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1. STATEMENT OF THE PROBLEM AND BASIC NOTATION

In the present paper, we consider the boundary value problem

u′(t) = `(u)(t) + F (u)(t), (1.1)
u(a) = u(b), (1.2)

where ` : C([a, b];R) → L([a, b];R) is a linear bounded operator and F : C([a, b];R) → L([a, b];R)
is a continuous operator, not necessarily linear.

This problem, which is the subject of numerous studies, has long been attracting mathematicians’
attention. Interesting results about its solvability can be found, e.g., in [1–11]. Nevertheless,
problem (1.1), (1.2) has not been completely analyzed yet even for the linear case, in which Eq. (1.1)
has the form

u′(t) = `(u)(t) + g(t). (1.3)

In a sense, we fill the gap. More precisely, new effective criteria for the solvability and unique
solvability of problems (1.3), (1.2) and (1.1), (1.2) are given in Sections 2 and 3. In Section 4,
we construct examples justifying the optimality of these criteria. The results are further specialized
for the equations

u′(t) = p(t)u(τ(t)) + g(t), (1.4)
u′(t) = p(t)u(τ(t)) + f(t, u(µ(t)), u(t)) (1.5)

with deviating arguments.
We use the following notation:
R is the set of real numbers;
R+ = [0,+∞[ ;
C([a, b];R) is the space of continuous functions u : [a, b]→ R with the norm

‖u‖C = max{|u(t)| : a ≤ t ≤ b};

C ([a, b];R+) = {u ∈ C([a, b];R) : u(t) ≥ 0 for t ∈ [a, b]};
C0([a, b];R) = {u ∈ C([a, b];R) : u(a) = u(b)};
C̃([a, b];R) is the set of absolutely continuous functions u : [a, b]→ R;
L([a, b];R) is the space of Lebesgue integrable functions p : [a, b]→ R with the norm

‖p‖L =

b∫
a

|p(s)|ds;

L ([a, b];R+) = {p ∈ L([a, b];R) : p(t) ≥ 0 for t ∈ ]a, b[ };
Mab is the set of measurable functions τ : [a, b]→ [a, b];
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Pab is the set of linear positive operators h : C([a, b];R)→ L([a, b];R), that is, linear operators
that map C ([a, b];R+) into L ([a, b];R+);

Kab is the set of continuous operators F : C([a, b];R)→ L([a, b];R) such that

sup {|F (v)(·)| : ‖v‖C ≤ r} ∈ L ([a, b];R+)

for arbitrary r > 0;

[p]+ = 2−1(|p|+ p); [p]− = 2−1(|p| − p);

J± ≡
∫ b

a

[p(s)]±ds.

Throughout the following, we assume that ` : C([a, b];R) → L([a, b];R) is a linear bounded
operator, F ∈ Kab, p, g ∈ L([a, b];R), τ, µ ∈ Mab, and f : [a, b] × R2 → R satisfies the local
Carathéodory conditions. We deal with solutions of problem (1.1), (1.2) in the space C̃([a, b];R).

2. THE LINEAR PROBLEM

Theorem 2.1. Let
` = `0 − `1, `0, `1 ∈ Pab, (2.1)

and let the inequalities

‖`i(1)‖L < 1, (2.2)

‖`i(1)‖L / (1− ‖`i(1)‖L) < ‖`j(1)‖L < 2 + 2 (1− ‖`i(1)‖L)1/2 (2.3)

be valid for some i, j ∈ {0, 1}, where i 6= j. Then problem (1.3), (1.2) has a unique solution.

Corollary 2.1. Suppose that either J+ < 1 and J+/(1−J+) < J− < 2+2(1−J+)1/2
, or J− < 1

and J−/(1− J−) < J+ < 2 + 2(1− J−)1/2. Then problem (1.4), (1.2) has a unique solution.
Remark 2.1. Let H be the set of pairs (x, y) ∈ R+ × R+ such that either 0 ≤ x < 1 and

x/(1 − x) < y < 2 + 2(1 − x)1/2, or 0 ≤ y < 1 and y/(1 − y) < x < 2 + 2(1 − y)1/2. It follows
from Theorem 2.1 that if (‖`0(1)‖L , ‖`1(1)‖L) ∈ H, then problem (1.3), (1.2) is uniquely solvable.
In Section 4, we consider examples showing that, for any pair (x0, y0) 6∈ H, there exist functions
p, g ∈ L([a, b];R) and τ ∈ Mab such that y0 = J+, x0 = J−, and problem (1.4), (1.2) has no
solutions.

Theorem 2.2. Let condition (2.1) be satisfied, and let the inequalities

‖`0(1)‖L < 1, ‖`1(1)‖L < 1, (2.4)
‖`i(1)‖L /(1− ‖`i(1)‖L) < ‖`j(1)‖L , (2.5)

σg(t) ≥ 0 for t ∈ ]a, b[ , g(t) 6≡ 0, (2.6)

be valid for some σ ∈ {−1, 1} and i, j ∈ {0, 1}, where i 6= j. Then problem (1.3), (1.2) has a unique
solution u such that

σ(−1)iu(t) > 0 for t ∈ [a, b]. (2.7)

Proof of Theorem 2.1. Let i = 0 and j = 1. The case in which i = 1 and j = 0 can be
treated in a similar way.

By Theorem 1.1 in [8], it suffices to show that the homogeneous equation

u′(t) = `(u)(t) (2.8)
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does not have nontrivial solutions satisfying condition (1.2). Suppose the contrary: problem (2.8),
(1.2) has a nontrivial solution u. We first suppose that u has a constant sign. Without loss of
generality, we assume that u(t) ≥ 0 for t ∈ [a, b]. We set

m = min{u(t) : a ≤ t ≤ b}, M = max{u(t) : a ≤ t ≤ b} (2.9)

and take t1, t2 ∈ [a, b] such that

u (t1) = m, u (t2) = M. (2.10)

Obviously, t1 6= t2, since otherwise we would have ‖`0(1)‖L = ‖`1(1)‖L by virtue of (2.8) and (1.2),
which contradicts the first inequality in (2.3). Consequently, either

t1 < t2, (2.11)

or
t2 < t1. (2.12)

If inequality (2.11) is valid, then, by integrating (2.8) from t1 to t2 and by taking account of (2.1),
(2.9), and (2.10), we obtain

M −m =

t2∫
t1

[`0(u)(s) − `1(u)(s)] ds ≤M
t2∫
t1

`0(1)(s)ds ≤M ‖`0(1)‖L .

Now suppose that (2.12) holds. Then, by integrating (2.8) from a to t2 and from t1 to b and by
taking account of (2.1), (2.9), and (2.10), we obtain

M − u(a) ≤M
t2∫
a

`0(1)(s)ds, u(b)−m ≤M
b∫

t1

`0(1)(s)ds.

By summing the last two inequalities and by using (1.2), we obtain

M −m ≤M ‖`0(1)‖L . (2.13)

Consequently, in both cases, inequality (2.13) is valid.
On the other hand, by integrating (2.8) from a to b, we obtain

b∫
a

`0(u)(s)ds =

b∫
a

`1(u)(s)ds.

This, together with (2.9), implies that

m ‖`1(1)‖L ≤M ‖`0(1)‖L . (2.14)

By (2.13) and the first inequality in (2.3), we arrive at a contradiction:

M ≤M (‖`0(1)‖L + ‖`0(1)‖L / ‖`1(1)‖L) < M. (2.15)

Now suppose that u changes its sign. We set

m̄ = −min{u(t) : a ≤ t ≤ b}, M̄ = max{u(t) : a ≤ t ≤ b} (2.16)

and take α, β ∈ [a, b] such that

u(α) = M̄ , u(β) = −m̄. (2.17)
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Without loss of generality, we can assume that α < β. By integrating (2.8) over the intervals [α, β],
[a, α], and [β, b] and by taking account of (2.1) and (2.17), we obtain

M̄ + m̄ ≤ M̄
β∫
α

`1(1)(s)ds + m̄

β∫
α

`0(1)(s)ds, (2.18)

M̄ − u(a) ≤ M̄
α∫
a

`0(1)(s)ds + m̄

α∫
a

`1(1)(s)ds, (2.19)

u(b) + m̄ ≤ M̄
b∫

β

`0(1)(s)ds + m̄

b∫
β

`1(1)(s)ds. (2.20)

If we add the last two inequalities, then we obtain

M̄ + m̄ ≤ M̄
∫
I

`0(1)(s)ds + m̄

∫
I

`1(1)(s)ds, (2.21)

where I = [a, b]\ ]α, β[ . It follows from (2.18) and (2.21) that

M̄ (1−C) ≤ m̄(A− 1), m̄(1−D) ≤ M̄(B − 1), (2.22)

where A =
∫
I
`1(1)(s)ds, B =

∫ β
α
`1(1)(s)ds, C =

∫
I
`0(1)(s)ds, and D =

∫ β
α
`0(1)(s)ds. On the

other hand, by (2.2), C < 1 and D < 1; therefore, it follows from (2.22) that A > 1, B > 1, and

(1− C)(1−D) ≤ (A− 1)(B − 1). (2.23)

Now, by taking account of the inequalities (1 − C)(1 − D) ≥ 1 − (C + D) = 1 − ‖`0(1)‖L and
4(A − 1)(B − 1) ≤ (A + B − 2)2 = (‖`1(1)‖L − 2)2, from (2.23), we obtain 4 (1− ‖`0(1)‖L) ≤
(‖`1(1)‖L − 2)2, which contradicts condition (2.3). The proof of the theorem is complete.

Proof of Corollary 2.1. We set `(u)(t) = p(t)u(τ(t)), `0(u)(t) = [p(t)]+u(τ(t)), and `1(u)(t) =
[p(t)]−u(τ(t)). Then Eq. (1.4) acquires the form (1.1), where ` satisfies condition (2.1). On the
other hand, obviously, under the assumptions of Corollary 2.1, the operators `0 and `1 satisfy
inequalities (2.2) and (2.3) for some i, j ∈ {0, 1}. The proof of the corollary is complete.

Proof of Theorem 2.2. Without loss of generality, we assume that σ = −1 and i = 0.
By Theorem 2.1 and conditions (2.4) and (2.5), problem (1.3), (1.2) has a unique solution u.

We first show that u(t) 6= 0 for a ≤ t ≤ b. Suppose the contrary: u has at least one zero.
We define the numbers m̄ and M̄ by relations (2.16) and choose α, β ∈ [a, b] so as to satisfy
condition (2.17). By (2.6), u(t) 6≡ 0. Therefore,

m̄ ≥ 0, M̄ ≥ 0, m̄+ M̄ > 0. (2.24)

Suppose that β < α. By integrating (1.3) from β to α and by taking account of (2.1), (2.6), (2.16),
and (2.17), we obtain

M̄ + m̄ =

α∫
β

`0(u)(s)ds −
α∫
β

`1(u)(s)ds +

α∫
β

g(s)ds ≤ M̄ ‖`0(1)‖L + m̄ ‖`1(1)‖L .

This, together with (2.4) and (2.24), leads to a contradiction: M̄ + m̄ < M̄ + m̄. Now we
suppose that α < β. By integrating (1.3) from a to α and from β to b and by taking account
of (2.1), (2.6), (2.16), and (2.17), we obtain inequalities (2.19) and (2.20); adding these, we see that
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inequality (2.21) is valid. From (2.4) and (2.24), we obtain the contradiction M̄ + m̄ < M̄ + m̄.
Consequently, u(t) 6= 0 for t ∈ [a, b].

Now let us show that u satisfies condition (2.7). Suppose the contrary: u(t) > 0 for t ∈ [a, b].
We define the numbers m and M by (2.9) and choose t1, t2 ∈ [a, b], t1 6= t2, so as to satisfy (2.10).
Arguing as in the proof of Theorem 2.1 and taking account of (2.6), we obtain (2.13). On the other
hand, the integration of (1.3) from a to b with regard to (2.6) leads to the inequality

b∫
a

`1(u)(s)ds <

b∫
a

`0(u)(s)ds.

This, together with (2.9), implies (2.14), which, with regard to (2.13) and (2.5), leads to the
contradiction (2.15). This completes the proof of the theorem.

3. THE NONLINEAR PROBLEM

Theorem 3.1. Let condition (2.1) be satisfied. Suppose that there exist i, j ∈ {0, 1} and q
belongs to L ([a, b];R+) such that i 6= j,

‖`i(1)‖L < 1, ‖`i(1)‖L / (1− ‖`i(1)‖L) < ‖`j(1)‖L < 2 (1− ‖`i(1)‖L)1/2
, (3.1)

and the inequality
(−1)iF (v)(t) sgn v(t) ≤ q(t) (3.2)

is valid almost everywhere on [a, b] for each v ∈ C0([a, b];R). Then problem (1.1), (1.2) has at least
one solution.

Corollary 3.1. Suppose that there exists a function q ∈ L ([a, b];R+) such that either

f(t, x, y) sgn y ≤ q(t) for t ∈ ]a, b[ , x, y ∈ R,
J+ < 1, J+/(1− J+) < J− < 2 (1− J+)1/2

,

or
f(t, x, y) sgn y ≥ −q(t) for t ∈ ]a, b[ , x, y ∈ R,

J− < 1, J−/(1− J−) < J+ < 2 (1− J−)1/2
.

Then problem (1.5), (1.2) has at least one solution.

Theorem 3.2. Let condition (2.1) be satisfied, and let inequalities (3.1) be valid for some
i, j ∈ {0, 1}, where i 6= j. Moreover, suppose that

(−1)i [F (v)(t)− F (v̄) (t)] sgn (v(t)− v̄(t)) ≤ 0 (3.3)

almost everywhere on [a, b] for any v, v̄ ∈ C0([a, b];R). Then problem (1.1), (1.2) has exactly one
solution.

Remark 3.1. Conditions (3.1) are optimal and cannot be weakened.
To prove Theorem 3.1, we need the following assertion.

Lemma 3.1. Suppose that there exists a function `∗ ∈ L([a, b];R) such that the inequality

|`(u)(t)| ≤ `∗(t)‖u‖C (3.4)

is valid for an arbitrary function u ∈ C([a, b];R) almost everywhere on [a, b]. Moreover, suppose
that there exists an r > 0 such that, for each λ ∈ [0, 1], an arbitrary solution of the differential
equation

u′(t) = `(u)(t) + λF (u)(t) (3.5)
satisfying condition (1.2) can be estimated as

‖u‖C ≤ r. (3.6)

Then problem (1.1), (1.2) has at least one solution.
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This lemma is a special case of Corollary 2 in [7].
Now consider the differential inequality

(u′(t)− `(u)(t)) sgnu(t) ≤ q(t), (3.7)

where q ∈ L ([a, b];R+). A function u ∈ C̃([a, b];R) is referred to as a solution of problem (3.7),
(1.2) if it satisfies condition (1.2) and satisfies the differential inequality (3.7) almost everywhere
on [a, b].

Lemma 3.2. Let the operator ` satisfy the assumptions of Theorem 3.1. Then there exists
a positive constant r0 such that, for each function q ∈ L ([a, b];R+) , an arbitrary solution u of
problem (3.7), (1.2) admits the estimate (3.6), where r = r0‖q‖L.

Proof. Let us prove the lemma for i = 0 and j = 1. For i = 1 and j = 0, the proof can be
performed in a similar way. We set

r0 =
1 + ‖`1(1)‖L

‖`1(1)‖L (1− ‖`0(1)‖L)− ‖`0(1)‖L
+

1 + ‖`1(1)‖L
1− ‖`0(1)‖L − (1/4) ‖`0(1)‖2

L

, r = r0‖q‖L. (3.8)

Let q ∈ L([a, b];R) be an arbitrarily given function, and let u be some solution of problem (3.7),
(1.2). Without loss of generality, we can assume that u(t) 6≡ 0. We first suppose that u has a
constant sign. Let m = min{|u(t)| : a ≤ t ≤ b}, M = max{|u(t)| : a ≤ t ≤ b}, and t1, t2 ∈ [a, b] be
numbers such that t1 6= t2, |u (t1)| = m, and |u (t2)| = M . Then, by (2.1) and (3.7), we have

|u(t)|′ ≤M`0(1)(t) −m`1(1)(t) + q(t). (3.9)

Obviously, one of conditions (2.11) and (2.12) is satisfied. If condition (2.11) is valid, then, by
integrating inequality (3.9) from t1 to t2, we obtain

M −m ≤M
t2∫
t1

`0(1)(s)ds −m
t2∫
t1

`1(1)(s)ds +

t2∫
t1

q(s)ds ≤M‖`0(1)‖L + ‖q‖L.

If condition (2.12) holds, then the integration of inequality (3.9) from a to t2 and from t1 to b
implies that

M − |u(a)| ≤M
t2∫
a

`0(1)(s)ds +

t2∫
a

q(s)ds, |u(b)| −m ≤M
b∫

t1

`0(1)(s)ds +

b∫
t1

q(s)ds.

By adding the last two inequalities, we obtain

M −m ≤M ‖`0(1)‖L + ‖q‖L. (3.10)

Consequently, inequality (3.10) is valid in both cases considered above.
By integrating (3.9) from a to b, we obtain the inequality m ‖`1(1)‖L ≤M ‖`0(1)‖L+‖q‖L, which,

together with (3.10), implies that M (‖`1(1)‖L (1− ‖`0(1)‖L)− ‖`0‖L) ≤ ‖q‖L (1 + ‖`1(1)‖L). Now
it follows from (3.8) that the estimate (3.6) is valid.

Now we suppose that u changes its sign. We set

u(t) =
{
u(t) if a ≤ t ≤ b
u(t− b+ a) if b < t ≤ 2b− a,

¯̀
i (ū)(t) =

{
`i(u)(t) for t ∈ [a, b]
`i(u)(t− b+ a) for t ∈ ]b, 2b − a[ ,

i = 0, 1,

q̄(t) =
{
q(t) for t ∈ [a, b]
q(t− b+ a) for t ∈ ]b, 2b− a].

DIFFERENTIAL EQUATIONS Vol. 39 No. 3 2003



350 LOMTATIDZE et al.

Obviously, ū(a) = ū(b) = ū(2b − a), and the inequality(
ū′(t)− ¯̀

0 (ū)(t) + ¯̀
1 (ū)(t)

)
sgn ū(t) ≤ q̄(t) (3.11)

is valid almost everywhere on [a, b].
Let m̄ = −min {ū(t) : a ≤ t ≤ 2b− a} and M̄ = max {ū(t) : a ≤ t ≤ 2b− a}. Then there exist

αk, tk ∈ [a, 2b− a] (k = 1, 2) such that αk < tk (k = 1, 2), [α1, t1] ∩ [α2, t2] = ∅,

(t1 − α1) + (t2 − α2) ≤ b− a,

and
ū(t) < 0 for α1 < t < t1, ū (t1) = −m̄, ū (α1) = 0,
ū(t) > 0 for α2 < t < t2, ū (t2) = M̄, ū (α2) = 0.

(3.12)

By integrating (3.11) from α1 to t1 and from α2 to t2 and by taking account of (3.12), we obtain

m̄ ≤ M̄
t1∫

α1

¯̀
1(1)(s)ds + m̄

t1∫
α1

¯̀
0(1)(s)ds +

t1∫
α1

q̄(s)ds,

M̄ ≤ M̄
t2∫

α2

¯̀
0(1)(s)ds + m̄

t2∫
α2

¯̀
1(1)(s)ds +

t2∫
α2

q̄(s)ds.

(3.13)

Note that
∫ ti
αi
q̄(s)ds ≤ ‖q‖L (i = 1, 2) and there exist nonempty sets Ik ⊂ [a, b] (k = 1, 2) such

that I1 ∩ I2 = ∅ and
∫ tk
αk

¯̀
n(1)(s)ds =

∫
Ik
`n(1)(s)ds (n = 0, 1; k = 1, 2). Therefore, it follows

from (3.13) that m̄(1 − C) ≤ M̄A+ ‖q‖L and M̄(1 −D) ≤ m̄B + ‖q‖L, where A =
∫
I1
`1(1)(s)ds,

B =
∫
I2
`1(1)(s)ds, C =

∫
I1
`0(1)(s)ds, and D =

∫
I2
`0(1)(s)ds. Consequently,

m̄(1− C)(1−D) ≤ A (m̄B + ‖q‖L) + ‖q‖L(1−D) ≤ m̄AB + ‖q‖L(A+ 1),
M̄(1− C)(1−D) ≤ B

(
M̄A+ ‖q‖L

)
+ ‖q‖L(1− C) ≤ M̄AB + ‖q‖L(B + 1).

However, since 4AB ≤ (A+B)2 ≤ ‖`1(1)‖2

L and (1− C)(1−D) ≥ 1− ‖`0(1)‖L, it follows that

m̄ ≤ (1 + ‖`1(1)‖L) %‖q‖L, M̄ ≤ (1 + ‖`1(1)‖L) %‖q‖L,

where % =
(
1 − ‖`0(1)‖L − (1/4) ‖`1(1)‖2L

)−1
. Now, by (3.8), the validity of the estimate (3.6)

becomes obvious, which completes the proof of the lemma.
Proof of Theorem 3.1. First, we note that, by (2.1), the operator ` satisfies condition (3.4),

where `∗(t) = `0(1)(t) + `1(1)(t).
Let r0 be the positive constant occurring in Lemma 3.2, and let r = r0‖q‖L. By Lemma 3.1, to

prove the theorem, it suffices to show that, for each λ ∈ [0, 1], an arbitrary solution of problem (3.5),
(1.2) admits the estimate (3.6).

By condition (3.2), an arbitrary solution of problem (3.5), (1.2) is also a solution of prob-
lem (3.7), (1.2) provided that λ ∈ [0, 1]. On the other hand, by Lemma 3.2, each solution of
problem (3.7), (1.2) admits the estimate (3.6). The proof of the theorem is complete.

If `(u)(t) = p(t)u(τ(t)) and F (u)(t) = f(t, u(µ(t)), u(t)), then Theorem 3.1 implies Corollary 3.1.
Proof of Theorem 3.2. By (3.3), condition (3.2) with q(t) = |F (0)(t)| is valid. Consequently,

by Theorem 3.1, problem (1.1), (1.2) is solvable. It remains to show that it has at most one
solution. Let u1 and u2 be arbitrary solutions of that problem, and let u(t) = u2(t)− u1(t). Then,
by condition (3.3), the function u is a solution of problem (3.7), (1.2) with q(t) ≡ 0. This, together
with Lemma 3.2, implies that u(t) ≡ 0, i.e., u2(t) ≡ u1(t). The proof of the theorem is complete.
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4. ON REMARKS 2.1 AND 3.1

On Remark 2.1

Let (x0, y0) 6∈ H. Then, obviously, (y0, x0) 6∈ H; i.e., it suffices to consider the case in which
y0 ≥ x0. Note also that if, for some p ∈ L([a, b];R) and τ ∈Mab, the problem

u′(t) = p(t)u(τ(t)), u(a) = u(b) (4.1)

has a nontrivial solution, then there exists a function g ∈ L([a, b];R) such that problem (1.4), (1.2)
has no solution. Accordingly, the functions p and τ in the examples below are constructed so as to
ensure that problem (4.1) has a nontrivial solution and

J+ = y0, J− = x0. (4.2)

Example 4.1. Let x0 ∈ [0, 1] and y0 ≥ 2 + 2
√

1− x0. We take k ∈ [0, 1] such that
4k/(k + 1)2 = x0 and set a = 0, b = 5, c = y0 − 4/(k + 1), and

τ(t) =


1 for t ∈ [0, 1] ∪ [(3− k)/(k + 1), 4 − k] ∪ [5− k, 5]
3 for t ∈ ]1, (3 − k)/(k + 1)[

4− k for t ∈ ]4− k, 5 − k[ ,

p(t) =


1/(k + 1) for t ∈ ]0, 1[ ∪ [3, 4 − k] ∪ [5− k, 5]
1/(1 − k) for t ∈ ]1, (3 − k)/(k + 1)[
−1/(k + 1) for t ∈ ](3− k)/(k + 1), 3[

c for t ∈ ]4− k, 5− k[ .

One can readily see that c ≥ 0, relation (4.2) is valid, and the function

u(t) =


t+ k if 0 ≤ t < 1
2 + k − t if 1 ≤ t < 3
t+ k − 4 if 3 ≤ t < 4− k

0 if 4− k ≤ t < 5− k
t+ k − 5 if 5− k ≤ t ≤ 5,

is a nontrivial solution of problem (4.1).
Example 4.2. Let x0 ≥ 1, y0 ≥ 1, a = 0, b = 4, and

τ(t) =

{
0 if 0 ≤ t < 1
1 if 1 ≤ t < 3
4 if 3 ≤ t ≤ 4,

p(t) =


−1 if 0 < t < 1
1− x0 if 1 < t < 2
y0 − 1 if 2 < t < 3

1 if 3 < t < 4.

Then relation (4.2) is valid, and the function u(t) =

{
1− t if 0 ≤ t < 1

0 if 1 ≤ t < 3,
t− 3 if 3 ≤ t ≤ 4

is a solution of prob-

lem (4.1).
Example 4.3. Let x0 ∈ ]0, 1[ , x0 ≤ y0 ≤ x0/ (1− x0), a = 0, b = 2, t0 = 1/y0 − (1− x0) /x0,

and
τ(t) =

{
t0 if 0 ≤ t < 1
1 if 1 ≤ t ≤ 2, p(t) =

{
y0 if 0 < t < 1
−x0 if 1 < t < 2.

Then t0 ∈ [0, 1], relation (4.2) is valid, and the function

u(t) =
{
t+ (1− x0) /x0 if 0 ≤ t < 1
2 + (1− x0) /x0 − t if 1 ≤ t ≤ 2,

is a nontrivial solution of problem (4.1).
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On Remark 3.1

Let a = 0, b = 4, ε ∈ ]0, 1[ , and

τ(t) =
{

3 for t ∈ [0, 2 − ε/2] ∪ [3, 4]
1 for t ∈ ]2− ε/2, 3[ ,

p(t) =
{
−1 for t ∈ ]0, 1[ ∪ ]2− ε/2, 3[ ∪ ]4− ε/2, 4[

0 for t ∈ ]1, 2 − ε/2[ ∪ ]3, 4 − ε/2[ ,

h(t) =


0 for t ∈ ]0, 1[ ∪ ]2− ε/2, 3[ ∪ ]4− ε/2, 4[

1/(2 − t) for t ∈ ]1, 2 − ε/2[
1/(4 − t) for t ∈ ]3, 4 − ε/2[ .

Obviously, J− = 2 + ε, J+ = 0, and the function u(t) =

{
t if 0 ≤ t < 1

2− t if 1 ≤ t < 3
t− 4 if 3 ≤ t ≤ 4

is a nontrivial

solution of the problem u′(t) = p(t)u(τ(t)) − h(t)u(t), u(a) = u(b).
Consequently, there exists a function g ∈ L( ]a, b[;R) such that the problem

u′(t) = p(t)u(τ(t)) − h(t)u(t) + g(t), u(a) = u(b),

has no solution. In other words, problem (1.1), (1.2) with `(v)(t) ≡ −`1(v)(t) ≡ p(t)v(τ(t)),
`0(v)(t) ≡ 0, and F (v)(t) ≡ −h(t)v(t) + g(t) has no solution even though the operator F satisfies
condition (3.2). Consequently, the second inequality in (3.1) cannot be replaced by the inequality
‖`j(1)‖L ≤ (2+ε) (1− ‖`i(1)‖L)1/2 however small ε > 0 is. As to the remaining inequalities in (3.1),
Examples 4.2 and 4.3 imply that these inequalities cannot be replaced by nonstrict inequalities.
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