
Georgian Math. J. 20 (2013), 573–600
DOI 10.1515/gmj-2013-0025 © de Gruyter 2013

On oscillation and nonoscillation of
two-dimensional linear differential systems

Alexander Lomtatidze and Jiří Šremr
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Abstract. New oscillation and nonoscillation criteria are established for the two-dimen-
sional system u0 D q.t/v, v0 D �p.t/u, where p; qW Œ0;C1Œ! R are locally integrable
functions, q.t/ � 0 for a.e. t � 0, and

R C1
0

q.s/ds < C1.
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1 Formulation of the main results

Consider the system
u0 D q.t/v;

v0 D �p.t/u;
(1.1)

where p; qW Œ0;C1Œ! R are locally Lebesgue integrable functions. Under a so-
lution of system (1.1) we understand a vector-function .u; v/W Œ0;C1Œ! R2 with
locally absolutely continuous components satisfying equalities (1.1) almost every-
where in Œ0;C1Œ. A solution .u; v/ of system (1.1) is said to be nontrivial if
u 6� 0 in any neighborhood ofC1. A nontrivial solution .u; v/ of system (1.1) is
called oscillatory if the function u has a sequence of zeros tending to infinity.

Definition 1.1. System (1.1) is said to be oscillatory if every nontrivial solution of
this system is oscillatory, and nonoscillatory otherwise.

It is well known (see, e.g., [9] or [6, Lemma 2]) that if

q.t/ � 0 for a.e. t � 0 (1.2)
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574 A. Lomtatidze and J. Šremr

and system (1.1) has at least one nontrivial oscillatory solution, then every solution
of (1.1) is oscillatory. Moreover, it is clear that system (1.1) is nonoscillatory
provided that q.t/ D 0 for a.e. t � t0. Therefore we will assume throughout the
paper that relation (1.2) holds and q 6� 0 in any neighborhood ofC1.

In the case where
RC1
0 q.s/ds D C1, conditions for the oscillation and

nonoscillation of system (1.1) are contained, e.g., in [1–13] (see also the refer-
ences therein). In the present paper, we consider the case whereZ C1

0

q.s/ds < C1:

Let

f .t/ WD

Z C1
t

q.s/ds for t � 0:

For any � > 1, we put

c.t I�/ WD .� � 1/f ��1.t/

Z t

0

q.s/

f �.s/

� Z s

0

f �.�/p.�/d�
�

ds for t � 0:

The following theorem is an analogue of the well-known Hartman–Wintner the-
orem (see, e.g., [4, Theorem 7.3]).

Theorem 1.1. Let there exist � > 1 such that either

lim
t!C1

c.t I�/ D C1

or
�1 < lim inf

t!C1
c.t I�/ < lim sup

t!C1

c.t I�/:

Then system (1.1) is oscillatory.

If we take this theorem into account, then it is obvious that, for given � > 1, the
following two cases remain uncovered: the first case where

there exists a finite limit lim
t!C1

c.t I�/; (1.3)

and the other case where

lim inf
t!C1

c.t I�/ D �1:

Below, we establish new oscillation and nonoscillation criteria assuming that (1.3)
holds for some � > 1. Having such �, we denote

Q.t I�/ WD
1

f ��1.t/

�
c0.�/ �

Z t

0

f �.s/p.s/ds
�

for t � 0;
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On oscillation and nonoscillation 575

where
c0.�/ D lim

t!C1
c.t I�/: (1.4)

Moreover, for any � < 1, we put

H.t I�/ WD f 1��.t/

Z t

0

f �.s/p.s/ds for t � 0:

Finally, let

Q�.�/ D lim inf
t!C1

Q.t I�/; Q�.�/ D lim sup
t!C1

Q.t I�/;

H�.�/ D lim inf
t!C1

H.t I�/; H�.�/ D lim sup
t!C1

H.t I�/:

Now we are in a position to formulate our main results, their proofs are given later
in Section 3.

Theorem 1.2. Let there exist � > 1 such that condition (1.3) holds and

lim sup
t!C1

�1

f ��1.t/ lnf .t/

�
c0.�/ � c.t I�/

�
>
1

4
; (1.5)

where the number c0.�/ is defined by formula (1.4). Then system (1.1) is oscilla-
tory.

Corollary 1.1. Let there exist � > 1 such that condition (1.3) holds, Q�.�/ >
�1, and

lim sup
t!C1

�1

lnf .t/

Z t

0

f .s/p.s/ds >
1

4
: (1.6)

Then system (1.1) is oscillatory.

Corollary 1.2. Let there exist � > 1 and � < 1 such that condition (1.3) holds
and

lim inf
t!C1

�
Q.t I�/CH.t I�/

�
>

1

4.� � 1/
C

1

4.1 � �/
: (1.7)

Then system (1.1) is oscillatory.

Corollary 1.3. Let there exist � > 1 such that condition (1.3) holds and either

Q�.�/ >
1

4.� � 1/
(1.8)

or
H�.�/ >

1

4.1 � �/
(1.9)

for some � < 1. Then system (1.1) is oscillatory.
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576 A. Lomtatidze and J. Šremr

Remark 1.1. It might seem that if assumption (1.9) is satisfied, then assumption
(1.3) is redundant. However, it follows from Lemma 2.12 that, under assumption
(1.9), the function c.� I�/ possesses a limit for every � > 1 and

lim
t!C1

c.t I�/ > �1:

If this limit is equal to C1 then system (1.1) is oscillatory according to Theo-
rem 1.1. Therefore assumption (1.3) is necessary in a certain sense, also in the
case where inequality (1.9) is supposed to be satisfied.

The next theorem deals with the upper limit of the sum on the left-hand side of
inequality (1.7) and thus it complements Corollary 1.2 in a certain sense.

Theorem 1.3. Let there exist � > 1 and � < 1 such that condition (1.3) holds and

lim sup
t!C1

�
Q.t I�/CH.t I�/

�
>

�2

4.� � 1/
C

�2

4.1 � �/
: (1.10)

Then system (1.1) is oscillatory.

In view of Corollary 1.3, it is natural to restrict our further consideration to the
case where

Q�.�/ �
1

4.� � 1/
and H�.�/ �

1

4.1 � �/
:

Theorem 1.4. Let there exist � > 1 and � < 1 such that condition (1.3) holds and
either

�.2 � �/

4.� � 1/
� Q�.�/ �

1

4.� � 1/
; (1.11)

H�.�/ >
�2

4.1 � �/
C
1C

p
1 � 4.� � 1/Q�.�/

2
(1.12)

or

�.2 � �/

4.1 � �/
� H�.�/ �

1

4.1 � �/
; (1.13)

Q�.�/ >
�2

4.� � 1/
�
1 �

p
1 � 4.1 � �/H�.�/

2
: (1.14)

Then system (1.1) is oscillatory.

If both conditions (1.11) and (1.13) are satisfied, then the oscillation criteria
(1.12) and (1.14) can be slightly refined as shown in the following two statements.
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On oscillation and nonoscillation 577

Theorem 1.5. Let there exist � > 1 and � < 1 such that conditions (1.3), (1.11),
and (1.13) are fulfilled and

lim sup
t!C1

�
Q.t I�/CH.t I�/

�
> Q�.�/CH�.�/

C
1

2

�p
1 � 4.� � 1/Q�.�/C

p
1 � 4.1 � �/H�.�/

�
: (1.15)

Then system (1.1) is oscillatory.

Corollary 1.4. Let there exist � > 1 and � < 1 such that conditions (1.3), (1.11),
and (1.13) hold. Then either of the inequalities

Q�.�/ > Q�.�/C
1

2

�p
1 � 4.� � 1/Q�.�/C

p
1 � 4.1 � �/H�.�/

�
(1.16)

and

H�.�/ > H�.�/C
1

2

�p
1 � 4.� � 1/Q�.�/C

p
1 � 4.1 � �/H�.�/

�
(1.17)

guarantees that system (1.1) is oscillatory.

At the end of this section, we present two nonoscillation results.

Theorem 1.6. Let there exist � > 1 such that condition (1.3) holds and either

�
.2� � 3/.2� � 1/

4.� � 1/
< Q�.�/; Q�.�/ <

1

4.� � 1/
(1.18)

or

�
.3 � 2�/.1 � 2�/

4.1 � �/
< H�.�/; H�.�/ <

1

4.1 � �/
(1.19)

for some � < 1. Then system (1.1) is nonoscillatory.

Remark 1.2. It might seem that if assumption (1.19) is satisfied, then assumption
(1.3) is redundant. However, it follows from Lemmas 2.11 and 2.12 that, under
assumption (1.19), the function c.� I�/ possesses a finite limit for every � > 1.
Therefore assumption (1.3) is necessary also in the case where inequalities (1.19)
are supposed to be satisfied.

Theorem 1.7. Let there exist � > 1 such that condition (1.3) holds and either

�1 < Q�.�/ � �
.2� � 3/.2� � 1/

4.� � 1/
; (1.20)

Q�.�/ < Q�.�/C 1 � �C
p
1 � 4.� � 1/Q�.�/ (1.21)
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578 A. Lomtatidze and J. Šremr

or

�1 < H�.�/ � �
.3 � 2�/.1 � 2�/

4.1 � �/
; (1.22)

H�.�/ < H�.�/C � � 1C
p
1 � 4.1 � �/H�.�/ (1.23)

for some � < 1. Then system (1.1) is nonoscillatory.

Remark 1.3. It might seem that if assumptions (1.22), (1.23) are satisfied, then
assumption (1.3) is redundant. However, it follows from Lemmas 2.11 and 2.12
that, under assumption (1.22), (1.23), the function c.� I�/ possesses a finite limit
for every � > 1. Therefore, assumption (1.3) in the previous theorem is necessary
also in the case where inequalities (1.22), (1.23) are supposed to be satisfied.

2 Auxiliary lemmas

Lemma 2.1. Let � > 1 be such that

lim inf
t!C1

c.t I�/ > �1 (2.1)

and .u; v/ be a solution of system (1.1) satisfying the relation

u.t/ ¤ 0 for t � a (2.2)

with some a � 0. ThenZ C1
a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds < C1; (2.3)

where

�.t/ D
v.t/

u.t/
for t � a: (2.4)

Proof. In view of (1.1), relation (2.4) yields

�0.t/ D �p.t/ � q.t/�2.t/ for a.e. t � a: (2.5)

Multiplying both sides of equality (2.5) by the expression f �.t/ and integrating
them from a to t , one gets

f �.t/�.t/ D f �.a/�.a/ �

Z t

a

f �.s/p.s/ds C
�2

4

Z t

a

q.s/f ��2.s/ds

�

Z t

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a;
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On oscillation and nonoscillation 579

whence it follows that

f ��1.t/
h
f .t/�.t/C

�

2

i
D �

Z t

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds

�

Z t

a

f �.s/p.s/ds C
�.� � 2/

4.� � 1/
f ��1.t/C ı (2.6)

for t � a, where

ı D f �.a/�.a/C
�2

4.� � 1/
f ��1.a/:

Now we multiply both sides of equality (2.6) by the expression q.t/f ��.t/ and
integrate them from a to t and thus we getZ t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds

D �

Z t

a

q.s/

f �.s/

� Z s

a

f �.�/p.�/d�
�

ds

�

Z t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds

C
�.� � 2/

4.� � 1/
ln
f .a/

f .t/
C

ı

� � 1

� 1

f ��1.t/
�

1

f ��1.a/

�
for t � a: (2.7)

Suppose on the contrary that inequality (2.3) does not hold, i.e.,Z C1
a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds D C1: (2.8)

Obviously, for any t � � � a, we have

f ��1.t/

Z t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds

� f ��1.t/

Z t

�

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds

� f ��1.t/

Z t

�

q.s/

f �.s/
ds
Z �

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�

D
1

� � 1

�
1 �

f ��1.t/

f ��1.�/

� Z �

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds:
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580 A. Lomtatidze and J. Šremr

Consequently, on account of equality (2.8) and the relation

lim
t!C1

f .t/ D 0; (2.9)

we get

lim
t!C1

f ��1.t/

Z t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds D C1:

(2.10)
Moreover, by virtue of equality (2.9), it is clear that

lim
t!C1

f ��1.t/ ln
f .a/

f .t/
D 0: (2.11)

Therefore, by virtue of relations (2.1) and (2.9)–(2.11), equality (2.7) implies that
there exists a1 > a such thatZ t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds

� �
1

2

Z t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds (2.12)

for t � a1. By using Hölder’s inequality we get� Z t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds
�2

�

Z t

a

q.s/

f �.s/
ds
Z t

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds

�
1

.� � 1/f ��1.t/

Z t

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds (2.13)

for t � a and thus inequality (2.12) yields

� � 1

4

hZ t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds
i2

�
1

f ��1.t/

Z t

a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a1:

Therefore we have

v0.t/ �
� � 1

4

q.t/

f .t/
v2.t/ for a.e. t � a1; (2.14)
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On oscillation and nonoscillation 581

where

v.t/ D

Z t

a

q.s/

f �.s/

� Z s

a

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds for t � a1:

Now relation (2.14) leads to

1

v.a1/
�

1

v.a1/
�

1

v.t/
�
� � 1

4

Z t

a1

q.s/

f .s/
ds D

� � 1

4
ln
f .a1/

f .t/
for t � a1;

which, in view of equality (2.9), yields the contradiction 1 � C1.

Lemma 2.2. Let .u; v/ be a solution of system (1.1) satisfying relation (2.2) with
some a � 0. Moreover, let � > 1 be such that inequality (2.3) holds, where the
function � is defined by formula (2.4). Then there exists a finite limit

lim
t!C1

c.t I�/:

Proof. Analogously to the proof of Lemma 2.1 we obtain relation (2.6), whence,
in view of assumption (2.3), we get

f ��1.t/
h
f .t/�.t/C

�

2

i
D ı.a/ �

Z t

0

f �.s/p.s/ds C
�.� � 2/

4.� � 1/
f ��1.t/

C

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a; (2.15)

where

ı.a/ D f �.a/�.a/C
�2

4.� � 1/
f ��1.a/

C

Z a

0

f �.s/p.s/ds �
Z C1
a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds:

Multiplying both sides of equality (2.15) by the expression q.t/f ��.t/ and inte-
grating them from a to t , one getsZ t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds

D
1

.� � 1/f ��1.t/

�
ı.a/ � c.t I�/

�
C
�.� � 2/

4.� � 1/
ln
f .a/

f .t/

C I.t/ �
1

.� � 1/f ��1.a/

�
ı.a/ � c.aI�/

�
for t � a; (2.16)
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582 A. Lomtatidze and J. Šremr

where, for t � a,

I.t/ WD

Z t

a

q.s/

f �.s/

� Z C1
s

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds: (2.17)

Obviously, we have

0 � I.t/ � I.�/C

Z t

�

q.s/

f �.s/
ds
Z C1
�

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds

for t � � � a. The latter inequalities imply, on account of (2.9), that

0 � lim sup
t!C1

f ��1.t/I.t/

�
1

� � 1

Z C1
�

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for � � a

and thus, in view of assumption (2.3), we obtain

lim
t!C1

f ��1.t/I.t/ D 0: (2.18)

On the other hand, by using Hölder’s inequality, we can check that inequality
(2.13) holds for t � a, whence we get

� Z t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds
�2

�
1

.� � 1/f ��1.t/

Z C1
a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a:

Consequently, we have

lim
t!C1

f ��1.t/

Z t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds D 0; (2.19)

because the function f satisfies relation (2.9). It is also obvious that equality
(2.11) holds. Therefore, according to conditions (2.9), (2.11), (2.18), and (2.19),
it follows from expression (2.16) that

lim
t!C1

c.t I�/ D ı.a/:

The following statement follows from Lemmas 2.1 and 2.2 and their proofs.
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On oscillation and nonoscillation 583

Lemma 2.3. Let � > 1 be such that condition (2.1) holds and .u; v/ be a solution
of system (1.1) satisfying relation (2.2) with some a � 0. Then inequality (2.3) is
satisfied, where the function � is defined by formula (2.4), and

f ��1.t/
h
f .t/�.t/C

�

2

i
D c0.�/ �

Z t

0

f �.s/p.s/ds C
�.� � 2/

4.� � 1/
f ��1.t/

C

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a; (2.20)

where c0.�/ is given by equality (1.4).

Lemma 2.4. Let system (1.1) be nonoscillatory and � > 1 be such that conditions
(1.3) and (1.11) hold. Then every nontrivial solution .u; v/ of system (1.1) admits
the estimate

lim inf
t!C1

h
f .t/

v.t/

u.t/
C
�

2

i
�
� � 1 �

p
1 � 4.� � 1/Q�.�/

2
: (2.21)

Proof. Let .u; v/ be a nontrivial solution of system (1.1). Since (1.1) is nonoscil-
latory, there exists a � 0 such that (2.2) holds. According to Lemma 2.3, relations
(2.3) and (2.20) are fulfilled, where the function � is defined by formula (2.4) and
c0.�/ is given by equality (1.4). It follows from (2.20) that

f .t/�.t/C
�

2
D Q.t I�/C

�.� � 2/

4.� � 1/

C
1

f ��1.t/

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a: (2.22)

Now we put

m D lim inf
t!C1

h
f .t/�.t/C

�

2

i
: (2.23)

If m D C1, then the desired inequality (2.21) holds trivially. Now assume that
m < C1. Then it follows from relation (2.22) that

m � Q�.�/C
�.� � 2/

4.� � 1/
: (2.24)

If Q�.�/ D
�.2��/
4.��1/

, then the desired inequality (2.21) is fulfilled because m � 0.
Hence, we suppose in what follows that Q�.�/ >

�.2��/
4.��1/

and thus m > 0 (see
relation (2.24)). Let " 2 �0;m� be arbitrary and choose t" � a such that

f .t/�.t/C
�

2
� m � "; Q.t I�/ � Q�.�/ � " for t � t":

Brought to you by | Matematicky Ustav AV CR
Authenticated | sremr@ipm.cz author's copy

Download Date | 9/9/13 10:22 AM



584 A. Lomtatidze and J. Šremr

Then from equality (2.22) we get

f .t/�.t/C
�

2
� Q�.�/ � "C

�.� � 2/

4.� � 1/
C
.m � "/2

� � 1
for t � t";

which implies that

m � Q�.�/ � "C
�.� � 2/

4.� � 1/
C
.m � "/2

� � 1
:

Since " 2 �0;m� is arbitrary, the latter inequality leads to

m2 � .� � 1/mC .� � 1/Q�.�/C
�.� � 2/

4
� 0:

Consequently, we have

m �
1

2

�
� � 1 �

p
1 � 4.� � 1/Q�.�/

�
which, in view of notation (2.23), proves the desired estimate (2.21).

Lemma 2.5. Let system (1.1) be nonoscillatory and � < 1 be such that condi-
tion (1.13) holds. Then every nontrivial solution .u; v/ of system (1.1) admits the
estimate

lim sup
t!C1

f .t/
v.t/

u.t/
�
�1C

p
1 � 4.1 � �/H�.�/

2
: (2.25)

Proof. Let .u; v/ be a nontrivial solution of system (1.1). Since (1.1) is nonoscil-
latory, there exists a � 0 such that (2.2) holds. Define the function � by formula
(2.4). Then, in view of (1.1), relation (2.4) yields that (2.5) is satisfied. Multiply-
ing both sides of equality (2.5) by the expression f �.t/ and integrating them from
� to t , one gets

f �.t/�.t/ D ı1.�/ �

Z t

0

f �.s/p.s/ds

�

Z t

�

q.s/f ��2.s/
�
f .s/�.s/

�
�C f .s/�.s/

��
ds for t � � � a;

where

ı1.�/ D f
�.�/�.�/C

Z �

0

f �.s/p.s/ds for � � a; (2.26)
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On oscillation and nonoscillation 585

whence we get, for t � � � a,

f .t/�.t/ D ı1.�/f
1��.t/ �H.t I�/

� f 1��.t/

Z t

�

q.s/f ��2.s/
�
f .s/�.s/

�
�C f .s/�.s/

��
ds: (2.27)

Now we put
M D lim sup

t!C1

f .t/�.t/: (2.28)

If M D �1, then the desired inequality (2.25) holds trivially. Now assume that
M > �1. According to the inequality �x.� C x/ � �2

4
for x 2 R, it follows

from relation (2.27) that

f .t/�.t/ � ı1.�/f
1��.t/ �H.t I�/C

�2

4.1 � �/
for t � � � a:

Hence, in view of equality (2.9), we get

M � �H�.�/C
�2

4.1 � �/
: (2.29)

If H�.�/ D
�.2��/
4.1��/

, then the desired inequality (2.25) is fulfilled because M �
�
�
2

. Hence, we suppose in the sequel that H�.�/ >
�.2��/
4.1��/

and thus M < ��
2

(see relation (2.29)). Let " 2 �0;�M � �
2
� be arbitrary and choose t" � a such

that
f .t/�.t/ �M C "; H.t I�/ � H�.�/ � " for t � t": (2.30)

Since M C " � ��
2

, it is easy to check that

f .s/�.s/
�
�C f .s/�.s/

�
� .M C "/.�CM C "/ for s � t": (2.31)

Therefore, by using relations (2.30) and (2.31), from equality (2.27) with � D t"
we get

f .t/�.t/ � ı1.t"/f
1��.t/ �H�.�/C "

�
.M C "/.�CM C "/

1 � �

�
1 �

f 1��.t/

f 1��.t"/

�
for t � t";

which yields that

M � �H�.�/C " �
.M C "/.�CM C "/

1 � �
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586 A. Lomtatidze and J. Šremr

because the function f satisfies relation (2.9). Since " 2 �0;�M � �
2
� is arbitrary,

the latter inequality leads to

M 2
CM C .1 � �/H�.�/ � 0:

Consequently, we have

M �
1

2

�
�1C

p
1 � 4.1 � �/H�.�/

�
which, in view of notation (2.28), proves the desired estimate (2.25).

Lemma 2.6. Let � > 1 be such that (1.3) holds and ˛ 2 R. Then system (1.1) is
nonoscillatory if and only if the system

x0 D q.t/y;

y0 D g1.t/x C g2.t/y
(2.32)

is nonoscillatory1, where

g1.t/ D �
q.t/

f 2.t/

�
Q2.t I�/C .2˛ C �/Q.t I�/C ˛.˛ C 1/

�
;

g2.t/ D �
2q.t/

f .t/

�
Q.t I�/C ˛

� (2.33)

for a.e. t � 0.

Proof. Suppose that system (1.1) is nonoscillatory and .u; v/ is a solution of this
system satisfying relation (2.2) with some a � 0. Put

x.t/ D exp
� Z t

a

q.s/�.s/ds
�

for t � a;

y.t/ D �.t/ exp
� Z t

a

q.s/�.s/ds
�

for t � a;

where

�.t/ D
v.t/

u.t/
�
Q.t I�/C ˛

f .t/
for t � a:

It is not difficult to verify that .x; y/ is a solution of system (2.32) on the interval
Œa;C1Œ. Since x.t/ ¤ 0 for t � a, system (2.32) is nonoscillatory as well.

1 Solutions of (2.32) and the notion of nonoscillation are understood in the same sense as for
system (1.1).
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On oscillation and nonoscillation 587

Suppose now that system (2.32) is nonoscillatory and .x; y/ is a solution of this
system satisfying the relation

x.t/ ¤ 0 for t � a

with some a � 0. Put

u.t/ D exp
� Z t

a

q.s/�.s/ds
�

for t � a;

v.t/ D �.t/ exp
� Z t

a

q.s/�.s/ds
�

for t � a;

where

�.t/ D
x.t/

y.t/
C
Q.t I�/C ˛

f .t/
for t � a:

As above, it is easy to check that .u; v/ is a solution of system (1.1) on the interval
Œa;C1Œ. Since u.t/ ¤ 0 for t � a, system (1.1) is also nonoscillatory.

Lemma 2.7. Let � < 1 and ˇ 2 R. System (1.1) is nonoscillatory if and only if
system (2.32) is nonoscillatory, where

g1.t/ D �
q.t/

f 2.t/

�
H 2.t I�/ � .2ˇ C �/H.t I�/C ˇ.ˇ C 1/

�
;

g2.t/ D
2q.t/

f .t/

�
H.t I�/ � ˇ

�
for a.e. t � 0.

Proof. The proof is analogous to that of Lemma 2.6 and thus it is omitted.

Lemma 2.8. Let .x; y/ be a nontrivial oscillatory solution of system (2.32) with
locally integrable functions g1; g2W Œ0;C1Œ ! R. Then, for any a � 0, there
exist t2 > t1 > a such that

x.t/ ¤ 0 for t 2 �t1; t2Œ; x.t1/ D 0; x.t2/ D 0: (2.34)

Proof. Let a � 0 be arbitrary. Since .x; y/ is a nontrivial oscillatory solution of
system (2.32), there exists t0 > a such that x.t0/ D 0. Put

A D
®
t � t0 W x.s/ D 0 for s 2 Œt0; t �

¯
:

Clearly, t0 2 A and thus A ¤ ¿. Moreover, the set A is bounded from above,
because the solution .x; y/ is nontrivial. Let t1 D supA. Obviously, t1 > a and

x.t1/ D 0: (2.35)
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588 A. Lomtatidze and J. Šremr

Moreover, we have y.t1/ ¤ 0 because otherwise, in view of (2.35), the solution
.x; y/ would be trivial. Therefore there exists �1 > t1 such that

y.t/ ¤ 0 for t 2 Œt1; �1�: (2.36)

By virtue of (1.2) and (2.36), the first equality in (2.32) yields the monotonicity of
the function x on Œt1; �1�, which, together with (2.35), guarantees that

x.t/ ¤ 0 for t 2 �t1; �1� (2.37)

(under the opposite assumption we would get a contradiction with the equality
t1 D supA). Since .x; y/ is an oscillatory solution of system (2.32), there exists
b > �1 such that x.b/ D 0. Let

B D ¹t > �1 W x.t/ D 0º:

Clearly, b 2 B and thus B ¤ ¿. Moreover, the set B is bounded from below
because x.�1/ ¤ 0. Let t2 D infB . Obviously, t2 > �1,

x.t2/ D 0 (2.38)

and
x.t/ ¤ 0 for t 2 ��1; t2Œ: (2.39)

Therefore, relations (2.35) and (2.37)–(2.39) yield the validity of the desired prop-
erties (2.34). By the arbitrariness of a � 0, we complete the proof.

Lemma 2.9. Let � > 1 be such that condition (1.3) holds, ˛ 2 R, and

Q2.t I�/C .2˛ C �/Q.t I�/C ˛.˛ C 1/ � 0 for t � a (2.40)

with some a � 0. Then system (1.1) is nonoscillatory.

Proof. According to Lemma 2.6, it suffices to show that system (2.32) is nonoscil-
latory, where the functions g1 and g2 are defined by (2.33). Suppose on the con-
trary that .x; y/ is a nontrivial oscillatory solution of system (2.32). Then, by
virtue of Lemma 2.8, there exist t1 > a and t2 > t1 such that relations (2.34) are
fulfilled. We can assume without loss of generality that

x.t/ > 0 for t 2 �t1; t2Œ: (2.41)

Obviously, y.t1/ ¤ 0 because otherwise, in view of (2.34), the solution .x; y/
would be trivial.
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If y.t1/ < 0, then there exists t3 2 �t1; t2Œ such that

y.t/ < 0 for t 2 Œt1; t3�: (2.42)

Taking relations (1.2), (2.34), and (2.42) into account, it follows from the first
equality in (2.32) that

x.t/ D

Z t

t1

q.s/y.s/ds � 0 for t 2 Œt1; t3�;

which contradicts inequality (2.41). The contradiction obtained proves that

y.t1/ > 0: (2.43)

The second equality in (2.32) yields�
y.t/ exp

�
�

Z t

a

g2.s/ds
��0
D g1.t/ exp

�
�

Z t

a

g2.s/ds
�
x.t/ for a.e. t � a;

whence by using (1.2), (2.40), (2.41) and (2.43), we get

y.t/ > 0 for t 2 Œt1; t2�: (2.44)

However, in view of relations (1.2) and (2.44), it follows from the first equality in
(2.32) that

x0.t/ � 0 for a.e. t 2 Œt1; t2�;

which is in contradiction with properties (2.34).

Analogously, one can prove

Lemma 2.10. Let � < 1 and ˇ 2 R be such that

H 2.t I�/ � .2ˇ C �/H.t I�/C ˇ.ˇ C 1/ � 0 for t � a (2.45)

with some a � 0. Then system (1.1) is nonoscillatory.

Lemma 2.11. Let there exist a number � < 1 such that

H�.�/ < C1: (2.46)

Then, for every � > 1, the function c.� I�/ possesses a limit as t !C1 and

lim
t!C1

c.t I�/ < C1: (2.47)
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590 A. Lomtatidze and J. Šremr

Proof. According to assumption (2.46), there are numbers M 2 R and t0 � 0

such that
f .t/ < 1; H.t I�/ �M for t � t0: (2.48)

We first note that Z C1
t0

q.s/f ��2.s/ ln
1

f .s/
ds < C1 (2.49)

which can be checked by direct calculation. It is clear thatZ t

0

f .s/p.s/ds D H.t I�/C .1 � �/
Z t

0

q.s/

f .s/
H.sI�/ds for t � 0

and thus, using relations (2.9) and (2.48), we get

lim sup
t!C1

1

ln 1
f .t/

Z t

0

f .s/p.s/ds �M.1 � �/:

Consequently, there exists t1 � t0 such that

1

ln 1
f .t/

Z t

0

f .s/p.s/ds �M0 for t � t1; (2.50)

where M0 DM.1 � �/C 1.
Now let � > 1 be arbitrary. It is easy to verify that

c0.t I�/ D .� � 1/q.t/f ��2.t/

Z t

0

f .s/p.s/ds for a.e. t � 0:

The integration of the latter equality from � to t leads to

c.t I�/ D c.� I�/C.��1/

Z t

�

q.s/f ��2.s/
� Z s

0

f .�/p.�/d�
�

ds for t � � � 0:

Therefore, using relation (2.50), we get

c.t I�/ � c.� I�/CM0.� � 1/

Z t

�

q.s/f ��2.s/ ln
1

f .s/
ds for t � � � t1

which, in view of inequality (2.49), leads to

lim sup
t!C1

c.t I�/ � c.� I�/CM0.� � 1/

Z C1
�

q.s/f ��2.s/ ln
1

f .s/
ds for � � t1

whence we get lim supt!C1 c.t I�/ < C1 and

lim sup
t!C1

c.t I�/ � lim inf
�!C1

c.� I�/;

i.e., relation (2.47) holds.
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Analogously, one can prove

Lemma 2.12. Let there exist a number � < 1 such that

H�.�/ > �1:

Then, for every � > 1, the function c.� I�/ possesses a limit as t !C1 and

lim
t!C1

c.t I�/ > �1:

3 Proofs of the main results

Proof of Theorem 1.1. Assume on the contrary that system (1.1) is nonoscillatory
and .u; v/ is a solution of this system satisfying (2.2) with some a � 0. Then,
by virtue of Lemma 2.1, inequality (2.3) holds, where the function � is defined
by (2.4). Therefore it follows from Lemma 2.2 that there exists a finite limit
limt!C1 c.t I�/, which contradicts the assumptions of the theorem.

Proof of Theorem 1.2. Assume on the contrary that system (1.1) is nonoscillatory
and .u; v/ is a solution of this system satisfying (2.2) with some a � 0. According
to Lemma 2.3, relations (2.3) and (2.20) are satisfied, where the function � is
defined by (2.4).

Multiplying both sides of equality (2.20) by the expression q.t/f ��.t/ and
integrating them from a to t , one getsZ t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i
ds

D
1

.� � 1/f ��1.t/

�
c0.�/ � c.t I�/

�
C

Z t

a

q.s/

f �.s/

� Z C1
s

q.�/f ��2.�/
h
f .�/�.�/C

�

2

i2
d�
�

ds

C
�.� � 2/

4.� � 1/
ln
f .a/

f .t/
�

1

.� � 1/f ��1.a/

�
c0.�/ � c.aI�/

�
for t � a;

whence
1

f ��1.t/

�
c0.�/ � c.t I�/

�
D ı0 C

�.� � 2/

4
ln
f .t/

f .a/

C

Z t

a

q.s/

f .s/

h
f .s/�.s/C

�

2

i�
� � 1 �

h
f .s/�.s/C

�

2

i�
ds

�
1

f ��1.t/

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � a;
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592 A. Lomtatidze and J. Šremr

where

ı0 D
1

f ��1.a/

�
c0.�/ � c.aI�/C

Z C1
a

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds
�
:

By using the inequality 4x.� � 1 � x/ � .� � 1/2 for x 2 R, the latter relation
gives

1

f ��1.t/

�
c0.�/ � c.t I�/

�
� ı0 �

1

4
ln
f .t/

f .a/
:

Consequently, in view of equality (2.9), we get

lim sup
t!C1

�1

f ��1.t/ lnf .t/

�
c0.�/ � c.t I�/

�
�
1

4
;

which is in contradiction with assumption (1.5).

Proof of Corollary 1.1. It is not difficult to verify that

c.t I�/ D

Z t

0

f �.s/p.s/ds � f ��1.t/
Z t

0

f .s/p.s/ds for t � 0

and thus we have

�1

f ��1.t/ lnf .t/

�
c0.�/ � c.t I�/

�
D �

Q.t I�/

lnf .t/
C
�1

lnf .t/

Z t

0

f .s/p.s/ds for t � 0:

The latter equality, on account of relations (1.6), (2.9), and the assumption
Q�.�/ > �1, yields the validity of inequality (1.5). Consequently, the asser-
tion of the corollary follows from Theorem 1.2.

Proof of Corollary 1.2. It is not difficult to verify that the equalities

Q.t I�/CH.t I�/

D .� � �/f 1��.t/

Z t

0

q.s/

f 2��.s/
Q.sI�/ds C

c0.�/

f ���.0/
f 1��.t/ (3.1)

and

�1

f ��1.t/ lnf .t/

�
c0.�/ � c.t I�/

�
D

c0.�/

f ��1.0/

1

ln 1
f .t/

C
� � 1

ln 1
f .t/

Z t

0

q.s/

f .s/
Q.sI�/ds (3.2)
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hold for t � 0. Therefore, in view of assumption (1.7) and relation (2.9), it follows
from equality (3.1) that

lim inf
t!C1

f 1��.t/

Z t

0

q.s/

f 2��.s/
Q.sI�/ds >

1

4.� � 1/.1 � �/
: (3.3)

On the other hand, for t � 0 we haveZ t

0

q.s/

f .s/
Q.sI�/ds D f 1��.t/

Z t

0

q.s/

f 2��.s/
Q.sI�/ds

C .1 � �/

Z t

0

q.s/

f .s/

h
f 1��.s/

Z s

0

q.�/

f 2��.�/
Q.�I�/d�

i
ds

and thus, using relations (2.9) and (3.3), we get

lim inf
t!C1

1

ln 1
f .t/

Z t

0

q.s/

f .s/
Q.sI�/ds >

1

4.� � 1/
: (3.4)

Now, by virtue of (2.9) and (3.4), it follows from equality (3.2) that inequality
(1.5) is satisfied. Consequently, by Theorem 1.2 system (1.1) is oscillatory.

Proof of Corollary 1.3. Assume that � > 1 is such that (1.3) holds.
First, suppose that (1.8) is fulfilled. It is not difficult to verify that, for any

� < 1, equality (3.1) holds for t � 0, which, in view of relation (2.9), yields the
validity of inequality (1.7). Therefore, by virtue of Corollary 1.2, system (1.1) is
oscillatory.

Now, assume that � < 1 is such that inequality (1.9) holds. It is clear thatZ t

0

f .s/p.s/ds D H.t I�/C .1 � �/
Z t

0

q.s/

f .s/
H.sI�/ds for t � 0

and thus, using relations (1.9) and (2.9), we get

lim inf
t!C1

1

ln 1
f .t/

Z t

0

f .s/p.s/ds >
1

4
: (3.5)

On the other hand, it is easy to verify that

c0.t I�/ D .� � 1/q.t/f ��2.t/

Z t

0

f .s/p.s/ds for a.e. t � 0:

The integration of the latter equality from t to � leads to

c.� I�/�c.t I�/ D .��1/

Z �

t

q.s/f ��2.s/
� Z s

0

f .�/p.�/d�
�

ds for � � t � 0:
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594 A. Lomtatidze and J. Šremr

Taking now into account notation (1.4), we get

c0.�/�c.t I�/ D .��1/

Z C1
t

q.s/f ��2.s/ ln
1

f .s/

� 1

ln 1
f .s/

Z s

0

f .�/p.�/d�
�

ds

for t � 0, whence, using relations (2.9) and (3.5), inequality (1.5) follows. Conse-
quently, the assertion of the corollary follows from Theorem 1.2.

Proof of Theorem 1.3. Assume on the contrary that system (1.1) is nonoscillatory
and .u; v/ is a solution of this system satisfying (2.2) with some a � 0. Define
the function � by (2.4). Then, using (1.1), we obtain equality (2.5). Multiplying
both sides of (2.5) by the expression f �.t/ and integrating them from � to t , one
gets equality (2.27), where ı1.�/ is defined by formula (2.26). On the other hand,
Lemma 2.3 yields the validity of relations (2.3) and (2.20).

Now, it follows from equalities (2.20) and (2.27) that

Q.t I�/CH.t I�/ D
�2

4.� � 1/
C ı1.�/f

1��.t/

� f 1��.t/

Z t

�

q.s/f ��2.s/
�
f .s/�.s/

�
�C f .s/�.s/

��
ds

�
1

f ��1.t/

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds for t � � � a: (3.6)

Putting � D a and using the inequality �x.� C x/ � �2

4
for x 2 R, we obtain

from equality (3.6) the inequality

Q.t I�/CH.t I�/ �
�2

4.� � 1/
C

�2

4.1 � �/
C ı1.a/f

1��.t/ for t � a:

Therefore, by virtue of relation (2.9), we get

lim sup
t!C1

�
Q.t I�/CH.t I�/

�
�

�2

4.� � 1/
C

�2

4.1 � �/
;

which contradicts assumption (1.10).

Proof of Theorem 1.4. Assume on the contrary that system (1.1) is nonoscillatory
and .u; v/ is a solution of this system satisfying (2.2) with some a � 0. Define the
function � by formula (2.4). Then, using (1.1), we obtain equality (2.5). Multiply-
ing both sides of (2.5) by the expression f �.t/ and integrating them from � to t ,
one gets equality (2.27), where ı1.�/ is defined by formula (2.26). On the other
hand, Lemma 2.3 yields the validity of relations (2.3) and (2.20).
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Suppose that assumptions (1.11) and (1.12) (respectively, assumptions (1.13)
and (1.14)) are fulfilled and " > 0 is arbitrary. Then, according to Lemma 2.4
(respectively, Lemma 2.5), there exists t" � a such that

f .t/�.t/ � m � " for t � t";

resp., f .t/�.t/ �M C " for t � t";
(3.7)

where
m D �

1

2

�
1C

p
1 � 4.� � 1/Q�.�/

�
;

resp., M D
1

2

�
�1C

p
1 � 4.1 � �/H�.�/

�
:

(3.8)

By using relation (3.7) and the inequality �x.�C x/ � �2

4
for x 2 R, it follows

from equality (2.27) with � D a (respectively, from equality (2.20)) that

H.t I�/ � ı1.a/f
1��.t/ �mC "C

�2

4.1 � �/

�
1 �

f 1��.t/

f 1��.a/

�
for t � t";

resp., Q.t I�/ �M C "C
�2

4.� � 1/
for t � t":

Since " > 0 is arbitrary and equality (2.9) holds, the latter inequality yields

H�.�/ � �mC
�2

4.1 � �/
; resp., Q�.�/ �M C

�2

4.� � 1/

which, together with notation (3.8), contradicts assumption (1.12) (respectively,
(1.14)).

Proof of Theorem 1.5. Assume on the contrary that system (1.1) is nonoscillatory
and .u; v/ is a solution of this system satisfying (2.2) with some a � 0. Define the
function � by formula (2.4). Then, using (1.1), we get equality (2.5). Multiplying
both sides of (2.5) by the expression f �.t/ and integrating them from � to t , one
gets equality (2.27), where ı1.�/ is defined by formula (2.26). On the other hand,
Lemma 2.3 yields the validity of relations (2.3) and (2.20). Therefore, it follows
from equalities (2.20) and (2.27) that relation (3.6) is satisfied.

Put

m D lim inf
t!C1

h
f .t/�.t/C

�

2

i
; M D lim sup

t!C1

f .t/�.t/: (3.9)

Then Lemmas 2.4 and 2.5, in view of assumptions (1.11) and (1.13), lead to the
inequalities

m �
1

2

�
� � 1 �

p
1 � 4.� � 1/Q�.�/

�
� 0;

M �
1

2

�
�1C

p
1 � 4.1 � �/H�.�/

�
� �

�

2
:

(3.10)
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596 A. Lomtatidze and J. Šremr

Suppose thatM < ��
2

andm > 0. Let 0 < " � min¹�M � �
2
; mº be arbitrary

and choose t" � a such that

f .t/�.t/C
�

2
� m � "; f .t/�.t/ �M C " for t � t": (3.11)

Since we have M C " � ��
2

, it is easy to check that

f .s/�.s/
�
�C f .s/�.s/

�
� .M C "/.�CM C "/ for s � t":

Consequently, in view of relation (2.9), from equality (3.6) with � D t" we get

Q.t I�/CH.t I�/ �
�2

4.� � 1/
�
.M C "/.�CM C "/

1 � �

�
.m � "/2

� � 1
C ı2.t"/f

1��.t/ for t � t"; (3.12)

where

ı2.t"/ D ı1.t"/C
.M C "/.�CM C "/

.1 � �/f 1��.t"/
:

Since " > 0 is arbitrary, by virtue of relation (2.9), it follows from inequality (3.12)
that

lim sup
t!C1

�
Q.t I�/CH.t I�/

�
�

�2

4.� � 1/
�
M.�CM/

1 � �
�

m2

� � 1
: (3.13)

If M D ��
2

(respectively, m D 0), then we use the fact that

� f 1��.t/

Z t

�

q.s/f ��2.s/
�
f .s/�.s/

�
�C f .s/�.s/

��
ds

�
�2

4.1 � �/
D �

M.�CM/

1 � �
for t � � � a;

resp.,

�
1

f ��1.t/

Z C1
t

q.s/f ��2.s/
h
f .s/�.s/C

�

2

i2
ds

� 0 D �
m2

� � 1
for t � 0

and we also arrive at inequality (3.13).
Consequently, inequalities (3.13) and (3.10) lead to a contradiction with as-

sumption (1.15).
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Proof of Corollary 1.4. It is easy to show that

lim sup
t!C1

�
Q.t I�/CH.t I�/

�
� Q�.�/CH�.�/

and
lim sup
t!C1

�
Q.t I�/CH.t I�/

�
� H�.�/CQ�.�/:

Consequently, in both cases (1.16) and (1.17), inequality (1.15) is satisfied, and
thus the assertion of the corollary follows immediately from Theorem 1.5.

Proof of Theorem 1.6. Assume that inequalities (1.18) (respectively, (1.19)) hold.
Then there exists a � 0 such that

�
.2� � 3/.2� � 1/

4.� � 1/
� Q.t I�/ �

1

4.� � 1/
for t � a;

resp., �
.3 � 2�/.1 � 2�/

4.1 � �/
� H.t I�/ �

1

4.1 � �/
for t � a:

The latter inequalities yield

Q2.t I�/C
2�2 � 4�C 1

2.� � 1/
Q.t I�/ �

.2� � 1/.2� � 3/

16.� � 1/2
� 0 for t � a;

resp.,

H 2.t I�/C
2�2 � 4�C 1

2.1 � �/
H.t I�/ �

.1 � 2�/.3 � 2�/

16.1 � �/2
� 0 for t � a

and thus relation (2.40) with ˛ D � 2��1
4.��1/

(respectively, relation (2.45) with

ˇ D � 1�2�
4.1��/

) is fulfilled. Consequently, according to Lemma 2.9 (respectively,
Lemma 2.8), system (1.1) is nonoscillatory.

Proof of Theorem 1.7. Assume that inequalities (1.20) and (1.21) (respectively, in-
equalities (1.22) and (1.23)) are fulfilled. It follows from assumption (1.21) (re-
spectively, (1.23)) that

Q�.�/ <
1

4.� � 1/
; resp., H�.�/ <

1

4.1 � �/
:

Choose " > 0 such that

Q�.�/C " �
1

4.� � 1/
; resp., H�.�/C " �

1

4.1 � �/
(3.14)
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and

Q�.�/C " � Q�.�/ � "C 1 � �C
p
1 � 4.� � 1/.Q�.�/ � "/;

resp., H�.�/C " � H�.�/ � "C � � 1C
p
1 � 4.1 � �/.H�.�/ � "/:

(3.15)
Let

˛ D �
1

2
�Q�.�/ � "C

1

2

p
1 � 4.� � 1/.Q�.�/C "/;

resp., ˇ D �
1

2
CH�.�/C " �

1

2

p
1 � 4.1 � �/.H�.�/C "/:

By using inequality (3.14) it is easy to verify that

˛ � �
�2

4.� � 1/
; resp., ˇ �

�2

4.1 � �/
: (3.16)

Thus it follows from the definition of the number ˛ (respectively, ˇ) that

Q�.�/C " D �˛ �
�

2
C

q
�2=4C ˛.� � 1/;

resp., H�.�/C " D ˇ C
�

2
C

q
�2=4 � ˇ.1 � �/:

(3.17)

Observe that inequality (3.15) leads to

˛2 C
�
1C 2.Q�.�/ � "/

�
˛ C .Q�.�/ � "/.Q�.�/ � "C �/ � 0;

resp., ˇ2 C
�
1 � 2.H�.�/ � "/

�
ˇ C .H�.�/ � "/.H�.�/ � " � �/ � 0;

whence, in view of relation (3.16), we get

Q�.�/ � " � �˛ �
�

2
�

q
�2=4C ˛.� � 1/;

resp., H�.�/ � " � ˇ C
�

2
�

q
�2=4 � ˇ.1 � �/:

(3.18)

Finally, there exists a � 0 such that

Q�.�/ � " � Q.t I�/ � Q
�.�/C " for t � a;

resp., H�.�/ � " � H.t I�/ � H
�.�/C " for t � a

which, together with relations (3.17) and (3.18), guarantees that the inequalities

�˛ �
�

2
�

q
�2=4C ˛.� � 1/ � Q.t I�/ � �˛ �

�

2
C

q
�2=4C ˛.� � 1/
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On oscillation and nonoscillation 599

resp.,

ˇ C
�

2
�

q
�2=4 � ˇ.1 � �/ � H.t I�/ � ˇ C

�

2
C

q
�2=4 � ˇ.1 � �/

hold for t � a. However, this means that inequality (2.40) (respectively, inequality
(2.45)) is satisfied and thus the assertion of the theorem follows from Lemma 2.9
(respectively, Lemma 2.10).
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