ORDINARY DIFFERENTIAL EQUATIONS

On the Periodic Boundary Value Problem for First-Order Functional-Differential Equations

A. G. Lomtatidze, R. Hakl, and B. Půža

Masaryk University, Brno, Czech Republic Received August 6, 2002

1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

In the present paper, we consider the boundary value problem

$$u'(t) = \ell(u)(t) + F(u)(t), \tag{1.1}$$

$$u(a) = u(b), \tag{1.2}$$

where $\ell : C([a, b]; R) \to L([a, b]; R)$ is a linear bounded operator and $F : C([a, b]; R) \to L([a, b]; R)$ is a continuous operator, not necessarily linear.

This problem, which is the subject of numerous studies, has long been attracting mathematicians' attention. Interesting results about its solvability can be found, e.g., in [1-11]. Nevertheless, problem (1.1), (1.2) has not been completely analyzed yet even for the linear case, in which Eq. (1.1) has the form

$$u'(t) = \ell(u)(t) + g(t).$$
(1.3)

In a sense, we fill the gap. More precisely, new effective criteria for the solvability and unique solvability of problems (1.3), (1.2) and (1.1), (1.2) are given in Sections 2 and 3. In Section 4, we construct examples justifying the optimality of these criteria. The results are further specialized for the equations

$$u'(t) = p(t)u(\tau(t)) + g(t), \tag{1.4}$$

$$u'(t) = p(t)u(\tau(t)) + f(t, u(\mu(t)), u(t))$$
(1.5)

with deviating arguments.

We use the following notation:

 ${\cal R}$ is the set of real numbers;

 $R_+ = [0, +\infty[;$

C([a,b];R) is the space of continuous functions $u:[a,b]\to R$ with the norm

$$||u||_C = \max\{|u(t)|: a \le t \le b\};$$

 $C([a,b]; R_+) = \{u \in C([a,b]; R) : u(t) \ge 0 \text{ for } t \in [a,b]\};$ $C_0([a,b]; R) = \{u \in C([a,b]; R) : u(a) = u(b)\};$ $\tilde{C}([a,b]; R) \text{ is the set of absolutely continuous functions } u : [a,b] \to R;$ $L([a,b]; R) \text{ is the space of Lebesgue integrable functions } p : [a,b] \to R \text{ with the norm}$

$$||p||_L = \int_a^b |p(s)|ds;$$

 $L([a,b]; R_+) = \{ p \in L([a,b]; R) : p(t) \ge 0 \text{ for } t \in]a, b[\};$ $\mathscr{M}_{ab} \text{ is the set of measurable functions } \tau : [a,b] \to [a,b];$ \mathscr{T}_{ab} is the set of linear positive operators $h: C([a,b];R) \to L([a,b];R)$, that is, linear operators that map $C([a,b];R_+)$ into $L([a,b];R_+)$;

 \mathscr{K}_{ab} is the set of continuous operators $F: C([a,b];R) \to L([a,b];R)$ such that

$$\sup \{ |F(v)(\cdot)| : \|v\|_C \le r \} \in L([a,b]; R_+)$$

for arbitrary r > 0;

$$[p]_{+} = 2^{-1}(|p|+p); \qquad [p]_{-} = 2^{-1}(|p|-p);$$
$$J_{\pm} \equiv \int_{a}^{b} [p(s)]_{\pm} ds.$$

Throughout the following, we assume that $\ell : C([a,b];R) \to L([a,b];R)$ is a linear bounded operator, $F \in \mathscr{K}_{ab}$, $p, g \in L([a,b];R)$, $\tau, \mu \in \mathscr{M}_{ab}$, and $f : [a,b] \times R^2 \to R$ satisfies the local Carathéodory conditions. We deal with solutions of problem (1.1), (1.2) in the space $\tilde{C}([a,b];R)$.

2. THE LINEAR PROBLEM

Theorem 2.1. Let

$$\ell = \ell_0 - \ell_1, \quad \ell_0, \ell_1 \in \mathscr{P}_{ab}, \tag{2.1}$$

and let the inequalities

$$\|\ell_i(1)\|_L < 1, \tag{2.2}$$

$$\|\ell_i(1)\|_L / (1 - \|\ell_i(1)\|_L) < \|\ell_j(1)\|_L < 2 + 2(1 - \|\ell_i(1)\|_L)^{1/2}$$
(2.3)

be valid for some $i, j \in \{0, 1\}$, where $i \neq j$. Then problem (1.3), (1.2) has a unique solution.

Corollary 2.1. Suppose that either $J_+ < 1$ and $J_+/(1-J_+) < J_- < 2+2(1-J_+)^{1/2}$, or $J_- < 1$ and $J_-/(1-J_-) < J_+ < 2+2(1-J_-)^{1/2}$. Then problem (1.4), (1.2) has a unique solution.

Remark 2.1. Let H be the set of pairs $(x, y) \in R_+ \times R_+$ such that either $0 \le x < 1$ and $x/(1-x) < y < 2 + 2(1-x)^{1/2}$, or $0 \le y < 1$ and $y/(1-y) < x < 2 + 2(1-y)^{1/2}$. It follows from Theorem 2.1 that if $(\|\ell_0(1)\|_L, \|\ell_1(1)\|_L) \in H$, then problem (1.3), (1.2) is uniquely solvable. In Section 4, we consider examples showing that, for any pair $(x_0, y_0) \notin H$, there exist functions $p, g \in L([a, b]; R)$ and $\tau \in \mathscr{M}_{ab}$ such that $y_0 = J_+, x_0 = J_-$, and problem (1.4), (1.2) has no solutions.

Theorem 2.2. Let condition (2.1) be satisfied, and let the inequalities

$$\|\ell_0(1)\|_L < 1, \qquad \|\ell_1(1)\|_L < 1, \tag{2.4}$$

$$\|\ell_i(1)\|_L / (1 - \|\ell_i(1)\|_L) < \|\ell_j(1)\|_L, \qquad (2.5)$$

$$\sigma g(t) \ge 0 \quad for \quad t \in]a, b[, \quad g(t) \neq 0, \tag{2.6}$$

be valid for some $\sigma \in \{-1, 1\}$ and $i, j \in \{0, 1\}$, where $i \neq j$. Then problem (1.3), (1.2) has a unique solution u such that

$$\sigma(-1)^{i}u(t) > 0 \quad for \quad t \in [a, b].$$
 (2.7)

Proof of Theorem 2.1. Let i = 0 and j = 1. The case in which i = 1 and j = 0 can be treated in a similar way.

By Theorem 1.1 in [8], it suffices to show that the homogeneous equation

$$u'(t) = \ell(u)(t)$$
 (2.8)

does not have nontrivial solutions satisfying condition (1.2). Suppose the contrary: problem (2.8), (1.2) has a nontrivial solution u. We first suppose that u has a constant sign. Without loss of generality, we assume that $u(t) \ge 0$ for $t \in [a, b]$. We set

$$m = \min\{u(t): a \le t \le b\}, \qquad M = \max\{u(t): a \le t \le b\}$$
(2.9)

and take $t_1, t_2 \in [a, b]$ such that

$$u(t_1) = m, \qquad u(t_2) = M.$$
 (2.10)

Obviously, $t_1 \neq t_2$, since otherwise we would have $\|\ell_0(1)\|_L = \|\ell_1(1)\|_L$ by virtue of (2.8) and (1.2), which contradicts the first inequality in (2.3). Consequently, either

$$t_1 < t_2,$$
 (2.11)

or

$$t_2 < t_1.$$
 (2.12)

If inequality (2.11) is valid, then, by integrating (2.8) from t_1 to t_2 and by taking account of (2.1), (2.9), and (2.10), we obtain

$$M - m = \int_{t_1}^{t_2} \left[\ell_0(u)(s) - \ell_1(u)(s) \right] ds \le M \int_{t_1}^{t_2} \ell_0(1)(s) ds \le M \left\| \ell_0(1) \right\|_L.$$

Now suppose that (2.12) holds. Then, by integrating (2.8) from a to t_2 and from t_1 to b and by taking account of (2.1), (2.9), and (2.10), we obtain

$$M - u(a) \le M \int_{a}^{t_2} \ell_0(1)(s) ds, \quad u(b) - m \le M \int_{t_1}^{b} \ell_0(1)(s) ds.$$

By summing the last two inequalities and by using (1.2), we obtain

$$M - m \le M \|\ell_0(1)\|_L.$$
(2.13)

Consequently, in both cases, inequality (2.13) is valid.

On the other hand, by integrating (2.8) from a to b, we obtain

$$\int_{a}^{b} \ell_0(u)(s) ds = \int_{a}^{b} \ell_1(u)(s) ds$$

This, together with (2.9), implies that

$$m \|\ell_1(1)\|_L \le M \|\ell_0(1)\|_L.$$
(2.14)

By (2.13) and the first inequality in (2.3), we arrive at a contradiction:

$$M \le M \left(\|\ell_0(1)\|_L + \|\ell_0(1)\|_L / \|\ell_1(1)\|_L \right) < M.$$
(2.15)

Now suppose that u changes its sign. We set

$$\bar{m} = -\min\{u(t): a \le t \le b\}, \qquad \bar{M} = \max\{u(t): a \le t \le b\}$$
(2.16)

and take $\alpha, \beta \in [a, b]$ such that

$$u(\alpha) = M, \qquad u(\beta) = -\bar{m}. \tag{2.17}$$

Without loss of generality, we can assume that $\alpha < \beta$. By integrating (2.8) over the intervals $[\alpha, \beta]$, $[a, \alpha]$, and $[\beta, b]$ and by taking account of (2.1) and (2.17), we obtain

$$\bar{M} + \bar{m} \le \bar{M} \int_{\alpha}^{\beta} \ell_1(1)(s) ds + \bar{m} \int_{\alpha}^{\beta} \ell_0(1)(s) ds, \qquad (2.18)$$

$$\bar{M} - u(a) \le \bar{M} \int_{a}^{\alpha} \ell_0(1)(s) ds + \bar{m} \int_{a}^{\alpha} \ell_1(1)(s) ds,$$
(2.19)

$$u(b) + \bar{m} \le \bar{M} \int_{\beta}^{b} \ell_0(1)(s) ds + \bar{m} \int_{\beta}^{b} \ell_1(1)(s) ds.$$
(2.20)

If we add the last two inequalities, then we obtain

$$\bar{M} + \bar{m} \le \bar{M} \int_{I} \ell_0(1)(s) ds + \bar{m} \int_{I} \ell_1(1)(s) ds, \qquad (2.21)$$

where $I = [a, b] \setminus [\alpha, \beta]$. It follows from (2.18) and (2.21) that

$$\bar{M}(1-C) \le \bar{m}(A-1), \qquad \bar{m}(1-D) \le \bar{M}(B-1),$$
(2.22)

where $A = \int_I \ell_1(1)(s) ds$, $B = \int_{\alpha}^{\beta} \ell_1(1)(s) ds$, $C = \int_I \ell_0(1)(s) ds$, and $D = \int_{\alpha}^{\beta} \ell_0(1)(s) ds$. On the other hand, by (2.2), C < 1 and D < 1; therefore, it follows from (2.22) that A > 1, B > 1, and

$$(1-C)(1-D) \le (A-1)(B-1).$$
 (2.23)

Now, by taking account of the inequalities $(1 - C)(1 - D) \ge 1 - (C + D) = 1 - \|\ell_0(1)\|_L$ and $4(A - 1)(B - 1) \le (A + B - 2)^2 = (\|\ell_1(1)\|_L - 2)^2$, from (2.23), we obtain $4(1 - \|\ell_0(1)\|_L) \le (\|\ell_1(1)\|_L - 2)^2$, which contradicts condition (2.3). The proof of the theorem is complete.

Proof of Corollary 2.1. We set $\ell(u)(t) = p(t)u(\tau(t)), \ell_0(u)(t) = [p(t)]_+u(\tau(t)), \text{ and } \ell_1(u)(t) = [p(t)]_-u(\tau(t))$. Then Eq. (1.4) acquires the form (1.1), where ℓ satisfies condition (2.1). On the other hand, obviously, under the assumptions of Corollary 2.1, the operators ℓ_0 and ℓ_1 satisfy inequalities (2.2) and (2.3) for some $i, j \in \{0, 1\}$. The proof of the corollary is complete.

Proof of Theorem 2.2. Without loss of generality, we assume that $\sigma = -1$ and i = 0. By Theorem 2.1 and conditions (2.4) and (2.5), problem (1.3), (1.2) has a unique solution u.

We first show that $u(t) \neq 0$ for $a \leq t \leq b$. Suppose the contrary: u has at least one zero. We define the numbers \overline{m} and \overline{M} by relations (2.16) and choose $\alpha, \beta \in [a, b]$ so as to satisfy condition (2.17). By (2.6), $u(t) \neq 0$. Therefore,

$$\bar{m} \ge 0, \qquad M \ge 0, \qquad \bar{m} + M > 0.$$
 (2.24)

Suppose that $\beta < \alpha$. By integrating (1.3) from β to α and by taking account of (2.1), (2.6), (2.16), and (2.17), we obtain

$$\bar{M} + \bar{m} = \int_{\beta}^{\alpha} \ell_0(u)(s) ds - \int_{\beta}^{\alpha} \ell_1(u)(s) ds + \int_{\beta}^{\alpha} g(s) ds \le \bar{M} \left\| \ell_0(1) \right\|_L + \bar{m} \left\| \ell_1(1) \right\|_L.$$

This, together with (2.4) and (2.24), leads to a contradiction: $\overline{M} + \overline{m} < \overline{M} + \overline{m}$. Now we suppose that $\alpha < \beta$. By integrating (1.3) from a to α and from β to b and by taking account of (2.1), (2.6), (2.16), and (2.17), we obtain inequalities (2.19) and (2.20); adding these, we see that

inequality (2.21) is valid. From (2.4) and (2.24), we obtain the contradiction $\overline{M} + \overline{m} < \overline{M} + \overline{m}$. Consequently, $u(t) \neq 0$ for $t \in [a, b]$.

Now let us show that u satisfies condition (2.7). Suppose the contrary: u(t) > 0 for $t \in [a, b]$. We define the numbers m and M by (2.9) and choose $t_1, t_2 \in [a, b], t_1 \neq t_2$, so as to satisfy (2.10). Arguing as in the proof of Theorem 2.1 and taking account of (2.6), we obtain (2.13). On the other hand, the integration of (1.3) from a to b with regard to (2.6) leads to the inequality

$$\int_{a}^{b} \ell_1(u)(s) ds < \int_{a}^{b} \ell_0(u)(s) ds.$$

This, together with (2.9), implies (2.14), which, with regard to (2.13) and (2.5), leads to the contradiction (2.15). This completes the proof of the theorem.

3. THE NONLINEAR PROBLEM

Theorem 3.1. Let condition (2.1) be satisfied. Suppose that there exist $i, j \in \{0, 1\}$ and q belongs to $L([a, b]; R_+)$ such that $i \neq j$,

$$\|\ell_i(1)\|_L < 1, \qquad \|\ell_i(1)\|_L / (1 - \|\ell_i(1)\|_L) < \|\ell_j(1)\|_L < 2(1 - \|\ell_i(1)\|_L)^{1/2}, \qquad (3.1)$$

and the inequality

$$(-1)^{i}F(v)(t)\operatorname{sgn} v(t) \le q(t)$$
 (3.2)

is valid almost everywhere on [a, b] for each $v \in C_0([a, b]; R)$. Then problem (1.1), (1.2) has at least one solution.

Corollary 3.1. Suppose that there exists a function $q \in L([a, b]; R_+)$ such that either

$$f(t, x, y) \operatorname{sgn} y \le q(t) \quad for \quad t \in]a, b[, \quad x, y \in R,$$

$$J_{+} < 1, \qquad J_{+}/(1 - J_{+}) < J_{-} < 2(1 - J_{+})^{1/2},$$

or

$$\begin{split} f(t,x,y) \, \mathrm{sgn} \, y &\geq -q(t) \quad for \quad t \in \left] a, b \right[\,, \quad x,y \in R, \\ J_- &< 1, \qquad J_-/(1-J_-) < J_+ < 2 \left(1-J_-\right)^{1/2}. \end{split}$$

Then problem (1.5), (1.2) has at least one solution.

Theorem 3.2. Let condition (2.1) be satisfied, and let inequalities (3.1) be valid for some $i, j \in \{0, 1\}$, where $i \neq j$. Moreover, suppose that

$$(-1)^{i} \left[F(v)(t) - F(\bar{v})(t) \right] \operatorname{sgn} \left(v(t) - \bar{v}(t) \right) \le 0$$
(3.3)

almost everywhere on [a,b] for any $v, \bar{v} \in C_0([a,b];R)$. Then problem (1.1), (1.2) has exactly one solution.

Remark 3.1. Conditions (3.1) are optimal and cannot be weakened. To prove Theorem 3.1, we need the following assertion.

Lemma 3.1. Suppose that there exists a function $\ell^* \in L([a, b]; R)$ such that the inequality

$$|\ell(u)(t)| \le \ell^*(t) ||u||_C \tag{3.4}$$

is valid for an arbitrary function $u \in C([a, b]; R)$ almost everywhere on [a, b]. Moreover, suppose that there exists an r > 0 such that, for each $\lambda \in [0, 1]$, an arbitrary solution of the differential equation

$$u'(t) = \ell(u)(t) + \lambda F(u)(t) \tag{3.5}$$

satisfying condition (1.2) can be estimated as

$$\|u\|_C \le r. \tag{3.6}$$

Then problem (1.1), (1.2) has at least one solution.

This lemma is a special case of Corollary 2 in [7]. Now consider the differential inequality

$$(u'(t) - \ell(u)(t)) \operatorname{sgn} u(t) \le q(t),$$
(3.7)

where $q \in L([a, b]; R_+)$. A function $u \in \tilde{C}([a, b]; R)$ is referred to as a solution of problem (3.7), (1.2) if it satisfies condition (1.2) and satisfies the differential inequality (3.7) almost everywhere on [a, b].

Lemma 3.2. Let the operator ℓ satisfy the assumptions of Theorem 3.1. Then there exists a positive constant r_0 such that, for each function $q \in L([a,b]; R_+)$, an arbitrary solution u of problem (3.7), (1.2) admits the estimate (3.6), where $r = r_0 ||q||_L$.

Proof. Let us prove the lemma for i = 0 and j = 1. For i = 1 and j = 0, the proof can be performed in a similar way. We set

$$r_{0} = \frac{1 + \|\ell_{1}(1)\|_{L}}{\|\ell_{1}(1)\|_{L}(1 - \|\ell_{0}(1)\|_{L}) - \|\ell_{0}(1)\|_{L}} + \frac{1 + \|\ell_{1}(1)\|_{L}}{1 - \|\ell_{0}(1)\|_{L} - (1/4)\|\ell_{0}(1)\|_{L}^{2}}, \quad r = r_{0}\|q\|_{L}.$$
 (3.8)

Let $q \in L([a, b]; R)$ be an arbitrarily given function, and let u be some solution of problem (3.7), (1.2). Without loss of generality, we can assume that $u(t) \neq 0$. We first suppose that u has a constant sign. Let $m = \min\{|u(t)| : a \leq t \leq b\}$, $M = \max\{|u(t)| : a \leq t \leq b\}$, and $t_1, t_2 \in [a, b]$ be numbers such that $t_1 \neq t_2$, $|u(t_1)| = m$, and $|u(t_2)| = M$. Then, by (2.1) and (3.7), we have

$$|u(t)|' \le M\ell_0(1)(t) - m\ell_1(1)(t) + q(t).$$
(3.9)

Obviously, one of conditions (2.11) and (2.12) is satisfied. If condition (2.11) is valid, then, by integrating inequality (3.9) from t_1 to t_2 , we obtain

$$M - m \le M \int_{t_1}^{t_2} \ell_0(1)(s) ds - m \int_{t_1}^{t_2} \ell_1(1)(s) ds + \int_{t_1}^{t_2} q(s) ds \le M \|\ell_0(1)\|_L + \|q\|_L$$

If condition (2.12) holds, then the integration of inequality (3.9) from a to t_2 and from t_1 to b implies that

$$M - |u(a)| \le M \int_{a}^{t_2} \ell_0(1)(s) ds + \int_{a}^{t_2} q(s) ds, \qquad |u(b)| - m \le M \int_{t_1}^{b} \ell_0(1)(s) ds + \int_{t_1}^{b} q(s) ds.$$

By adding the last two inequalities, we obtain

$$M - m \le M \|\ell_0(1)\|_L + \|q\|_L.$$
(3.10)

Consequently, inequality (3.10) is valid in both cases considered above.

By integrating (3.9) from *a* to *b*, we obtain the inequality $m \|\ell_1(1)\|_L \leq M \|\ell_0(1)\|_L + \|q\|_L$, which, together with (3.10), implies that $M (\|\ell_1(1)\|_L (1 - \|\ell_0(1)\|_L) - \|\ell_0\|_L) \leq \|q\|_L (1 + \|\ell_1(1)\|_L)$. Now it follows from (3.8) that the estimate (3.6) is valid.

Now we suppose that u changes its sign. We set

$$u(t) = \begin{cases} u(t) & \text{if } a \le t \le b \\ u(t-b+a) & \text{if } b < t \le 2b-a, \end{cases}$$

$$\bar{\ell}_i(\bar{u})(t) = \begin{cases} \ell_i(u)(t) & \text{for } t \in [a,b] \\ \ell_i(u)(t-b+a) & \text{for } t \in]b, 2b-a[, \end{cases} \quad i = 0, 1,$$

$$\bar{q}(t) = \begin{cases} q(t) & \text{for } t \in [a,b] \\ q(t-b+a) & \text{for } t \in]b, 2b-a]. \end{cases}$$

Obviously, $\bar{u}(a) = \bar{u}(b) = \bar{u}(2b - a)$, and the inequality

$$\left(\bar{u}'(t) - \bar{\ell}_0(\bar{u})(t) + \bar{\ell}_1(\bar{u})(t)\right) \operatorname{sgn} \bar{u}(t) \le \bar{q}(t)$$
(3.11)

is valid almost everywhere on [a, b].

Let $\bar{m} = -\min \{ \bar{u}(t) : a \le t \le 2b - a \}$ and $\bar{M} = \max \{ \bar{u}(t) : a \le t \le 2b - a \}$. Then there exist $\alpha_k, t_k \in [a, 2b - a] \ (k = 1, 2)$ such that $\alpha_k < t_k \ (k = 1, 2), \ [\alpha_1, t_1] \cap [\alpha_2, t_2] = \emptyset$,

$$(t_1 - \alpha_1) + (t_2 - \alpha_2) \le b - a_2$$

and

$$\bar{u}(t) < 0 \quad \text{for} \quad \alpha_1 < t < t_1, \qquad \bar{u}(t_1) = -\bar{m}, \qquad \bar{u}(\alpha_1) = 0, \\ \bar{u}(t) > 0 \quad \text{for} \quad \alpha_2 < t < t_2, \qquad \bar{u}(t_2) = \bar{M}, \qquad \bar{u}(\alpha_2) = 0.$$
 (3.12)

By integrating (3.11) from α_1 to t_1 and from α_2 to t_2 and by taking account of (3.12), we obtain

$$\bar{m} \leq \bar{M} \int_{\alpha_{1}}^{t_{1}} \bar{\ell}_{1}(1)(s)ds + \bar{m} \int_{\alpha_{1}}^{t_{1}} \bar{\ell}_{0}(1)(s)ds + \int_{\alpha_{1}}^{t_{1}} \bar{q}(s)ds,$$

$$\bar{M} \leq \bar{M} \int_{\alpha_{2}}^{t_{2}} \bar{\ell}_{0}(1)(s)ds + \bar{m} \int_{\alpha_{2}}^{t_{2}} \bar{\ell}_{1}(1)(s)ds + \int_{\alpha_{2}}^{t_{2}} \bar{q}(s)ds.$$
(3.13)

Note that $\int_{\alpha_i}^{t_i} \bar{q}(s)ds \leq \|q\|_L$ (i = 1, 2) and there exist nonempty sets $I_k \subset [a, b]$ (k = 1, 2) such that $I_1 \cap I_2 = \varnothing$ and $\int_{\alpha_k}^{t_k} \bar{\ell}_n(1)(s)ds = \int_{I_k} \ell_n(1)(s)ds$ (n = 0, 1; k = 1, 2). Therefore, it follows from (3.13) that $\bar{m}(1-C) \leq \bar{M}A + \|q\|_L$ and $\bar{M}(1-D) \leq \bar{m}B + \|q\|_L$, where $A = \int_{I_1} \ell_1(1)(s)ds$, $B = \int_{I_2} \ell_1(1)(s)ds$, $C = \int_{I_1} \ell_0(1)(s)ds$, and $D = \int_{I_2} \ell_0(1)(s)ds$. Consequently,

$$\bar{m}(1-C)(1-D) \le A\left(\bar{m}B + \|q\|_L\right) + \|q\|_L(1-D) \le \bar{m}AB + \|q\|_L(A+1),\\ \bar{M}(1-C)(1-D) \le B\left(\bar{M}A + \|q\|_L\right) + \|q\|_L(1-C) \le \bar{M}AB + \|q\|_L(B+1).$$

However, since $4AB \leq (A+B)^2 \leq \|\ell_1(1)\|_L^2$ and $(1-C)(1-D) \geq 1 - \|\ell_0(1)\|_L$, it follows that

$$\bar{m} \le (1 + \|\ell_1(1)\|_L) \, \varrho \|q\|_L, \qquad \bar{M} \le (1 + \|\ell_1(1)\|_L) \, \varrho \|q\|_L,$$

where $\rho = (1 - \|\ell_0(1)\|_L - (1/4) \|\ell_1(1)\|_L^2)^{-1}$. Now, by (3.8), the validity of the estimate (3.6) becomes obvious, which completes the proof of the lemma.

Proof of Theorem 3.1. First, we note that, by (2.1), the operator ℓ satisfies condition (3.4), where $\ell^*(t) = \ell_0(1)(t) + \ell_1(1)(t)$.

Let r_0 be the positive constant occurring in Lemma 3.2, and let $r = r_0 ||q||_L$. By Lemma 3.1, to prove the theorem, it suffices to show that, for each $\lambda \in [0, 1]$, an arbitrary solution of problem (3.5), (1.2) admits the estimate (3.6).

By condition (3.2), an arbitrary solution of problem (3.5), (1.2) is also a solution of problem (3.7), (1.2) provided that $\lambda \in [0,1]$. On the other hand, by Lemma 3.2, each solution of problem (3.7), (1.2) admits the estimate (3.6). The proof of the theorem is complete.

If
$$\ell(u)(t) = p(t)u(\tau(t))$$
 and $F(u)(t) = f(t, u(\mu(t)), u(t))$, then Theorem 3.1 implies Corollary 3.1.

Proof of Theorem 3.2. By (3.3), condition (3.2) with q(t) = |F(0)(t)| is valid. Consequently, by Theorem 3.1, problem (1.1), (1.2) is solvable. It remains to show that it has at most one solution. Let u_1 and u_2 be arbitrary solutions of that problem, and let $u(t) = u_2(t) - u_1(t)$. Then, by condition (3.3), the function u is a solution of problem (3.7), (1.2) with $q(t) \equiv 0$. This, together with Lemma 3.2, implies that $u(t) \equiv 0$, i.e., $u_2(t) \equiv u_1(t)$. The proof of the theorem is complete.

4. ON REMARKS 2.1 AND 3.1

On Remark 2.1

Let $(x_0, y_0) \notin H$. Then, obviously, $(y_0, x_0) \notin H$; i.e., it suffices to consider the case in which $y_0 \geq x_0$. Note also that if, for some $p \in L([a, b]; R)$ and $\tau \in \mathcal{M}_{ab}$, the problem

$$u'(t) = p(t)u(\tau(t)), \qquad u(a) = u(b)$$
(4.1)

has a nontrivial solution, then there exists a function $g \in L([a, b]; R)$ such that problem (1.4), (1.2) has no solution. Accordingly, the functions p and τ in the examples below are constructed so as to ensure that problem (4.1) has a nontrivial solution and

$$J_{+} = y_0, \qquad J_{-} = x_0. \tag{4.2}$$

Example 4.1. Let $x_0 \in [0,1]$ and $y_0 \ge 2 + 2\sqrt{1-x_0}$. We take $k \in [0,1]$ such that $4k/(k+1)^2 = x_0$ and set $a = 0, b = 5, c = y_0 - 4/(k+1)$, and

$$\tau(t) = \begin{cases} 1 & \text{for } t \in [0,1] \cup [(3-k)/(k+1), 4-k] \cup [5-k,5] \\ 3 & \text{for } t \in]1, (3-k)/(k+1)[\\ 4-k & \text{for } t \in]4-k, 5-k[, \\ 1/(k+1) & \text{for } t \in]0, 1[\cup [3,4-k] \cup [5-k,5] \\ 1/(1-k) & \text{for } t \in]1, (3-k)/(k+1)[\\ -1/(k+1) & \text{for } t \in](3-k)/(k+1), 3[\\ c & \text{for } t \in]4-k, 5-k[. \end{cases}$$

One can readily see that $c \ge 0$, relation (4.2) is valid, and the function

$$u(t) = \begin{cases} t+k & \text{if } 0 \le t < 1\\ 2+k-t & \text{if } 1 \le t < 3\\ t+k-4 & \text{if } 3 \le t < 4-k\\ 0 & \text{if } 4-k \le t < 5-k\\ t+k-5 & \text{if } 5-k \le t \le 5, \end{cases}$$

is a nontrivial solution of problem (4.1).

Example 4.2. Let $x_0 \ge 1$, $y_0 \ge 1$, a = 0, b = 4, and

$$\tau(t) = \begin{cases} 0 & \text{if } 0 \le t < 1\\ 1 & \text{if } 1 \le t < 3\\ 4 & \text{if } 3 \le t \le 4, \end{cases} \qquad p(t) = \begin{cases} -1 & \text{if } 0 < t < 1\\ 1 - x_0 & \text{if } 1 < t < 2\\ y_0 - 1 & \text{if } 2 < t < 3\\ 1 & \text{if } 3 < t < 4. \end{cases}$$

Then relation (4.2) is valid, and the function $u(t) = \begin{cases} 1-t & \text{if } 0 \le t < 1\\ 0 & \text{if } 1 \le t < 3, \\ t-3 & \text{if } 3 \le t \le 4 \end{cases}$ is a solution of problem (4.1).

Example 4.3. Let $x_0 \in [0,1[, x_0 \le y_0 \le x_0/(1-x_0), a = 0, b = 2, t_0 = 1/y_0 - (1-x_0)/x_0,$ and $\tau(t) = \int t_0 \quad \text{if} \quad 0 \le t < 1$ $y_0 \quad \text{if} \quad 0 < t < 1$

$$\tau(t) = \begin{cases} t_0 & \text{if } 0 \le t < 1\\ 1 & \text{if } 1 \le t \le 2, \end{cases} \qquad p(t) = \begin{cases} y_0 & \text{if } 0 < t < 1\\ -x_0 & \text{if } 1 < t < 2. \end{cases}$$

Then $t_0 \in [0, 1]$, relation (4.2) is valid, and the function

$$u(t) = \begin{cases} t + (1 - x_0) / x_0 & \text{if } 0 \le t < 1\\ 2 + (1 - x_0) / x_0 - t & \text{if } 1 \le t \le 2, \end{cases}$$

is a nontrivial solution of problem (4.1).

On Remark 3.1

Let $a = 0, b = 4, \varepsilon \in [0, 1[$, and

$$\begin{aligned} \tau(t) &= \begin{cases} 3 & \text{for } t \in [0, 2 - \varepsilon/2] \cup [3, 4] \\ 1 & \text{for } t \in]2 - \varepsilon/2, 3[, \\ \end{cases} \\ p(t) &= \begin{cases} -1 & \text{for } t \in]0, 1[\cup]2 - \varepsilon/2, 3[\cup]4 - \varepsilon/2, 4[\\ 0 & \text{for } t \in]1, 2 - \varepsilon/2[\cup]3, 4 - \varepsilon/2[, \\ \end{cases} \\ h(t) &= \begin{cases} 0 & \text{for } t \in]0, 1[\cup]2 - \varepsilon/2, 3[\cup]4 - \varepsilon/2, 4[\\ 1/(2 - t) & \text{for } t \in]1, 2 - \varepsilon/2[\\ 1/(4 - t) & \text{for } t \in]3, 4 - \varepsilon/2[. \end{cases} \end{aligned}$$

Obviously, $J_{-} = 2 + \varepsilon$, $J_{+} = 0$, and the function $u(t) = \begin{cases} t & \text{if } 0 \le t < 1\\ 2 - t & \text{if } 1 \le t < 3\\ t - 4 & \text{if } 3 \le t \le 4 \end{cases}$ is a nontrivial solution of the problem $u'(t) = p(t)u(\tau(t)) - h(t)u(t), u(a) = u(b).$

Consequently, there exists a function $g \in L(]a, b[; R)$ such that the problem

$$u'(t) = p(t)u(\tau(t)) - h(t)u(t) + g(t), \qquad u(a) = u(b),$$

has no solution. In other words, problem (1.1), (1.2) with $\ell(v)(t) \equiv -\ell_1(v)(t) \equiv p(t)v(\tau(t))$, $\ell_0(v)(t) \equiv 0$, and $F(v)(t) \equiv -h(t)v(t) + g(t)$ has no solution even though the operator F satisfies condition (3.2). Consequently, the second inequality in (3.1) cannot be replaced by the inequality $\|\ell_j(1)\|_L \leq (2+\varepsilon) (1 - \|\ell_i(1)\|_L)^{1/2}$ however small $\varepsilon > 0$ is. As to the remaining inequalities in (3.1), Examples 4.2 and 4.3 imply that these inequalities cannot be replaced by nonstrict inequalities.

ACKNOWLEDGMENTS

The work was financially supported by the Education Ministry of Czech Republic (grant no. RI J07/98: 143100001).

REFERENCES

- 1. Azbelev, N.V., Maksimov, V.P., and Rakhmatullina, L.F., *Vvedenie v teoriyu funktsional'no-differentsial'nykh uravnenii* (Introduction to Theory of Functional-Differential Equations), Moscow, 1991.
- 2. Gelashvili, Sh. and Kiguradze, I., Mem. Differential Equations Math. Phys., 1995, vol. 5, pp. 1–113.
- 3. Hale, J. K., Arch. Rational Mech. Anal., 1964, vol. 15, pp. 289–304.
- 4. Kiguradze, I., Mem. Differential Equations Math. Phys., 1997, vol. 10, pp. 134–137.
- 5. Kiguradze, I. and Půža, B., Arch. Math., 1997, vol. 33, no. 3, pp. 197-212.
- 6. Kiguradze, I.T. and Půža, B., Differents. Uravn., 1997, vol. 33, no. 2, pp. 185-194.
- 7. Kiguradze, I. and Půža, B., Mem. Differential Equations Math. Phys., 1997, vol. 12, pp. 106–113.
- 8. Kiguradze, I. and Půža, B., Czechoslovak Math. J., 1997, vol. 47, no. 2, pp. 341–373.
- 9. Kiguradze, I. and Půža, B., Georgian Math. J., 1999, vol. 6, no. 1, pp. 47–66.
- 10. Mawhin, J., J. Diff. Equat., 1971, vol. 10, pp. 240-261.
- 11. Půža, B., Differents. Uravn., 1995, vol. 31, no. 11, pp. 1937–1938.
- Schwabik, Š., Tvrdý, M., and Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Praha, 1979.