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ON A BOUNDARY-VALUE PROBLEM OF ANTIPERIODIC TYPE FOR FIRST-ORDER
NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS OF NON-VOLTERRA TYPE

R. Hakl,1 A. Lomtatidze,2 and J. Šremr1 UDC 517.948

We establish unimprovable (in a certain sense) sufficient conditions for the solvability and unique solv-
ability of the boundary-value problem

u′(t) = F (u)(t), u(a) + λu(b) = h(u),

where F : C([a, b]; R) → L([a, b]; R) is a continuous operator satisfying the Carathèodory conditions,
h : C([a, b]; R)→ R is a continuous functional, andλ ∈ R+.

Introduction

The following notation is used throughout the paper:

R is the set of all real numbers andR+ = [0,+∞[.

C([a, b];R) is the Banach space of continuous functionsu : [a, b] → R with the norm‖u‖C = max{|u(t)| :
a ≤ t ≤ b}.

C([a, b];R+) = {u ∈ C([a, b];R) : u(t) ≥ 0 for t ∈ [a, b]}.

C̃([a, b];R) is the set of absolutely continuous functionsu : [a, b] → R.

Bi
λc([a, b];R) = {u ∈ C([a, b];R) : (u(a) + λu(b)) sgn((2 − i)u(a) + (i − 1)u(b)) ≤ c}, where c ∈ R,

i = 1, 2.

L([a, b];R) is the Banach space of Lebesgue-integrable functionsp : [a, b] → R with the norm ‖p‖L =
b∫
a
|p(s)|ds.

L([a, b];R+) = {p ∈ L([a, b];R) : p(t) ≥ 0 for almost all t ∈ [a, b]}.

Mab is the set of measurable functionsτ : [a, b] → [a, b].

L̃ab is the set of linear operators̀: C([a, b];R) → L([a, b];R) for which there is a functionη ∈ L([a, b];R+)
such that

|`(v)(t)| ≤ η(t)‖v‖C for t ∈ [a, b], v ∈ C([a, b];R).

Pab is the set of linear operators̀∈ L̃ab transforming the setC([a, b];R+) into the setL([a, b];R+).

1 Mathematical Institute, Czech Academy of Sciences, Brno, Czech Republic.
2 Masaryk University, Brno, Czech Republic.

Published in Neliniini Kolyvannya, Vol. 6, No. 4, pp. 550–574, October–December, 2003. Original article submitted September 8, 2003.

1536–0059/03/0604–0535 $ 25.00c© 2003 Plenum Publishing Corporation 535



536 R. HAKL , A. L OMTATIDZE , AND J. ŠREMR

Kab is the set of continuous operatorsF : C([a, b];R) → L([a, b];R) satisfying the Carath̀eodory conditions,
i.e., for everyr > 0, there existsqr ∈ L([a, b];R+) such that

|F (v)(t)| ≤ qr(t) for t ∈ [a, b], ‖v‖C ≤ r.

K([a, b] × A;B), whereA ⊆ R2 and B ⊆ R, is the set of functionsf : [a, b] × A → B satisfying the
Carath̀eodory conditions, i.e.,f(·, x) : [a, b] → B is a measurable function for allx ∈ A, f(t, ·) : A → B is a
continuous function for almost allt ∈ [a, b], and, for everyr > 0, there existsqr ∈ L([a, b];R+) such that

|f(t, x)| ≤ qr(t) for t ∈ [a, b], x ∈ A, ‖x‖ ≤ r.

[x]+ =
1
2
(|x|+ x), [x]− =

1
2
(|x| − x).

A solution of the equation

u′(t) = F (u)(t), (0.1)

whereF ∈ Kab, is understood as a functionu ∈ C̃([a, b];R) satisfying Eq. (0.1) almost everywhere in[a, b].
Consider the problem of the existence and uniqueness of a solution of Eq. (0.1) satisfying the boundary condi-

tion

u(a) + λu(b) = h(u), (0.2)

whereλ ∈ R+ and h : C([a, b];R) → R is a continuous functional.
General boundary-value problems for functional differential equations were studied very extensively. Numer-

ous interesting general results were obtained (see, e.g., [1–27] and references therein), but only a few efficient
criteria for the solvability of special boundary-value problems for functional differential equations are known even
in the linear case. In the present paper, we try to fill the existing gap to a certain extent. More precisely, in Sec. 1, we
give unimprovable efficient sufficient conditions for the solvability and unique solvability of problem (0.1), (0.2).
Sections 2, 3, and 4 are devoted to auxiliary propositions, the proofs of the main results, and examples verifying
their optimality, respectively.

All results are concretized for a differential equation with deviating arguments of the form

u′(t) = p(t)u(τ(t))− g(t)u(µ(t)) + f(t, u(t), u(ν(t))), (0.3)

where p, g ∈ L([a, b];R+), τ, µ, ν ∈Mab, and f ∈ K([a, b]×R2;R).
A special case of the boundary-value problem considered is a Cauchy problem (forλ = 0 and h ≡ Const ).

In this case, the theorems presented below coincide with the results obtained in [5]. Boundary-value problems of
periodic type (i.e., forλ < 0) for linear and nonlinear equations were studied in [14] and [15], respectively.

The following result is known from the general theory of linear boundary-value problems for functional dif-
ferential equations (see, e.g., [3, 19, 27]):
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Theorem 0.1. Let ` ∈ L̃ab. Then the problem

u′(t) = `(u)(t) + q0(t), u(a) + λu(b) = c0, (0.4)

where q0 ∈ L([a, b];R) and c0 ∈ R, is uniquely solvable if and only if the corresponding homogeneous problem

u′(t) = `(u)(t), (0.10)

u(a) + λu(b) = 0 (0.20)

has only the trivial solution.

Remark 0.1. It follows from the Riesz–Schauder theory that if` ∈ L̃ab and problem (0.10), (0.20) has a
nontrivial solution, then there existq0 ∈ L([a, b];R) and c0 ∈ R such that problem (0.4) does not have solutions.

1. Main Results

Throughout the paper, we assume thatq ∈ K([a, b]×R+;R+) is nondecreasing in the second argument and
such that

lim
x→+∞

1
x

b∫
a

q(s, x)ds = 0. (1.1)

Theorem 1.1. Let λ ∈ ]0, 1], c ∈ R+,

h(v) sgn v(a) ≤ c for v ∈ C([a, b];R), (1.2)

and let there exist

`0, `1 ∈ Pab (1.3)

such that the following inequality holds on the setB1
λc([a, b];R) :

[F (v)(t)− `0(v)(t) + `1(v)(t)] sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b]. (1.4)

If, moreover,

‖`0(1)‖L < 1, ‖`1(1)‖L < α(λ), (1.5)

where

α(λ) =


−λ+ 2

√
1− ‖`0(1)‖L for ‖`0(1)‖L < 1− λ2,

1
λ

(1− ‖`0(1)‖L) for ‖`0(1)‖L ≥ 1− λ2,
(1.6)

then problem (0.1), (0.2) has at least one solution.
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Remark 1.2. Theorem 1.1 is unimprovable in a certain sense. More precisely, the second inequality in (1.5)
cannot be replaced by

‖`1(1)‖L < (1 + ε)α(λ),

no matter how smallε > 0 may be (see Examples 4.1–4.3).

Theorem 1.2. Let λ ∈ ]0, 1], c ∈ R+,

h(v) sgn v(b) ≤ c for v ∈ C([a, b];R), (1.7)

and let there exist̀ 0, `1 ∈ Pab such that the following inequality holds on the setB2
λc([a, b];R) :

[F (v)(t)− `0(v)(t) + `1(v)(t)] sgn v(t) ≥ −q(t, ‖v‖C) for t ∈ [a, b]. (1.8)

If, moreover,

‖`0(1)‖L + λ‖`1(1)‖L < λ, (1.9)

then problem (0.1), (0.2) has at least one solution.

Remark 1.3. Theorem 1.2 is unimprovable in a certain sense. More precisely, inequality (1.9) cannot be
replaced by

‖`0(1)‖L + λ‖`1(1)‖L < λ+ ε,

no matter how smallε > 0 may be (see Examples 4.4 and 4.5).

Remark 1.4. Let λ ∈ [1,+∞[. We define an operatorψ : L([a, b];R) → L([a, b];R) by the formula

ψ(w)(t) df= w(a+ b− t) for t ∈ [a, b].

Let ϕ be a restriction ofψ to the spaceC([a, b];R). We setϑ =
1
λ

and

F̂ (w)(t) df= −ψ(F (ϕ(w)))(t), ĥ(w) df= ϑh(ϕ(w)).

It is clear that ifu is a solution of problem (0.1), (0.2), then the functionv
df= ϕ(u) is a solution of the problem

v′(t) = F̂ (v)(t), v(a) + ϑv(b) = ĥ(v), (1.10)

and, vice versa, ifv is a solution of problem (1.10), then the functionu
df= ϕ(v) is a solution of problem (0.1),

(0.2).
Therefore, the following theorems follow immediately from Theorems 1.1 and 1.2:
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Theorem 1.3. Suppose thatλ ∈ [1,+∞[, c ∈ R+, condition (1.7) is satisfied, and there exist`0, `1 ∈ Pab

such that inequality (1.8) holds on the setB2
λc([a, b];R). If, moreover,

‖`1(1)‖L < 1, ‖`0(1)‖L < β(λ), (1.11)

where

β(λ) =


− 1
λ

+ 2
√

1− ‖`1(1)‖L for ‖`1(1)‖L < 1− 1
λ2
,

λ (1− ‖`1(1)‖L) for ‖`1(1)‖L ≥ 1− 1
λ2
,

(1.12)

then problem (0.1), (0.2) has at least one solution.

Theorem 1.4. Suppose thatλ ∈ [1,+∞[, c ∈ R+, condition (1.2) is satisfied, and there exist`0, `1 ∈ Pab

such that inequality (1.4) holds on the setB1
λc([a, b];R). If, moreover,

λ‖`1(1)‖L + ‖`0(1)‖L < 1, (1.13)

then problem (0.1), (0.2) has at least one solution.

Remark 1.5. In view of Remarks 1.1–1.3, it is clear that Theorems 1.3 and 1.4 are also unimprovable.

Next, we establish theorems on the unique solvability of problem (0.1), (0.2).

Theorem 1.5. Let λ ∈ ]0, 1],

[h(v)− h(w)] sgn(v(a)− w(a)) ≤ 0 for v, w ∈ C([a, b];R), (1.14)

and let there exist̀ 0, `1 ∈ Pab such that the following inequality holds on the setB1
λc([a, b];R), c = |h(0)| :

[F (v)(t)− F (w)(t)− `0(v − w)(t) + `1(v − w)(t)] sgn(v(t)− w(t)) ≤ 0. (1.15)

Also assume that relation (1.5), whereα(λ) is defined by (1.6), is satisfied. Then problem (0.1), (0.2) is uniquely
solvable.

Theorem 1.6. Let λ ∈ ]0, 1],

[h(v)− h(w)] sgn(v(b)− w(b)) ≤ 0 for v, w ∈ C([a, b];R), (1.16)

and let there exist̀ 0, `1 ∈ Pab such that the following inequality holds on the setB2
λc([a, b];R), c = |h(0)| :

[F (v)(t)− F (w)(t)− `0(v − w)(t) + `1(v − w)(t)] sgn(v(t)− w(t)) ≥ 0. (1.17)

Also assume that relation (1.9) is satisfied. Then problem (0.1), (0.2) is uniquely solvable.
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According to Remark 1.3, Theorems 1.5 and 1.6 yield the following results:

Theorem 1.7. Suppose thatλ ∈ [1,+∞[, condition (1.16) is satisfied, and there exist`0, `1 ∈ Pab such
that inequality (1.17) holds on the setB2

λc([a, b];R), where c = |h(0)|. Also assume that relation (1.11), where
β(λ) is defined by (1.12), is satisfied. Then problem (0.1), (0.2) is uniquely solvable.

Theorem 1.8. Suppose thatλ ∈ [1,+∞[, condition (1.14) is satisfied, and there exist`0, `1 ∈ Pab such that
inequality (1.15) holds on the setB1

λc([a, b];R), where c = |h(0)|. Also assume that relation (1.13) is satisfied.
Then problem (0.1), (0.2) is uniquely solvable.

Remark 1.6. Theorems 1.5–1.8 are unimprovable in a certain sense (see Examples 4.1–4.5).

For an equation of the type (0.3), Theorems 1.1–1.8 yield the following assertions:

Corollary 1.1. Suppose thatλ ∈ ]0, 1], c ∈ R+, condition (1.2) is satisfied, and

f(t, x, y) sgnx ≤ q(t) for t ∈ [a, b], x, y ∈ R, (1.18)

where q ∈ L([a, b];R+). If, moreover,

b∫
a

p(s)ds < 1,

b∫
a

g(s)ds < γ(λ), (1.19)

where

γ(λ) =



−λ+ 2

√√√√√1−
b∫

a

p(s)ds for

b∫
a

p(s)ds < 1− λ2,

1
λ

1−
b∫

a

p(s)ds

 for

b∫
a

p(s)ds ≥ 1− λ2,

(1.20)

then problem (0.3), (0.2) has at least one solution.

Corollary 1.2. Suppose thatλ ∈ ]0, 1], c ∈ R+, condition (1.7) is satisfied, and

f(t, x, y) sgnx ≥ −q(t) for t ∈ [a, b], x, y ∈ R, (1.21)

where q ∈ L([a, b];R+). If, moreover,

λ

b∫
a

g(s)ds+

b∫
a

p(s)ds < λ, (1.22)

then problem (0.3), (0.2) has at least one solution.
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Corollary 1.3. Suppose thatλ ∈ [1,+∞[, c ∈ R+, conditions (1.7) and (1.21) are satisfied, and

b∫
a

g(s)ds < 1,

b∫
a

p(s)ds < δ(λ), (1.23)

where

δ(λ) =



− 1
λ

+ 2

√√√√√1−
b∫

a

g(s)ds for

b∫
a

g(s)ds < 1− 1
λ2
,

λ

1−
b∫

a

g(s)ds

 for

b∫
a

g(s)ds ≥ 1− 1
λ2
.

(1.24)

Then problem (0.3), (0.2) has at least one solution.

Corollary 1.4. Suppose thatλ ∈ [1,+∞[, c ∈ R+, conditions (1.2) and (1.18) are satisfied, and

λ

b∫
a

g(s)ds+

b∫
a

p(s)ds < 1. (1.25)

Then problem (0.3), (0.2) has at least one solution.

Corollary 1.5. Suppose thatλ ∈ ]0, 1], condition (1.14) is satisfied, and

[f(t, x1, y1)− f(t, x2, y2)] sgn(x1 − x2) ≤ 0 for t ∈ [a, b], x1, x2, y1, y2 ∈ R. (1.26)

Also assume that relation (1.19), whereγ(λ) is defined by (1.20), is satisfied. Then problem (0.3), (0.2) is uniquely
solvable.

Corollary 1.6. Suppose thatλ ∈ ]0, 1], relations (1.16) and (1.22) are satisfied, and

[f(t, x1, y1)− f(t, x2, y2)] sgn(x1 − x2) ≥ 0 for t ∈ [a, b], x1, x2, y1, y2 ∈ R. (1.27)

Then problem (0.3), (0.2) is uniquely solvable.

Corollary 1.7. Suppose thatλ ∈ [1,+∞[ and conditions (1.16) and (1.27) are satisfied. Also assume that
relation (1.23), whereδ(λ) is defined by (1.24), is true. Then problem (0.3), (0.2) is uniquely solvable.

Corollary 1.8. Suppose thatλ ∈ [1,+∞[ and conditions (1.14), (1.25), and (1.26) are satisfied. Then
problem (0.3), (0.2) is uniquely solvable.
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2. Auxiliary Propositions

First we formulate Theorem 1 from [22] in the form suitable for what follows.

Lemma 2.1. Suppose that there exist a positive numberρ and an operator` ∈ L̃ab such that the homo-
geneous problem (0.10), (0.20) has only the trivial solution, and, for everyδ ∈ ]0, 1[ and an arbitrary function
u ∈ C̃([a, b];R) such that

u′(t) = `(u)(t) + δ[F (u)(t)− `(u)(t)], u(a) + λu(b) = δh(u), (2.1)

the following estimate is true:

‖u‖C ≤ ρ. (2.2)

Then problem (0.1), (0.2) has at least one solution.

Definition 2.1. We say that an operator̀ ∈ L̃ab belongs to the setUi(λ), i ∈ {1, 2}, if there exists a
positive numberr such that, for anyq∗ ∈ L([a, b];R+) and c ∈ R+, every functionu ∈ C̃([a, b];R) satisfying
the inequalities

[u(a) + λu(b)] sgn ((2− i)u(a) + (i− 1)u(b)) ≤ c, (2.3)

(−1)i+1[u′(t)− `(u)(t)] sgnu(t) ≤ q∗(t) for t ∈ [a, b], (2.4)

admits the estimate

‖u‖C ≤ r (c+ ‖q∗‖L) . (2.5)

Lemma 2.2. Let i ∈ {1, 2}, c ∈ R+,

h(v) sgn((2− i)v(a) + (i− 1)v(b)) ≤ c for v ∈ C([a, b];R), (2.6)

and let there exist̀ ∈ Ui(λ) such that, on the setBi
λc([a, b];R), the following inequality is satisfied:

(−1)i+1[F (v)(t)− `(v)(t)] sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b]. (2.7)

Then problem (0.1), (0.2) has at least one solution.

Proof. First note that, due to the conditioǹ∈ Ui(λ), the homogeneous problem (0.10), (0.20) has only the
trivial solution.

Let r be the number appearing in Definition 2.1. According to (1.1), there existsρ > 2rc such that

1
x

b∫
a

q(s, x)ds <
1
2r

for x > ρ.
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Now assume that a functionu ∈ C̃([a, b];R) satisfies (2.1) for someδ ∈ ]0, 1[. Then, according to (2.6),u
satisfies inequality (2.3), i.e.,u ∈ Bi

λc([a, b];R). Taking (2.1) and (2.7) into account, we conclude that inequality
(2.4) holds forq∗(t) = q(t, ‖u‖C). Hence, by using the conditioǹ∈ Ui(λ) and the definition of the numberρ,
we get estimate (2.2).

Since ρ depends neither onu nor on δ, it follows from Lemma 2.1 that problem (0.1), (0.2) has at least one
solution.

The lemma is proved.

Lemma 2.3. Let i ∈ {1, 2}, let

[h(u1)− h(u2)] sgn((2− i)(u1(a)− u2(a)) + (i− 1)(u1(b)− u2(a))) ≤ 0 (2.8)

for u1, u2 ∈ C([a, b];R),

and let there exist̀ ∈ Ui(λ) such that, on the setBi
λc([a, b];R), where c = |h(0)|, the following inequality is

satisfied:

(−1)i+1[F (u1)(t)− F (u2)(t)− `(u1 − u2)(t)] sgn(u1(t)− u2(t)) ≤ 0. (2.9)

Then problem (0.1), (0.2) is uniquely solvable.

Proof. It follows from (2.8) that condition (2.6), wherec = |h(0)|, is satisfied. By virtue of (2.9), inequality
(2.7), whereq ≡ |F (0)|, holds on the setBi

λc([a, b];R). Consequently, all assumptions of Lemma 2.2 are sat-
isfied, which guarantees that problem (0.1), (0.2) has at least one solution. It remains to show that problem (0.1),
(0.2) has at most one solution.

Let u1 and u2 be arbitrary solutions of problem (0.1), (0.2). We setu(t) = u1(t) − u2(t) for t ∈ [a, b].
Then, by virtue of (2.8) and (2.9), we get

[u(a) + λu(b)] sgn((2− i)u(a) + (i− 1)u(b)) ≤ 0,

(−1)i+1[u′(t)− `(u)(t)] sgnu(t) ≤ 0 for t ∈ [a, b].

This, together with the conditioǹ ∈ Ui(λ), yields u ≡ 0. Consequently,u1 ≡ u2.

The lemma is proved.

Lemma 2.4. Suppose thatλ ∈ ]0, 1] and the operator̀ admits the representatioǹ = `0 − `1, where `0
and `1 satisfy conditions (1.3) and (1.5), in whichα is defined by (1.6). Theǹ belongs to the setU1(λ).
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Proof. Let q∗ ∈ L([a, b];R+), c ∈ R+, and u ∈ C̃([a, b];R) satisfy (2.3) and (2.4) fori = 1. We prove
relation (2.5), where

r =



‖`1(1)‖L + 1 + λ

1− ‖`0(1)‖L −
1
4
(‖`1(1)‖L + λ)2

if ‖`0(1)‖L < 1− λ2,

‖`1(1)‖L + 1 + λ

1− ‖`0(1)‖L − λ‖`1(1)‖L
if ‖`0(1)‖L ≥ 1− λ2.

(2.10)

It is clear that

u′(t) = `0(u)(t)− `1(u)(t) + q̃(t), (2.11)

where

q̃(t) = u′(t)− `(u)(t) for t ∈ [a, b]. (2.12)

Obviously,

q̃(t) sgnu(t) ≤ q∗(t) for t ∈ [a, b] (2.13)

and

[u(a) + λu(b)] sgnu(a) ≤ c. (2.14)

First assume thatu does not change its sign. According to (2.14) and the assumptionλ ∈ ]0, 1], we obtain

|u(a)| ≤ c. (2.15)

We chooset0 ∈ [a, b] so that

|u(t0)| = ‖u‖C . (2.16)

By virtue of (1.3) and (2.13), relation (2.11) yields

|u(t)|′ ≤ ‖u‖C `0(1)(t) + q∗(t) for t ∈ [a, b]. (2.17)

The integration of (2.17) froma to t0 with regard for (1.3), (2.15), and (2.16) results in

‖u‖C − c ≤ ‖u‖C − |u(a)| ≤ ‖u‖C

t0∫
a

`0(1)(s)ds+

t0∫
a

q∗(s)ds ≤ ‖u‖C‖`0(1)‖L + ‖q∗‖L.
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Thus,

‖u‖C (1− ‖`0(1)‖L) ≤ c+ ‖q∗‖L,

and, consequently, estimate (2.5) holds.
Now assume thatu changes its sign. We set

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]} (2.18)

and choosetM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (2.19)

It is obvious thatM > 0, m > 0, and either

tm < tM (2.20)

or

tm > tM . (2.21)

First, assume that relation (2.20) is satisfied. It is clear that there existsα2 ∈ ]tm, tM [ such that

u(t) > 0 for α2 < t ≤ tM , u(α2) = 0. (2.22)

Let

α1 = inf{t ∈ [a, tm] : u(s) < 0 for t ≤ s ≤ tm}.

It is obvious that

u(t) < 0 for α1 < t ≤ tm and u(α1) = 0 if α1 > a. (2.23)

It follows from relations (2.14) and (2.23) and the assumptionλ ∈ ]0, 1] that

u(α1) ≥ −λ[u(b)]+ − c ≥ −λM − c. (2.24)

The integration of (2.11) fromα1 to tm and fromα2 to tM with regard for (1.3), (2.13), (2.18), (2.19), (2.22),
(2.23), and (2.24) yields

m− λM − c ≤ m+ u(α1) ≤M

tm∫
α1

`1(1)(s)ds+m

tm∫
α1

`0(1)(s)ds+

tm∫
α1

q∗(s)ds,

M ≤M

tM∫
α2

`0(1)(s)ds+m

tM∫
α2

`1(1)(s)ds+

tM∫
α2

q∗(s)ds.
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Using the last two inequalities, we obtain

m(1− C1) ≤M(A1 + λ) + ‖q∗‖L + c, M(1−D1) ≤ mB1 + ‖q∗‖L, (2.25)

where

A1 =

tm∫
α1

`1(1)(s)ds, B1 =

tM∫
α2

`1(1)(s)ds,

C1 =

tm∫
α1

`0(1)(s)ds, D1 =

tM∫
α2

`0(1)(s)ds.

Due to the first inequality in (1.5), we haveC1 < 1 andD1 < 1. Consequently, relation (2.25) yields

0 < m(1− C1)(1−D1) ≤ (A1 + λ)(mB1 + ‖q∗‖L) + ‖q∗‖L + c

≤ m(A1 + λ)B1 + (‖q∗‖L + c)(‖`1(1)‖L + 1 + λ),

0 < M(1− C1)(1−D1) ≤ B1(M(A1 + λ) + ‖q∗‖L + c) + ‖q∗‖L

≤M(A1 + λ)B1 + (‖q∗‖L + c)(‖`1(1)‖L + 1 + λ).

(2.26)

Obviously,

(1− C1)(1−D1) ≥ 1− (C1 +D1) ≥ 1− ‖`0(1)‖L > 0. (2.27)

If ‖`0(1)‖L ≥ 1−λ2, then, according to (1.6) and the second inequality in (1.5), we obtain‖`1(1)‖L < λ. Hence,
B1 < λ and

(A1 + λ)B1 = A1B1 + λB1 ≤ λ(A1 +B1) ≤ λ‖`1(1)‖L.

By virtue of the last inequality and (2.27), relation (2.26) yields

m ≤ r0(‖`1(1)‖L + 1 + λ)(c+ ‖q∗‖L),

M ≤ r0(‖`1(1)‖L + 1 + λ)(c+ ‖q∗‖L),

(2.28)

where

r0 = (1− ‖`0(1)‖L − λ‖`1(1)‖L)−1. (2.29)

Therefore, estimate (2.5) is true.
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If ‖`0(1)‖L < 1− λ2, then, by virtue of the inequalities

4(A1 + λ)B1 ≤ (A1 +B1 + λ)2 ≤ (‖`1(1)‖L + λ)2

and (2.27), relation (2.26) yields

m ≤ r1(‖`1(1)‖L + 1 + λ)(c+ ‖q∗‖L),

M ≤ r1(‖`1(1)‖L + 1 + λ)(c+ ‖q∗‖L),

(2.30)

where

r1 =
[
1− ‖`0(1)‖L −

1
4
(‖`1(1)‖L + λ)2

]−1

. (2.31)

Therefore, estimate (2.5) is valid.
Now assume that (2.21) is satisfied. Obviously, there existsα4 ∈ ]tm, tM [ such that

u(t) < 0 for α4 < t ≤ tm, u(α4) = 0. (2.32)

Let

α3 = inf{t ∈ [a, tM ] : u(s) > 0 for t ≤ s ≤ tM}.

Obviously,

u(t) > 0 for α3 < t ≤ tM and u(α3) = 0 if α3 > a. (2.33)

It follows from relations (2.14) and (2.33) and the assumptionλ ∈ ]0, 1] that

u(α3) ≤ λ[u(b)]− + c ≤ λm+ c. (2.34)

The integration of (2.11) fromα3 to tM and fromα4 to tm with regard for (1.3), (2.13), (2.18), (2.19), (2.32),
(2.33), and (2.34) results in

M − λm− c ≤M − u(α3) ≤M

tM∫
α3

`0(1)(s)ds+m

tM∫
α3

`1(1)(s)ds+

tM∫
α3

q∗(s)ds,

m ≤M

tm∫
α4

`1(1)(s)ds+m

tm∫
α4

`0(1)(s)ds+

tm∫
α4

q∗(s)ds.
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Using the last two inequalities, we obtain

M(1− C2) ≤ m(A2 + λ) + ‖q∗‖L + c, m(1−D2) ≤MB2 + ‖q∗‖L, (2.35)

where

A2 =

tM∫
α3

`1(1)(s)ds, B2 =

tm∫
α4

`1(1)(s)ds,

C2 =

tM∫
α3

`0(1)(s)ds, D2 =

tm∫
α4

`0(1)(s)ds.

Due to the first inequality in (1.5), we haveC2 < 1 andD2 < 1. Consequently, relation (2.35) yields

0 < M(1− C2)(1−D2) ≤ (A2 + λ)(MB2 + ‖q∗‖L) + ‖q∗‖L + c

≤M(A2 + λ)B2 + (‖q∗‖L + c)(‖`1(1)‖L + 1 + λ),

0 < m(1− C2)(1−D2) ≤ B2(m(A2 + λ) + ‖q∗‖L + c) + ‖q∗‖L

≤ m(A2 + λ)B2 + (‖q∗‖L + c)(‖`1(1)‖L + 1 + λ).

(2.36)

Obviously,

(1− C2)(1−D2) ≥ 1− (C2 +D2) ≥ 1− ‖`0(1)‖L > 0. (2.37)

If ‖`0(1)‖L ≥ 1−λ2, then, according to relation (1.6) and the second inequality in (1.5), we obtain‖`1(1)‖L < λ.

Hence,B2 < λ and

(A2 + λ)B2 = A2B2 + λB2 ≤ λ(A2 +B2) ≤ λ‖`1(1)‖L.

By virtue of the last inequality and (2.37), relation (2.36) yields (2.28), wherer0 is defined by (2.29). Therefore,
estimate (2.5) is valid.

If ‖`0(1)‖L < 1− λ2, then, by virtue of the inequalities

4(A2 + λ)B2 ≤ (A2 +B2 + λ)2 ≤ (‖`1(1)‖L + λ)2

and (2.37), relation (2.36) yields (2.30), wherer1 is defined by (2.31). Therefore, estimate (2.5) holds.
The lemma is proved.

Lemma 2.5. Suppose thatλ ∈ ]0, 1] and the operator̀ admits the representatioǹ = `0 − `1, where `0
and `1 satisfy conditions (1.3) and (1.9). Then` belongs to the setU2(λ).
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Proof. Let q∗ ∈ L([a, b];R+), c ∈ R+ and u ∈ C̃([a, b];R) satisfy (2.3) and (2.4) fori = 2. We prove
relation (2.5), where

r =
λ‖`0(1)‖L + 1 + λ

λ− λ‖`1(1)‖L − ‖`0(1)‖L
. (2.38)

It is obvious thatu satisfies (2.11), wherẽq is defined by (2.12). Clearly,

−q̃(t) sgnu(t) ≤ q∗(t) for t ∈ [a, b], (2.39)

and

[u(a) + λu(b)] sgnu(b) ≤ c. (2.40)

First, assume thatu does not change its sign. According to (2.40) and the assumptionλ ∈ ]0, 1], we obtain

|u(b)| ≤ c

λ
. (2.41)

We chooset0 ∈ [a, b] so that (2.16) holds. Due to (1.3) and (2.41), relation (2.11) yields

−|u(t)|′ ≤ ‖u‖C `1(1)(t) + q∗(t) for t ∈ [a, b]. (2.42)

The integration of (2.42) fromt0 to b with regard for (1.3), (2.41), and (2.16) results in

‖u‖C −
c

λ
≤ ‖u‖C − |u(b)| ≤ ‖u‖C

b∫
t0

`1(1)(s)ds+

b∫
t0

q∗(s)ds ≤ ‖u‖C‖`1(1)‖L + ‖q∗‖L.

Thus,

‖u‖C (1− ‖`1(1)‖L) ≤ c+ ‖q∗‖L

λ
,

and, consequently, estimate (2.5) holds.
Now assume thatu changes its sign. We define numbersM andm by (2.18) and choosetM , tm ∈ [a, b] so

that (2.19) is satisfied. It is obvious thatM > 0, m > 0, and either (2.20) or (2.21) is valid.
First, assume that relation (2.21) holds. It is clear that there existsα1 ∈ ]tM , tm[ such that

u(t) > 0 for tM ≤ t < α1, u(α1) = 0. (2.43)

Let

α2 = sup{t ∈ [tm, b] : u(s) < 0 for tm ≤ s ≤ t}.
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Obviously,

u(t) < 0 for tm ≤ t < α2 and u(α2) = 0 if α2 < b. (2.44)

Using relations (2.40) and (2.44) and the assumptionλ ∈ ]0, 1], we obtain

u(α2) ≥ −
1
λ

[u(a)]+ −
c

λ
≥ −M

λ
− c

λ
. (2.45)

The integration of (2.11) fromtM to α1 and from tm to α2 with regard for (1.3), (2.18), (2.19), (2.39), (2.43),
(2.44), and (2.45) gives

M ≤M

α1∫
tM

`1(1)(s)ds+m

α1∫
tM

`0(1)(s)ds+

α1∫
tM

q∗(s)ds,

m− M

λ
− c

λ
≤ m+ u(α2) ≤M

α2∫
tm

`0(1)(s)ds+m

α2∫
tm

`1(1)(s)ds+

α2∫
tm

q∗(s)ds.

The last two inequalities yield

M(1−A1) ≤ mC1 + ‖q∗‖L, m(1−B1) ≤M

(
D1 +

1
λ

)
+ ‖q∗‖L +

c

λ
, (2.46)

where

A1 =

α1∫
tM

`1(1)(s)ds, B1 =

α2∫
tm

`1(1)(s)ds,

C1 =

α1∫
tM

`0(1)(s)ds, D1 =

α2∫
tm

`0(1)(s)ds.

Due to (1.9), we haveA1 < 1 andB1 < 1. Consequently, relation (2.46) yields
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0 < M(1−A1)(1−B1) ≤ C1

(
M

(
D1 +

1
λ

)
+ ‖q∗‖L +

c

λ

)
+ ‖q∗‖L

≤MC1

(
D1 +

1
λ

)
+

(
‖`0(1)‖L + 1 +

1
λ

)
(‖q∗‖L + c) ,

0 < m(1−A1)(1−B1) ≤
(
D1 +

1
λ

)
(mC1 + ‖q∗‖L) + ‖q∗‖L +

c

λ

≤ mC1

(
D1 +

1
λ

)
+

(
‖`0(1)‖L + 1 +

1
λ

)
(‖q∗‖L + c) .

(2.47)

Obviously,

(1−A1)(1−B1) ≥ 1− (A1 +B1) ≥ 1− ‖`1(1)‖L > 0. (2.48)

According to relation (1.9) and the assumptionλ ∈ ]0, 1], we obtain‖`0(1)‖L <
1
λ
. Hence,C1 <

1
λ

and

C1

(
D1 +

1
λ

)
= C1D1 +

1
λ
C1 ≤

1
λ

(C1 +D1) ≤
1
λ
‖`0(1)‖L.

By virtue of the last inequality, (2.48), and the assumptionλ ∈ ]0, 1], relation (2.47) yields

M ≤ r0 (λ‖`0(1)‖L + 1 + λ) (c+ ‖q∗‖L),

m ≤ r0 (λ‖`0(1)‖L + 1 + λ) (c+ ‖q∗‖L),

(2.49)

where

r0 = (λ− λ‖`1(1)‖L − ‖`0(1)‖L)−1. (2.50)

Therefore, estimate (2.5) holds.
Now assume that relation (2.20) is valid. Obviously, there existsα3 ∈ ]tm, tM [ such that

u(t) < 0 for tm ≤ t < α3, u(α3) = 0. (2.51)

Let

α4 = sup{t ∈ [tM , b] : u(s) > 0 for tM ≤ s ≤ t}.

It is clear that

u(t) > 0 for tM ≤ t < α4 and u(α4) = 0 if α4 < b. (2.52)
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It follows from relations (2.40) and (2.52) and the assumptionλ ∈ ]0, 1] that

u(α4) ≤
1
λ

[u(a)]− +
c

λ
≤ m

λ
+
c

λ
. (2.53)

The integration of (2.11) fromtm to α3 and from tM to α4 with regard for (1.3), (2.18), (2.19), (2.39), (2.51),
(2.52), and (2.53) yields

m ≤M

α3∫
tm

`0(1)(s)ds+m

α3∫
tm

`1(1)(s)ds+

α3∫
tm

q∗(s)ds,

M − m

λ
− c

λ
≤M − u(α4) ≤M

α4∫
tM

`1(1)(s)ds+m

α4∫
tM

`0(1)(s)ds+

α4∫
tM

q∗(s)ds.

Using the last two inequalities, we get

m(1−A2) ≤MC2 + ‖q∗‖L, M(1−B2) ≤ m

(
D2 +

1
λ

)
+ ‖q∗‖L +

c

λ
, (2.54)

where

A2 =

α3∫
tm

`1(1)(s)ds, B2 =

α4∫
tM

`1(1)(s)ds,

C2 =

α3∫
tm

`0(1)(s)ds, D2 =

α4∫
tM

`0(1)(s)ds.

Due to (1.9), we haveA2 < 1 andB2 < 1. Consequently, relation (2.54) yields

0 < m(1−A2)(1−B2) ≤ C2

(
m

(
D2 +

1
λ

)
+ ‖q∗‖L +

c

λ

)
+ ‖q∗‖L

≤ mC2

(
D2 +

1
λ

)
+

(
‖`0(1)‖L + 1 +

1
λ

)
(‖q∗‖L + c) ,

0 < M(1−A2)(1−B2) ≤
(
D2 +

1
λ

)
(MC2 + ‖q∗‖L) + ‖q∗‖L +

c

λ

≤MC2

(
D2 +

1
λ

)
+

(
‖`0(1)‖L + 1 +

1
λ

)
(‖q∗‖L + c) .

(2.55)
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Obviously,

(1−A2)(1−B2) ≥ 1− (A2 +B2) ≥ 1− ‖`1(1)‖L > 0. (2.56)

According to relation (1.9) and the assumptionλ ∈ ]0, 1], we obtain‖`0(1)‖L <
1
λ
. Hence,C2 <

1
λ

and

C2

(
D2 +

1
λ

)
= C2D2 +

1
λ
C2 ≤

1
λ

(C2 +D2) ≤
1
λ
‖`0(1)‖L.

By virtue of the last inequality and (2.56), relation (2.55) yields (2.49), wherer0 is defined by (2.50). Therefore,
estimate (2.5) is valid.

The lemma is proved.

3. Proofs of Main Results

Theorem 1.1 follows from Lemmas 2.2 and 2.4, Theorem 1.2 follows from Lemmas 2.2 and 2.5, Theorem 1.5
follows from Lemmas 2.3 and 2.4, and Theorem 1.6 follows from Lemmas 2.3 and 2.5.

Proof of Corollary 1.1. Conditions (1.18) and (1.19), whereγ is defined by (1.20), obviously yield conditions
(1.4) and (1.5), whereα is defined by (1.6) and

F (v)(t) df= p(t)v(τ(t))− g(t)v(µ(t)) + f(t, v(t), v(ν(t))),

`0(v)(t)
df= p(t)v(τ(t)), `1(v)(t)

df= g(t)v(µ(t)).

(3.1)

Consequently, all assumptions of Theorem 1.1 are satisfied.

Proof of Corollary 1.5. Conditions (1.26) and (1.19), whereγ is defined by (1.20), obviously yield condi-
tions (1.15) and (1.5), whereα is defined by (1.6) andF, `0, and `1 are defined by (3.1). Consequently, all
assumptions of Theorem 1.5 are satisfied.

Corollaries 1.2–1.4 and 1.6–1.8 can be proved by analogy.

4. On Remarks 1.1 and 1.2

On Remark 1.1.Let λ ∈ ]0, 1] (for the caseλ = 0, see [5]). Denote byG the set of pairs(x, y) ∈ R+×R+

such that either

x < 1− λ2, y < 2
√

1− x− λ,

or

1− λ2 ≤ x < 1, y <
1− x

λ
.
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According to Theorem 1.1, if (1.2) is satisfied and there exist`0, `1 ∈ Pab such that(‖`0(1)‖L, ‖`1(1)‖L) ∈ G

and inequality (1.4) holds on the setB1
λc([a, b];R), then problem (0.1), (0.2) is solvable.

Below, we give examples showing that, for any pair(x0, y0) 6∈ G, x0 ≥ 0, y0 ≥ 0, there exist functions
p0 ∈ L([a, b];R), −p1 ∈ L([a, b];R+), and τ ∈Mab such that

b∫
a

[p0(s)]+ds = x0,

b∫
a

[p0(s)]−ds = y0, (4.1)

and the problem

u′(t) = p0(t)u(τ(t)) + p1(t)u(t), u(a) + λu(b) = 0 (4.2)

has a nontrivial solution. Then, by Remark 0.1, there existq0 ∈ L([a, b];R) and c0 ∈ R such that problem (0.1),
(0.2), where

F (v)(t) df= p0(t)v(τ(t)) + p1(t)v(t) + q0(t), h(v) df= c0, (4.3)

does not have solutions, while conditions (1.2) and (1.4) are satisfied with`0(v)(t)
df= [p0(t)]+v(τ(t)), `1(v)(t)

df=
[p0(t)]−v(τ(t)), q ≡ |q0|, and c = |c0|.

It is clear that ifx0, y0 ∈ R+ and (x0, y0) 6∈ G, then (x0, y0) belongs to at least one of the following sets:

G1 = {(x, y) ∈ R+ ×R+ : 1 < x, 0 ≤ y} ,

G2 =
{

(x, y) ∈ R+ ×R+ : 1− λ2 ≤ x ≤ 1,
1− x

λ
< y

}
,

G3 =
{
(x, y) ∈ R+ ×R+ : 0 ≤ x < 1− λ2, 2

√
1− x− λ < y

}
.

Example 4.1. Let (x0, y0) ∈ G1 and ε > 0 be such thatx0− ε ≥ 1 and λ− ε > 0. We seta = 0, b = 4,
t0 = 3 +

ε

1 + ε
,

p0(t) =



0 for t ∈ [0, 1[,

−y0 for t ∈ [1, 2[,

x0 − 1− ε for t ∈ [2, 3[,

1 + ε for t ∈ [3, 4],

p1(t) =

−
λ− ε

λ− (λ− ε)t
for t ∈ [0, 1[,

0 for t ∈ [1, 4],

and
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τ(t) =

t0 for t ∈ [0, 3[,

4 for t ∈ [3, 4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

u(t) =


−(λ− ε)t+ λ for t ∈ [0, 1[,

ε for t ∈ [1, 3[,

−(1 + ε)(t− 3) + ε for t ∈ [3, 4].

Example 4.2. Let (x0, y0) ∈ G2 and ε > 0 be such that
1− x0 + ε

λ
≤ y0 and λ− ε > 0. We seta = 0,

b = 4, t0 = 2 +
ε

1− x0 + ε
,

p0(t) =



0 for t ∈ [0, 1[,

−y0 +
1− x0 + ε

λ
for t ∈ [1, 2[,

−1− x0 + ε

λ
for t ∈ [2, 3[,

x0 for t ∈ [3, 4],

p1(t) =


− λ− ε

λ− (λ− ε)t
for t ∈ [0, 1[,

0 for t ∈ [1, 4],

and

τ(t) =


t0 for t ∈ [0, 2[,

0 for t ∈ [2, 3[,

4 for t ∈ [3, 4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

u(t) =



−(λ− ε)t+ λ for t ∈ [0, 1[,

ε for t ∈ [1, 2[,

−(1− x0 + ε)(t− 2) + ε for t ∈ [2, 3[,

−x0(t− 3)− (1− x0) for t ∈ [3, 4].



556 R. HAKL , A. L OMTATIDZE , AND J. ŠREMR

Example 4.3. Let (x0, y0) ∈ G3 and ε > 0 be such thaty0 ≥ 2
√

1− x0 − λ + ε and ε < 1 −
√

1− x0.

We seta = 0, b = 5,

p0(t) =



−
√

1− x0 + λ for t ∈ [0, 1[,

0 for t ∈ [1, 3−
√

1− x0 − ε[,

−1 for t ∈ [3−
√

1− x0 − ε, 3[,

−y0 + 2
√

1− x0 − λ+ ε for t ∈ [3, 4[,

x0 for t ∈ [4, 5],

p1(t) =



0 for t ∈ [0, 1[∪[3−
√

1− x0 − ε, 5],

− 1− x0

(1− x0)(1− t) +
√

1− x0
for t ∈ [1, 2[,

−
√

1− x0√
1− x0(3− t)− (1− x0)

for t ∈ [2, 3−
√

1− x0 − ε[,

and

τ(t) =



5 for t ∈ [0, 1[,

1 for t ∈ [1, 3[,

3−
√

1− x0 for t ∈ [3, 4[,

5 for t ∈ [4, 5].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

u(t) =



(
√

1− x0 − λ)t+ λ for t ∈ [0, 1[,

(1− x0)(1− t) +
√

1− x0 for t ∈ [1, 2[,

√
1− x0(3− t)− (1− x0) for t ∈ [2, 3[,

−(1− x0) for t ∈ [3, 4[,

x0(5− t)− 1 for t ∈ [4, 5].

On Remark 1.2. Let λ ∈ ]0, 1]. Denote byH the set of pairs(x, y) ∈ R+ ×R+ such that

x+ λy < λ.

By virtue of Theorem 1.2, if relation (1.7) is satisfied and there exist`0, `1 ∈ Pab and q ∈ L([a, b];R+) such
that (‖`0(1)‖L, ‖`1(1)‖L) ∈ H and inequality (1.8) holds on the setB2

λc([a, b];R), then problem (0.1), (0.2) is
solvable.
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Below, we give examples showing that, for any pair(x0, y0) 6∈ H, x0 ≥ 0, y0 ≥ 0, there exist functions
p0 ∈ L([a, b];R), p1 ∈ L([a, b];R+), and τ ∈ Mab such that relation (4.1) is satisfied and problem (4.2) has a
nontrivial solution. Then, by Remark 0.1, there existq0 ∈ L([a, b];R) and c0 ∈ R such that problem (0.1), (0.2),
where F and h are defined by (4.3), does not have solutions, while conditions (1.7) and (1.8) are satisfied with

`0(v)(t)
df= [p0(t)]+v(τ(t)), `1(v)(t)

df= [p0(t)]−v(τ(t)), q ≡ |q0|, and c = |c0|.
It is clear that ifx0, y0 ∈ R+ and (x0, y0) 6∈ H, then (x0, y0) belongs to at least one of the following sets:

H1 = {(x, y) ∈ R+ ×R+ : λ < x, 0 ≤ y} ,

H2 =
{

(x, y) ∈ R+ ×R+ : 0 ≤ x ≤ λ, −x
λ

+ 1 < y
}
.

Example 4.4. Let (x0, y0) ∈ H1 and ε > 0 be such thatx0− λ ≥ ε and 1− ε > 0. We seta = 0, b = 4,

t0 =
λ

λ+ ε
,

p0(t) =



λ+ ε for t ∈ [0, 1[,

−y0 for t ∈ [1, 2[,

x0 − λ− ε for t ∈ [2, 3[,

0 for t ∈ [3, 4],

p1(t) =


0 for t ∈ [0, 3[,

1− ε

(1− ε)(t− 4) + 1
for t ∈ [3, 4],

and

τ(t) =

4 for t ∈ [0, 1[,

t0 for t ∈ [1, 4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

u(t) =


(λ+ ε)t− λ for t ∈ [0, 1[,

ε for t ∈ [1, 3[,

(1− ε)(t− 4) + 1 for t ∈ [3, 4].
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Example 4.5. Let (x0, y0) ∈ H2 and ε > 0 be such that
λ− x0 + ε

λ
≤ y0 and 1− ε > 0. We seta = 0,

b = 4, t0 = 2− ε

λ− x0 + ε
,

p0(t) =



x0 for t ∈ [0, 1[,

−λ− x0 + ε

λ
for t ∈ [1, 2[,

−y0 +
λ− x0 + ε

λ
for t ∈ [2, 3[,

0 for t ∈ [3, 4],

p1(t) =


0 for t ∈ [0, 3[,

1− ε

1− (1− ε)(4− t)
for t ∈ [3, 4],

and

τ(t) =


4 for t ∈ [0, 1[,

0 for t ∈ [1, 2[,

t0 for t ∈ [2, 4].

Then relation (4.1) holds, and problem (4.2) has the nontrivial solution

u(t) =



−x0t+ λ for t ∈ [0, 1[,

(λ− x0 + ε)(2− t)− ε for t ∈ [1, 2[,

−ε for t ∈ [2, 3[,

(1− ε)(4− t)− 1 for t ∈ [3, 4].
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19. I. Kiguradze and B. P̊uža, “On boundary-value problems for systems of linear functional differential equations,”Czech. Math. J.,47,

No. 2, 341–373 (1997).
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