory thatdife Lq and problem (0.9), (0.2) has a
nontrivial solution, then there exigyh € L([a, b]; R) and ¢y € R such that problem (0.4) does not have solutions.

1. Main Results

Throughout the paper, we assume that K ([a,b] x Ry; R4) is nondecreasing in the second argument and
such that

r——40oo I

b
1
lim /q(s,x)ds:o. (1.1)

Theorem 1.1. Let A € ]0,1], ¢ € Ry,
h(v)sgnv(a) <c¢ for v e C([a,b]; R), (1.2)
and let there exist
by, L1 € Pap (1.3)
such that the following inequality holds on the $&}_([a, b]; R) :
[F(0)(t) = Lo(v)(t) + £r(v)(8)]sgno(t) < q(t, [lvl]lc) for ¢ € [a,b]. (1.4)
If, moreover,
oMz <1, [z <), (1.5)
where
“A+2/1—llo(D)]|,  for [[lo(D)|lL <1 — A2,
a(N) = (1.6)

1
3 A= lleo)lz) for [[o(1)]l > 1 - A2,

then problem (0.1), (0.2) has at least one solution.
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Remark 1.2 Theorem 1.1 is unimprovable in a certain sense. More precisely, the second inequality in (1.5)
cannot be replaced by

M < (1 +e)ald),
no matter how smalk > 0 may be (see Examples 4.1-4.3).
Theorem 1.2. Let A € ]0,1], ¢ € Ry,
h(v)sgnov(b) < c¢ for v e C([a,b]; R), 1.7)
and let there existy, {1 € P, such that the following inequality holds on the 98 _([a, b]; R) :
[F'(0)(t) = Lo(v)(t) + &r(v)(8)] sgno(t) = —q(t, [[v]c) for ¢ € [a, b]. (1.8)
If, moreover,
oDl + Allex (M)l <A, (1.9)
then problem (0.1), (0.2) has at least one solution.

Remark 1.3 Theorem 1.2 is unimprovable in a certain sense. More precisely, inequality (1.9) cannot be
replaced by

oMWz +Alla(M[z < A+e,
no matter how smalk > 0 may be (see Examples 4.4 and 4.5).
Remark 1.4 Let X € [1,4o00[. We define an operatoy: L([a,b]; R) — L([a,b]; R) by the formula

b(w)(t) L wla+b—1t) for t € la,b].

Let ¢ be a restriction ofy to the space’([a, b]; R). We setd = — and

>| =

V() = F(u)(t),  v(a)+dv(b) = h(v), (1.10)

and, vice versa, ifv is a solution of problem (1.10), then the function ©(v) is a solution of problem (0.1),
(0.2).
Therefore, the following theorems follow immediately from Theorems 1.1 and 1.2:
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Theorem 1.3. Suppose that € [1, +oo[, ¢ € R4, condition (1.7) is satisfied, and there exigt {1 € Py
such that inequality (1.8) holds on the sBf_([a, b]; R). If, moreover,

(D]l <1, [o()l < BN, (1.11)

where

1 1
-y F2Vi- 16Dz for [[4(1)]z < VL
AN = ) (1.12)
A=)z for laMlz 21~ 3,
then problem (0.1), (0.2) has at least one solution.

Theorem 1.4. Suppose thai € [1,+oo[, ¢ € R4, condition (1.2) is satisfied, and there exi&t /1 € Py,
such that inequality (1.4) holds on the sBt ([a, b]; R). If, moreover,

Al (Wl + [[o(D)llL < 1, (1.13)
then problem (0.1), (0.2) has at least one solution.
Remark 1.5 In view of Remarks 1.1-1.3, it is clear that Theorems 1.3 and 1.4 are also unimprovable.
Next, we establish theorems on the unique solvability of problem (0.1), (0.2).
Theorem 1.5. Let A € |0, 1],
[h(v) = h(w)]sgn(v(a) —w(a)) <0 for v,w € C([a,b]; R), (1.14)
and let there existy, {1 € P, such that the following inequality holds on the 98¢ ([a, b]; R), ¢ = |h(0)] :
[F(v)(t) = F(w)(t) — fo(v — w)(t) + &1 (v — w)(t)] sgn(v(t) — w(t)) < 0. (1.15)

Also assume that relation (1.5), whetg \) is defined by (1.6), is satisfied. Then problem (0.1), (0.2) is uniquely
solvable.

Theorem 1.6. Let X € 10, 1],
[h(v) = h(w)]sgn(v(b) —w(b)) <0 for v,w € C([a,b]; R), (1.16)

and let there existy, £, € P,, such that the following inequality holds on the 58}, ([a, b]; R), ¢ = |h(0)| :
[F(0)(t) = F(w)(t) = Lo(v — w)(t) + &1 (v — w)(t)] sgn(v(t) — w(t)) = 0. (1.17)

Also assume that relation (1.9) is satisfied. Then problem (0.1), (0.2) is uniquely solvable.
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According to Remark 1.3, Theorems 1.5 and 1.6 yield the following results:

Theorem 1.7. Suppose that\ € [1,+oo[, condition (1.16) is satisfied, and there exigt ¢; € P,, such
that inequality (1.17) holds on the sét3_([a, b]; R), where ¢ = |h(0)|. Also assume that relation (1.11), where
B(\) is defined by (1.12), is satisfied. Then problem (0.1), (0.2) is uniquely solvable.

Theorem 1.8. Suppose thah € [1, +oo], condition (1.14) is satisfied, and there exist ¢, € P,; such that
inequality (1.15) holds on the sek}_([a,b]; R), where c = |h(0)]. Also assume that relation (1.13) is satisfied.
Then problem (0.1), (0.2) is uniquely solvable.

Remark 1.6 Theorems 1.5-1.8 are unimprovable in a certain sense (see Examples 4.1-4.5).

For an equation of the type (0.3), Theorems 1.1-1.8 yield the following assertions:

Corollary 1.1 Suppose that € ]0,1], ¢ € R4, condition (1.2) is satisfied, and

f(t,z,y)sgnx < q(t) for t € la,b], =,y € R, (1.18)

where g € L([a, b]; Ry ). If, moreover,

b b
/p(s)ds <1, /g(s)ds <~v(A), (1.19)

where

¥(A) = (1.20)
b
/p(s)ds >1- A%
then problem (0.3), (0.2) has at least one solution.
Corollary 1.2 Suppose that € ]0,1], ¢ € R4, condition (1.7) is satisfied, and
f(t,x,y)sgnaz > —q(t) for t € la,b], z,y € R, (1.22)
where g € L([a, b]; Ry). If, moreover,
b b
)\/g(s)ds—l—/p(s)ds <A, (1.22)

then problem (0.3), (0.2) has at least one solution.
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Corollary 1.3 Suppose that € [1,+oo[, ¢ € R4, conditions (1.7) and (1.21) are satisfied, and

b b
/g(s)ds <1, /p(s)ds < O(N), (1.23)

where

5(\) = (1.24)

b b
A (1 — /g(s)ds) for /g(s)ds >1- %

a

Then problem (0.3), (0.2) has at least one solution.

Corollary 1.4 Suppose that € [1,+oo[, ¢ € R4, conditions (1.2) and (1.18) are satisfied, and

p(s)ds < 1. (1.25)

>
—

@

S

Y

V2]

_|_
Se— o

Then problem (0.3), (0.2) has at least one solution.

Corollary 1.5 Suppose that € ]0, 1], condition (1.14) is satisfied, and

[f(t,x1,91) — f(t, x2,y2)] sgn(z1 —x2) <0 for ¢ € [a,b], x1,22,y1,y2 € R. (1.26)

Also assume that relation (1.19), whey€)) is defined by (1.20), is satisfied. Then problem (0.3), (0.2) is uniquely
solvable.

Corollary 1.6 Suppose that € |0, 1], relations (1.16) and (1.22) are satisfied, and

[f(tvxlvyl) - f(t,552>?/2)] Sgl’l(ZEl - x2) 2 0 for te [(I, b]v T1,T2,Y1,Y2 S R. (127)
Then problem (0.3), (0.2) is uniquely solvable.

Corollary 1.7. Suppose that\ € [1,+oo[ and conditions (1.16) and (1.27) are satisfied. Also assume that
relation (1.23), wherej(\) is defined by (1.24), is true. Then problem (0.3), (0.2) is uniquely solvable.

Corollary 1.8 Suppose that\ € [1,+o00[ and conditions (1.14), (1.25), and (1.26) are satisfied. Then
problem (0.3), (0.2) is uniquely solvable.
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2. Auxiliary Propositions

First we formulate Theorem 1 from [22] in the form suitable for what follows.

Lemma 2.1. Suppose that there exist a positive numbeand an operator/ € L, such that the homo-
geneous problem (G}, (0.%) has only the trivial solution, and, for everyy € |0, 1[ and an arbitrary function
u € C([a,b]; R) such that

u'(t) = L(u)(t) + S[F (u)(t) — L(u)(t)], u(a) + Au(b) = dh(u), (2.1)
the following estimate is true:
[ulle < p. (2.2)
Then problem (0.1), (0.2) has at least one solution.
Definition 2.1 We say that an operatof € L, belongs to the set/;()\), i {1,2}, if there exists a

positive number- such that, for anyg* € L([a,b]; Ry) and c € R, every functionu € C([a, b]; R) satisfying
the inequalities

[u(a) + Au(b)]sgn ((2 — 1)u(a) + (i — Du(b)) < ¢, (2.3)
(—1) () — L(u)(t)] sgnu(t) < ¢*(t) for t € [a,b], (2.4)

admits the estimate
Julle <7 (c+1ld"L)- (2.5)

Lemma2.2. Leti € {1,2}, c€ Ry,
h(v)sgn((2 —i)v(a) + (i — (b)) < c for v e C([a,b]; R), (2.6)
and let there exist € U;(\) such that, on the seB;_([a, b]; R), the following inequality is satisfied:
(—=D)"™HF(0)(1) — L(v) (1)) sgno(t) < q(t, |[vllc) for t € [a,b]. (2.7)
Then problem (0.1), (0.2) has at least one solution.
Proof. First note that, due to the conditiohe U;()\), the homogeneous problem (g),1(0.2%) has only the

trivial solution.
Let » be the number appearing in Definition 2.1. According to (1.1), there exisi®2rc such that

b

1 1

— ,x)ds < — for x> p.

» [atsns < o for o>
a
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Now assume that a function € C([a, b]; R) satisfies (2.1) for somé € ]0, 1[. Then, according to (2.6)y
satisfies inequality (2.3), i.ey € B ([a,b]; R). Taking (2.1) and (2.7) into account, we conclude that inequality
(2.4) holds forg*(t) = q(t, ||u||c). Hence, by using the conditioh € U;(\) and the definition of the numbey,
we get estimate (2.2).

Since p depends neither om nor on ¢, it follows from Lemma 2.1 that problem (0.1), (0.2) has at least one
solution.

The lemma is proved.

Lemma 2.3. Let: e {1,2}, let

[A(u1) — h(uz)]sgn((2 — i) (u1(a) — uz(a)) + (i — 1) (u1(b) — uz(a))) <0 (2.8)

for wuy,us € C(la,b]; R),

and let there exist € U;(\) such that, on the seB;_([a,b]; R), where c = |h(0)|, the following inequality is
satisfied:

(1) F (ua)(t) = Fu2)() = €(ur — uz)(t)] sgn(u (t) — ua(t)) < 0. (2.9)

Then problem (0.1), (0.2) is uniquely solvable.

Proof. It follows from (2.8) that condition (2.6), where = |h(0)|, is satisfied. By virtue of (2.9), inequality
(2.7), whereq = |F(0)|, holds on the setB;_([a,b]; R). Consequently, all assumptions of Lemma 2.2 are sat-
isfied, which guarantees that problem (0.1), (0.2) has at least one solution. It remains to show that problem (0.1),
(0.2) has at most one solution.

Let u; and ug be arbitrary solutions of problem (0.1), (0.2). We sét) = u;(t) — ua(t) for t € [a,b].
Then, by virtue of (2.8) and (2.9), we get

[u(a) + Au(b)] sgn((2 — i)u(a) + (i — 1)u(b)) <0,

(=) /() — £(u)(t)] sgnu(t) <0 for t € [a,b].

This, together with the conditiodi € U;()\), yields « = 0. Consequentlyu = us.
The lemma is proved.

Lemma 2.4. Suppose that € ]0,1] and the operator/ admits the representatiof = ¢, — ¢;, where ¢,
and ¢; satisfy conditions (1.3) and (1.5), in which is defined by (1.6). Theh belongs to the set/; ()\).
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Proof. Let ¢* € L([a,b]; Ry), ¢ € Ry, andu € C([a,b]; R) satisfy (2.3) and (2.4) foi = 1. We prove
relation (2.5), where

(D) +1+ A

1=tz - i(Hfl(l)HL + )
- (2.10)

(D)l +1+ A
L—[[lo(D)]|z = Alea (D)2

it ()] <1 A2,

it [|6o(1)]]1 > 1 — A2.

It is clear that

u'(t) = Lo(u)(t) — & (u)(t) +q(t), (2.11)
where
q(t) = u'(t) — L(u)(t) for t € la,b]. (2.12)
Obviously
d(t)sgnu(t) < ¢*(t) for t € [a,b] (2.13)
and
[u(a) + Mu(b)] sgnu(a) < c. (2.14)

First assume that, does not change its sign. According to (2.14) and the assumptieno, 1], we obtain
lu(a)] < e. (2.15)
We choosety € [a,b] so that
[u(to)| = [[ullc- (2.16)
By virtue of (1.3) and (2.13), relation (2.11) yields
u(t)|” < [lullc Lo(1)(t) +¢"(t) for t € [a,b]. (2.17)

The integration of (2.17) from: to ¢y with regard for (1.3), (2.15), and (2.16) results in

to

to
lulle — ¢ < ulle - lu(@)] < Julle / to(1)(s)ds + / ¢(5)ds < llullclo)ll + gl
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Thus,

[ulle (T = ll(M)z) < ¢+ llg"[lz,

and, consequently, estimate (2.5) holds.
Now assume that; changes its sign. We set

M = max{u(t): t € [a,b]}, m = —min{u(t): t € [a,b]}
and choose y, t,, € [a,b] such that
u(tayr) =M, u(ty) =—m.

It is obvious thatd > 0, m > 0, and either

tm < Ty
or

tm > tar.
First, assume that relation (2.20) is satisfied. Itis clear that there exists |t,,,, tar[ such that

u(t) >0 for s <t <tp, wu(az)=0.
Let
ap = 1inf{t € [a,tm]: u(s) <0 for t <s <tp}.
It is obvious that
u(t) <0 for ag <t <ty and u(lan) =0 if oy > a.

It follows from relations (2.14) and (2.23) and the assumptloa |0, 1] that

u(ag) > =Au(d)]+ —c> =AM —c.

545

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

The integration of (2.11) fromy; to ¢, and fromay to tj; with regard for (1.3), (2.13), (2.18), (2.19), (2.22),

(2.23), and (2.24) yields

tm

m—AM —c<m+u(ag) < M/Kl(l)(s)ds+m/€0(1)(s)d8—|—/q*(s)ds,

(e %) a1

ty tar

M<M/€0 ds—l—m/El ds+/ *(s)ds.

a2
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Using the last two inequalities, we obtain

m(l—Cp) < M(A1+ M)+ l¢|ln + ¢, M(1—Dy) <mBi + |l¢"||L, (2.25)
where

tm tyr

A= [am@ds  Bi= [0
(51 a2
tm tar

Cr= [ bo(1)(s)ds,  D1= [ £o(1)(s)ds
aq Q2

Due to the first inequality in (1.5), we hawg; < 1 and D; < 1. Consequently, relation (2.25) yields

0 <m(l=Ci)(1=Dy) < (Ar+A)(mBi+|l¢"[l) +[lg*]lz + ¢

<m(A1+A)B1+ ([l + ) (I (D[ + 1+ X),

(2.26)
0<M(1—C)(1—Dy) < By (M(AL+ X+ l¢*ll +¢) + llg*||lz
< M(A+M)Br+ ([q*le + o) ([ (Dl + 1+ A).
Obviously,
(1-C1)(1—=D1)>1—(Cy+Dy)>1— (1)1 > 0. (2.27)

If ||€o(1)]|z > 1—A2, then, according to (1.6) and the second inequality in (1.5), we oljtifl) |, < A. Hence,
B; < A\ and

(A1 + )\)Bl =A1B1+ 2B < )\(Al + Bl) < >\H£1(1)||L
By virtue of the last inequality and (2.27), relation (2.26) yields

m < ro([[6 ()|l + 14+ N)(c+ llgllz),
(2.28)
M <ro(|a(D)|lz + 1+ N (c+ llg|),

where
ro = (1= [[to(1)]lz — A (D)]1L) " (2.29)

Therefore, estimate (2.5) is true.



ON A BOUNDARY-VALUE PROBLEM OF ANTIPERIODIC TYPE FOR FUNCTIONAL DIFFERENTIAL EQUATIONS 547
If ||40(1)]|z < 1 — A2, then, by virtue of the inequalities
4(A1+X)B1 < (A + B+ 2)7 < ([ +X)?
and (2.27), relation (2.26) yields

m < ([l + 14+ M) e+ llg"lln),

(2.30)
M <ri([6MWl +14+ M (e+llq"l|z),
where
1 —1
L=l = (@)L + N (2.31)
Therefore, estimate (2.5) is valid.
Now assume that (2.21) is satisfied. Obviously, there exigts |¢,,, tas[ such that
u(t) <0 for ay <t <tp, u(ay) = 0. (2.32)
Let
az = inf{t € [a,tp]: u(s) >0 for t < s <tp}.
Obviously,
u(t) >0 for as <t <ty and  u(asz) =0 if az>a. (2.33)
It follows from relations (2.14) and (2.33) and the assumptloa |0, 1] that
u(ag) < AMud))- +ec< Im+ec. (2.34)

The integration of (2.11) fromxs to tj; and fromay to ¢, with regard for (1.3), (2.13), (2.18), (2.19), (2.32),
(2.33), and (2.34) results in

tar tv ty

M- m—c<M—u(ag) < M/Zo ds—l—m/& ds—l—/ *(s)ds,

m<M/€1 d8+m/€() dS—i—/ ()dS
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Using the last two inequalities, we obtain

M(1—=0Cs) <m(As+ M)+ ||l + ¢

where

7161(1)(s)ds,

as

As =

7150(1)(8)@,

a3

Cy =

R. HAKL, A. LOMTATIDZE , AND

m(1 — Dy) < MBy + ||¢"| 1.

tm

/ 6(1)(s)ds,

ay

By =

t;rﬁg(l)(s)ds.

Qq

Dy =

J. SREMR

(2.35)

Due to the first inequality in (1.5), we hawg; < 1 and D, < 1. Consequently, relation (2.35) yields

0<M(1—Co)(1—Dg) < (A2 +N(MBze+ ¢ |l2) + ¢l + ¢

< M(A2+X)By + ([[¢"]lz + (Dl + 1+ X),

0 <m(l—C2)(1— Da) < Ba(m(Az+ A) + [I¢"[|L +¢) + g7z

<m(Az + A) Bz + ([[¢"[|lz + ) (Ier (V)] + 1+ A).

Obviously,

(1 — CQ)(I — Dg) >1- (CQ + Dg) >1- H£0<1)HL > 0.

(2.36)

(2.37)

If ||¢0(1)]lz > 1—A2, then, according to relation (1.6) and the second inequality in (1.5), we obtaii) ||, < .

Hence,B; < A and

(A2 + /\)BQ = A2B2 + )\BQ < /\(AQ -+ Bg) < /\Hgl(l)HL

By virtue of the last inequality and (2.37), relation (2.36) yields (2.28), whgrés defined by (2.29). Therefore,

estimate (2.5) is valid.

If ||o(1)]|z <1 — A2, then, by virtue of the inequalities

4(Ay + N) By < (Ag + By + M) < (|61 (1) ||z + V)2

and (2.37), relation (2.36) yields (2.30), wherg is defined by (2.31). Therefore, estimate (2.5) holds.

The lemma is proved.

Lemma 2.5. Suppose that € |0, 1] and the operator/ admits the representatiof = ¢, — ¢1, where ¢
and ¢; satisfy conditions (1.3) and (1.9). Theénbelongs to the set/>(\).
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Proof. Let ¢* € L([a,b]; Ry), ¢ € Ry andu € C([a,b]; R) satisfy (2.3) and (2.4) foi = 2. We prove
relation (2.5), where

Allo(D)||lL +1+ A

" XML T 239
It is obvious thatu satisfies (2.11), wherg is defined by (2.12). Clearly,
—q(t)sgnu(t) < q*(t) for te€ la,b, (2.39)
and
[u(a) + Au(b)] sgnu(b) < c. (2.40)

First, assume that, does not change its sign. According to (2.40) and the assumptieno, 1], we obtain

[u(b)| < § (2.41)
We choosety € [a,b] so that (2.16) holds. Due to (1.3) and (2.41), relation (2.11) yields
—lu@®)|" < flulle (1)) +¢*(t) for t € [a,b]. (2.42)

The integration of (2.42) fronmty to b with regard for (1.3), (2.41), and (2.16) results in

b b
c * *
fulle = 5 < Tl = ®)] < lulle [ 6))ds + [ a*(6)ds < ulellal + o'l
to to

Thus,

c+ gz

lulle (1 = (Dl < SHEE,

and, consequently, estimate (2.5) holds.

Now assume that: changes its sign. We define numbévs and m by (2.18) and chooseéyy, t,, € [a,b] SO
that (2.19) is satisfied. It is obvious thaf > 0, m > 0, and either (2.20) or (2.21) is valid.

First, assume that relation (2.21) holds. It is clear that there exists |ty ¢,,[ such that

u(t) >0 for ty <t <ay, u(ag) = 0. (2.43)
Let

ag = sup{t € [tm,b]: u(s) <0 for ¢, <s <t}
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Obviously,
u(t) <0 for t, <t <a and  u(az) =0 if ay <b. (2.44)

Using relations (2.40) and (2.44) and the assumpfion |0, 1], we obtain

1

ulaz) 2 —y[u(a))s - 5 2

% - (2.45)

»\n
>0

The integration of (2.11) front,; to a; and fromt,, to «s with regard for (1.3), (2.18), (2.19), (2.39), (2.43),
(2.44), and (2.45) gives

M<M/€1 ds—l—m/&) ds+/ *(s)ds,

M
m—T—X<m—|—u(a2 <M/fo dS-i-m/El ds+/ “(s)ds.

The last two inequalities yield

1 c
M(1—A) <mCi+ ¢,  m@A-B)<M <D1+A> + gl + 5 (2.46)
where
(o5} a2
A= / n()(s)ds,  Bi = / (1) (s)ds,
ty tm
(o5} (e5)]
a=/%®@w, m:/%m@w
ty tm

Due to (1.9), we haved; < 1 and B; < 1. Consequently, relation (2.46) yields
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1
0<MI1-A)1-B)<C (M <D1 + A) +lla" [z + ;) + "z

1 1
< ey (Dre )+ (Mol 14 3 ) el + o).

(2.47)
1
0 <m(l—A)(1=B1) < (Dr+ 5 ) Cr+ ) + ol + 5
1 1 .
< mCy <D1 + A) + (Wo(l)HL +1+ A) (lg*llz +¢).
Obviously,
(1-A4)1—-B)>1— (A1 +By) >1— |1z > 0. (2.48)

. . . . 1 1
According to relation (1.9) and the assumptiare ]0, 1], we obtain ||¢y(1)||z < % Hence,C; < X and

1
(C1+ D) < 5oVl

1 1 1
D — | =C1D —-C1 < =
Cl< 1—1—)\) & 1+/\017/\

By virtue of the last inequality, (2.48), and the assumptiosa |0, 1], relation (2.47) yields

M <7 Alo(D]lL +1+ ) (c+ llg"[I2),

(2.49)
m < ro (Alllo(D)]lz + 14+ A) (c+ [lg”(|z),
where
ro = (A=Al (D) = [Il(D)llz) ™" (2.50)
Therefore, estimate (2.5) holds.
Now assume that relation (2.20) is valid. Obviously, there exists |t,,, tys[ such that
u(t) <0 for ¢, <t< as, u(asz) = 0. (2.51)

Let
ay = sup{t € [ta,b]: u(s) >0 for tp <s <t}
It is clear that

u(t) >0 for tyy <t <oy and  u(ag) =0 if as <b. (2.52)
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It follows from relations (2.40) and (2.52) and the assumptloa |0, 1] that

u(os) < slu(a)]- +5 <24 (2.53)

> o

b
A

The integration of (2.11) from,,, to a3 and from¢,; to a4 with regard for (1.3), (2.18), (2.19), (2.39), (2.51),
(2.52), and (2.53) yields
m<M/€0 ds—l—m/fl ds+/ *(s)ds,

C

M—%—X<M—u(a4 <M/€1 dS‘Fm/EO dS"‘/ “(s)ds.

Using the last two inequalities, we get

(1= 42) < MOy + 'Ly M- Bo) < m (Dot 1) 410N+ 5. (254

where

a3 Qyq

AQ = /51(1)(8)018, B2 = /61(1)(S)d8,

tm ta

Oy /zo( )(s)ds, DQ_/eou)(s)ds

Due to (1.9), we haveds < 1 and Bs < 1. Consequently, relation (2.54) yields

1 * C *
0 <t - A1 -8 < o (m (D4 1) +el+ 5 ) +

1 1
<Gy (Dot 1)+ (Mol 1+ 3) el + o),

(2.55)

1 c
0 < ML= A1~ B) < (Dot 3 ) Mo+ 17 1) + 17l +

<m0y (Dot 1)+ (Mol 1+ 3 ) el + o).
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Obviously,

(1—A3)(1—=By) >1— (A + By) > 1—|[£1(1)]|r > 0. (2.56)

. . . . 1 1
According to relation (1.9) and the assumptiare ]0, 1], we obtain ||{y(1)||z < Y Hence,Cy < X and

1 1 1 1
Cy <D2 + A) = C2Dy + XC2 < X(C2 + Ds) < XWO(l)HL-

By virtue of the last inequality and (2.56), relation (2.55) yields (2.49), whgrés defined by (2.50). Therefore,
estimate (2.5) is valid.
The lemma is proved.

3. Proofs of Main Results

Theorem 1.1 follows from Lemmas 2.2 and 2.4, Theorem 1.2 follows from Lemmas 2.2 and 2.5, Theorem 1.5
follows from Lemmas 2.3 and 2.4, and Theorem 1.6 follows from Lemmas 2.3 and 2.5.

Proof of Corollary 1.1. Conditions (1.18) and (1.19), whereis defined by (1.20), obviously yield conditions
(1.4) and (1.5), wherex is defined by (1.6) and

Fv)(t) =pt)v(r(t)) — gt)v(ut)) + f(E,v(t), v(v(1))),
(3.1)

Consequently, all assumptions of Theorem 1.1 are satisfied.
Proof of Corollary 1.5. Conditions (1.26) and (1.19), where is defined by (1.20), obviously yield condi-
tions (1.15) and (1.5), where: is defined by (1.6) and, ¢y, and ¢, are defined by (3.1). Consequently, all

assumptions of Theorem 1.5 are satisfied.

Corollaries 1.2-1.4 and 1.6-1.8 can be proved by analogy.

4, On Remarks 1.1 and 1.2

OnRemark 1.1.Let A € ]0, 1] (for the case\ = 0, see [5]). Denote by~ the set of pair§z,y) € Ry xRy
such that either

r<1—\2, y<2Vl—x— A
or

1-XN<z<], y <




554 R. HAKL, A. LOMTATIDZE , AND J. SREMR

According to Theorem 1.1, if (1.2) is satisfied and there ekist; € P,;, such that(||¢o(1)||z, [[€1(D)|lz) € G
and inequality (1.4) holds on the s&;_([a, b]; R), then problem (0.1), (0.2) is solvable.

Below, we give examples showing that, for any péin, vo) ¢ G, o > 0, yo > 0, there exist functions
po € L([a,b]; R), —p1 € L([a,b]; Ry), and T € M, such that

b b
[im)eds = a0, [)-ds = . (4.0)
and the problem
W/ (£) = po(tyu(r()) + pr(Du(t), u(a) + Mu(b) = 0 (4.2)

has a nontrivial solution. Then, by Remark 0.1, there exist L([a,b]; R) and ¢p € R such that problem (0.1),
(0.2), where

Fo)(t) E po(t)v(r(1)) + pr(8)o(t) + qo(t),  h(v) = co, (4.3)

does not have solutions, while conditions (1.2) and (1.4) are satisfied/w\ith(¢) d [po(t)]+v(7(t)), £1(v)(t) d

[po(t)]-v(7(?)), ¢ =|qol, andc = [co|. B
Itis clear that if zo, yo € Ry and (zo,yo) € G, then (zg,y0) belongs to at least one of the following sets:

Gi={(z,y) € Ry xRy: 1<z, 0<y},

]__
GQ:{(a:,y>eR+><R+:1—A2s:cs1, A“”<y},

Gs={(z,y) Ry xRy: 0<z<1-), 21—z —-A<y}.

Example 4.1. Let (zg,yp) € G1 ande > 0 be suchthatty —¢ > 1 and A\ —¢ > 0. We seta =0, b =4,

£
to =3
0 +1+5’

0 for ¢t € [0, 1],
—Yo for ¢t € [1,2],

xg—1—¢e for te2,3]

1+¢ for t € [3,4],

A—e¢
————— for t€]0,1],
0 for t € [1,4],

and
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to for t €]0,3],

T(t) =
4 for te[3,4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution
—(A—e)t+ A for t € [0,1],

u(t)=<e for t € [1,3],

—(1+¢e)(t—3)+¢e for te[3,4]

1—
Example 4.2. Let (xo,y0) € G2 ande > 0 be such thatﬂ <yo and A —e > 0. We seta = 0,
9
b=4, ty=2+——
00 + 1—z9+¢’
(0 for ¢t €[0,1],
1—
—yo + %ﬂ for t € [1,2],
polt) = 1l—29+c¢
o0 for t € [2,3],
A
x0 for t € [3,4],
A—c¢
———F for t€]0,1],
m(t) = A—(A—e)t
0 for t € [1,4],
and

to for ¢t €0,2],
T(t) =40 for te 23],
4 for te[3,4].
Then relation (4.1) holds, and problem (4.2) has the nontrivial solution
(—(A—e)t+A for ¢ € [0, 1],

€ for t € [1,2],

—(1—zp+¢e)(t—2)+¢e for te2,3]

—xo(t — 3) — (1 — 1‘0) for t e [3,4].
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Example 4.3. Let (z0,y0) € G3 ande > 0 be such thatyy > 2v/1—290 — A+ ande < 1 — /1 — x.
We seta =0, b=25,

—VI—xz0+ A for ¢t € [0,1],
0 for t€[1,3 —+/1—x9—¢],
po(t) = ¢ —1 for t € [3— 1 —1x9—¢,3]
—yo+2vV1—x29g—A+¢ fort€[3,4[,
| 0 for t € [4,5],
0 for ¢ € [0,1[U[3 — I —x0 — &, 5],
1—%0
Y for t € [1,2
i) =471 2) 1 —6) + VI 0 11,21,
VI—z
— for t€[2,3—+/1—1x9—¢|,
VI 203 —t) — (1— o) [ 70— ¢l
and
5 for ¢t € [0, 1],
1 for ¢t € [1,3],
7(t) =
3—V1—=x9 fortel34],
5 for ¢t € [4,5].
\

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

(VI—xg—Nt+ A for t € [0,1],
(1—z0)(1—t)++1—20 for tell,2]
u(t) =4 V/1I—20(3—1t)— (1 —m) for te[2,3]

—(1 — =) for t € [3,4],

zo(b—1t)—1 for ¢t € [4,5].
On Remark 1.2.Let A € ]0,1]. Denote by H the set of pairz,y) € R+ x Ry such that
T+ Ay < A
By virtue of Theorem 1.2, if relation (1.7) is satisfied and there egist; € P,, and ¢ € L([a,b]; R+) such

that (||¢o(1)/z, [|€1(1)||) € H and inequality (1.8) holds on the sét_([a,b]; R), then problem (0.1), (0.2) is
solvable.
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Below, we give examples showing that, for any péit,yo) € H, xo > 0, yo > 0, there exist functions
po € L([a,b]; R), p1 € L([a,b]; Ry), and 7 € M, such that relation (4.1) is satisfied and problem (4.2) has a
nontrivial solution. Then, by Remark 0.1, there exjste L([a,b]; R) and ¢y € R such that problem (0.1), (0.2),
where F' and h are defined by (4.3), does not have solutions, while conditions (1.7) and (1.8) are satisfied with

(o(0)(®) = Ipo(t)]+v(r(®), ()1 = [po)]-v(r(1)), @ = laol, and e = eo].
Itis clear that if xo, yo € Ry and (zo,50) € H, then (zg,70) belongs to at least one of the following sets:

Hy={(z,y) € Ry x Ry: A<z, 0<y},

Hz:{(:p,y)eR+xR+;ogx§>\’ _§+1<y}‘

Example 4.4. Let (z9,yo) € Hy ande > 0 be suchthatty — A\ > e and1—¢ > 0. We seta =0, b =4,

b A
T A+
A+e for t € [0, 1],
—Yo for ¢ € [1,2],
po(t) =
xo—A—e for te2,3]
0 for ¢t € [3,4],
0 for t € 0,3,
pi(t) = 1—¢
for ¢ 4
Aot -4 +1 € 3,4}
and

4  for t €[0,1],
T(t) =

to for te[1,4].
Then relation (4.1) holds, and problem (4.2) has the nontrivial solution
A+e)t—A for t € [0,1],

u(t) =< ¢ for t € [1,3],

(1—e)(t—4)+1 for te[3,4].
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A\ —
Example 4.5. Let (xg,y0) € H, ande > 0 be such thatﬂ <gyoandl—e > 0. We seta =0,
9
b=4, tr=2— ——
> L0 )\—Q?Q+87
x0 for t € ]0,1],
—% for ¢ e [1,2],
polt) = A—x0+¢
—y0++ for t € [2,3],
0 for t € [3,4],
0 for t € 0,3,
pi(t) = l—¢
for ¢ € [3,4],
1—(1—-¢e)(4—1) 13,4
and

4 for te€|0,1],
T(t) =40 for tell,2],
to for t €[2,4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

—zot + A for t € [0,1],

AN=—zo+e)(2—1t)—e for te]l,2],
u(t) =

—e for t € [2,3],

(I—-e)d—1t)—1 for t € [3,4].
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