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NONPOSITIVE SOLUTIONS OF ONE FUNCTIONAL DIFFERENTIAL INEQUALITY

A. Lomtatidze,1 Z. Opluštil,2 and J. Šremr3 UDC 517.9

We establish efficient conditions guaranteeing that every solution of the problem

u0.t/ � `.u/.t/; u.a/ � h.u/;

where `WC.Œa; b�IR/! L.Œa; b�IR/ and hWC.Œa; b�IR/! R are linear bounded operators, is nonpos-
itive. The results obtained are very useful for the investigation of the question of solvability and unique
solvability of nonlocal boundary-value problems for first-order functional differential equations in both
linear and nonlinear cases.

1. Introduction and Notation

On an interval Œa; b�; we consider the functional differential inequality

u0.t/ � `.u/.t/; (1.1)

where `WC.Œa; b�IR/ ! L.Œa; b�IR/ is a linear bounded operator. A solution of inequality (1.1) is understood
as an absolutely continuous function uW Œa; b� ! R satisfying inequality (1.1) almost everywhere on the interval
Œa; b�:

Theorems on differential inequalities play a very important role in the theory of differential equations. For
example, the well-known Gronwall inequality is also a corollary of a certain theorem on differential inequalities.
Various types of differential inequalities are studied in the literature (see, e.g., [1, 3–6, 8, 9, 11, 13, 15–17]). In the
present paper, we establish efficient sufficient conditions guaranteeing that every solution of inequality (1.1) that
satisfies the condition

u.a/ � h.u/ (1.2)

with linear bounded functional hWC.Œa; b�IR/! R is nonpositive on the interval Œa; b�: The statements obtained
here can be used in the investigation of the question of solvability and unique solvability of nonlocal boundary-
value problems for functional differential equations in both linear and nonlinear cases.

In order to simplify the formulation of the main results we introduce the following definition:

Definition 1.1. Let h 2 Fab: An operator ` 2 Lab is said to belong to the set zV �
ab
.h/

�
resp., zV C

ab
.h/
�

if
every solution of problem (1.1), (1.2) is nonpositive (resp., nonnegative).
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As indicated above, the aim of the paper is to find conditions guaranteeing the inclusions ` 2 zV �
ab
.h/ and

` 2 zV C
ab
.h/: In the case where the functional h is given by the formula

h.v/
df
D �v.b/ for v 2 C.Œa; b�IR/

with � � 0; the sets zV C
ab
.h/ and zV �

ab
.h/ are described in detail (see [7, 8]). In [14], the case where h 2 PFab is

considered. However, the general case of h has not been studied yet.
We assume throughout the paper that the functional h 2 Fab is defined by the formula

h.v/
df
D �v.b/C h0.v/ � h1.v/ for v 2 C.Œa; b�IR/; (1.3)

where � > 0 and h0; h1 2 PFab: There is no loss of generality in assuming this because any linear bounded
functional can be represented in this form.

The following notation is used in what follows:

(1) N is the set of all natural numbers, R is the set of all real numbers, and RC D Œ0;C1Œ: If x 2 R; then
we set

Œx�C D
jxj C x

2
; Œx�� D

jxj � x

2
:

(2) C.Œa; b�IR/ is the Banach space of continuous functions vW Œa; b�! R endowed with the norm

kvkC D maxfjv.t/jW t 2 Œa; b�g:

(3) zC.Œa; b�ID/; where D � R; is the set of absolutely continuous functions vW Œa; b�! D:

(4) L.Œa; b�IR/ is the Banach space of Lebesgue integrable functions pW Œa; b�! R endowed with the norm

kpkL D

bZ
a

jp.s/jds:

(5) L.Œa; b�ID/ D fp 2 L.Œa; b�IR/WpW Œa; b�! Dg; where D � R:

(6) C.Œa; b�ID/ D fv 2 C.Œa; b�IR/W vW Œa; b�! Dg; where D � R:

(7) Lab is the set of linear bounded operators `WC.Œa; b�IR/! L.Œa; b�IR/; and Pab is the set of operators
` 2 Lab mapping the set C.Œa; b�IRC/ into the set L.Œa; b�IRC/:

(8) Fab is the set of linear bounded functionals hWC.Œa; b�IR/ ! R; and PFab is the set of functionals
h 2 Fab mapping the set C.Œa; b�IRC/ into the set RC:

Definition 1.2. Let t0 2 Œa; b�: We say that ` 2 Lab is a t0-Volterra operator if, for arbitrary a1 2 Œa; t0�;
b1 2 Œt0; b�; a1 ¤ b1; and v 2 C.Œa; b�IR/ with the property

v.t/ D 0 for t 2 Œa1; b1�;
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the following relation is true:

`.v/.t/ D 0 for a.e. t 2 Œa1; b1�:

2. Preliminary Remarks

Recall that we suppose that ` 2 Lab and h 2 Fab: The following two assumptions are natural:

(A) If h.1/ D 1; then the operator ` is supposed to be nontrivial in the sense that the condition `.1/ 6� 0 is
satisfied.

(B) zh 6� 0; where the functional zh is defined by the formula

zh.v/ D h.v/ � v.a/ for v 2 C.Œa; b�IR/:

Remark 2.1. It follows from Definition 1.1 that if ` 2 zV �
ab
.h/

�
resp., ` 2 zV C

ab
.h/
�
; then the homogeneous

problem

u0.t/ D `.u/.t/; u.a/ D h.u/ (2.1)

has only the trivial solution. Therefore, the inclusion ` 2 zV �
ab
.h/

�
resp., ` 2 zV C

ab
.h/
�

guarantees the unique
solvability of the problem

u0.t/ D `.u/.t/C q.t/; u.a/ D h.u/C c (2.2)

for every q 2 L.Œa; b�IR/ and c 2 R: This fact follows from the Fredholm property of problem (2.2) (see, e.g.,
[2, 10]; in the case where the operator ` is strongly bounded, see also [1, 12, 18]). Moreover, under the condition
` 2 zV �

ab
.h/

�
resp., ` 2 zV C

ab
.h/
�
; the unique solution of problem (2.2) is nonpositive (resp., nonnegative) whenever

q 2 L.Œa; b�IRC/ and c 2 RC:

Remark 2.2. It is easy to verify that the condition .�Pab/ \ zV �ab.h/ ¤ ¿ yields

h.1/ > 1: (2.3)

Indeed, if ` 2 .�Pab/ \ zV �ab.h/ and h.1/ � 1; then the function u � 1 is a positive solution of problem (1.1),
(1.2), which contradicts the inclusion ` 2 zV �

ab
.h/:

On the other hand, if, together with (2.3), the inequality h0.1/ � 1 holds, then the zero operator belongs to
the set zV �

ab
.h/: Indeed, let u 2 zC.Œa; b�IR/ satisfy (1.2) and let

u0.t/ � 0 for a.e. t 2 Œa; b�:

Then it is clear that

u.a/ � u.t/ � u.b/ for t 2 Œa; b�: (2.4)

By virtue of condition (2.4) and the assumption h0; h1 2 PFab; it follows from (1.2) that

u.a/ � �u.b/C h0.u/ � h1.u/ � u.a/h0.1/C .� � h1.1// u.b/:
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Taking condition (2.4) and the assumption h0.1/ � 1 into account, we get

.� � h1.1// u.b/ � .1 � h0.1// u.a/ � .1 � h0.1// u.b/;

and, thus,

.h.1/ � 1/ u.b/ � 0:

The last inequality and (2.3) result in u.b/ � 0: Hence, condition (2.4) guarantees that u.t/ � 0 for t 2 Œa; b�;
and, thus, 0 2 zV �

ab
.h/:

We have shown that condition (2.3) is necessary for the validity of the relation .�Pab/ \ zV
�
ab
.h/ ¤ ¿; and

the conditions (2.3) and h0.1/ � 1 are sufficient for the inclusion 0 2 zV �
ab
.h/ to hold.

Definition 2.1. An operator ` 2 Lab is said to belong to the set Sab.a/
�
resp., Sab.b/

�
if every solution u

of inequality (1.1) that satisfies the condition u.a/ � 0
�
resp., u.b/ � 0

�
is nonnegative (resp., nonpositive).

Remark 2.3. The sets Sab.a/ and Sab.b/ were investigated in [6].

3. Auxiliary Statements

In this section, auxiliary statements are given. More precisely, properties of the sets U�
ab

and zUC
ab
.h/ are

studied that are very useful in the investigation of the validity of the desired inclusion ` 2 zV �
ab
.h/:

3.1. Formulation of Results. We first formulate all results; the proofs are given in the next subsection.

Definition 3.1. Let h 2 Fab: An operator ` 2 Lab is said to belong to the set U�
ab
; if problem (1.1), (1.2)

does not have nontrivial nonnegative solutions.

Remark 3.1. It follows immediately from Definitions 1.1 and 3.1 that zV �
ab
.h/ � U�

ab
.h/:

Since the set U�
ab
.h/ is wider than zV �

ab
.h/; conditions for the inclusion ` 2 U�

ab
can be obtained relatively

easy. In Theorem 3.1 (Theorem 3.2), the case ` 2 Pab .�` 2 Pab/ is considered, whereas Theorems 3.3 and 3.4
concern the case where ` D `0 � `1 with `0; `1 2 Pab:

Theorem 3.1. Let ` 2 Pab and

h1.1/ < �: (3.1)

Let, moreover, there exist a function  2 zC.Œa; b�IRC/ such that

 0.t/ � `./.t/ for a.e. t 2 Œa; b�; (3.2)

.a/ < h./: (3.3)

Then ` 2 U�
ab
.h/:
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Remark 3.2. If ` 2 Pab; h.1/ � 1; and h1.1/ < �; then the operator ` belongs to the set U�
ab
.h/ without

any additional assumptions. Indeed, since the operator ` is supposed to be nontrivial in the case where h.1/ D 1;
the function

.t/ D 1C

tZ
a

`.1/.s/ds for t 2 Œa; b�

satisfies conditions (3.2) and (3.3).

Theorem 3.2. Let �` 2 Pab and

h.1/ > 1; h0.1/ � 1: (3.4)

Then ` 2 U�
ab
.h/ if and only if there exists a function  2 zC.Œa; b�I �0;C1Œ/ satisfying conditions (3.2) and

(3.3).

Theorem 3.3. Let ` D `0 � `1; where `0; `1 2 Pab; and

h.1/ � 1; h1.1/ < �: (3.5)

If, moreover,

bZ
a

`1.1/.s/ ds < .� � h1.1//min
º
1;
1

�

»
(3.6)

and

bZ
a

`0.1/.s/ ds >
.1 � h0.1//min

¶
1; 1
�

·
.� � h1.1//min

¶
1; 1
�

·
�
R b
a `1.1/.s/ ds

� 1; (3.7)

then ` 2 U�
ab
.h/:

Theorem 3.4. Let ` D `0 � `1; where `0; `1 2 Pab; and

h.1/ > 1; h1.1/ < �: (3.8)

Let, moreover, inequality (3.6) hold and

bZ
a

`0.1/.s/ ds > !

0@ bZ
a

`1.1/.s/ ds

1A ; (3.9)
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where

!.y/ D

8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

.y C h1.1//
�
1 � 1

�
h1.1/

�
1 � 1

�
h1.1/ � y

� .h0.1/C � � 1/

if � � 1; y <
.h.1/ � 1/

�
1 � 1

�
h1.1/

�
� � 1C h0.1/

;

�
y C 1

�
h1.1/

� �
1 � 1

�
h1.1/

�
1 � 1

�
h1.1/ � y

�

�
1

�
h0.1/C

� � 1

�

�
if � � 1; y �

.h.1/ � 1/
�
1 � 1

�
h1.1/

�
� � 1C h0.1/

;

�
y C 1��

�
C

1
�
h1.1/

�
.� � h1.1//

� � h1.1/ � y
�
1

�
h0.1/

if � < 1; y <
.h.1/ � 1/ .� � h1.1//

h0.1/
;

.y C 1 � �C h1.1// .� � h1.1//

� � h1.1/ � y
� h0.1/

if � < 1; y �
.h.1/ � 1/ .� � h1.1//

h0.1/
:

(3.10)

Then ` 2 U�
ab
.h/:

We now introduce the following definition:

Definition 3.2. Let h 2 Fab: An operator ` 2 Lab is said to belong to the set zUC
ab
.h/ if there is no

nonpositive solution u of inequality (1.1) that satisfies the condition

u.a/ > h.u/: (3.11)

Remark 3.3. It is clear that zUC
ab
.0/ D Lab and zV C

ab
.h/ � zUC

ab
.h/:

Theorem 3.5. Let ` 2 Pab and h 2 PFab be such that the inequality h.1/ � 1 is true. If there exists a
function  2 zC.Œa; b�I �0;C1Œ/ satisfying the conditions

 0.t/ � `./.t/ for a.e. t 2 Œa; b�; (3.12)

.a/ � h./; (3.13)

then ` 2 zUC
ab
.h/:

3.2. Proofs. We first recall a result established in [6].

Lemma 3.1 ([6], Theorem 1.1). Let ` 2 Pab: Then ` 2 Sab.a/ if and only if there exists a function  2
zC.Œa; b�I �0;C1Œ/ satisfying condition (3.12).
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Proof of Theorem 3.1. Let u be a nonnegative solution of problem (1.1), (1.2). We show that u � 0: Since
` 2 Pab and u is a nonnegative function, it follows from (1.1) that

0 � u.a/ � u.t/ � u.b/ for t 2 Œa; b�: (3.14)

Assume that u.b/ > 0: Then condition (1.2), in view of relations (3.1) and (3.14) and the assumption that
h0; h1 2 PFab; results in

u.a/ � �u.b/C h0.u/ � h1.u/ � .� � h1.1// u.b/ > 0:

Consequently, relation (3.14) yields

u.t/ > 0 for t 2 Œa; b�: (3.15)

We set

v.t/ D ru.t/ � .t/ for t 2 Œa; b�;

where

r D max
º
.t/

u.t/
W t 2 Œa; b�

»
:

According to relations (3.3) and (3.15) and the assumption that  2 zC.Œa; b�IRC/; we get

r > 0: (3.16)

It is obvious that

v.t/ � 0 for t 2 Œa; b� (3.17)

and there exists t0 2 Œa; b� such that

v.t0/ D 0: (3.18)

Taking relations (1.1), (3.2), (3.16), and (3.17) and the assumption that ` 2 Pab into account, we now obtain

v0.t/ � `.v/.t/ � 0 for a.e. t 2 Œa; b�: (3.19)

Therefore, relation (3.19), with regard for (3.17) and (3.18), yields

0 D v.a/ � v.t/ � v.b/ for t 2 Œa; b�: (3.20)

However, using relations (1.2), (3.1), (3.3), (3.16), and (3.20) and the assumption that h0; h1 2 PFab; we get

0 D v.a/ > �v.b/C h0.v/ � h1.v/ � .� � h1.1// v.b/ � 0;

a contradiction.
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The contradiction obtained proves that u.b/ � 0: However, relation (3.14) then implies that u � 0; and,
thus, ` 2 U�

ab
.h/:

The theorem is proved.

Proof of Theorem 3.2. First, assume that there exists a function  2 zC.Œa; b�I �0C1Œ/ satisfying relations
(3.2) and (3.3). Let u be a nonnegative solution of problem (1.1), (1.2). We show that u � 0: Assume that, on
the contrary, there exists t� 2 Œa; b� such that

u.t�/ > 0: (3.21)

We set

v.t/ D r.t/ � u.t/ for t 2 Œa; b�;

where

r D max
º
u.t/

.t/
W t 2 Œa; b�

»
:

According to (3.21), inequality (3.16) holds. It is clear that condition (3.17) is satisfied and there exists t0 2 Œa; b�
such that (3.18) is true. Taking relations (1.1), (3.2), (3.16), and (3.17) and the assumption that �` 2 Pab into
account, we obtain

v0.t/ � `.v/.t/ � 0 for a.e. t 2 Œa; b�: (3.22)

Therefore, with regard for (3.17) and (3.18), relation (3.22) yields

0 D v.b/ � v.t/ � v.a/ for t 2 Œa; b�: (3.23)

However, using relations (1.2), (3.3), (3.4), (3.16), and (3.23) and the assumption that h0; h1 2 PFab; we get

0 D �v.b/ D r�.b/ � �u.b/ > v.a/ � h0.v/C h1.v/ � v.a/ .1 � h0.1// � 0;

a contradiction. The contradiction obtained proves that u � 0; and, thus, ` 2 U�
ab
.h/:

Now assume that ` 2 U�
ab
.h/: We first show that the homogeneous problem (2.1) has only the trivial solution.

Let u be a solution of problem (2.1). Using Remark 2.2, we get 0 2 zV �
ab
.h/: Therefore, according to Remark 2.1,

the problem

˛0.t/ D `.Œu��/.t/; (3.24)

˛.a/ D h.˛/ (3.25)

has a unique solution ˛; and the following relation is true:

˛.t/ � 0 for t 2 Œa; b�: (3.26)
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Using relations (1.1), (1.2), (3.24), and (3.25) and the assumption that �` 2 Pab; we get

v0.t/ D `.Œu�C/.t/ � 0 for a.e. t 2 Œa; b�; v.a/ D h.v/;

where

v.t/ D u.t/C ˛.t/ for t 2 Œa; b�: (3.27)

Consequently, using the inclusion 0 2 zV �
ab
.h/; we obtain v.t/ � 0 for t 2 Œa; b�; and, thus,

�u.t/ � ˛.t/ for t 2 Œa; b�: (3.28)

With regard for relation (3.26), inequality (3.28) implies that

Œu.t/�� � ˛.t/ for t 2 Œa; b�:

Therefore, in view of the assumption that �` 2 Pab; Eq. (3.24) yields

˛0.t/ � `.˛/.t/ for a.e. t 2 Œa; b�: (3.29)

Consequently, ˛ is a nonnegative function satisfying conditions (3.25) and (3.29). Hence, the assumption that
` 2 U�

ab
.h/ implies that ˛ � 0; and, thus, relation (3.28) yields

u.t/ � 0 for t 2 Œa; b�: (3.30)

Since �u is also solution of the homogeneous problem (2.1), according to the statements proved above we have
�u.t/ � 0 for t 2 Œa; b�: Consequently, u � 0; i.e., the homogeneous problem (2.1) has only the trivial solution.
By virtue of the Fredholm property of problem (2.2) (see, e.g., [2, 10]), the problem

 0.t/ D `./.t/; .a/ D h./C 1 � h.1/ (3.31)

has a unique solution : Setting

N.t/ D .t/ � 1 for t 2 Œa; b�

and using (3.31), we get

N 0.t/ � `. N/.t/ for a.e. t 2 Œa; b�; N.a/ D h. N/:

As above, one can now show that N.t/ � 0 for t 2 Œa; b�: Therefore, in view of the assumption that h.1/ > 1; it
follows from (3.31) that  is a positive function satisfying inequalities (3.2) and (3.3).

The theorem is proved.

Proof of Theorem 3.3. Let u be a nonnegative solution of problem (1.1), (1.2). We show that u � 0:

Assume that, on the contrary, u 6� 0: We set

x0 D

bZ
a

`0.1/.s/ ds; y0 D

bZ
a

`1.1/.s/ ds; (3.32)
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M D max fu.t/W t 2 Œa; b�g ; m D min fu.t/W t 2 Œa; b�g (3.33)

and choose tM ; tm 2 Œa; b� such that

u.tM / DM; u.tm/ D m: (3.34)

Obviously,

M > 0; m � 0; (3.35)

and either

tm < tM (3.36)

or

tm � tM : (3.37)

First, assume that (3.36) holds. The integration of (1.1) from a to tm and from tM to b; in view of relations
(3.33)–(3.35) and the assumption that `0; `1 2 Pab; yields

u.a/ �m �

tmZ
a

`1.u/.s/ ds �

tmZ
a

`0.u/.s/ ds �M

tmZ
a

`1.1/.s/ ds; (3.38)

M � u.b/ �

bZ
tM

`1.u/.s/ ds �

bZ
tM

`0.u/.s/ ds �M

bZ
tM

`1.1/.s/ ds: (3.39)

Moreover, with regard for relation (3.33) and the assumption that h0; h1 2 PFab; condition (1.2) implies that

u.a/ � �u.b/ � h0.u/ � h1.u/ � mh0.1/ �Mh1.1/: (3.40)

It follows from (3.38)–(3.40) that

M .� � h1.1// �m.1 � h0.1// �M

0@ tmZ
a

`1.1/.s/ ds C �

bZ
tM

`1.1/.s/ ds

1A ;
i.e.,

M

�
.� � h1.1//min

º
1;
1

�

»
� y0

�
� m.1 � h0.1//min

º
1;
1

�

»
: (3.41)

Now assume that (3.37) holds. The integration of (1.1) from tM to tm; in view of relations (3.33)–(3.35) and
the assumption that `0; `1 2 Pab; results in

M �m �

tmZ
tM

`1.u/.s/ ds �

tmZ
tM

`0.u/.s/ ds �M

tmZ
tM

`1.1/.s/ ds: (3.42)
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It is not difficult to verify that, by virtue of (3.5) and (3.42), inequality (3.41) is true.
We have proved that inequality (3.41) is satisfied in both cases (3.36) and (3.37). On the other hand, the

integration of (1.1) from a to b; in view of relations (3.32) and (3.33) and the assumption that `0; `1 2 Pab;
yields

u.a/ � u.b/ �

bZ
a

`1.u/.s/ ds �

bZ
a

`0.u/.s/ ds �My0 �mx0;

i.e.,

mx0 �My0 C u.b/ � u.a/: (3.43)

Moreover, condition (1.2) implies that

u.b/ � u.a/ � u.b/ .1 � �/ � h0.u/C h1.u/; (3.44)

u.b/ � u.a/ � u.a/

�
1

�
� 1

�
�
1

�
h0.u/C

1

�
h1.u/: (3.45)

First, assume that � � 1: Inequalities (3.43) and (4.44), together with relation (3.33) and the assumption that
h0; h1 2 PFab; result in

mx0 �My0 CM .1 � �/ �mh0.1/CMh1.1/: (3.46)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.41) and (3.46), the relation m > 0 and the inequality

.� � h1.1/ � y0/ .x0 C h0.1// � .y0 C 1 � �C h1.1// .1 � h0.1// ;

which, in view of (3.6) and (3.32), contradicts (3.7).
Now assume that � > 1: Inequalities (3.43) and (3.45), together with relation (3.33) and the assumption that

h0; h1 2 PFab; yield

mx0 �My0 �m
� � 1

�
�
1

�
mh0.1/C

1

�
Mh1.1/: (3.47)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.41) and (3.47), the relation m > 0 and the inequality

�
1 �

1

�
h1.1/ � y0

��
x0 C

� � 1

�
C
1

�
h0.1/

�
�

�
y0 C

1

�
h1.1/

�
1 � h0.1/

�
;

which, in view of (3.6) and (3.32), contradicts (3.7).
The contradictions obtained prove the relation u � 0; and, thus, ` 2 U�

ab
.h/:

The theorem is proved.

Proof of Theorem 3.4. Let u be a nonnegative solution of problem (1.1), (1.2). We show that u � 0:

Assume that, on the contrary, u 6� 0: We define the numbers x0; y0 and M;m by formulas (3.32) and (3.33),
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respectively, and choose tM ; tm 2 Œa; b� such that relations (3.34) hold. Obviously, condition (3.35) is satisfied,
and either relation (3.36) or relation (3.37) is true.

First, assume that relation (3.36) is true. By analogy with the proof of Theorem 3.3, one can prove inequality
(3.41). Consequently, in view of (2.3) and (3.35), we get

M

�
.� � h1.1//min

º
1;
1

�

»
� y0

�
� m.� � h1.1//min

º
1;
1

�

»
: (3.48)

Now assume that relation (3.37) is true. By analogy with the proof of Theorem 3.3, it can be shown that
relation (3.42) is satisfied. Consequently, it is not difficult to verify that, by virtue of (3.1) and (3.42), inequality
(3.48) is true.

We have proved that inequality (3.48) is satisfied in both cases (3.36) and (3.37). On the other hand, by analogy
with the proof of Theorem 3.3, one can obtain inequalities (3.43)–(3.45).

First, assume that

� � 1; y0 <
.h.1/ � 1/

�
1 � 1

�
h1.1/

�
� � 1C h0.1/

:

Relations (3.43) and (3.44), together with formulas (3.33) and the assumption that h0; h1 2 PFab; result in

mx0 �My0 �m.� � 1/ �mh0.1/CMh1.1/: (3.49)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.49), the relation m > 0 and the inequality

�
1 �

1

�
h1.1/ � y0

�
.x0 C � � 1C h0.1// � .y0 C h1.1//

�
1 �

1

�
h1.1/

�
;

which, in view of (3.6) and (3.32), contradicts (3.9) with ! given by (3.10).
Now assume that

� � 1; y0 �
.h.1/ � 1/

�
1 � 1

�
h1.1/

�
� � 1C h0.1/

:

Inequalities (3.43) and (3.45), together with formulas (3.33) and the assumption that h0; h1 2 PFab; result in

mx0 �My0 �m
� � 1

�
�
1

�
mh0.1/C

1

�
Mh1.1/: (3.50)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.50), the relation m > 0 and the inequality

�
1 �

1

�
h1.1/ � y0

��
x0 C

� � 1

�
C
1

�
h0.1/

�
�

�
y0 C

1

�
h1.1/

�
� � h1.1/

�
;

which, in view of (3.6) and (3.32), contradicts (3.9) with ! given by (3.10).
Now assume that

� < 1; y0 <
.h.1/ � 1/ .� � h1.1//

h0.1/
:
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Inequalities (3.43) and (3.45), together with formulas (3.33) and the assumption that h0; h1 2 PFab; result in

mx0 �My0 CM
1 � �

�
�
1

�
mh0.1/C

1

�
Mh1.1/: (3.51)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.51), the relation m > 0 and the inequality

.� � h1.1/ � y0/

�
x0 C

1

�
h0.1/

�
�

�
y0 C

1 � �

�
C
1

�
h1.1/

�
.� � h1.1// ;

which, in view of (3.6) and (3.32), contradicts (3.9) with ! given by (3.10).
Finally, assume that

� < 1; y0 �
.h.1/ � 1/ .� � h1.1//

h0.1/
:

Inequalities (3.43) and (3.44), together with formulas (3.33) and the assumption that h0; h1 2 PFab; result in

mx0 �My0 CM .1 � �/ �mh0.1/CMh1.1/: (3.52)

Hence, by virtue of (3.6), (3.32), and (3.35), we get, from (3.48) and (3.52), the relation m > 0 and the inequality

.� � h1.1/ � y0/ .x0 C h0.1// � .y0 C 1 � �C h1.1// .� � h1.1// ;

which, in view of (3.6) and (3.32), contradicts (3.9) with ! given by (3.10).
The contradictions obtained prove the relation u � 0; and, thus, ` 2 U�

ab
.h/:

The theorem is proved.

Proof of Theorem 3.5. By virtue of inequality (3.12) and the assumption that ` 2 Pab; Lemma 3.1 guaran-
tees that ` 2 Sab.a/:

Let u be a nonpositive solution of problem (1.1), (3.11). It is not difficult to verify that

u.a/ < 0: (3.53)

Indeed, if u.a/ D 0; then inequality (1.1), in view of the inclusion ` 2 Sab.a/; yields u.t/ � 0 for t 2 Œa; b�:
Hence we get u � 0; which contradicts relation (3.11).

We set

w.t/ D .a/u.t/ � u.a/.t/ for t 2 Œa; b�:

Using relations (1.1), (3.12), and (3.53) and the assumption that .a/ > 0; we immediately obtain

w0.t/ � `.w/.t/ for a.e. t 2 Œa; b�; (3.54)

w.a/ D 0: (3.55)
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Therefore, the inclusion ` 2 Sab.a/ implies that

w.t/ � 0 for t 2 Œa; b�: (3.56)

On the other hand, it follows from relations (3.11), (3.13), (3.53), and (3.56) and the assumptions .a/ > 0 and
h 2 PFab that

w.a/ > h.w/ � 0;

which contradicts relation (3.55).
The contradiction obtained proves that there is no nonpositive solution of problem (1.1), (3.11), and, thus,

` 2 zUC
ab
.h/:

The theorem is proved.

4. Main Results

In this section, we give main results of the paper, which are efficient conditions under which the operator `
belongs to the set zV �

ab
.h/: The results are formulated in Secs. 4.1–4.3, and their proofs are presented in Sec. 4.5.

We first give a rather theoretical statement.

Proposition 4.1. Let h 2 Fab: Then ` 2 zV �
ab
.h/ if and only if ` 2 U�

ab
.h/ and there exists Ǹ 2 Pab such

that `C Ǹ 2 zV �
ab
.h/:

We now present a general result.

Theorem 4.1. Let ` 2 Sab.b/ \ zU
C

ab
.h0/: Then ` 2 zV �

ab
.h/ if and only if there exists a function  2

zC.Œa; b�IRC/ satisfying conditions (3.2) and (3.3).

4.1. Case ` 2 Pab: The following statements can be proved in the case where ` 2 Pab :

Theorem 4.2. Let ` 2 Pab \ zU
C

ab
.h0/ be a b-Volterra operator and let condition (3.4) be satisfied. Then

` 2 zV �
ab
.h/ if and only if ` 2 Sab.b/:

Corollary 4.1. Let ` 2 Pab be a b-Volterra operator and let condition (3.4) be satisfied. If, moreover, there
exists a function  2 zC.Œa; b�I �0;C1Œ/ such that condition (3.12) is satisfied and

.a/ � h0./; (4.1)

then ` 2 zV �
ab
.h/:

Corollary 4.2. Let ` 2 Pab be a b-Volterra operator and let

h.1/ > 1; h0.1/ < 1: (4.2)

Assume that

h0.'1/ > 0 (4.3)
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and there exist m; k 2 N such that m > k and

%m.t/ � %k.t/ for t 2 Œa; b�; (4.4)

where %1 � 1 and

%iC1.t/
df
D

h0.'i /

1 � h0.1/
C 'i .t/ for t 2 Œa; b�; i 2 N; (4.5)

'i .t/
df
D

tZ
a

`.%i /.s/ds for t 2 Œa; b�; i 2 N: (4.6)

Then ` 2 zV �
ab
.h/:

Remark 4.1. It follows from Corollary 4.2 (for k D 1 and m D 2/ that if ` 2 Pab is a b-Volterra operator,
condition (4.2) is satisfied, and relation (4.3) holds with '1 given by (4.6), then ` 2 zV �

ab
.h/; provided that

bZ
a

`.1/.s/ds � 1 � h0.1/:

Corollary 4.3. Let ` 2 Pab be a b-Volterra operator and let condition (4.2) be satisfied. Then the operator
` belongs to the set zV �

ab
.h/; provided that ` 2 zV C

ab
.h0/:

Remark 4.2. Recall that efficient conditions guaranteeing the validity of the inclusion ` 2 zV C
ab
.h0/ are stated

in [14].

4.2. Case �` 2 Pab: The following statements can be proved in the case where �` 2 Pab:

Theorem 4.3. Let �` 2 Pab and let condition (3.4) be satisfied. Then ` 2 zV �
ab
.h/ if and only if ` 2 U�

ab
.h/:

Corollary 4.4. Let �` 2 Pab and let condition (3.4) be satisfied. Assume that at least one of the following
conditions is satisfied:

(a) there exist m; k 2 N and a constant ı 2 Œ0; 1Œ such that m > k and

%m.t/ � ı%k.t/ for t 2 Œa; b�; (4.7)

where %1 � 1; %iC1 � #.%i / for i 2 N; and

#.v/.t/
df
D

zh.v/

h.1/ � 1
�
z.v/.a/

h.1/ � 1
� z.v/.t/ for t 2 Œa; b�; v 2 C.Œa; b�IR/; (4.8)

zh.v/
df
D h.z.v//; z.v/.t/

df
D

bZ
t

`.v/.s/ ds for t 2 Œa; b�; v 2 C.Œa; b�IR/I (4.9)
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(b) there exists Ǹ 2 Pab such that

h.z0/ > z0.a/; (4.10)

z0.a/ .1 � h.z1//C h.z0/z1.a/ < h.z0/; (4.11)

and the inequality

`.1/.t/#.v/.t/ � `.#.v//.t/ � Ǹ.v/.t/ for a.e. t 2 Œa; b� (4.12)

holds on the set fv 2 C.Œa; b�IRC/W v.a/ D h.v/g; where the operator # is defined by (4.8) and (4.9),

z0.t/ D exp

0@ bZ
t

j`.1/.s/jds

1A for t 2 Œa; b�; (4.13)

and

z1.t/ D

bZ
t

Ǹ.1/.s/ exp

0@ sZ
t

j`.1/.�/j d�

1A ds for t 2 Œa; b�: (4.14)

Then ` 2 zV �
ab
.h/:

Remark 4.3. Let �` 2 Pab and let condition (3.4) be satisfied. Then it follows from Corollary 4.4(a) (for
k D 1 and m D 2/ that ` 2 zV �

ab
.h/; provided that

bZ
a

j`.1/.s/j ds < 1 �
1C h1.1/

�C h0.1/
:

Moreover, it follows from Corollary 4.4(b) (with Ǹ � 0/ that ` 2 zV �
ab
.h/; provided that ` is a b-Volterra operator

and condition (4.10) is satisfied, i.e.,

z0.a/ < h.z0/;

where the function z0 is given by (4.13).

4.3. Case ` D `0 � `1 with `0; `1 2 Pab: The following statements can be proved in the case where the
operator is regular, i.e., admits the representation ` D `0 � `1 with `0; `1 2 Pab:

Theorem 4.4. Let ` D `0 � `1; where `0; `1 2 Pab; let

h1.1/ < �; h0.1/ � 1; (4.15)
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and let

bZ
a

`0.1/.s/ds � .1 � h0.1//min
º
1;
1

�

»
: (4.16)

Then ` 2 zV �
ab
.h/ if and only if ` 2 U�

ab
.h/:

Theorem 4.5. Let ` D `0 � `1; where `0; `1 2 Pab; let h 2 Fab; and let condition (2.3) be satisfied. If

`0 2 zV
�
ab.h/; �`1 2

zV �ab.h/; (4.17)

then ` 2 zV �
ab
.h/:

4.4. Further Remarks. We introduce an operator 'WC.Œa; b�IR/! C.Œa; b�IR/ by setting

'.w/.t/
df
D w.aC b � t / for t 2 Œa; b�; w 2 C.Œa; b�IR/:

Let

ỳ.w/.t/
df
D �` .'.w// .aC b � t / for a.e. t 2 Œa; b� and all w 2 C.Œa; b�IR/;

yh.w/
df
D
1

�
v.b/ �

1

�
h0 .'.w//C

1

�
h1 .'.w// for w 2 C.Œa; b�IR/:

It is clear that if u is a solution of problem (1.1), (1.2), then the function v df
D �'.u/ is a solution of the problem

v0.t/ � ỳ.v/.t/; v.a/ � yh.v/; (4.18)

and, vice versa, if v is a solution of problem (4.18), then the function u
df
D �'.v/ is a solution of problem (1.1),

(1.2).
Consequently, the following relation is true:

` 2 zV C
ab
.h/, ỳ2 zV �ab

�
yh
�
:

Therefore, efficient conditions guaranteeing the validity of the inclusion ` 2 zV C
ab
.h/ can be immediately

derived from the results stated in Secs. 4.1–4.3. For example, Corollary 4.1 of Sec. 4.1 immediately yields the
following statement:

Corollary 4.5. Let �` 2 Pab be an a-Volterra operator and let

h.1/ < 1; h1.1/ � �:

If, moreover, there exists a function  2 zC.Œa; b�I �0;C1Œ/ such that condition (3.2) is satisfied and
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�.b/ � h1./;

then ` 2 zV C
ab
.h/:

4.5. Proofs. To prove the statements formulated in Secs. 4 and 4.5 we need the following lemmas:

Lemma 4.1. Let h 2 Fab and ` 2 U�
ab
.h/: Then `C Ǹ 2 U�

ab
.h/ for every Ǹ 2 Pab:

Proof. The required statement follows immediately from Definition 3.1.

Lemma 4.2 ([6], Theorem 1.6). Suppose that ` 2 Pab is a b-Volterra operator and there exists a function
 2 zC.Œa; b�IRC/ satisfying condition (3.12) and such that

.t/ > 0 for t 2 �a; b�:

Then ` 2 Sab.b/:

Proof of Proposition 4.1. First, assume that ` 2 zV �
ab
.h/: Then, according to Remark 3.1, we have ` 2

U�
ab
.h/: Moreover, it is clear that the inclusion `C Ǹ 2 zV �

ab
.h/ is true with Ǹ � 0:

Now assume that ` 2 U�
ab
.h/ and there exists an operator Ǹ 2 Pab such that `C Ǹ 2 zV �

ab
.h/: Let u be a

solution of problem (1.1), (1.2). We show that the function u is nonpositive.
According to the assumption that `C Ǹ 2 zV �

ab
.h/ and Remark 2.1, the problem

˛0.t/ D
�
`C Ǹ

�
.˛/.t/ � Ǹ.Œu�C/.t/; (4.19)

˛.a/ D h.˛/ (4.20)

has a unique solution ˛; and the following relation is true:

˛.t/ � 0 for t 2 Œa; b�: (4.21)

Relations (1.1), (1.2), (4.19), and (4.20) and the assumption that Ǹ 2 Pab yield

v0.t/ � .`C Ǹ /.v/.t/ for a.e. t 2 Œa; b�; v.a/ � h.v/;

where

v.t/ D u.t/ � ˛.t/ for t 2 Œa; b�: (4.22)

Consequently, using the inclusion `C Ǹ 2 zV �
ab
.h/; we obtain v.t/ � 0 for t 2 Œa; b�; and, thus,

u.t/ � ˛.t/ for t 2 Œa; b�: (4.23)

With regard for relation (4.21), inequality (4.23) implies that

Œu.t/�C � ˛.t/ for t 2 Œa; b�:
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Therefore, in view of the assumption that Ǹ 2 Pab; Eq. (4.19) yields

˛0.t/ � .`C Ǹ /.˛/.t/ � Ǹ.˛/.t/ D `.˛/.t/ for a.e. t 2 Œa; b�: (4.24)

Consequently, ˛ is a nonnegative function satisfying conditions (4.20) and (4.24). Hence, the assumption that
` 2 U�

ab
.h/ implies that ˛ � 0; and, thus, relation (4.23) yields

u.t/ � 0 for t 2 Œa; b�: (4.25)

Therefore, the inclusion ` 2 zV �
ab
.h/ is true.

The proposition is proved.

Proof of Theorem 4.1. First, assume that ` 2 zV �
ab
.h/: According to Remark 2.1, the problem

 0.t/ D `./.t/; .a/ D h./ � 1 (4.26)

has a unique solution ; and, moreover, the following relation is true:

.t/ � 0 for t 2 Œa; b�: (4.27)

The function  obviously satisfies conditions (3.2) and (3.3).
Now assume that there exists a function  2 zC.Œa; b�IRC/ satisfying conditions (3.2) and (3.3). We show

that ` 2 zV �
ab
.h/: Let u be a solution of problem (1.1), (1.2). It is clear that either

u.b/ > 0 (4.28)

or

u.b/ � 0: (4.29)

Assume that condition (4.28) is satisfied. We set

w.t/ D .b/u.t/ � u.b/.t/ for t 2 Œa; b�:

Using (1.1), (3.2), and (4.28), we get

w0.t/ � `.w/.t/ for a.e. t 2 Œa; b�; (4.30)

w.b/ D 0: (4.31)

Therefore, the assumption that ` 2 Sab.b/ yields

w.t/ � 0 for t 2 Œa; b�: (4.32)
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On the other hand, relations (1.2), (3.3), (4.28), (4.31), and (4.32), and the assumption that h1 2 PFab imply that

w.a/ > �w.b/C h0.w/ � h1.w/ � h0.w/:

Consequently, the function w is a nonpositive solution of the problem

w0.t/ � `.w/.t/; w.a/ > h0.w/;

which contradicts the assumption that ` 2 zUC
ab
.h0/:

The contradiction obtained proves that u satisfies condition (4.29). In view of (1.1) and (4.29), the assumption
that ` 2 Sab.b/ now yields relation (4.25), and, thus, ` 2 zV �

ab
.h/:

The theorem is proved.

Proof of Theorem 4.2. First, assume that ` 2 Sab.b/: It is clear that, in view of relation (2.3) and the
assumption that ` 2 Pab; the function  � 1 satisfies conditions (3.2) and (3.3). Hence, by virtue of Theorem 4.1,
we get ` 2 zV �

ab
.h/:

Now let ` 2 zV �
ab
.h/: Assume that, on the contrary, ` 62 Sab.b/: Then there exists a solution u of inequality

(1.1) satisfying the relations u.b/ D c and

u.t0/ > 0; (4.33)

where c � 0 and t0 2�a; bŒ: According to the assumption that ` 2 zV �
ab
.h/ and Remark 2.1, the problem

u00.t/ D `.u0/.t/; (4.34)

u0.a/ D h.u0/ � 1 (4.35)

has a unique solution u0; and, moreover,

u0.t/ � 0 for t 2 Œa; b�: (4.36)

It is not difficult to verify that

u0.b/ > 0: (4.37)

Indeed, assume that inequality (4.37) does not hold. Then, in view of (4.36), we find u0.b/ D 0: Hence, by virtue
of relation (4.36) and the assumption that h1 2 PFab; condition (4.35) yields

u0.a/ D �u0.b/C h0.u0/ � h1.u0/ � 1 < h0.u0/;

which, together with (4.34) and (4.36), contradicts the assumption that ` 2 zUC
ab
.h0/: The contradiction obtained

proves relation (4.37).
Since ` 62 Sab.b/; in view of relations (4.34), (4.36), and (4.37) and the assumption that ` 2 Pab it follows

from Lemma 4.2 that there exists a0 2 �a; bŒ such that

u0.t/ D 0 for t 2 Œa; a0�; (4.38)
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u0.t/ > 0 for t 2 �a0; b�: (4.39)

Let z̀ denote the restriction of the operator ` to the space C.Œa0; b�IR/: By virtue of conditions (4.34) and (4.39),
we get

u00.t/ D
z̀.u0/.t/ for a.e. t 2 Œa0; b�; u0.t/ > 0 for t 2 �a0; b�;

and, thus, Lemma 4.2 guarantees the validity of the inclusion z̀ 2 Sa0b.b/: It follows from inequality (1.1) and
condition (4.34) that

w0.t/ � z̀.w/.t/ for a.e. t 2 Œa0; b�; w.b/ D 0; (4.40)

where

w.t/ D u.t/ �
c

u0.b/
u0.t/ for t 2 Œa0; b�:

Since z̀ 2 Sa0b.b/; relations (4.40) result in w.t/ � 0 for t 2 Œa0; b�; i.e.,

u.t/ �
c

u0.b/
u0.t/ for t 2 Œa0; b�:

Using the latter inequality and relations (4.33) and (4.39), we get

a < t0 < a0: (4.41)

We now set

v.t/ D u.t/C .u.a/ � h.u// u0.t/ for t 2 Œa; b�: (4.42)

It is clear that

v0.t/ � `.v/.t/ for a.e. t 2 Œa; b�; v.a/ D h.v/:

Consequently, by virtue of the assumption that ` 2 zV �
ab
.h/; the inequality v.t/ � 0 holds for t 2 Œa; b�: Finally,

in view of (4.38) and (4.41), relation (4.42) yields

0 � v.t0/ D u.t0/C .u.a/ � h.u// u0.t0/ D u.t0/;

which contradicts inequality (4.33).
The contradiction obtained proves the inclusion ` 2 Sab.b/:
The theorem is proved.

Proof of Corollary 4.1. According to Lemma 4.2, inequality (3.12) yields ` 2 Sab.b/: On the other hand, by
virtue of conditions (3.12), (3.4), and (4.1), using Theorem 3.5 we get ` 2 zUC

ab
.h0/: Consequently, the assertion

of the corollary follows from Theorem 4.2.
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Proof of Corollary 4.2. We set

.t/ D

mX
jDkC1

%j .t/ for t 2 Œa; b�:

In view of condition (4.3), where the function '1 is given by (4.6), we get  2 zC.Œa; b�I �0;C1Œ /: On the other
hand, by virtue of relations (4.4)–(4.6) and the assumption that ` 2 Pab; it is clear that the function  satisfies
conditions (3.12) and (4.1). Consequently, the conditions of Corollary 4.1 are satisfied.

Proof of Corollary 4.3. According to the assumption that ` 2 Pab\ zV
C

ab
.h0/; Theorem 2.1 in [14] guarantees

that there exists a function  2 zC.Œa; b�I �0;C1Œ/ satisfying conditions (3.12) and such that

.a/ > h0./:

Consequently, the conditions of Corollary 4.1 are satisfied.

Proof of Theorem 4.3. The validity of the theorem follows immediately from Proposition 4.1 (with Ǹ � �`/
and Remark 2.2.

Proof of Corollary 4.4. (a) It is not difficult to verify that the function  defined by the formula

.t/ D

mX
jD1

%j .t/ � ı

kX
jD1

%j .t/ for t 2 Œa; b�

is positive and satisfies conditions (3.2) and (3.3). Consequently, the assertion of the corollary follows from Theo-
rems 3.2 and 4.3.

(b) According to relations (4.10) and (4.11), there exists " > 0 such that

0 ." � h.z1// z0.a/C 0h.z0/z1.a/ � 1; (4.43)

where 0 D .h.z0/ � z0.a//�1 : We set

.t/ D 0

24." � h.z1// exp

0@ bZ
t

j`.1/.s/j ds

1A

C exp

0@ bZ
a

j`.1/.s/j ds

1A tZ
a

Ǹ.1/.s/ exp

0@ sZ
t

j`.1/.�/j d�

1A ds

C h.z0/

bZ
t

Ǹ.1/.s/ exp

0@ sZ
t

j`.1/.�/j d�

1A ds

35 for t 2 Œa; b�;
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where the functions z0 and z1 are defined by (4.13) and (4.14), respectively. It is not difficult to verify that  is
a solution of the problem

 0.t/ D `.1/.t/.t/ � Ǹ.1/.t/; (4.44)

.a/ D h./ � ": (4.45)

In view of inequalities (3.4) and (4.10) and the assumption that h0; h1 2 PFab; it follows from the definition of
the function  that .b/ > 0; and, thus, the relation .t/ > 0 holds for t 2 Œa; b�: Since �`; Ǹ 2 Pab; equality
(4.44) implies that .t/ � .a/ for t 2 Œa; b�: With regard for inequality (4.43), conditions (4.44) and (4.45)
yield

 0.t/ � `.1/.t/.t/ � Ǹ./.t/ for a.e. t 2 Œa; b�; .a/ < h./:

Consequently, Theorem 4.3 guarantees the validity of the inclusion

z̀ 2 zV �ab.h/; (4.46)

where

z̀.v/.t/
df
D `.1/.t/v.t/ � Ǹ.v/.t/ for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/:

Since �` 2 Pab; in order to prove the inclusion ` 2 zV �
ab
.h/ it is sufficient to show that ` 2 U�

ab
.h/ (see

Theorem 4.3). Hence, let u be a nonnegative solution of problem (1.1), (1.2). We show that u � 0: We set

w.t/ D #.v/.t/ for t 2 Œa; b�; (4.47)

where the operator # is defined by (4.8) and (4.6), and

v.t/ D u.t/C
u.a/ � h.u/

h.1/ � 1
for t 2 Œa; b�:

Obviously,

v.t/ � u.t/ for t 2 Œa; b�

and

v0.t/ � `.v/.t/ for a.e. t 2 Œa; b�; v.a/ D h.v/; (4.48)

w0.t/ D `.v/.t/ for a.e. t 2 Œa; b�; w.a/ D h.w/: (4.49)

It follows from (4.48) and (4.49) that

y0.t/ � 0 for a.e. t 2 Œa; b�; y.a/ D h.y/;
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where y.t/ D v.t/�w.t/ for t 2 Œa; b�: By virtue of Remark 2.2, we have 0 2 zV �
ab
.h/: Consequently, y.t/ � 0

for t 2 Œa; b�; i.e.,

0 � u.t/ � v.t/ � w.t/ for t 2 Œa; b�: (4.50)

On the other hand, using relations (4.12) and (4.47)–(4.50) and the assumption that �`; Ǹ 2 Pab; we get

w0.t/ D `.v/.t/ � `.1/.t/w.t/C `.w/.t/ � `.1/.t/w.t/

D `.1/.t/w.t/C `.#.v//.t/ � `.1/.t/#.v/.t/ � `.1/.t/w.t/ � Ǹ.v/.t/

� `.1/.t/w.t/ � Ǹ.w/.t/ D z̀.w/.t/ for a.e. t 2 Œa; b�:

Taking (4.46) and (4.49) into account, we find w.t/ � 0 for t 2 Œa; b�: Hence, relation (4.50) implies that u � 0;
and, thus, ` 2 zV �

ab
.h/:

The corollary is proved.

Proof of Theorem 4.4. Assume that ` 2 U�
ab
.h/: Since `1 2 Pab; Lemma 4.1 guarantees that `0 D

`C `1 2 U
�
ab
.h/:

We show that `0 2 zV �ab.h/: Assume, on the contrary, that there exists a solution u of the inequality

u0.t/ � `0.u/.t/ (4.51)

that satisfies condition (1.2) and is not nonpositive on the interval Œa; b�: Then, in view of the inclusion `0 2

U�
ab
.h/ proved above, it is clear that u takes both positive and negative values, i.e.,

M > 0; m > 0; (4.52)

where

M D max fu.t/W t 2 Œa; b�g ; m D �min fu.t/W t 2 Œa; b�g : (4.53)

We now choose tM ; tm 2 Œa; b� such that

u.tM / DM; u.tm/ D �m: (4.54)

It is obvious that either

tM < tm (4.55)

or

tM > tm: (4.56)
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If inequality (4.55) holds, then the integration of (4.51) from tM to tm; in view of relations (4.52) and (4.53)
and the assumption that `0 2 Pab; results in

M Cm � �

tmZ
tM

`0.u/.s/ ds � m

bZ
a

`0.1/.s/ ds:

Hence, by virtue of (4.16) and the second inequality in (4.52), we get M � 0; which contradicts the first inequality
in (4.52).

If inequality (4.56) holds, then the integration of (4.51) from a to tm and from tM to b; in view of relations
(4.52) and (4.53) and the assumption that `0 2 Pab; yields

u.a/Cm � �

tmZ
a

`0.u/.s/ ds � m

tmZ
a

`0.1/.s/ ds; (4.57)

M � u.b/ � �

bZ
tM

`0.u/.s/ ds � m

bZ
tM

`0.1/.s/ ds: (4.58)

On the other hand, in view of relation (4.53) and the assumption that h0; h1 2 PFab; condition (1.2) implies that

u.a/ � �u.b/ � h0.u/ � h1.u/ � �mh0.1/ �Mh1.1/: (4.59)

It now follows from (4.57)–(4.59) that

M .� � h1.1//Cm.1 � h0.1// � m

0@ tmZ
a

`0.1/.s/ ds C �

bZ
tM

`0.1/.s/ ds

1A ;
i.e.,

M .� � h1.1//min
º
1;
1

�

»
Cm.1 � h0.1//min

º
1;
1

�

»
� m

bZ
a

`0.1/.s/ ds:

Hence, by virtue of (3.1), (4.16), and the second inequality in (4.52), we find M � 0; which contradicts the first
inequality in (4.52).

The contradictions obtained prove the inclusion `0 2 zV �ab.h/:
We now set Ǹ � `1: Since ` 2 U�

ab
.h/ and `C Ǹ D `0 2 zV �ab.h/; Proposition 4.1 yields ` 2 zV �

ab
.h/:

The converse implication follows immediately from Remark 3.1.
The theorem is proved.

Proof of Theorem 4.5. It is easy to verify that ` 2 U�
ab
.h/: Indeed, the assumption that �`1 2 zV �ab.h/

yields �`1 2 U�ab.h/ (see Remark 3.1), and, thus, in view of Lemma 4.1, we get ` D �`1 C `0 2 U�ab.h/:
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We now set Ǹ � `1: Then it is clear that Ǹ 2 Pab and `C Ǹ D `0 2 zV �ab.h/: Consequently, Proposition 4.1
yields ` 2 zV �

ab
.h/:

The theorem is proved.

5. Differential Inequalities with Argument Deviations

In this section, we give some corollaries of the main results for operators with argument deviations. More
precisely, efficient criteria are proved below for the validity of the inclusion ` 2 zV �

ab
.h/ in the case where the

operator ` is given by one of the following formulas:

`.v/.t/
df
D p.t/v.�.t// for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/; (5.1)

`.v/.t/
df
D �g.t/v.�.t// for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/; (5.2)

`.v/.t/
df
D p.t/v.�.t// � g.t/v.�.t// for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/: (5.3)

Here, we suppose that p; g 2 L.Œa; b�IRC/ and �; �W Œa; b�! Œa; b� are measurable functions.
Throughout this section, the following notation is used:

�� D ess inf f�.t/W t 2 Œa; b�g ; �� D ess sup f�.t/W t 2 Œa; b�g ; (5.4)

˛.t/ D exp

0@ bZ
t

g.s/ ds

1A ; ˇ.t/ D exp

0@ tZ
a

p.s/ ds

1A for t 2 Œa; b�: (5.5)

We first formulate all results; their proofs are given later, in Sec. 5.1 below.

Theorem 5.1. Let condition (3.1) be satisfied and let

h.1/ < 1: (5.6)

Assume that

0 <

bZ
a

p.s/ ds � .1 � h0.1//min
º
1;
1

�

»
(5.7)

and

ess inf

8̂<̂
:
�.t/Z
t

p.s/ dsW t 2 Œa; b�

9>=>; > ��; (5.8)
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where

�� D inf
º
1

x
ln

xˇx.��/

ˇx.��/C .h.ˇx/ � 1/ .1 � h.1//�1
W x > 0; h.ˇx/ > 1

»
: (5.9)

Then the operator ` given by (5.1) belongs to the set zV �
ab
.h/:

Corollary 5.1. Let inequalities (3.1) and (5.6) be true. Assume that condition (5.7) is satisfied and

ess inf

8̂<̂
:
�.t/Z
t

p.s/ dsW t 2 Œa; b�

9>=>; > ��; (5.10)

where

�� D inf
º
kpkL

y
ln

yey .1 � h.1//

kpkL .ey � 1/ .1 � h0.1//
W y > ln

1 � h0.1/

� � h1.1/

»
: (5.11)

Then the operator ` defined by (5.1) belongs to the set zV �
ab
.h/:

Theorem 5.2. Let conditions (3.1) and (5.6) be satisfied. Assume that �.t/ � t for a.e. t 2 Œa; b�;

bZ
a

p.s/ds > ln
1 � h0.1/

� � h1.1/
; (5.12)

and at least one of the following conditions is satisfied:

(a) h0.z0/ > 0 and

max
º
h0.z1/C .1 � h0.1// z1.t/

h0.z0/C .1 � h0.1// z0.t/
W t 2 Œa; b�

»
< 1 �

h0.z0/

1 � h0.1/
; (5.13)

where

z0.t/ D

tZ
a

p.s/ ds for t 2 Œa; b�; (5.14)

z1.t/ D

tZ
a

p.s/

0B@ �.s/Z
a

p.�/d�

1CA ds for t 2 Œa; b�I (5.15)

(b) the following relations are true:

h0.ˇ/ < 1; (5.16)
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and

h0.0/

1 � h0.ˇ/
ˇ.b/C 0.b/ < 1; (5.17)

where

0.t/ D

tZ
a

p.s/

0B@ �.s/Z
s

p.�/d�

1CA exp

0@ tZ
s

p.�/d�

1A ds for t 2 Œa; b�I (5.18)

(c) h0.1/ ¤ 0 and

ess sup

8̂<̂
:
�.t/Z
t

p.s/dsW t 2 Œa; b�

9>=>; < ��; (5.19)

where

�� D sup
º
kpkL

x
ln
xex.1 � h0.1//

kpkL.ex � 1/
W 0 < x < ln

1

h0.1/

»
: (5.20)

Then the operator ` given by (5.1) belongs to the set zV �
ab
.h/:

Theorem 5.3. Let conditions (2.3) and (4.2) be satisfied. Assume that �.t/ � t for almost every t 2 Œa; b�
and at least one of the following conditions is satisfied:

(a) inequality (5.13) holds, where the functions z0 and z1 are defined by (5.14) and (5.15), respectively;

(b) inequalities (5.16) and (5.17) hold, where the function 0 is given by (5.18);

(c) h0.1/ ¤ 0 and condition (5.19) is satisfied, where the number �� is defined by (5.20).

Then the operator ` given by (5.1) belongs to the set zV �
ab
.h/:

Remark 5.1. If h0.z0/ > 0; where z0 is defined by (5.14), then the strict inequality (5.13) in Theorem 5.3(a)
can be weakened. More precisely, the following assertion is true:

Theorem 5.4. Let conditions (2.3) and (4.2) be satisfied. Assume that �.t/ � t for almost every t 2 Œa; b�;

h0.z0/ > 0;

and

max
º
h0.z1/C .1 � h0.1// z1.t/

h0.z0/C .1 � h0.1// z0.t/
W t 2 Œa; b�

»
� 1 �

h0.z0/

1 � h0.1/
; (5.21)

where the functions z0 and z1 are defined by (5.14) and (5.15), respectively. Then the operator ` given by (5.1)
belongs to the set zV �

ab
.h/:
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Theorem 5.5. Let conditions (2.3) and (3.4) be satisfied. Assume that

ess sup

8̂<̂
:

tZ
�.t/

g.s/ dsW t 2 Œa; b�

9>=>; < !�; (5.22)

where

!� D sup
º
1

x
ln

x˛x.��/

˛x.��/ � f .x/
W x > 0; yh.˛x/ > ˛x.a/

»
;

f .x/
df
D

yh.˛x/ � ˛x.a/

h.1/ � 1
for x > 0; (5.23)

yh.v/
df
D min fh.1/; h.v/g for v 2 C.Œa; b�IR/:

Then the operator ` given by (5.2) belongs to the set zV �
ab
.h/:

Corollary 5.2. Let conditions (2.3) and (3.4) be satisfied. Assume that g 6� 0 and

ess sup

8̂<̂
:

tZ
�.t/

g.s/dsW t 2 Œa; b�

9>=>; < ��;

where

�� D sup
º
kgkL

y
ln

yey .h.1/ � 1/

kgkL.ey � 1/ .�C h0.1//
W 0 < y < ln

�C h0.1/

1C h1.1/

»
: (5.24)

Then the operator ` defined by (5.2) belongs to the set zV �
ab
.h/:

Theorem 5.6. Let conditions (2.3) and (4.2) be satisfied. Assume that g 6� 0 and

max
º
z1.a/ � h.z1/C .h.1/ � 1/ z1.t/

z0.a/ � h.z0/C .h.1/ � 1/ z0.t/
W t 2 Œa; b�

»
< 1 �

z0.a/ � h.z0/

h.1/ � 1
; (5.25)

where

z0.t/ D

bZ
t

g.s/ ds for t 2 Œa; b�;

z1.t/ D

bZ
t

g.s/

0B@ bZ
�.s/

g.�/ d�

1CA ds for t 2 Œa; b�:

Then the operator ` given by (5.2) belongs to the set zV �
ab
.h/:
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Theorem 5.7. Let conditions (2.3) and (3.4) be satisfied. Assume that inequalities (4.10) and (4.11) are true,
where

z0.t/ D exp

0@ bZ
t

g.s/ ds

1A for t 2 Œa; b�;

z1.t/ D

bZ
t

g.s/�.s/

0B@ sZ
�.s/

g.�/ d�

1CA exp

0@ sZ
t

g.�/ d�

1A ds for t 2 Œa; b�;

(5.26)

and

�.t/ D
1

2
.1C sgn .t � �.t/// for a.e. t 2 Œa; b�: (5.27)

Then the operator ` given by (5.2) belongs to the set zV �
ab
.h/:

Theorem 5.8. Let conditions (3.1) and (3.5) be satisfied. If

bZ
a

g.s/ ds < .� � h1.1//min
º
1;
1

�

»
(5.28)

and

.1 � h0.1//min
¶
1; 1
�

·
.� � h1.1//min

¶
1; 1
�

·
�
R b
a g.s/ ds

� 1 <

Z b

a

p.s/ ds � .1 � h0.1//min
º
1;
1

�

»
;

then the operator ` given by (5.3) belongs to the set zV �
ab
.h/:

Theorem 5.9. Let conditions (2.3) and (3.4) be satisfied. Assume that inequality (5.28) is true and

!

0@ bZ
a

g.s/ ds

1A < bZ
a

p.s/ ds � .1 � h0.1//min
º
1;
1

�

»
;

where the function ! is defined by (3.10). Then the operator ` given by (5.3) belongs to the set zV �
ab
.h/:

Corollary 5.3. Let conditions (3.1) and (3.4) be satisfied. Assume that either

h.1/ � 1;
1 � h0.1/

� � h1.1/
� 1 <

bZ
a

p.s/ ds � .1 � h0.1//min
º
1;
1

�

»

or
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h.1/ > 1;

bZ
a

p.s/ ds � .1 � h0.1//min
º
1;
1

�

»
:

Then the operator ` given by (5.1) belongs to the set zV �
ab
.h/:

Theorem 5.10. Let conditions (2.3) and (3.4) be satisfied. Assume that the functions p and � satisfy con-
dition (5.7) or the assumptions of Theorem 5.3 or 5.4, whereas the functions g and � satisfy the assumptions of
Theorem 5.5, 5.6, or 5.7. Then the operator ` given by (5.3) belongs to the set zV �

ab
.h/:

5.1. Proofs. We give the following lemmas prior to the proof of the statements formulated above:

Lemma 5.1. Let the functional h be defined by formula (1.3), where � > 0 and h0; h1 2 PFab are
such that conditions (3.1) and (5.6) are satisfied. Also assume that the operator ` is defined by (5.1), p 6� 0;

and condition (5.8) is satisfied, where the number �� is defined by (5.9). Then there exists a function  2
zC.Œa; b�I �0;C1Œ/ that satisfies inequalities (3.2) and (3.3).

Proof. According to (5.8) with �� given by (5.9), there exist x0 > 0 and " > 0 such that

h.ˇx0/ � 1C " (5.29)

and the following relation is true:

�.t/Z
t

p.s/ ds �
1

x0
ln

x0ˇ
x0.��/

ˇx0.��/C .h.ˇx0/ � 1 � "/ .1 � h.1//�1
for a.e. t 2 Œa; b�: (5.30)

We set

ı D
h.ˇx0/ � 1 � "

1 � h.1/
: (5.31)

By virtue of conditions (5.6) and (5.29), we get ı � 0: Hence, relation (5.30) yields

e
x0

�.t/R
t

p.s/ ds

�
x0ˇ

x0.��/

ˇx0.��/C ı
�

x0ˇ
x0.�.t//

ˇx0.�.t//C ı
for a.e. t 2 Œa; b�:

Consequently,

x0e
x0

tR
a

p.s/ ds
� e

x0

�.t/R
a

p.s/ ds
C ı for a.e. t 2 Œa; b�: (5.32)

We now set

.t/ D e
x0

tR
a

p.s/ ds
C ı for t 2 Œa; b�:
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It is clear that .t/ > 0 for t 2 Œa; b�; and, using condition (5.32), we get

`./.t/ D p.t/

0@ex0 �.t/Ra p.s/ ds
C ı

1A � x0p.t/ex0 tRa p.s/ ds D  0.t/ for a.e. t 2 Œa; b�;

i.e., inequality (3.2) holds. On the other hand, in view of equality (5.31) and the assumption that h.1/ < 1;

inequality (3.3) is satisfied.
The lemma is proved.

Lemma 5.2. Let the operator ` be defined by (5.2), let h 2 Fab satisfy condition (2.3), and let inequality
(5.22) be true, where the number !� is defined by (5.23). Then there exists a function  2 zC.Œa; b�I �0;C1Œ/

that satisfies inequalities (3.2) and (3.3).

Proof. According to (5.22) with !� given by (5.23), there exist x0 > 0 and " > 0 such that

yh.˛x0/ � ˛x0.a/C " (5.33)

and the inequality

tZ
�.t/

g.s/ds �
1

x0
ln

x0˛
x0.��/

˛x0.��/ �
�
yh.˛x0/ � ˛x0.a/ � "

�
.h.1/ � 1/�1

(5.34)

holds for almost every t 2 Œa; b�: We set

ı D
yh.˛x0/ � ˛x0.a/ � "

h.1/ � 1
: (5.35)

By virtue of conditions (2.3), (5.23), and (5.33), we get ı 2 Œ0; 1Œ: Hence, relation (5.34) yields

e
x0

tR
�.t/

g.s/ ds

�
x0˛

x0.��/

˛x0.��/ � ı
�

x0˛
x0.�.t//

˛x0.�.t// � ı
for a.e. t 2 Œa; b�:

Consequently,

e
x0

bR
�.t/

g.s/ ds

� ı � x0e
x0

bR
t

g.s/ ds

for a.e. t 2 Œa; b�: (5.36)

We now set

.t/ D e
x0

bR
t

g.s/ ds

� ı for t 2 Œa; b�:

It is clear that .t/ > 0 for t 2 Œa; b�; and, using condition (5.36), we get

`./.t/ D �g.t/

0B@ex0
bR

�.t/

g.s/ ds

� ı

1CA � �x0g.t/ex0 bRt g.s/ ds D  0.t/ for a.e. t 2 Œa; b�;
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i.e., inequality (3.2) holds. On the other hand, in view of relations (5.23) and (5.35) and the assumption that
h.1/ > 1; inequality (3.3) is satisfied.

The lemma is proved.

We are now in a position to prove Theorems 5.1–5.10.

Proof of Theorem 5.1. Let the operator ` be defined by (5.1). It is clear that ` 2 Pab; and condition
(5.7) implies the validity of relation (4.16) with `0 � `: According to Lemma 5.1, there exists a function  2
zC.Œa; b�I �0;C1Œ/ satisfying conditions (3.2) and (3.3), which guarantees the validity of the inclusion ` 2 U�

ab
.h/

(see Theorem 3.1). Consequently, in view of Theorem 4.4 (with `0 � ` and `1 � 0), we get ` 2 zV �
ab
.h/:

The theorem is proved.

Proof of Corollary 5.1. It is not difficult to verify that

xˇx.��/

ˇx.��/C .h.ˇx/ � 1/ .1 � h.1//�1
�

xˇx.b/

ˇx.b/C
�
.� � h1.1// exkpkL C h0.1/ � 1

�
.1 � h.1//�1

D
xexkpkL .1 � h.1//�

exkpkL � 1
�
.1 � h0.1//

for every x > 0 such that

.� � h1.1// e
xkpkL > 1 � h0.1/:

Therefore, �� � ��; where �� and �� are defined by (5.9) and (5.11), respectively. Consequently, the assertion
of the corollary follows immediately from Theorem 5.1.

Proof of Theorem 5.2. Let the operator ` be defined by (5.1). It is clear that ` 2 Pab and ` is a b-Volterra
operator. According to Theorems 4.1 and 4.2, and Corollary 4.2 in [14], we conclude that each of conditions
(a)–(c) guarantees the validity of the inclusion ` 2 zV C

ab
.h0/: Moreover, by virtue of Theorem 2.1 in [14], there

exists a function  2 zC.Œa; b�I �0;C1Œ/ that satisfies inequality (3.12). Therefore, Lemma 4.2 guarantees that
` 2 Sab.b/: Furthermore, the inclusion ` 2 zV C

ab
.h0/ proved above yields ` 2 zUC

ab
.h0/ (see Remark 3.3).

On the other hand, since we suppose that �.t/ � t for almost every t 2 Œa; b�; condition (5.12) implies the
validity of (5.10), where �� is defined by (5.11). Therefore, by analogy with the proof of Corollary 5.1, it can
be shown that relation (5.8) is satisfied with �� given by (5.9), and, thus, according to Lemma 5.1, there exists a
function  2 zC.Œa; b�I �0;C1Œ / that satisfies conditions (3.2) and (3.3).

Consequently, by virtue of Theorem 4.1, we get ` 2 zV �
ab
.h/:

The theorem is proved.

Proof of Theorem 5.3. Let the operator ` be defined by (5.1). It is clear that ` 2 Pab and ` is a b-Volterra
operator. According to Theorems 4.1 and 4.2, and Corollary 4.2 in [14], we conclude that each of conditions (a)–(c)
guarantees the validity of the inclusion ` 2 zV C

ab
.h0/: Therefore, the assumptions of Corollary 4.3 are satisfied.

The theorem is proved.

Proof of Theorem 5.4. Let the operator ` be defined by (5.1). It is clear that ` 2 Pab and ` is a b-Volterra
operator. Using condition (5.21), one can easily verify that

%3.t/ � %2.t/ for t 2 Œa; b�;
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where the functions %2 and %3 are defined by (4.5) and (4.6). Consequently, the assumptions of Corollary 4.2 are
satisfied with k D 2 and m D 3:

The theorem is proved.

Proof of Theorem 5.5. The assertion of the theorem follows immediately from Lemma 5.2 and Theorem 4.3.

Proof of Corollary 5.2. It is not difficult to verify that

x˛x.��/

˛x.��/ �
�
yh.˛x/ � ˛x.a/

�
.h.1/ � 1/�1

�
x˛x.a/

˛x.a/ � .�C h0.1/ � .1C h1.1// ˛x.a// .h.1/ � 1/
�1

D
xexkgkL .h.1/ � 1/�

exkgkL � 1
�
.�C h0.1//

for every x > 0 such that

�C h0.1/ > .1C h1.1// e
xkgkL :

Therefore, �� � !�; where !� and �� are defined by (5.23) and (5.24), respectively. Consequently, the validity
of the corollary follows immediately from Theorem 5.5.

Proof of Theorem 5.6. Let the operator ` be defined by (5.2). It is clear that �` 2 Pab: According to
condition (5.25), there exists ı 2 Œ0; 1Œ such that the inequality

z1.a/ � h.z1/

h.1/ � 1
C z1.t/ �

�
ı �

z0.a/ � h.z0/

h.1/ � 1

��
z0.a/ � h.z0/

h.1/ � 1
C z0.t/

�
holds for t 2 Œa; b�: However, this means that

%3.t/ � ı%2.t/ for t 2 Œa; b�;

where the functions %2 and %3 are defined in Corollary 4.4(a). Consequently, the assumptions of Corollary 4.4(a)
are satisfied with k D 2 and m D 3:

The theorem is proved.

Proof of Theorem 5.7. Let the operators ` and Ǹ be defined by formula (5.2) and the relation

Ǹ.v/.t/
df
D g.t/�.t/

0B@ tZ
�.t/

g.s/v.�.s//ds

1CA for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/;

respectively, where the function � is given by (5.27). It is clear that �` 2 Pab; Ǹ 2 Pab; and

`.1/.t/#.v/.t/ � `.#.v//.t/ D g.t/

tZ
�.t/

g.s/v.�.s//ds � Ǹ.v/.t/ for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IRC/;
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where the operator # is defined by (4.8) and (4.9), and, thus, condition (4.12) is satisfied on the set C.Œa; b�IRC/:
Therefore, the assumptions of Corollary 4.4(b) are satisfied.

The theorem is proved.

Proof of Theorem 5.8. Let the operator ` be defined by (5.3), let

`0.v/.t/
df
D p.t/v.�.t// for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/; (5.37)

and let

`1.v/.t/
df
D g.t/v.�.t// for a.e. t 2 Œa; b� and all v 2 C.Œa; b�IR/: (5.38)

It is clear that `0; `1 2 Pab and ` D `0 � `1: Therefore, the validity of the theorem follows from Theorems 3.3
and 4.4.

Proof of Theorem 5.9. Let the operators `; `0; and `1 be defined by (5.3), (5.37), and (5.38), respectively.
It is clear that `0; `1 2 Pab and ` D `0 � `1: Therefore, the assertion of the theorem follows from Theorems 3.4
and 4.4.

Proof of Corollary 5.3. The validity of the corollary follows immediately from Theorems 5.8 and 5.9 with
g � 0:

Proof of Theorem 5.10. Let the operators `; `0; and `1 be defined by (5.3), (5.37), and (5.38), respectively.
It is clear that `0; `1 2 Pab and ` D `0 � `1: Therefore, the assertion of the theorem follows immediately from
Theorem 4.5, Theorems 5.3–5.7, and Corollary 5.3.
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