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Abstract. A new oscillation criterion is proved for second-order linear
ordinary differential equations with locally integrable coefficients. It is also
shown that a certain generalization of the Hartman–Wintner theorem can
be derived from the result obtained.
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îâäæñéâ. éâëîâ îæàæï ûîòæãæ áæòâîâêùæŽèñîæ àŽêðëèâĲâĲæïŽåãæï èë-
çŽèñîŽá æêðâàîâĲŽáæ çëâòæùæâêðâĲæå áŽáàâêæèæŽ îýâãŽáëĲæï ŽýŽèæ ïŽç-
éŽîæïæ ìæîëĲâĲæ. êŽøãâêâĲæŽ Žàîâåãâ, îëé éæôâĲñèæ öâáâàæáŽê àŽéëéáæ-
êŽîâëĲï ßŽîðéŽê{ãæêðêâîæï åâëîâéæï àŽîçãâñèæ àŽêäëàŽáâĲŽ.
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1. Introduction

In the present paper we consider the second-order linear differential equa-
tion

u′′ = −p(t)u + g(t)u′, (1.1)

where p, g : R+ → R are locally integrable functions such that

+∞∫

0

exp
( s∫

0

g(ξ) dξ

)
ds = +∞. (1.2)

As usual, in the Carathéodory case, a function u : R+ → R is said to be
a solution to equation (1.1) if it is absolutely continuous together with the
first derivative on every compact interval contained in R+ and satisfies

u′′(t) = −p(t)u(t) + g(t)u′(t) for a. e. t ≥ 0.

Equation (1.1) is said to be oscillatory if every solution of this equation has
a sequence of zeros tending to infinity.

In [7], the following oscillation criterion is proved for the equation

u′′ = −p(t)u. (1.3)

Theorem 1.1 ([7]). Let the condition

lim sup
t→+∞

1
tα

t∫

0

(t− s)αp(s) ds = +∞ (1.4)

hold for some α > 1. Then equation (1.3) is oscillatory.

It is also mentioned therein that the well-known Wintner criterion (see
[10])

lim
t→+∞

1
t

t∫

0

( s∫

0

p(ξ) dξ

)
ds = +∞ (1.5)

follows from this result, because equality (1.5) guarantees the validity of
relation (1.4) with α = 2. Theorem 1.1 has been then generalized for
the second-order equations, e. g., in [8, 9] (see also references therein). For
higher-order equations, the integral oscillation criteria have been proved in
[2–4].

The aim of the present paper is to establish a new oscillation criterion,
which is applicable to the case where the ”Kamenev-type” upper limit (1.4)
is finite. The main result (namely, Theorem 2.1) and some further remarks
are given in Section 2, and the proofs are given in Section 3. Moreover,
a certain generalization of the Hartman–Wintner theorem (namely, Corol-
lary 2.1) is derived in Section 2.
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2. Main Results

Let

σ(g)(t) := exp
( t∫

0

g(s) ds

)
, f(t) :=

t∫

0

σ(g)(s) ds for t ≥ 0. (2.1)

For any α > 1, β > 0, and λ < 1, we put

k(t; α, β, λ) :=
1

fαβ(t)

t∫

0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds for t > 0 (2.2)

and

c(t; λ) :=
1− λ

f1−λ(t)

t∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds for t > 0. (2.3)

We are now in a position to formulate our main result.

Theorem 2.1. Let α > 1, β > 0, λ < 1, condition (1.2) hold, and either

lim sup
t→+∞

k(t; α, β, λ) = +∞ (2.4)

or

−∞ < lim sup
t→+∞

k(t; α, β, λ) < +∞, (2.5)

the function c(· ; λ) does not possess a finite limit as t → +∞. (2.6)

Then equation (1.1) is oscillatory.

Observe that condition (2.4) with β = 1, λ = 0, and g ≡ 0 reduces to
the Kamenev condition (1.4). Therefore, Theorem 2.1 can be regarded as
an extension of Theorem 1.1 to the case where condition (1.4) is violated.

It is well-known that oscillatory properties of equation (1.1) can be also
described in terms of lower and upper limits of the function c. We mention,
in particular, the following Hartman–Wintner theorem (see A. Wintner [10]
and P. Hartman [5,6] for λ = 0 and g ≡ 0).

Theorem 2.2 (Hartman–Wintner). Let λ < 1, condition (1.2) hold, and
either

lim
t→+∞

c(t; λ) = +∞,

or
−∞ < lim inf

t→+∞
c(t; λ) < lim sup

t→+∞
c(t;λ)

be satisfied. Then equation (1.1) is oscillatory.

It is clear that for the given λ < 1, the following two cases remain un-
covered in the previous theorem:

there exists a finite limit lim
t→+∞

c(t; λ) (2.7)
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and
lim inf
t→+∞

c(t; λ) = −∞. (2.8)

The case, where (2.7) holds, is already studied in literature (see, e. g., [1]
and references therein), but the authors know that there is still a broad field
for further investigation if (2.8) is satisfied. Corollary 2.1 below gives a new
oscillation criterion which is applicable also to the case where (2.8) holds.

For any λ < 1, we put

h(t;λ) :=
2(1− λ)

f2(1−λ)(t)

t∫

0

σ(g)(s)f1−2λ(s)c(s;λ) ds for t > 0.

Theorem 2.1 yields

Corollary 2.1. Let λ < 1, condition (1.2) hold, and either

lim sup
t→+∞

h(t; λ) = +∞
or

−∞ < lim sup
t→+∞

h(t; λ) < +∞,

the function c(· ; λ) does not possess a finite limit as t → +∞.

Then equation (1.1) is oscillatory.

This statement can be regarded as a generalization of Theorem 2.2. In-
deed, it is not difficult to verify that if there exists a (finite or infinite) limit
limt→+∞ c(t; λ), then there exists also a limit limt→+∞ h(t; λ) and both
limits coincide. Moreover, if

lim inf
t→+∞

c(t; λ) > −∞ (2.9)

then
lim inf
t→+∞

h(t; λ) > −∞.

Therefore, if the assumptions of Theorem 2.2 are satisfied then the assump-
tions of Corollary 2.1 hold, as well. Note also that the assumptions of
Theorem 2.2 require necessarily the validity of inequality (2.9). The follow-
ing example shows that in some cases can be applied Corollary 2.1, while
condition (2.9) is violated (i. e., (2.8) holds).

Example 2.1. Let g ≡ 0 and p(t) = (2− t2) cos(t)− 4t sin(t) for t ≥ 0.
Then

c(t; 0) = t cos(t), h(t; 0) = 2 sin(t) +
4
t

cos(t)− 4
t2

sin(t) for t ≥ 0,

and thus

lim inf
t→+∞

c(t; 0) = −∞, lim sup
t→+∞

c(t; 0) = +∞,

lim inf
t→+∞

h(t; 0) = −2, lim sup
t→+∞

h(t; 0) = 2.



74 A. Lomtatidze and J. Šremr

Consequently, Theorem 2.2 with λ = 0 cannot be applied in this case.
However, Corollary 2.1 yields that equation (1.1) is oscillatory.

3. Proofs

In order to prove Theorem 2.1, we need the following two lemmas.

Lemma 3.1. Let α > 1, β > 0, λ < 1, condition (1.2) hold, and u be
a solution to equation (1.1) satisfying the relation

u(t) 6= 0 for t ≥ t0 (3.1)

with t0 > 0. Then
lim sup
t→+∞

k(t; α, β, λ) < +∞. (3.2)

If, in addition, the inequality

lim sup
t→+∞

k(t; α, β, λ) > −∞ (3.3)

is satisfied, then
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds < +∞, (3.4)

where

%(t) :=
u′(t)

u(t)σ(g)(t)
for t ≥ t0. (3.5)

Proof. In view of (1.1), relation (3.5) yields that

%′(t) = − p(t)
σ(g)(t)

− σ(g)(t)%2(t) for a. e. t ≥ t0, (3.6)

whence we get

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)%′(s) ds =

= −
t∫

t0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds−

−
t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds for t ≥ t0.

Integration by parts on the left-hand side of the latter equality results in

− (
fβ(t)− fβ(t0)

)α
fλ(t0)%(t0)+

+ αβ

t∫

t0

(
fβ(t)− fβ(s)

)α−1
fβ−1(s)fλ(s)σ(g)(s)%(s) ds−
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− λ

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f1−λ(s)

%(s) ds =

= −
t∫

t0

(
fβ(t)− fβ(s)

)α fλ(s)p(s)
σ(g)(s)

ds−

−
t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds for t ≥ t0. (3.7)

We now point out that

−1
2

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds+

+ λ

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f1−λ(s)

%(s) ds =

= −1
2

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds+

+
λ2

2

t∫

t0

(
fβ(t)− fβ(s)

)α σ(g)(s)
f2−λ(s)

ds for t ≥ t0

and

− 1
2

t∫

t0

(
fβ(t)− fβ(s)

)α
fλ(s)σ(g)(s)%2(s) ds−

− αβ

t∫

t0

(
fβ(t)− fβ(s)

)α−1
fβ−1(s)fλ(s)σ(g)(s)%(s) ds =

= −1
2

t∫

t0

fλ(s)
(
fβ(t)− fβ(s)

)α−2×

× σ(g)(s)
[(

fβ(t)− fβ(s)
)
%(t) + αβfβ−1(s)

]2
ds+

+
α2β2

2

t∫

t0

fλ(s)
(
fβ(t)− fβ(s)

)α−2
f2(β−1)(s)σ(g)(s) ds for t ≥ t0.
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Therefore relation (3.7) yields

k(t; α, β, λ) ≤− 1
2

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds+

+
λ2

2

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

ds+

+
α2β2

2fαβ(t)

t∫

t0

(
fβ(t)−fβ(s)

)α−2
f2(β−1)+λ(s)σ(g)(s) ds+

+

t0∫

0

(
1−

[
f(s)
f(t)

]β
)α

fλ(s)p(s)
σ(g)(s)

ds+

+

(
1−

[
f(t0)
f(t)

]β
)α

fλ(t0)%(t0) for t ≥ t0. (3.8)

Since assumption (1.2) and notation (2.1) guarantee that

lim
t→+∞

f(t) = +∞, (3.9)

it is easy to get

lim
t→+∞

t0∫

0

(
1−

[
f(s)
f(t)

]β
)α

fλ(s)p(s)
σ(g)(s)

ds =

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds (3.10)

and

lim
t→+∞

(
1−

[
f(t0)
f(t)

]β
)α

fλ(t0)%(t0) = fλ(t0)%(t0). (3.11)

On the other hand, we have

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

ds ≤

≤
t∫

t0

σ(g)(s)
f2−λ(s)

ds ≤ 1
(1− λ)f1−λ(t0)

for t ≥ t0 (3.12)

and

1
fαβ(t)

t∫

t0

(
fβ(t)− fβ(s)

)α−2
f2(β−1)+λ(s)σ(g)(s) ds ≤
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≤ 1
fβ(α−1)(t)f1−λ(t0)

t∫

t0

fβ−1(s)
(
fβ(t)− fβ(s)

)α−2
σ(g)(s) ds =

=
1

β(α− 1)f1−λ(t0)

(
1−

[
f(t0)
f(t)

]β
)α−1

≤

≤ 1
β(α− 1)f1−λ(t0)

for t ≥ t0. (3.13)

Consequently, in view of (3.10)–(3.13), relation (3.8) implies that

lim sup
t→+∞

k(t;α, β, λ) ≤ 1
2

(
λ2

1− λ
+

α2β

α− 1

)
1

f1−λ(t0)
+

+

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds + fλ(t0)%(t0),

and thus inequality (3.2) is satisfied.
Assume now that, in addition, relation (3.3) holds. We will show that

inequality (3.4) is satisfied. It is obvious that either

+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

]2 ds = +∞, (3.14)

or
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

]2 ds < +∞. (3.15)

Suppose that (3.14) holds. For any τ ≥ a we have

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds ≥

≥
τ∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds for t ≥ τ

and thus

lim inf
t→+∞

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds ≥

≥
τ∫

a

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds for τ ≥ t0.
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The last relation, by virtue of equality (3.14), guarantees that

lim
t→+∞

t∫

t0

(
1−

[
f(s)
f(t)

]β
)α

σ(g)(s)
f2−λ(s)

[f(s)%(s)− λ]2 ds = +∞.

Therefore inequality (3.8), together with (3.10)–(3.13), yields

lim sup
t→+∞

k(t; λ) = −∞,

which contradicts assumption (3.3). The obtained contradiction proves that

inequality (3.15) holds. Since the function
√

σ(g)(·)
f2−λ(·) is quadratically inte-

grable on [t0, +∞[, relation (3.4) is fulfilled, as well. ¤

The next lemma belongs to P. Hartman in the case where λ = 0 and
g ≡ 0 (see, e. g., [5, 6]).

Lemma 3.2. Let λ < 1, condition (1.2) hold, and u be a solution to
equation (1.1) satisfying relation (3.1) with t0 > 0. Moreover, let condition
(3.4) be fulfilled, where the function % is defined by formula (3.5). Then
there exists a finite limit

lim
t→+∞

c(t;λ). (3.16)

Proof. In view of (1.1), from relation (3.5) we easily obtain equality (3.6).
Multiplying both sides of (3.6) by the expression fλ(t) and integrating it
by parts from t0 to t, we arrive at

fλ(t)%(t)− fλ(t0)%(t0)− λ

t∫

t0

σ(g)(s)
f1−λ(s)

%(s) ds =

= −
t∫

t0

fλ(s)p(s)
σ(g)(s)

ds−
t∫

t0

fλ(s)σ(g)(s)%2(s) ds for t ≥ t0,

whence we get

1
f1−λ(t)

[
f(t)%(t)− λ

2

]
= %1 − λ(2− λ)

4(1− λ)
1

f1−λ(t)
−

t∫

0

fλ(s)p(s)
σ(g)(s)

ds+

+

+∞∫

t

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds for t ≥ t0, (3.17)
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where

%1 := fλ(t0)%(t0) +
λ2

4(1− λ)f1−λ(t0)
+

+

t0∫

0

fλ(s)p(s)
σ(g)(s)

ds−
+∞∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds.

We now multiply both sides of equality (3.17) by the expression
f−λ(t)σ(g)(t), integrate them by parts from t0 to t and thus we get

t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds = −

t∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds+

+

t∫

t0

σ(g)(s)
fλ(s)

( +∞∫

s

σ(g)(ξ)
f2−λ(ξ)

[
f(ξ)%(ξ)− λ

2

]2

dξ

)
ds+

+
%1

1− λ
f1−λ(t)− λ(2− λ)

4(1− λ)
ln

f(t)
f(t0)

+ %3 for t ≥ t0, (3.18)

where

%3 :=

t0∫

0

σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds− %1

1− λ
f1−λ(t0).

Since assumption (1.2) and notation (1.3) guarantee that relation (3.9)
holds, by using the l’Hospital rule, it is easy to get

lim
t→+∞

1
f1−λ(t)

ln
f(t)
f(t0)

ds = 0 (3.19)

and

lim
t→+∞

1
f1−λ(t)

t∫

t0

σ(g)(s)
fλ(s)

( +∞∫

s

σ(g)(ξ)
f2−λ(ξ)

[
f(ξ)%(ξ)− λ

2

]2

dξ

)
ds=0. (3.20)

On the other hand, by using the Hölder inequality, we obtain
( t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds

)2

≤

≤
t∫

t0

σ(g)(s)
fλ(s)

ds

t∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds ≤

≤ f1−λ(t)
1− λ

t∫

t0

σ(g)(s)
f2−λ(s)

[
f(s)%(s)− λ

2

]2

ds for t ≥ t0



80 A. Lomtatidze and J. Šremr

and thus, by virtue of relations (3.4) and (3.9), we have

lim
t→+∞

1
f1−λ(t)

t∫

t0

σ(g)(s)
f(s)

[
f(s)%(s)− λ

2

]
ds = 0. (3.21)

Consequently, in view of relations (3.9) and (3.19)–(3.21), it follows from
equality (3.18) that

lim
t→+∞

c(t; λ) = %1.

¤

Proof of Theorem 2.1. Assume, to the contrary, that there exists a solution
u to equation (1.1) fulfilling relation (3.1) with t0 > 0.

Then, according to Lemma 3.1, assumption (2.4) of Theorem 2.1 cannot
be satisfied and thus assumptions (2.5) and (2.6) hold. By using Lemma 3.1,
we obtain the validity of inequality (3.4) in which the function % is defined
by formula (3.5). However, Lemma 3.2 then guarantees that there exists
a finite limit (3.16) which contradicts assumption (2.6). ¤

Proof of Corollary 2.1. By direct calculation we can check that

k(t; 2, 1− λ, λ) =
1

f2(1−λ)(t)

t∫

0

(
f1−λ(t)− f1−λ(s)

)2 fλ(s)p(s)
σ(g)(s)

ds =

=
2(1− λ)

f2(1−λ)(t)

t∫

0

(
f1−λ(t)− f1−λ(s)

) σ(g)(s)
fλ(s)

( s∫

0

fλ(ξ)p(ξ)
σ(g)(ξ)

dξ

)
ds =

=
2(1− λ)2

f2(1−λ)(t)

t∫

0

σ(g)(s)
fλ(s)

[ s∫

0

σ(g)(ξ)
fλ(ξ)

( ξ∫

0

fλ(η)p(η)
σ(g)(η)

dη

)
dξ

]
ds = h(t; λ)

for t ≥ 0 and thus the validity of the corollary follows immediately from
Theorem 2.1 with α = 2 and β = 1− λ. ¤
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Kotlářská 2, 611 37 Brno
Czech Republic
E-mail: bacho@math.muni.cz

J. Šremr
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