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Institute of Mathematics, Academy of Sciences of the Czech Republic
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Abstract

We study the singular periodic boundary value problem of the form`
|u′|p−2 u′

´′
= f(t, u), u(0) = u(T ), u′(0) = u′(T ),

where 1 < p < ∞ and f ∈ Car([0, T ] × (0,∞)) can have a repulsive space singularity
at x = 0. Contrary to previous results by Mawhin and Jebelean, Liu Bing and Rachůnková
and Tvrdý, we need not assume any strong force conditions. Our main existence results
rely on a new antimaximum principle for periodic quasilinear periodic problem, which has
an independent meaning.

2000 Mathematics Subject Classification. 34B16, 34C25, 34B15, 34B18.
Key words. Singular problem, periodic problem, Dirichlet problem, p– Laplacian, repulsive singularity, weak singularity,

lower and upper functions, antimaximum principle, quasilinear equation.

1. Introduction

This paper deals with singular periodic problems of the form

(φp(u′))
′ = f(t, u), (1.1)

u(0) = u(T ), u′(0) = u′(T ), (1.2)

where
0 < T <∞, 1 < p <∞, φp(y) = |y|p−2 y for y ∈ R (1.3)

and f satisfies the Carathéodory conditions on [0, T ] × (0,∞), i.e. f has the following
properties: (i) for each x ∈ (0,∞) the function f(., x) is measurable on [0, T ]; (ii) for
almost every t ∈ [0, T ] the function f(t, .) is continuous on (0,∞); (iii) for each compact
set K ⊂ (0,∞) the function mK(t) = supx∈K |f(t, x)| is Lebesgue integrable on [0, T ].

Second order nonlinear differential equations or systems with singularities appear nat-
urally in the description of particles submitted to Newtonian type forces or to forces caused
by compressed gases, see e.g. [13], [16] or [17]. The mathematical interest in periodic
singular problems increased considerably when the paper [23] by Lazer and Solimini ap-
peared in 1987. Motivated by the model equation u′′ = a u−α+e(t) with α > 0, a 6= 0 and
e integrable on [0, T ], they investigated the existence of positive solutions to the Duffing
equation u′′ = g(u) + e(t) using topological arguments and the lower and upper functions
method. The restoring force g was allowed to have an attractive singularity or a strong
repulsive singularity at origin. The results by Lazer and Solimini have been generalized
or extended e.g. by Habets and Sanchez [19], Mawhin [28], del Pino, Manásevich and
Montero [11], Omari and Ye [30], Zhang [43] and [45], Ge and Mawhin [18], Rachůnková
and Tvrdý [33] or Rachůnková, Tvrdý and Vrkoč [38]. All of these papers, when dealing
with the repulsive singularity, supposed that the strong force condition is satisfied. For the
case of the weak singularity, first results were delivered by Rachůnková, Tvrdý and Vrkoč
in [37]. Further results were delivered later also by Bonheure and De Coster [2] and Torres
[40].
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Regular periodic problems with φ– or p– Laplacian on the left hand side were consid-
ered by several authors, see e.g. del Pino, Manásevich and Murúa [12] or Yan [42]. General
existence principles for the regular vector problem, based on the homotopy to the averaged
nonlinearity, were presented by Manásevich and Mawhin in [26] (see also Mawhin [29]).

In the well-ordered case, the lower/upper functions method was extended to periodic
problems with a φ– Laplacian operator on the left hand side by Cabada and Pouso in [7],
Jiang and Wang in [22] and Staněk in [39]. The general existence principle valid also when
lower/upper functions are non-ordered was given by Rachůnková and Tvrdý in [35] and,
for the case when impulses are admitted, also in [34].

The singular periodic problem for the Liénard type equation(
|u′|p−2 u′

)′
+ h(u)u′ = g(u) + e(t) (1.4)

with g having either an attractive singularity or a strong repulsive singularity at x = 0 was
treated by Liu [25], Jebelean and Mawhin [20] and [21] and Rachůnková and Tvrdý [36].
Let us recall that a function g is said to have an attractive singularity at x = 0 if

lim inf
x→0+

g(x) = −∞.

Alternatively, we say that g has a repulsive singularity at the origin if

lim sup
x→0+

g(x) = +∞ (1.5)

and g has a strong repulsive singularity at the origin if

lim
x→0+

∫ 1

x

g(s) ds = +∞. (1.6)

For a more detailed survey of recent developments we refer to [32, Section 5].
The main goal of this paper is a new existence result, Theorem 4.4, for problem (1.1),

(1.2). As in [37, Theorem 2.5] (see also [32, Theorem 5.26]), where the classical case
p = 2 was treated, we need not assume that f satisfies any strong force condition. Our
main tools are the lower and upper functions method and a generalization of a classical
antimaximum principle to the quasilinear periodic problem

(φp(u′))
′ + λφp(u) = e(t), u(0) = u(T ), u′(0) = u′(T ) (1.7)

established below in Theorem 3.2.
Our main result applies, in particular, to the Duffing type model problem

(φp(u′))
′ +

(πp

T

)p
up−1 = a u−α + e(t), u(0) = u(T ), u′(0) = u′(T ), (1.8)

where 1<p≤2, a>0, α>0, e∈L1[0, T ], and λ=
(πp

T

)p
is the first eigenvalue of a homoge-

neous Dirichlet problem related to (1.7). In particular, we get that problem (1.8) has a pos-
itive solution if inf ess{e(t) : t ∈ [0, T ]} > 0. It is worth mentioning that for α ∈ (0, 1) the
function g(x) = a x−α does not satisfy the strong force condition (1.6).
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2 Preliminaries

As usual, for an arbitrary subinterval I of R we denote by C(I) the set of functions x :
I → R which are continuous on I; C1[0, T ] stands for the set of functions x ∈ C[0, T ]
with the first derivative continuous on [0, T ]. Further, L1[0, T ] is the set of functions x :
[0, T ] → R which are measurable and Lebesgue integrable on [0, T ]. AC[0, T ] is the set of
functions absolutely continuous on [0, T ] and ACloc[0, T ] is the set of functions absolutely
continuous on each compact interval I ⊂ [0, T ]. If f : [0, T ] × (0,∞) → R satisfies the
Carathéodory conditions on [0, T ]× (0,∞) we write

f ∈ Car([0, T ]× (0,∞)). (2.1)

For x ∈ L1[0, T ] we put

‖x‖∞ = sup ess
t∈[0,T ]

|x(t)| and x =
1
T

∫ T

0

x(s) ds.

Definition 2.1 A function u : [0, T ] → R is a solution to problem (1.1), (1.2) if
φp(u′) ∈ AC[0, T ], u > 0 on [0, T ], (φp(u′(t)))

′ = f(t, u(t)) for a.e. t ∈ [0, T ],
u(0) = u(T ) and u′(0) = u′(T ).

Notice that the requirement φ(u′) ∈ AC[0, T ] implies that u ∈ C1[0, T ].

The singular problem (1.1), (1.2) will also be investigated through regular auxiliary
problems of the form

(φp(u′))
′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T ), (2.2)

or
(φp(u′))

′ = f̃(t, u), u(a) = u(b) = 0, (2.3)

where f̃ ∈ Car([0, T ]×R) and a, b ∈ R, a < b. As usual, by a solution of problem (2.2)
we understand a function u such that φp(u′) ∈ AC[0, T ], (1.2) is true and (φp(u′(t)))

′ =
f̃(t, u(t)) for a.e. t ∈ [0, T ]. Analogously, u is a solution to (2.3) if φp(u′) ∈ AC[a, b],
u(a) = u(b) = 0 and (φp(u′(t)))

′ = f̃(t, u(t)) for a.e. t ∈ [a, b].

The lower and upper functions method combined with the topological degree argument
is an important tool for proofs of solvability of boundary value problems. For our purposes,
the definitions of lower and upper functions associated with problems (2.2) or (2.3) given
below are suitable. First, let us introduce the following notation.

Notation 2.2 For a given interval [a, b] ⊂ R, we denote by W [a, b] the set of functions
u ∈ C[a, b] for which there is an at most finite set Du ⊂ (a, b) such that φ(u′) ∈
ACloc([0, T ] \Du) and, moreover, for all t ∈ [a, b) and s ∈ (a, b], the limits

u′(t+) := lim
τ→t+

u′(τ) and u′(s−) := lim
τ→s−

u′(τ)

are defined and finite and

u′(t+) > u′(t−) for all t ∈ Du. (2.4)
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Definition 2.3 We say that a function σ ∈ C[0, T ] is a lower function of problem
(2.2) if σ ∈W [0, T ] and

(φ(σ′(t)))′ ≥ f̃(t, σ(t)) for a.e. t ∈ [0, T ], σ(0) = σ(T ), σ′(0) ≥ σ′(T ). (2.5)

If σ ∈ C[0, T ] is such that −u ∈ W [0, T ] and relations (2.5) hold with the reversed
inequalities, we say that σ is an upper function of (2.2).

Analogously, σ ∈ C[a, b] is a lower function of (2.3) if u ∈W [a, b] and

(φ(σ′(t)))′ ≥ f̃(t, σ(t)) for a.e. t ∈ [a, b], σ(a) ≤ 0, σ(b) ≤ 0, (2.6)

hold. If −u ∈ W [a, b] and the inequalities in (2.6) are reversed, then σ is called
an upper function of (2.2) or of (2.3), respectively.

The next two assertions based on the lower and upper functions method will be useful
for our purposes.

Proposition 2.4 ([32, Lemma 5.9]) Assume (1.3) and f̃ ∈ Car([0, T ] × R). Fur-
thermore, let σ1 and σ2 be a lower and an upper function of (2.2) and let there be
m ∈ L1[0, T ] such that

f̃(t, x) > m(t) (or f̃(t, x) < m(t)) for a.e. t ∈ [0, T ] and all x ∈ R.

Then problem (2.2) has a solution u such that

min{σ1(τu), σ2(τu)} ≤ u(τu) ≤ max{σ1(τu), σ2(τu)} for some τu ∈ [0, T ].

Proposition 2.5 ([6, Theorem 3.5]) Assume (1.3), f̃ ∈ Car([0, T ]×R) and let a, b ∈
R, a < b be given. Furthermore, let σ1 and σ2 be a lower and an upper function
of (2.3) such that σ1 ≤ σ2 on [a, b]. Then problem (2.3) has a solution u such that
σ1 ≤ u ≤ σ2 on [a, b].

3 Sign properties of quasilinear periodic problems

First, let us recall some basic known facts concerning initial value problems of the form

(φp(u′))
′ + λφp(u) = 0, (3.1)

u(t0) = 0, u′(t0) = d, (3.2)

where 1 < p <∞, t0 ∈ R, λ ∈ R and d ∈ R. As in [9] (see also e.g. [1], [10], [14], [15],
[44], [46], [27]), let us put

πp = 2 (p− 1)1/p

∫ 1

0

(1− sp)−1/p ds.

Clearly, π2 = π. Furthermore, it is known that

πp = 2 (p− 1)
1
p

(π/p)
sin (π/p)

. (3.3)
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(See [15, Sec. 1.1.2], but take into account that our definition differs slightly from that used
in [15], where πp = 2

∫ 1

0
(1− sp)−1/p ds.) It is known (see [15, Theorem 1.1.1]) that for

each t0 ∈ R, λ ∈ R and d ∈ R problem (3.1), (3.2) has a unique solution u on R which
can be, by [9, sec. 3]), expressed as

u(t) = d λ−1/p sinp(λ1/p (t− t0)) for t ∈ R,

where the function sinp : R → [−(p− 1)1/p, (p− 1)1/p] is defined as follows.

Let w : [0, πp/2] → [0, (p− 1)1/p] be the inverse function to

x ∈ [0, (p− 1)1/p] →
∫ x

0

ds
(1− sp

p−1 )1/p
∈ [0, πp/2].

Further, put w̃(t) = w(πp−t) for t ∈ [πp/2, πp] and then w̃(t) = −w̃(−t) for t ∈ [−πp, 0].
Finally, define sinp : R → R as the 2πp– periodic extension of w̃ to the whole R. In
particular, if d = 0, then u ≡ 0 on R. Obviously, we have

sinp(t) = 0 if and only if t = nπp, n ∈ N ∪ {0},

sinp(t) = (p− 1)1/p if and only if t = (2n+ 1)
πp

2
, n ∈ N ∪ {0},

and
sinp(t) > 0 if and only if t ∈ (2nπp, (2n+ 1)πp), n ∈ N ∪ {0}.

As a corollary, we immediately obtain that for given a, b ∈ R, a< b, the corresponding
Dirichlet problem

(φp(u′))
′ + λφp(u) = 0, u(a) = u(b) = 0 (3.4)

possesses a nontrivial solution, i.e. λ is an eigenvalue for (3.4) if and only if

λ ∈
{(

n πp

b−a

)p

: n ∈ N ∪ {0}
}
. (3.5)

In particular, λ =
(πp

T

)p
is the least eigenvalue for (3.4) with b − a = T, wherefrom the

following assertion follows.

Proposition 3.1 Let 1 < p < ∞, a, b ∈ R, a < b, and let λ =
(πp

T

)p
, where πp is

given by (3.3). Then problem (3.4) has a nontrivial solution if and only if b−a = nT
for some positive integer n.

It is easy to check that the function

G(t, s) =
T

2π
sin

(
π
T |t− s|

)
, t, s ∈ [0, T ],

is the Green function for v′′ +
(

π
T

)2
v = 0, v(0) = v(T ), v′(0) = v′(T ), and G(t, s) is

nonnegative on [0, T ]×[0, T ].More generally, for the linear periodic problem the following
antimaximum principle is valid:
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Let µ∈L1[0, T ] be such that 0 ≤ µ(t) ≤
(

π
T

)2 for a.e. t ∈ [0, T ] and µ > 0 and
let v ∈AC1[0, T ] satisfy the periodic conditions (1.2) and

v′′(t) + µ(t) v(t) ≥ 0 for a.e. t ∈ [0, T ].

Then v is nonnegative on [0, T ].

Next, we will show that for the quasilinear periodic problem (1.7) an analogous asser-
tion holds although, in general, no tools like the Green function are available.

Theorem 3.2 Let 1 < p <∞ and let µ ∈ L1[0, T ] be such that

µ > 0 and 0 ≤ µ(t) ≤
(πp

T

)p for a.e. t ∈ [0, T ], (3.6)

where πp is given by (3.3). Then v ≥ 0 on [0, T ] holds for each v ∈ W [0, T ] (see
Notation 2.2) such that

(φp(v′(t)))′ + µ(t)φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ], (3.7)

v(0) = v(T ), v′(0) ≥ v′(T ). (3.8)

Proof. Let v ∈ W [0, T ] and D = {t1, t2, . . . , tm} ⊂ (0, T ) be such that φp(v′) ∈
AC([0, T ] \ D) and (3.6) and (3.7) hold. Put t0 = 0 and tm+1 = T. Without any loss of
generality we may assume that v does not vanish on [0, T ].

Step 1. First, we show that

max{v(t) : t ∈ [0, T ]} > 0. (3.9)

Assuming, on the contrary, that v ≤ 0 on [0, T ], we get by (3.7)

(φp(v′(t)))
′ ≥ −µ(t)φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ].

This, together with condition (2.4), means that v′ is nondecreasing on [0, T ]. Therefore,
v may satisfy boundary conditions (3.8) if and only if v = v(0) ≤ 0 on [0, T ], i.e. the
previous relation reduces to

−µ(t) (−v(0))p−1 ≥ 0 for a.e. t ∈ [0, T ].

Since µ ≥ 0 a.e. on [0, T ] and µ > 0, this is possible if and only if v(0) = 0, i.e. v = 0 on
[0, T ], which contradicts our assumption that v does not vanish on [0, T ].

Step 2. We show that min{v(t) : t ∈ [0, T ]} ≥ 0. Assume on the contrary that

min{v(t) : t ∈ [0, T ]} < 0. (3.10)

Let us extend v and µ to T– periodic functions on R and denote these extensions by the
same symbols. Then µ is locally integrable on R and v ∈ W (I) for each compact interval
I ⊂ R. Furthermore, inequality (3.7) holds for a.e. t ∈ [0, T ].
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Let t∗ ∈ [0, T ] be such that

v(t∗) = max{v(t) : t ∈ [0, T ]}.

By (3.8) we may assume that t∗ ∈ [0, T ). Furthermore, by Step 1, v(t∗) > 0 and there are
a ∈ [−T, t∗) and b ∈ (t∗, 2T ] such that v(a) = v(b) = 0, v > 0 on (a, b). Due to (3.10),
we have

0 < b− a < T. (3.11)

Furthermore, using (3.6) and (3.7), we get

(φp(v′(t)))
′ +

(πp

T

)p
φp(v(t)) ≥ (φp(v′(t)))

′ + µ(t)φp(v(t)) ≥ 0 for a.e. t ∈ [a, b].
(3.12)

Now, put

a0 = a− T − b+ a

2
, b0 = a0 + T

and
σ2(t) = d

(
T
πp

)
sinp

((πp

T

)
(t− a0)

)
for t ∈ R

with d > 0 large enough so that σ2(t) > v(t) ≥ 0 on [a, b]. We have

(φp(σ′2(t)))
′ +

(πp

T

)p
φp(σ2(t)) = 0 for a.e. t ∈ [a, b]. (3.13)

Thus, σ2 is an upper function for (3.4). Moreover, since v ∈ W [a, b], v(a) = v(b) and
(3.12) holds for a.e. t ∈ [a, b], the function σ1 = v is a lower function for (3.4). Hence,
by Proposition 2.5, where we put f̃(t, x) = −

(πp

T

)p
φp(x) for t, x ∈ R, there exists

a nontrivial solution u to (3.4). By (3.11), this contradicts Proposition 3.1.

Example 3.3 The previous comparison result is optimal in the sense that for any
λ >

(πp

T

)p we can find v ∈ W [0, T ] which changes sign on [0, T ] and satisfies (3.7)
(with µ(t) ≡ λ) and (3.8).

To see this, denote µ =
(πp

T

)p and consider two cases:

(i) λ ∈ (µ, 2pµ) and (ii) λ ≥ 2pµ.

Case (i). Let λ ∈ (µ, 2pµ). Then we have λ1/p − µ1/p < µ1/p. Let us define

t0 =
T

(
λ1/p − µ1/p

)
2λ1/p

and λ̄ = λ

(
µ1/p

λ1/p − µ1/p

)p

.

Then 0 < t0 <
T
2 , µ < λ < λ̄, λ1/p (T − 2 t0) = πp and λ̄1/p t0 = πp

2 . Let us consider
the function

v(t) =


λ̄−1/p sinp

(
λ̄1/p (t− t0)

)
if t ∈ [0, t0),

λ−1/p sinp

(
λ1/p (t− t0)

)
if t ∈ [t0, T − t0],

λ̄−1/p sinp

(
λ̄1/p (T − t− t0)

)
if t ∈ (T − t0, T ].
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We can see from the definition of v that v ∈ W [0, T ] (with v ∈ C1([0, T ] \ {t0})),
v(t0) = v(T − t0) = 0 and

v < 0 on [0, t0) ∪ (T − t0, T ] and v > 0 on (t0, T − t0),

i.e. v changes its sign on [0, T ]. Having in mind the definitions of λ̄ and v, we can
verify that (3.7) is true for µ(t) ≡ λ. Moreover,

v(0) = v(T ) = −
(
p− 1
λ̄

)1/p

< 0, v′(0) = v′(T ) = 0 and v′(t0−) = v′(t0+) = 1.

In particular, (3.8) holds, i.e. v has the desired properties.

Case (ii). Let λ ≥ 2pµ. Put t1 =
(

T (λ1/p−2µ1/p)
2 λ1/p

)
. Then 0 ≤ t1 < t0 <

T
2 and we

can define the function v by

v(t) =


−((p− 1)/λ)1/p if t ∈ [0, t1),

λ−1/p sinp

(
λ1/p (t− t0)

)
if t ∈ [t1, T − t1],

−((p− 1)/λ)1/p if t ∈ (T − t1, T ].

Similarly to Case (i), v ∈W [0, T ]. Furthermore,

v > 0 on [0, t0) ∪ (T − t0, T ] and v < 0 on (t0, T − t0).

Therefore v changes its sign on [0, T ] and, similarly to Case (i), we can verify that
v satisfies relations (3.7) (with µ(t) ≡ λ) and (3.8).

4 Main results

First, let us recall the following a priori estimate. Its proof is an easy modification of the
proof of [35, Lemma 2.4] (see also [32, Lemma 5.8]), where strict inequalities occur in
place of non-strict ones.

Lemma 4.1 Let 1 < p <∞ and ψ ∈ L1[0, T ]. Then

‖v′‖∞ ≤ φ−1
p (‖ψ‖1) (4.1)

holds for each v ∈ C1[0, T ] fulfilling φp(v′) ∈ AC[0, T ], v(0) = v(T ), v′(0) = v′(T )
and (φp(v′(t)))

′ ≥ ψ(t) (or (φp(v′(t)))
′ ≤ ψ(t)) for a.e. t ∈ [0, T ].

Next, we prove an existence principle which relies on the comparison of the given prob-
lem (1.1), (1.2) with the related quasilinear problem fulfilling the antimaximum principle.

Theorem 4.2 Assume (1.3) and (2.1) and 2 ≤ p <∞. Furthermore, let r > 0, A ≥ r,
µ, β ∈ L1[0, T ] be such that µ(t) ≥ 0 a.e. on [0, T ], µ > 0,

β ≤ 0 and f(t, x) ≤ β(t) for a.e. t ∈ [0, T ] and all x ∈ [A,B] (4.2)
and
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f(t, x) + µ(t)φp(x− r) ≥ 0 for a.e. t ∈ [0, T ] and all x ∈ [r,B], (4.3)

where

B −A ≥ T

2
φ−1

p (‖m‖1),

m(t) = max
{

sup{f(t, x) : x ∈ [r,A]}, β(t), 0
}

for a.e. t ∈ [0, T ] (4.4)

and 

v ≥ 0 on [0, T ] holds for each v ∈ C1[0, T ] such that

φp(v′) ∈ AC[0, T ],

(φp(v′(t)))′ + µ(t)φp(v(t)) ≥ 0 for a.e. t ∈ [0, T ],

v(0) = v(T ), v′(0) = v′(T ).

(4.5)

Then problem (1.1), (1.2) has a solution u such that

r ≤ u ≤ B on [0, T ] and ‖u′‖∞ < φ−1
p (‖m‖1). (4.6)

Proof.
Part I. First, assume that β < 0.

Step 1. Put

f̃(t, x) =


f(t, r)− µ(t)φp(x− r) if x ≤ r,

f(t, x) if x ∈ [r,B],

f(t, B) if x ≥ B

(4.7)

and consider problem (2.2). We have f̃ ∈ Car([0, T ] × R). Furthermore, by (4.2)–(4.7),
the inequalities

f̃(t, x) ≤ β(t) if x ∈ [A,∞) (4.8)

and
f̃(t, x) + µ(t)φp(x− r) ≥ 0 for all x ∈ R (4.9)

are valid for a.e. t ∈ [0, T ]. In particular, in view of (4.7) we have

f̃(t, x) ≥ h(t) := −µ(t)φp(B − r) for a.e. t ∈ [0, T ] and all x ∈ R, (4.10)

with h ∈ L1[0, T ].
By (4.9), σ2 ≡ r is an upper function of (2.2). Further, if b=β−β, then b∈L1[0, T ]

and b=0 and it is easy to see that there is a uniquely defined σ0 ∈ C1[0, T ] such that
φp(σ′0)∈AC[0, T ],

(φp(σ′0(t)))
′ = b(t) for a.e. t ∈ [0, T ] and σ0(0) = σ0(T ) = 0.
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Now, let us choose c∗ > 0 such that c∗ + σ0 ≥ A on [0, T ] and define σ1 = c∗ + σ0. By
(4.8) we have

σ1(0) = σ1(T ) = c∗,

(φp(σ′1(t)))
′ = b(t) = β(t)− β > β(t) ≥ f̃(t, σ1(t)) for a.e. t ∈ [0, T ]

and
φp(σ′0(T ))− φp(σ′0(0)) = T b = 0.

Consequently, σ1 is a lower function of (2.2). Therefore, by (4.10) and Proposition 2.4, the
regular problem (2.2) has a solution u such that u(tu)≥ r for some tu ∈ [0, T ].

Step 2. We show that
u(t) ≥ r for t ∈ [0, T ]. (4.11)

To this aim, set v = u− r. By virtue of (4.9), we have

(φp(v′(t)))
′ + µ(t)φp(v(t)) = f̃(t, u(t)) + µ(t)φp(u(t)− r) ≥ 0

for a.e. t ∈ [0, T ]. By (4.5) it follows that v(t) ≥ 0 on [0, T ], i.e. (4.11) is true.

Step 3. We show that
u(t) < B for t ∈ [0, T ]. (4.12)

Indeed, by the definition of m and by (4.7) and (4.8) we have

f̃(t, x) ≤ m(t) for a.e. t ∈ [0, T ] and all x ≥ r.

Hence, we can use Lemma 4.1 to get the estimate

‖u′‖∞ ≤ φ−1
p (‖m‖1). (4.13)

If u ≥ A were valid on [0, T ], then taking into account the periodicity of u′ and (4.8), we
would get

0 =
∫ T

0

f̃(t, u(t)) dt ≤
∫ T

0

β(t) dt = T β < 0,

a contradiction. Hence,
min{u(s) : s ∈ [0, T ]} < A.

Now, assume that
u∗ := max{u(s) : s ∈ [0, T ]} > A

and extend u to be T−periodic on R. There are s1, s2 and s∗ ∈ R such that

s1 < s∗ < s2, s2 − s1 < T, u(s1) = u(s2) = A and u(s∗) = u∗ > A.

In particular, due to (4.13),

2 (u(s∗)−A) =
∫ s∗

s1

u′(s) ds+
∫ s∗

s2

u′(s) ds ≤ T φ−1
p (‖m‖1),
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wherefrom the estimate

u(t)−A ≤ T

2
φ−1

p (‖m‖1) ≤ B −A on [0, T ]

follows. Thus, (4.12) is true.

Step 4. Estimates (4.11) and (4.12) mean that r ≤ u ≤ B holds on [0, T ]. In view of (4.7),
we conclude that u is a solution to (1.1), (1.2).

Part II. Now, let β = 0. Put n0 = max{ 1
r ,

1
B−A , 3}. For an arbitrary n ∈ N, define

f̃n(t, x) =



f(t, r) if x ≤ r,

f(t, x) if x ∈ [r,A],

f(t, x)− µ(t)φp

(
1
n

x−A
x−A+1

)
if x ∈ (A,B],

f(t, B)− µ(t)φp

(
1
n

B−A
B−A+1

)
if x ≥ B.

(4.14)

Taking into account (4.2), we get

f̃n(t, x) = f(t, x)− µ(t)φp

(
1
n

x−A
x−A+1

)
≤ β(t)− µ(t)φp

(
1
n

x−A
x−A+1

)
≤ β(t)− µ(t)φp( 1

2n2 ) if x ∈ [A+ 1
n , B]

and
f̃n(t, x) = f(t, B)− µ(t)φp

(
1
n

B−A
B−A+1

)
≤ β(t)− µ(t)φp( 1

2n2 ) if x ≥ B

for a.e. t ∈ [0, T ] and all n ∈ N such that n ≥ n0. Thus, f̃n(t, x) ≤ βn(t) := β(t)− µ(t)φp( 1
2n2 )

for x ≥ A+ 1
n , for a.e. t ∈ [0, T ] and all n ≥ n0.

(4.15)

Clearly,

βn < 0 and βn(t) ≤ β(t) for a.e. t ∈ [0, T ]. (4.16)

Furthermore, by (4.3) and (4.14), we have

f̃n(t, x) + µ(t)φp

(
x− (r − 1

n )
)
≥ f(t, r) ≥ 0 if x ∈ [r − 1

n , r],

f̃n(t, x) + µ(t)φp

(
x− (r − 1

n )
)
≥ f(t, x) + µ(t)φp (x− r) ≥ 0 if x ∈ [r,A],
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and, taking into account that ξp−1 + ηp−1≤ (ξ+ η)p−1 holds for all ξ, η≥ 0 and each
p≥ 2,

f̃n(t, x) + µ(t)φp

(
x− (r − 1

n )
)

= f(t, x)− µ(t)φp

(
1
n

x−A
x−A+1

)
+ µ(t)φp

(
x− r + 1

n

)
≥ f(t, x) + µ(t)φp (x− r) ≥ 0 if x ∈ [A,B]

and
f̃n(t, x) + µ(t)φp

(
x− (r − 1

n )
)

= f(t, B)− µ(t)φp

(
1
n

B−A
B−A+1

)
+ µ(t)φp

(
x− r + 1

n

)
≥ f(t, B) + µ(t)φp (B − r) ≥ 0 if x ≥ B.

To summarize,

f̃n(t, x) + µ(t)φp

(
x− (r − 1

n )
)
≥ 0 for all x ≥ r − 1

n . (4.17)

For a.e. t ∈ [0, T ] and all n ∈ N, put

m̃n(t) := max
{

sup{f̃n(t, x) : x ∈ [r − 1
n , A+ 1

n ]}, bn(t), 0
}
.

In view of (4.4), (4.14) and (4.16), we have

0 ≤ m̃n(t) ≤ m(t) for a.e. t ∈ [0, T ] and n ≥ n0.

This together with (4.15)-(4.17) means that, for each n ∈ N large enough, Part I of this
proof ensures the existence of a solution un to the auxiliary problem

(φp(u′n))′ = f̃n(t, un), un(0) = un(T ), u′n(0) = u′n(T )

which satisfies the estimates

r − 1
n ≤ un(t) ≤ B + 1

n on [0, T ] and ‖u′n‖∞ ≤ φ−1
p (‖m‖1).

Now, notice that

|f̃n(t, x)− f̃(t, x)| ≤ µ(t)φp

(
1
n

)
for a.e. t ∈ [0, T ], all x ∈ R and all n ∈ N,

where

f̃(t, x) =


f(t, r) if x ≤ r,

f(t, x) if x ∈ [r,B],

f(t, B) if x ≥ B.

Thus, in a standard way (using the Arzelà-Ascoli and the Lebesgue Dominated Conver-
gence Theorem) we can show that the sequence {un}∞n=1 contains a subsequence which
converges in C1[0, T ] to a solution u of the problem

(φp(u′))′ = f̃(t, u), u(0) = u(T ), u′(0) = u′(T )
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which satisfies necessarily the estimate (4.6), i.e. solves also (1.1), (1.2).

The next supplementary assertion concerning the case 1 < p < 2 follows immediately
from Part I of the previous proof.

Theorem 4.3 Let all assumptions of Theorem 4.2 be satisfied, with the exceptions
that 1 < p < 2 is allowed and β < 0 is required in (4.2). Then problem (1.1), (1.2)
has a solution u such that (4.6) is true.

Theorems 3.2, 4.2 and 4.3 yield the following new existence criterion.

Theorem 4.4 Assume (1.3) and (2.1). Furthermore, let 1<p<∞, and let r > 0,
A≥ r, B >A and β ∈ L1[0, T ] be such that (4.2) (with β < 0 if 1 < p < 2) and (4.3)
hold, where

B −A ≥ T
2 φ

−1
p (‖m‖1)

and
m(t) > max

{
sup{f(t, x) : x ∈ [r,A]}, β(t), 0

}
for a.e. t ∈ [0, T ].

Then problem (1.1), (1.2) has a solution u such that (4.6) is true.

In particular, for the Duffing type equation (φp(u′))
′ = g(u) + e(t) we have

Corollary 4.5 Let 1 < p <∞. Suppose that f(t, x) = g(x) + e(t) for x ∈ (0,∞) and
a.e. t ∈ [0, T ], where g ∈ C(0,∞), e ∈ L1[0, T ] and

e+ lim sup
x→∞

g(x) < 0, (4.18)

and there is r > 0 such that

e(t) + g(x) +
(πp

T

)p (x− r)p−1 ≥ 0 for a.e. t ∈ [0, T ] and all x ≥ r. (4.19)

Then problem (1.1), (1.2) has a solution u such that u ≥ r on [0, T ].

Proof. Due to (4.18), we can find A ≥ r such that

g(x) + e <
1
2

(
e+ lim sup

x→∞
g(x)

)
< 0 for x ∈ [A,∞).

Consequently,

f(t, x) = g(x) + e(t) = (g(x) + e) + (e(t)− e) <
1
2

(
e+ lim sup

x→∞
g(x)

)
+ e(t)− e

for a.e.t ∈ [0, T ] and all x ∈ [A,∞). Therefore, (4.2) holds with

β(t) := e(t) + 1
2

(
lim sup

x→∞
g(x)− e

)
,

β < 0 and B > A arbitrarily large. Finally, by virtue of (4.19), f satisfies (4.3) with
B > r arbitrarily large. Now, the assertion follows by Theorem 4.4.
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Remark 4.6 Notice that the assertion of Corollary 4.5 remains valid also when the
assumption (4.18) is replaced by a slightly weaker assumption that there is an A > r
such that g(x) + e ≤ 0 for x ≥ A.

Finally, let us consider the model problem

(φp(u′))
′ + k up−1 =

a

uα
+ e(t), u(0) = u(T ), u′(0) = u′(T ). (4.20)

Corollary 4.7 Let 1<p<∞, e∈L1[0, T ], a> 0, α> 0, k≥ 0. Furthermore, let

e∗:= inf ess{e(t) : t∈[0, T ]}>−∞, µ =
(πp

T

)p

and let one of the following cases hold:
k=0, 1<p<∞, e < 0 and e∗+ a

(
α+p−1

p−1

) (
(p−1) µ

α a

) α
α+p−1

> 0,

0<k<µ, 1<p<∞ and e∗+ a
(

α+p−1
p−1

) (
(p−1) (µ−k)

α a

) α
α+p−1

> 0,

k=µ, 1<p≤ 2 and e∗> 0.
(4.21)

Then problem (4.20) has a positive solution.

Proof. Denote

g(x) := −k xp−1 +
a

xα
+ e(t) for a.e. t ∈ [0, T ] and all x > 0.

To apply Corollary 4.5 we need to find conditions under which assumptions (4.18) and
(4.19) are satisfied. It is easy to see that if k > 0, then condition (4.18) is satisfied for all
e∈L1[0, T ], while in the case k=0 this condition holds whenever e< 0. Denote

hr(x) :=
a

xα
+µ (x− r)p−1 − k xp−1 for r > 0 and x≥ r or r=0 and x> 0.

We can see that to verify condition (4.19) it suffices to show that

∃ r > 0 such that e∗ + hr(x) ≥ 0 for all x≥ r. (4.22)

Since limx→∞ hr(x)=−∞ if k >µ, p> 1 and r≥ 0 and also if k=µ, p> 2 and r > 0,
condition (4.22) cannot be satisfied in these cases. It remains to consider the following two
possibilities:

(i) 1<p≤ 2, 0≤ k≤µ,
(ii) 2<p<∞, 0≤ k <µ.

Case (i). If 1<p≤ 2, then the inequality (x− r)p−1 ≥ xp−1− rp−1 holds for all r≥ 0
and x≥ r. Therefore, hr(x)≥h0(x)− µ rp−1 for all x≥ r, i.e.

κ(r)≥κ(0)− µ rp−1 for all k∈ [0, µ],
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where κ(r) stands for

κ(r) := inf{hr(x) : x ∈ (r,∞)} for r≥ 0.

It follows that condition (4.22) is satisfied provided

e∗+κ(0)>0 and r=
(
e∗+κ(0)

µ

) 1
p−1

.

Notice thatκ(0)= a

(
α+ p− 1
p− 1

) (
(p− 1) (µ− k)

αa

) α
α + p− 1

if k∈ [0, µ),

κ(0) = 0 if k=µ.

(4.23)

In particular, if k=µ, problem (4.20) possesses a positive solution whenever e∗> 0.

Case (ii). Let p> 2. First, assume that k=0. Then for each r≥ 0 there is exactly one
x̃r ∈ (r,∞) such that κ(r) = hr(x̃r). We can check that

lim
r→0+

x̃r = x̃0 =
(

αa

(p−1)µ

) 1
α+p−1

and lim
r→0+

κ(r) = lim
r→0+

hr(x̃r) =h0(x̃0) = κ(0),

where κ(0) is given by (4.23). In particular, if κ(0) + e∗> 0, then there is r > 0 such that
κ(r) + e∗> 0, which means that (4.22) and hence also (4.19) are satisfied.

Now, assume that 0<k<µ and let e∗≥ 0. Denote

g̃r(x) =µ (x−r)p−1− k xp−1 for r > 0 and x≥ r.

We have g̃ ′r(x) = 0 if and only if x= x̃r, where x̃r:= r

(
1−

(
k
µ

) 1
p−2

)−1

and

g̃r(x̃r) =µ rp−1

(
1−

(
k
µ

) 1
p−2

)1−p ((
k
µ

) p−1
p−2 −k

)
= inf {g̃r(x) : x ∈ (0,∞)} .

Furthermore, g̃r is strictly increasing on [x̃r,∞) and g̃r(x)≥ 0 for all x≥ ξr, where

ξr:= r
(
1−

(k
µ

) 1
p−1

)−1

∈ (x̃r,∞).

Thus, e∗+hr(x) = e∗+ a
xα + g̃r(x)≥ 0 for x≥ ξr. On the other hand, for x∈ [r, ξr] we

have e∗+hr(x)≥ e∗+ a
ξr

α + g̃r(x̃r). Consequently, condition (4.22) is satisfied whenever

e∗ +
a

ξr
α + g̃r(x̃r)≥ 0 for some r > 0. (4.24)

Now, since limr→0+ x̃r = limr→0+ ξr =0, we have

lim
r→0+

g̃r(x̃r) = 0 and lim
r→0+

a

ξr
α =∞.
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Thus, we can see that (4.24) and hence also (4.22) hold for some r > 0 small enough.
Finally, let us consider the case that p> 2, 0<k<µ and e∗ = −η∗<0.We want again

to show that (4.22) is true. To this aim let us rewrite the inequality e∗+hr(x)≥ 0 as

h̃r(x) := − η∗
xp−1

+
a

xα+p−1
+ µ

(
1− r

x

)p−1 ≥ k.

First, notice that limx→∞ h̃r(x) =µ>k and there is δ > 0 such that

h̃r(r) =
a− η∗ r

α

rα+p−1
≥ k for all r∈ (0, δ).

Indeed, it suffices to choose δ > 0 in such a way that both inequalities

δα+p−1≤ a

2k
and η∗ δ

α≤ a

2

hold. Furthermore, h̃ ′r(x) = 0 if and only if

ρr(x) =σ(x) (4.25)

holds, where

ρr(x):= r µ (p−1)
(
1− r

x

)p−2
and σ(x):=

a (α+p−1)
xα+p−2

− η∗ (p−1)
xp−2

.

We can see that, for each r > 0, the function ρr is strictly increasing on [r,∞), while
ρr(r)= 0 and limx→∞ ρr(x)= rµ (p−1)> 0. On the other hand, σ′(x) = 0 if and only if
x= ξ∗, where

ξ∗ =
(
a (α+p−1) (α+p−2)
η∗ (p−1) (p−2)

) 1
α

.

Furthermore,σ is strictly decreasing on(0, ξ∗], strictly increasing on [ξ∗,∞), σ(ξ∗)<0,
limx→∞ σ(x) = 0 and σ(x) = 0 if and only if x= ξ, where

ξ =
(
a (α+p−1)
η∗ (p−1)

) 1
α

.

As a result, for each r∈ (0, ξ) there is exactly one point x̃r ∈ (r, ξ) such that (4.25) holds
for x= x̃r. Consequently, h̃r(x̃r) = inf{h̃r(x) : x∈ [r,∞)}. Now, we can show that

lim
r→0+

h̃r(x̃r) = h̃0(ξ) = µ−
(
αa

p−1

) (
η∗ (p−1)
a (α+p−1)

)α+p−1
α

.

Therefore, if

µ− k >

(
αa

p−1

) (
η∗ (p−1)
a (α+p−1)

)α+p−1
α

, (4.26)

then there exists r∈ (0,min{δ, ξ}) such that h̃r(x)≥ k holds for each x≥ r. In other
words, provided (4.26) is true, condition (4.22) is satisfied. Now, it is a question of routine
to verify that condition (4.26) is equivalent to condition κ(0) + e∗> 0 with κ(0) given
by (4.23). Thus, making use of Corollary 4.5, we can summarize that problem (4.20) has
a positive solution whenever one of the cases from (4.21) occurs.
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Remark 4.8 Notice that limx→∞ hr(x) =−∞ if k >µ, p> 1 and r≥ 0 and also if
k=µ, p> 2 and r > 0. Hence condition (4.19) cannot be satisfied and our method
fails in these cases. Furthermore, the results obtained for the classical case p=2 by
Rach̊unková, Tvrdý and Vrkoč [37] are contained in those presented in this section.
So, the following natural questions arise:

Open problems
(i) What can be said about the existence or nonexistence of positive solutions to

problem (4.20) in the cases k >µ, p> 1 and k=µ, p> 2?
(ii) Is it possible to weaken the condition inf ess{e(t) : t∈ [0, T ]} > 0 for the exis-

tence of a positive solution of (4.20) in the resonance case k=
(πp

T

)p in a way
similar to that used in the classical case p=2 by Bonheure and De Coster [2]
or by Bonheure, Fonda and Smets [3] ?

(iii) Is it possible, in a way similar to that used in the classical case p=2 by
Torres (see [40, Section 2]), to describe the sign properties of solutions to the
quasilinear problem

(φp(u′))′+µ(t)φp(u) = e(t), u(0)=u(T ), u′(0)=u′(T )

with µ∈Lq[0, T ], q > 1, and e∈L1[0, T ], e≥ 0 a.e. on [0, T ], in more details
then those provided here by Theorem 3.2 ?

Acknowledgement. The authors are grateful to Irena Rachůnková for a clever hint
which enabled them to prove the assertion of Corollary 4.7 when p> 2,
0<k<

(πp

T

)p
and inf ess{e(t) : t∈ [0, T ]} < 0.
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[37] I. Rachůnková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive nolu-
tions for second order periodic boundary value problems, J. Differential Equations 176
(2001), 445–469.
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