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a b s t r a c t

For the system of non-linear equations

u′
= g(t)|v|

1/αsgn v, v′
= −p(t)|u|αsgn u

with α > 0 and locally integrable functions g: [0, +∞[→ [0, +∞[, p: [0, +∞[→ R, new
oscillation criteria are given in both cases


+∞

0 g(s)ds = +∞ and


+∞

0 g(s)ds < +∞.
As a consequence of the main results we derive, among others, a Hartman–Wintner type
theorem for the system consideredwhich, in the case


+∞

0 g(s)ds < +∞, does not require
the assumption p ≥ 0 appearing in the existing literature.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

On the half-line [0, +∞[, we consider the system

u′
= g(t)|v|

1/αsgn v,

v′
= −p(t)|u|αsgn u,

(1.1)

where α > 0 and p, g: [0, +∞[→ R are locally Lebesgue integrable functions.
A pair (u, v) is said to be a solution to system (1.1) on the interval I ⊆ [0, +∞[ if the functions u, v: I → R are absolutely

continuous on every compact interval contained in I and satisfy equalities (1.1) almost everywhere in I . In the paper [14],
Mirzov proved that all non-extendable solutions to system (1.1) are defined on the whole interval [0, +∞[. Therefore,
speaking about a solution to system (1.1), we assume without loss of generality that it is defined on the whole interval
[0, +∞[. Mirzov also proved (see, e.g., [15, Theorem 9.3]) that all non-zero solutions (u, v) to system (1.1) are proper, i.e.,
the inequality

sup

|u(τ )| + |v(τ)| : t ≤ τ < +∞


> 0

holds for every t ≥ 0.

Definition 1.1. A solution (u, v) to system (1.1) is called non-trivial if u ≢ 0 on any neighborhood of +∞. We say that
a non-trivial solution (u, v) to system (1.1) is oscillatory if the function u has a sequence of zeros tending to infinity, and
non-oscillatory otherwise.
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It is well known (see [14, Theorem 1.1]) that a certain analog of Sturm’s theorem holds for system (1.1) under the addi-
tional assumption

g(t) ≥ 0 for a.e. t ≥ 0. (1.2)

In particular, if inequality (1.2) holds and system (1.1) has an oscillatory solution, then any other non-trivial solution is also
oscillatory. Moreover, under assumption (1.2), if (u, v) is an oscillatory solution to system (1.1), then together with u, the
function v also oscillates. On the other hand, it is clear that if g ≡ 0 on some neighborhood of +∞, then all non-trivial
solutions to system (1.1) are non-oscillatory.

Therefore, we assume throughout the paper that inequality (1.2) holds and

meas

τ ≥ t : g(τ ) > 0


> 0 for every t ≥ 0. (1.3)

Definition 1.2. We say that system (1.1) is oscillatory if all its non-trivial solutions are oscillatory.

In the last two decades, many results have been obtained in oscillation theory of the equation
r(t)|u′

|
q−1sgn u′

′
+ p(t)|u|q−1sgn u = 0 (1.4)

which is referred as ‘‘half-linear equation’’ or alternatively ‘‘equation with the scalar q-Laplacian’’ (see survey given in [1]).
Eq. (1.4) is usually considered under the assumptions q > 1, r, p: [0, +∞[ → R are continuous and r is positive, and both
cases 

+∞

0
r

1
1−q (s)ds = +∞ (1.5)

and 
+∞

0
r

1
1−q (s)ds < +∞ (1.6)

are studied in the existing literature. Solutions of (1.4) are understood in the classical sense (i.e., a solution u of (1.4) is a
C1 function such that r|u′

|
q−1sgn u′

∈ C1 and satisfies (1.4) everywhere in an interval under consideration). Therefore, it is
clear that if the function u is a solution to Eq. (1.4), then the vector function (u, r|u′

|
q−1sgn u′) is a solution to system (1.1)

with

g(t) := r
1

1−q (t) for t ≥ 0, α := q − 1.

Hence, Eq. (1.4) is a particular case of system (1.1) in which p, g are continuous and g(t) > 0 for all t . Observe that, even for
this particular case of (1.1), there are certain gaps in the oscillation theory. For instance, an analog of the Hartman–Wintner
theorem for Eq. (1.4) is well known in the case, where (1.5) holds, which allows one to derive further oscillation and non-
oscillation criteria of Hille and Nehari type (see, e.g., [3,7,15,11,5,10,17] and survey given in [1]). As for the case, where (1.6)
is satisfied, as far as we know, an analog of the Hartman–Wintner theorem and some Hille and Nehari type oscillations
criteria are proved only under the additional assumption

p(t) ≥ 0 for a.e. t ≥ 0 (1.7)

(see, e.g., [7,6,16] and survey given in [1]). Moreover, so-called Kamenev type oscillation criteria are known for Eq. (1.4) and
read as follows:

lim sup
t→+∞

∆(t) = +∞,

where the function ∆ is expressed in terms of the coefficients r, p and the parameter q (see, e.g., [9,13,8]). But only a few
results can be found in the existing literature for the contrary case, where

lim sup
t→+∞

∆(t) < +∞

(see, e,g., [13,8]).
The aim of this paper is to present a new Kamenev type oscillation criterion and its counterpart for the system (1.1) in

both cases, where
+∞

0
g(s)ds = +∞ (1.81)

and 
+∞

0
g(s)ds < +∞ (1.82)

(see Theorems 2.1 and 2.8). As consequences of themain results we also derive Hartman–Wintner type theorems for system
(1.1), which essentially generalize previously known results.
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2. Main results

In this section, we formulate all main results, their proofs are postponed till Section 4.

2.1. The case


∞

0 g(s)ds = +∞

We assume throughout this subsection that the coefficient g is non-integrable on [0, +∞[, i.e., that g satisfies condition
(1.81). Let

f1(t) :=

 t

0
g(s)ds for t ≥ 0. (2.1)

In view of assumptions (1.2), (1.3) and (1.81), we have

lim
t→+∞

f1(t) = +∞

and there exists a number tg ≥ 0 such that f1(t) > 0 for t > tg and f1(tg) = 0. Since we are interested in behavior of
solutions in the neighborhood of +∞, we can assume without loss of generality that tg = 0, i.e.,

f1(t) > 0 for t > 0.

For any κ > α, β > 0 and λ < α, we put

k1(t; κ, β, λ) :=
1

f κβ

1 (t)

 t

0


f β

1 (t) − f β

1 (s)
κ
f λ
1 (s)p(s)ds for t > 0 (2.2)

and

c1(t; λ) :=
α − λ

f α−λ
1 (t)

 t

0

g(s)

f λ+1−α
1 (s)

 s

0
f λ
1 (ξ)p(ξ)dξ


ds for t > 0. (2.3)

Now we can formulate a main result of this subsection.

Theorem 2.1. Let conditions (1.2), (1.3) and (1.81) hold, κ > α, β > 0, λ < α and either

lim sup
t→+∞

k1(t; κ, β, λ) = +∞ (2.4)

or 
−∞ < lim sup

t→+∞

k1(t; κ, β, λ) < +∞,

the function c1(·; λ) does not possess a finite limit as t → +∞.
(2.5)

Then system (1.1) is oscillatory.

Observe that condition (2.4) with β = 1, λ = 0 and g ≡ 1 reduces to the condition

lim sup
t→+∞

1
tκ

 t

0
(t − s)κp(s)ds = +∞ for some κ > α (2.6)

which is established in [9] and it is the half-linear extension of the classical Kamenev linear oscillation criterion (see [4]).
Conditions (2.5) then give a possible counterpart of the oscillation criterion (2.6).

It is well known that system (1.1) is oscillatory provided that the function

M: t →
1

f1(t)

 t

0
g(s)

 s

0
p(ξ)dξ


ds (2.7)

is bounded from below in some neighborhood of +∞ and does not have a finite limit as t → +∞ (see, e.g., [15, Theorem
12.3]). The following corollary of Theorem 2.1 can be applied also in the case, where the lower limit of the function (2.7) is
−∞ (see Example 2.4).

For any λ < α, we put

h1(t; λ) :=
α∗! (α − λ)α∗

f α∗(α−λ)
1 (t)

 t

0

g(sα∗
)

f λ+1−α
1 (sα∗

)

 sα∗

0

g(sα∗−1)

f λ+1−α
1 (sα∗−1)

×

 sα∗−1

0
· · ·

 s1

0
f λ
1 (ξ)p(ξ)dξ


ds1 · · ·


dsα∗−1


dsα∗

for t > 0, (2.8)

where α∗ := max{2, ⌊α⌋ + 1} and ⌊α⌋ denotes the integer part of the number α.
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Corollary 2.2. Let conditions (1.2), (1.3) and (1.81) hold, λ < α and either

lim sup
t→+∞

h1(t; λ) = +∞

or 
−∞ < lim sup

t→+∞

h1(t; λ) < +∞,

the function c1(·; λ) does not possess a finite limit as t → +∞.

Then system (1.1) is oscillatory.

Remark 2.3. Observe that if α < 2, then α∗ = 2 in formula (2.8) and the function h1(·; λ) can be expressed in the form

h1(t; λ) :=
2(α − λ)

f 2(α−λ)
1 (t)

 t

0
g(s)f 2(α−λ)−1

1 (s)c1(s; λ)ds for t > 0.

Example 2.4. Consider system (1.1) in which α ∈]0, 2[, g ≡ 1 and

p(t) := (α + 1 − t2) cos t − (α + 3)t sin t for t ≥ 0.

It is clear that conditions (1.2), (1.3) and (1.81) hold. Moreover, it is easy to verify that

M(t) = t cos t + (α − 1) sin t +
α − 1

t
(cos t − 1) for t > 0,

where the functionM is given by formula (2.7). Therefore, the relation

lim inf
t→+∞

M(t) = −∞

holds and thus, above-mentioned Mirzov’s result cannot be applied in this case.
On the other hand, we have

c1(t; 0) = αt cos t, h1(t; 0) = 2α2 sin t −
4α3

t2α

 t

0
s2α−1 sin s ds for t > 0

which yields that

|h1(t; 0)| ≤ 4α2 for t > 0 and lim inf
t→+∞

c1(t; 0) = −∞.

Consequently, by virtue of Corollary 2.2 with λ = 0, system (1.1) is oscillatory.

Now we formulate a Hartman–Wintner type result which also follows from Theorem 2.1. For any λ < α and ν < 1, we
put

c1(t; λ, ν) :=
1 − ν

f 1−ν
1 (t)

 t

0

g(s)
f ν
1 (s)

 s

0
f λ
1 (ξ)p(ξ)dξ


ds for t > 0.

Corollary 2.5. Let conditions (1.2), (1.3) and (1.81) hold, λ < α, ν < 1 and either

lim
t→+∞

c1(t; λ, ν) = +∞

or

−∞ < lim inf
t→+∞

c1(t; λ, ν) < lim sup
t→+∞

c1(t; λ, ν).

Then system (1.1) is oscillatory.

Observe that Corollary 2.5 with λ = 0 and ν = 0 coincides with above-mentionedMirzov’s result, namely Theorem 12.3
from [15]. On the other hand, it is worth mentioning that Corollary 2.5 with g ≡ 1, λ = 0 and ν = 1 − α is in compliance
with Theorem 1.1 stated in [5].

Remark 2.6. Using integration by parts, it is easy to verify that for any λ < α and ν1, ν2 < 1, we have

c1(t; λ, ν2) =
1 − ν2

1 − ν1
c1(t; λ, ν1) +

ν2 − ν1

1 − ν1

1 − ν2

f 1−ν2
1 (t)

 t

0

g(s)
f ν2
1 (s)

c1(s; λ, ν1)ds for t > 0

whence we get the following assertions:
(i) There exists a finite limit limt→+∞c1(t; λ, ν2) if and only if there exists a finite limit limt→+∞c1(t; λ, ν1), in which

case both limits are equal.
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(ii) If ν2 > ν1 and lim inft→+∞c1(t; λ, ν1) > −∞, then lim inft→+∞c1(t; λ, ν2) > −∞.
(iii) If ν2 > ν1 and limt→+∞c1(t; λ, ν1) = ±∞, then limt→+∞c1(t; λ, ν2) = ±∞.

For half-linear equation (1.4), from Corollary 2.5 one gets the following generalization of Theorem 2.2.10 from [1].

Corollary 2.7. Let λ < q − 1 and relation (1.5) hold. Then each of following two conditions is sufficient for oscillation of (1.4):

lim
t→+∞

1
R1(t)

 t

0
r

1
1−q (s)

 s

0
Rλ
1(ξ)p(ξ)dξ


ds = +∞,

−∞ < lim inf
t→+∞

1
R1(t)

 t

0
r

1
1−q (s)

 s

0
Rλ
1(ξ)p(ξ)dξ


ds

< lim sup
t→+∞

1
R1(t)

 t

0
r

1
1−q (s)

 s

0
Rλ
1(ξ)p(ξ)dξ


ds,

where

R1(t) :=

 t

0
r

1
1−q (s)ds for t ≥ 0.

2.2. The case


∞

0 g(s)ds < +∞

Unlike Section 2.1, we assume throughout this subsection that the coefficient g is integrable on [0, +∞[, i.e., that g
satisfies condition (1.82). Let

f2(t) :=


+∞

t
g(s)ds for t ≥ 0. (2.9)

In view of assumptions (1.2), (1.3) and (1.82), we have

lim
t→+∞

f2(t) = 0

and

f2(t) > 0 for t ≥ 0.

For any κ > α, β < 0 and λ > α, we put

k2(t; κ, β, λ) := f κ|β|

2 (t)
 t

0


f β

2 (t) − f β

2 (s)
κ
f λ
2 (s)p(s)ds for t ≥ 0 (2.10)

and

c2(t; λ) := (λ − α)f λ−α
2 (t)

 t

0

g(s)

f λ+1−α
2 (s)

 s

0
f λ
2 (ξ)p(ξ)dξ


ds for t ≥ 0. (2.11)

Analogously to the previous subsection, we can formulate the following main result and some of its consequences.

Theorem 2.8. Let conditions (1.2), (1.3) and (1.82) hold, κ > α, β < 0, λ > α and either

lim sup
t→+∞

k2(t; κ, β, λ) = +∞ (2.12)

or 
−∞ < lim sup

t→+∞

k2(t; κ, β, λ) < +∞,

the function c2(·; λ) does not possess a finite limit as t → +∞.
(2.13)

Then system (1.1) is oscillatory.

As for corollaries of Theorem 2.8, at first for any λ > α, we put

h2(t; λ) := α∗! (λ − α)α∗ f α∗(λ−α)
2 (t)

 t

0

g(sα∗
)

f λ+1−α
2 (sα∗

)

 sα∗

0

g(sα∗−1)

f λ+1−α
2 (sα∗−1)

×

 sα∗−1

0
· · ·

 s1

0
f λ
2 (ξ)p(ξ)dξ


ds1 · · ·


dsα∗−1


dsα∗

for t ≥ 0, (2.14)

where α∗ := max{2, ⌊α⌋ + 1} and ⌊α⌋ denotes the integer part of the number α.
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Corollary 2.9. Let conditions (1.2), (1.3) and (1.82) hold, λ > α and either

lim sup
t→+∞

h2(t; λ) = +∞

or 
−∞ < lim sup

t→+∞

h2(t; λ) < +∞,

the function c2(·; λ) does not possess a finite limit as t → +∞.

Then system (1.1) is oscillatory.

Remark 2.10. Observe that if α < 2, then α∗ = 2 in formula (2.14) and the function h2(·; λ) can be expressed in the form

h2(t; λ) := 2(λ − α)f 2(λ−α)
2 (t)

 t

0

g(s)

f 2(λ−α)+1
2 (s)

c2(s; λ)ds for t ≥ 0.

Now for any λ > α and ν > 1, we put

c2(t; λ, ν) := (ν − 1)f ν−1
2 (t)

 t

0

g(s)
f ν
2 (s)

 s

0
f λ
2 (ξ)p(ξ)dξ


ds for t ≥ 0.

Corollary 2.11. Let conditions (1.2), (1.3) and (1.82) hold, λ > α, ν > 1 and either

lim
t→+∞

c2(t; λ, ν) = +∞

or

−∞ < lim inf
t→+∞

c2(t; λ, ν) < lim sup
t→+∞

c2(t; λ, ν).

Then system (1.1) is oscillatory.

Observe that Corollary 2.11 with α = 1 and ν = λ coincides with Theorem 1.1 stated in [12].

Remark 2.12. Using integration by parts, it is easy to verify that for any λ > α and ν1, ν2 > 1, we have

c2(t; λ, ν2) =
ν2 − 1
ν1 − 1

c2(t; λ, ν1) +
ν1 − ν2

ν1 − 1
(ν2 − 1)f ν2−1

2 (t)
 t

0

g(s)
f ν2
2 (s)

c2(s; λ, ν1)ds for t ≥ 0

whence we get the following assertions:

(i) There exists a finite limit limt→+∞c2(t; λ, ν2) if and only if there exists a finite limit limt→+∞c2(t; λ, ν1), in which
case both limits are equal.

(ii) If ν2 < ν1 and lim inft→+∞c2(t; λ, ν1) > −∞, then lim inft→+∞c2(t; λ, ν2) > −∞.
(iii) If ν2 < ν1 and limt→+∞c2(t; λ, ν1) = ±∞, then limt→+∞c2(t; λ, ν2) = ±∞.

As far as we know, a Hartman–Wintner type result for half-linear equation (1.4) in the case, where (1.6) is satisfied, is
known only under the additional assumption (1.7) (see survey given in [1, Section 2.2]). We can eliminate this additional
assumption and derive from Corollary 2.11 the following statement.

Corollary 2.13. Let λ > q − 1 and relation (1.6) hold. Then each of following two conditions is sufficient for oscillation of (1.4):

lim
t→+∞

R2(t)
 t

0

1

r
1

q−1 (s)R2
2(s)

 s

0
Rλ
2(ξ)p(ξ)dξ


ds = +∞, (2.15)

−∞ < lim inf
t→+∞

R2(t)
 t

0

1

r
1

q−1 (s)R2
2(s)

 s

0
Rλ
2(ξ)p(ξ)dξ


ds

< lim sup
t→+∞

R2(t)
 t

0

1

r
1

q−1 (s)R2
2(s)

 s

0
Rλ
2(ξ)p(ξ)dξ


ds,

where

R2(t) :=


+∞

t
r

1
1−q (s)ds for t ≥ 0.
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Remark 2.14. Observe that if inequality (1.7) holds, then relation (2.15) is satisfied if and only if
+∞

0
Rλ
2(s)p(s)ds = +∞.

Therefore, Theorem 2.2.11 stated in [1] follows now from Corollary 2.13 with λ = q.

3. Auxiliary lemmas

In this section, we present several lemmas on algebraic inequalities which we need to prove main results.

Lemma 3.1. Let α > 0 and ω ≥ 0. Then the inequality

ω|z| − α|z|
1+α
α ≤


ω

1 + α

1+α

(3.1)

is satisfied for all z ∈ R.

Proof. It is sufficient to show that inequality (3.1) holds for every z ≥ 0. We put

ℓ(z) := αz
1+α
α − ωz +


ω

1 + α

1+α

for z ≥ 0.

It is easy to verify by direct calculation that

ℓ′(z) ≥ 0 for z ≥


ω

1 + α

α

, ℓ′(z) ≤ 0 for z ≤


ω

1 + α

α

and ℓ


ω
1+α

α
= 0, which proves the desired assertion. �

Lemma 3.2. Let α > 0. Then

α|x + y|
1+α
α ≥ α|y|

1+α
α + (1 + α)x|y|

1
α sgn y for x, y ∈ R.

Proof. Let x, y ∈ R be arbitrary. It follows from Lemma 3.1 with ω = (1 + α)|y|
1
α and z = x + y that

α|x + y|
1+α
α ≥ (1 + α)|y|

1
α |x + y| − |y|

1+α
α . (3.2)

Moreover, we have

|x + y| ≥

x + y = |y| + xsgn y if y > 0,
0 = |y| + xsgn y if y = 0,
−x − y = |y| + xsgn y if y < 0

and thus, the assertion of the lemma follows from inequality (3.2). �

Lemma 3.3 ([2, Theorem 27]). If r ≥ 1, then

ar + br ≤ (a + b)r for a, b ≥ 0,

and if 0 < r ≤ 1, then

ar + br ≥ (a + b)r for a, b ≥ 0.

Lemma 3.4. Let α ∈]0, 1]. Then

(x − y)
1+α
α ≥ x

1+α
α + y

1+α
α −

1+α
α

x
1
α y for x ≥ y ≥ 0 (3.3)

and

(x + y)
1+α
α ≥ x

1+α
α + y

1+α
α +

1+α
α

x
1
α y for x, y ≥ 0. (3.4)
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Proof. Let x ≥ y ≥ 0 be arbitrary and

ℓ(t) := (x − ty)
1+α
α for t ∈ [0, 1].

The function ℓ is absolutely continuous on [0, 1] and thus we get

(x − y)
1+α
α − x

1+α
α =

 1

0
ℓ′(s)ds = −

1 + α

α
y
 1

0
(x − sy)

1
α ds. (3.5)

It follows from Lemma 3.3 that

(x − sy)
1
α ≤ x

1
α − (sy)

1
α for s ∈ [0, 1].

Consequently, relation (3.5) yields that

(x − y)
1+α
α − x

1+α
α ≥ −

1 + α

α
y
 1

0


x

1
α − (sy)

1
α


ds = −

1 + α

α
x

1
α y + y

1+α
α

which proves desired relation (3.3).
Now let x, y ≥ 0 be arbitrary and

m(t) := (x + ty)
1+α
α for t ∈ [0, 1].

Using Lemma 3.3, we prove in a similar manner as above that relation (3.4) holds. �

The following lemma can be proved analogously to Lemma 3.4.

Lemma 3.5. Let α ≥ 1. Then

(x − y)
1+α
α ≤ x

1+α
α + y

1+α
α −

1+α
α

x
1
α y for x ≥ y ≥ 0 (3.6)

and

(x + y)
1+α
α ≤ x

1+α
α + y

1+α
α +

1+α
α

x
1
α y for x, y ≥ 0. (3.7)

Lemma 3.6. Let α ∈]0, 1]. Then the inequality

|z + γ |
1+α
α ≥ |z|

1+α
α + |γ |

1+α
α +

1+α
α

z|γ |
1
α sgn γ −

1+α
α

|z|
1
α |γ | (3.8)

holds for all z, γ ∈ R.

Proof. Let z, γ ∈ R be arbitrary.
First suppose that γ ≤ 0. Then, by using Lemma 3.4, we get:

(a) If z ≥ |γ |, then relation (3.3) yields that

|z + γ |
1+α
α = (z − |γ |)

1+α
α ≥ z

1+α
α + |γ |

1+α
α −

1+α
α

z
1
α |γ |

≥ |z|
1+α
α + |γ |

1+α
α −

1+α
α

|z|
1
α |γ | −

1+α
α

z|γ |
1
α .

(b) If |γ | > z ≥ 0, then relation (3.3) yields that

|z + γ |
1+α
α = (|γ | − z)

1+α
α ≥ |γ |

1+α
α + z

1+α
α −

1+α
α

|γ |
1
α z

≥ |z|
1+α
α + |γ |

1+α
α −

1+α
α

z|γ |
1
α −

1+α
α

|z|
1
α |γ |.

(c) If z < 0, then relation (3.4) yields that

|z + γ |
1+α
α = (|γ | + |z|)

1+α
α ≥ |γ |

1+α
α + |z|

1+α
α +

1+α
α

|γ |
1
α |z|

≥ |z|
1+α
α + |γ |

1+α
α −

1+α
α

z|γ |
1
α −

1+α
α

|z|
1
α |γ |.

Consequently, in all cases (a)–(c), inequality (3.8) is satisfied.
Now suppose that γ > 0. Then, by using Lemma 3.4 again, we obtain:

(A) If z > 0, then relation (3.4) yields that

|z + γ |
1+α
α = (γ + z)

1+α
α ≥ γ

1+α
α + z

1+α
α +

1+α
α

γ
1
α z

≥ |z|
1+α
α + |γ |

1+α
α +

1+α
α

z|γ |
1
α −

1+α
α

|z|
1
α |γ |.
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(B) If γ ≥ −z ≥ 0, then relation (3.3) yields that

|z + γ |
1+α
α = (γ − |z|)

1+α
α ≥ γ

1+α
α + |z|

1+α
α −

1+α
α

γ
1
α |z|

≥ |z|
1+α
α + |γ |

1+α
α +

1+α
α

z|γ |
1
α −

1+α
α

|z|
1
α |γ |.

(C) If −z > γ , then relation (3.3) yields that

|z + γ |
1+α
α = (|z| − γ )

1+α
α ≥ |z|

1+α
α + γ

1+α
α −

1+α
α

|z|
1
α γ

≥ |z|
1+α
α + |γ |

1+α
α −

1+α
α

|z|
1
α |γ | +

1+α
α

z|γ |
1
α .

Consequently, in all cases (A)–(C), inequality (3.8) is satisfied. �

Lemma 3.7. Let α ≥ 1. Then the inequality

|z + γ |
1+α
α ≥ |z|

1+α
α +

1
α

|γ |
1+α
α +

1+α
α

z|γ |
1
α sgn γ −

1+α
α

|z| |γ |
1
α (3.9)

holds for all z, γ ∈ R.

Proof. Let z, γ ∈ R be arbitrary.
First suppose that γ ≤ 0. Then, by using Lemma 3.5, we get:

(a) If z ≥ |γ |, then relation (3.7) yields that

|z|
1+α
α =


|γ | + (z − |γ |)

 1+α
α

≤ |γ |
1+α
α + (z − |γ |)

1+α
α +

1+α
α

|γ |
1
α (z − |γ |)

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α +

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

(b) If |γ | > z ≥ 0, then relation (3.6) yields that

|z|
1+α
α =


|γ | − (|γ | − z)

 1+α
α

≤ |γ |
1+α
α + (|γ | − z)

1+α
α −

1+α
α

|γ |
1
α (|γ | − z)

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α +

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

(c) If z < 0, then relation (3.6) yields that

|z|
1+α
α =


(|z| + |γ |) − |γ |

 1+α
α

≤ (|z| + |γ |)
1+α
α + |γ |

1+α
α −

1+α
α

(|z| + |γ |)
1
α |γ |

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α

= |z + γ |
1+α
α −

1
α

|γ |
1+α
α +

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

Consequently, in all cases (a)–(c), inequality (3.9) is satisfied.
Now suppose that γ > 0. Then, by using Lemma 3.5 again, we obtain:

(A) If z > 0, then relation (3.6) yields that

|z|
1+α
α =


(z + γ ) − γ

 1+α
α

≤ (z + γ )
1+α
α + γ

1+α
α −

1+α
α

(z + γ )
1
α γ

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α

= |z + γ |
1+α
α −

1
α

|γ |
1+α
α −

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

(B) If γ ≥ −z ≥ 0, then relation (3.6) yields that

|z|
1+α
α =


γ − (γ − |z|)

 1+α
α

≤ γ
1+α
α + (γ − |z|)

1+α
α −

1+α
α

γ
1
α (γ − |z|)

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α −

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

(C) If −z > γ , then relation (3.7) yields that

|z|
1+α
α =


γ + (|z| − γ )

 1+α
α

≤ γ
1+α
α + (|z| − γ )

1+α
α +

1+α
α

γ
1
α (|z| − γ )

≤ |z + γ |
1+α
α −

1
α

|γ |
1+α
α −

1+α
α

z|γ |
1
α +

1+α
α

|z| |γ |
1
α .

Consequently, in all cases (A)–(C), inequality (3.9) is satisfied. �
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4. Proofs of main results

To prove Theorem 2.1 we need the following two lemmas.

Lemma 4.1. Let m ∈ {1, 2} and conditions (1.2), (1.3), and (1.8m) hold. Let, moreover,β, λ ∈ R, κ > α, and (u, v) be a solution
to system (1.1) such that

(−1)m−1β > 0, (−1)m−1(α − λ) > 0,

and

u(t) ≠ 0 for t ≥ tu (4.1)

with tu > 0. Then

lim sup
t→+∞

km(t; κ, β, λ) < +∞, (4.2)

where the function km is defined by formula (2.2) (resp. (2.10)). If, in addition, the inequality

lim sup
t→+∞

km(t; κ, β, λ) > −∞ (4.3)

is satisfied, then
+∞

tu
g(s)f λ

m(s)|ϱ(s)|
1+α
α ds < +∞, (4.4)

where the function fm is defined by formula (2.1) (resp. (2.9)) and

ϱ(t) :=
v(t)

|u(t)|αsgn u(t)
+

(−1)m

f α
m (t)


|λ|

1 + α

α

sgn λ for t ≥ tu. (4.5)

Proof. Put

γ := (−1)m−1


2|λ|

1 + α

α

sgn λ, (4.6)

and

σ(t) :=
v(t)

|u(t)|αsgn u(t)
, ϕ(t) := σ(t) −

γ

f α
m (t)

for t ≥ tu. (4.7)

Then the functions σ , ϕ are absolutely continuous on every compact interval contained in [tu, +∞[ and, in view of (1.1),
relations (4.7) yield that

ϕ′(t) = −p(t) − αg(t)|σ(t)|
1+α
α + (−1)m−1αγ

g(t)

f 1+α
m (t)

for a.e. t ≥ tu. (4.8)

Let

Fm(t, s) := f β
m (t) − f β

m (s) for t ≥ s ≥ tu.

Then it follows from equality (4.8) that t

tu
F κ
m(t, s)f λ

m(s)ϕ′(s)ds = −

 t

tu
F κ
m(t, s)f λ

m(s)p(s)ds − α

 t

tu
g(s)F κ

m(t, s)f λ
m(s)|σ(s)|

1+α
α ds

+ (−1)m−1αγ

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)ds (4.9)

for t ≥ tu. Put

Am :=

t > tu : (−1)m


fm(s) − fm(t)


> 0 for all s ∈ [tu, t[


. (4.10)

Observe that for any t ∈ Am and ζ > 0,

the function s → F ζ
m(t, s) is absolutely continuous on [tu, t]
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and thus, we obtain t

tu
F κ
m(t, s)f λ

m(s)ϕ′(s)ds = −F κ
m(t, tu)f λ

m(tu)ϕ(tu) + (−1)m−1κβ

 t

tu
g(s)F κ−1

m (t, s)f λ+β−1
m (s)ϕ(s)ds

+ (−1)mλ

 t

tu
g(s)F κ

m(t, s)f λ−1
m (s)ϕ(s)ds

for t ∈ Am. Therefore, using (4.7), from relation (4.9) we get t

tu
F κ
m(t, s)f λ

m(s)p(s)ds = F κ
m(t, tu)f λ

m(tu)ϕ(tu) −
1
2

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)

×


α|f α

m (s)ϕ(s) + γ |
1+α
α + (−1)m2λf α

m (s)ϕ(s)

ds +

1
2

 t

tu
g(s)F κ−1−α

m (t, s)f λ+(1+α)(β−1)
m (s)

×


−α|Fα

m(t, s)f α(1−β)
m (s)σ (s)|

1+α
α + (−1)m2κβFα

m(t, s)f α(1−β)
m (s)σ (s)


ds

+ (−1)m−1κβγ

 t

tu
g(s)F κ−1

m (t, s)f β−1+λ−α
m (s)ds + (−1)m−1αγ

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)ds for t ∈ Am

which, by virtue of Lemma 3.1 and notation (4.6), yields that t

tu
F κ
m(t, s)f λ

m(s)p(s)ds ≤ F κ
m(t, tu)f λ

m(tu)ϕ(tu) −
1
2

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)


α|f α

m (s)ϕ(s) + γ |
1+α
α

− (1 + α)f α
m (s)ϕ(s)|γ |

1
α sgn γ − min{α, 1}|γ |

1+α
α


ds +

1
2


2κ|β|

1 + α

1+α  t

tu
g(s)F κ−1−α

m (t, s)f λ+(1+α)(β−1)
m (s)ds

+ κ|β|γ

 t

tu
g(s)F κ−1

m (t, s)f β−1+λ−α
m (s)ds +

2α|γ | − min{α, 1}|γ |
1+α
α

2

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)ds (4.11)

for t ∈ Am. Now observe that

1

f κβ
m (t)

F κ
m(t, tu)f λ

m(tu)ϕ(tu) ≤ f λ
m(tu)|ϕ(tu)| for t ∈ Am (4.12)

and

1

f κβ
m (t)

 t

tu
g(s)F κ−1−α

m (t, s)f λ+(1+α)(β−1)
m (s)ds ≤

1
(κ − α)|β|

1

f α−λ
m (tu)

for t ∈ Am, (4.13)

because:

• If (−1)m

λ + α(β − 1)


≥ 0, then

1

f κβ
m (t)

 t

tu


f β
m (t) − f β

m (s)
κ−1−α

g(s)f β−1
m (s)f λ+α(β−1)

m (s)ds

≤
1

f κβ
m (t)

1

f α(1−β)−λ
m (tu)

 t

tu
ds


(−1)m

(κ − α)β


f β
m (t) − f β

m (s)
κ−α


≤

1
(κ − α)|β|

1

f α−λ
m (tu)

for t ∈ Am.

• If (−1)m

λ + α(β − 1)


< 0, then

1

f κβ
m (t)

 t

tu


f β
m (t) − f β

m (s)
κ−1−α

g(s)f β−1
m (s)f λ+α(β−1)

m (s)ds ≤
f λ+α(β−1)
m (t)

f κβ
m (t)

 t

tu
ds


(−1)m

(κ − α)β


f β
m (t) − f β

m (s)
κ−α


≤

1
(κ − α)|β|

1

f α−λ
m (tu)

for t ∈ Am.
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Moreover, we have

1

f κβ
m (t)

 t

tu
g(s)F κ−1

m (t, s)f β−1+λ−α
m (s)ds ≤

1

f κβ
m (t)

1

f α−λ
m (tu)

 t

tu
ds


(−1)m

κβ


f β
m (t) − f β

m (s)
κ

≤
1

κ|β|

1

f α−λ
m (tu)

for t ∈ Am (4.14)

and
1

f κβ
m (t)

 t

tu
g(s)F κ

m(t, s)f λ−1−α
m (s)ds ≤

 t

tu
g(s)f λ−1−α

m (s)ds

≤
1

|α − λ|

1

f α−λ
m (tu)

for t ∈ Am. (4.15)

According to Lemma 3.2, it is clear that

α|f α
m (s)ϕ(s) + γ |

1+α
α − (1 + α)f α

m (s)ϕ(s)|γ |
1
α sgn γ − α|γ |

1+α
α ≥ 0 for s ≥ tu (4.16)

and thus, using inequalities (4.12)–(4.16), it follows from relation (4.11) that the inequality

1

f κβ
m (t)

 t

tu


f β
m (t) − f β

m (s)
κ
f λ
m(s)p(s)ds ≤ δm(tu) (4.17)

holds for t ∈ Am, where

δm(tu) := f λ
m(tu)|ϕ(tu)| +

1
2


2κ|β|

1 + α

1+α 1
(κ − α)|β|

1

f α−λ
m (tu)

+
|γ |

f α−λ
m (tu)

+
α|γ |

|α − λ|

1

f α−λ
m (tu)

. (4.18)

However, in view of definition (4.10) of the set Am and the non-negativity of the function g , we see that inequality (4.17) is
satisfied, in fact, for all t ≥ tu, whence we get the desired relation (4.2).

Let, in addition, the function km satisfy inequality (4.3). Obviously, either
+∞

tu
g(s)f λ

m(s)|ϕ(s)|
1+α
α ds = +∞ (4.19)

or 
+∞

tu
g(s)f λ

m(s)|ϕ(s)|
1+α
α ds < +∞. (4.20)

Assume that equality (4.19) holds. We divide the proof into two cases:
Case (1): α ∈]0, 1]. It follows from Lemma 3.6 that

α|f α
m (s)ϕ(s) + γ |

1+α
α ≥ α|f α

m (s)ϕ(s)|
1+α
α + (1 + α)f α

m (s)ϕ(s)|γ |
1
α sgn γ

+ α|γ |
1+α
α − (1 + α)|f α

m (s)ϕ(s)|
1
α |γ | for s ≥ tu. (4.21)

Put

Fm(t, s) :=


1 −


fm(s)
fm(t)

β
κ

for t ≥ s ≥ tu. (4.22)

Then, by using inequalities (4.12)–(4.15) and (4.21), from relation (4.11) one gets for any t ∈ Am the inequality

1

f κβ
m (t)

 t

tu
F κ
m(t, s)f λ

m(s)p(s)ds ≤ −
α

2

 t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds

+
(1 + α)|γ |

2

 t

tu
g(s)Fm(t, s)f λ−α

m (s)|ϕ(s)|
1
α ds + δm(tu), (4.23)

where the number δm(tu) is defined by formula (4.18). However, in view of definition (4.10) of the set Am and the non-
negativity of the function g , we see that inequality (4.23) is satisfied, in fact, for all t ≥ tu.

Let

I(t) :=

 t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds for t ≥ tu. (4.24)
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Observe that for any τ ≥ tu fixed, we have t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds ≥Fm(t, τ )

 τ

tu
g(s)f λ

m(s)|ϕ(s)|
1+α
α ds for t ≥ τ

and thus

lim inf
t→+∞

I(t) ≥

 τ

tu
g(s)f λ

m(s)|ϕ(s)|
1+α
α ds for τ ≥ tu.

Since we suppose that equality (4.19) is satisfied, the last relation guarantees that

lim
t→+∞

I(t) = +∞. (4.25)

On the other hand, the Hölder inequality yields that t

tu
g(s)Fm(t, s)f λ−α

m (s)|ϕ(s)|
1
α ds ≤

 t

tu
g(s)Fm(t, s)f λ−1−α

m (s)ds
 α

1+α
 t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds

 1
1+α

≤


f λ−α
m (tu)
|α − λ|

 α
1+α

I
1

1+α (t) for t ≥ tu.

Using this inequality in (4.23), we get

1

f κβ
m (t)

 t

tu


f β
m (t) − f β

m (s)
κ
f λ
m(s)p(s)ds ≤ −I

1
1+α (t)


α

2
I

α
1+α (t) −

(1 + α)|γ |

2


f λ−α
m (tu)
|α − λ|

 α
1+α


+ δm(tu)

for t ≥ tu which, in view of the above-proved relation (4.25), contradicts our additional assumption (4.3).
Case (2): α > 1. It follows from Lemma 3.7 that

α|f α
m (s)ϕ(s) + γ |

1+α
α ≥ α|f α

m (s)ϕ(s)|
1+α
α + (1 + α)f α

m (s)ϕ(s)|γ |
1
α sgn γ

+ |γ |
1+α
α − (1 + α)|f α

m (s)ϕ(s)| |γ |
1
α for s ≥ tu. (4.26)

Then, by using inequalities (4.12)–(4.15) and (4.26), from relation (4.11) one gets for any t ∈ Am the inequality

1

f κβ
m (t)

 t

tu
F κ
m(t, s)f λ

m(s)p(s)ds ≤ −
α

2

 t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds

+
(1 + α)|γ |

1
α

2

 t

tu
g(s)Fm(t, s)f λ−1

m (s)|ϕ(s)|ds + δm(tu), (4.27)

where the functionFm is defined by formula (4.22) and the number δm(tu) is given by relation (4.18). However, in view of
definition (4.10) of the set Am and the non-negativity of the function g , we see that inequality (4.27) is satisfied, in fact, for
all t ≥ tu. Since we suppose that equality (4.19) holds, one can show analogously to the previous case that relation (4.25) is
satisfied, where the function I is defined by formula (4.24).

On the other hand, the Hölder inequality yields that t

tu
g(s)Fm(t, s)f λ−1

m (s)|ϕ(s)|ds ≤

 t

tu
g(s)Fm(t, s)f λ−1−α

m (s)ds
 1

1+α
 t

tu
g(s)Fm(t, s)f λ

m(s)|ϕ(s)|
1+α
α ds

 α
1+α

≤


f λ−α
m (tu)
|α − λ|

 1
1+α

I
α

1+α (t) for t ≥ tu.

Using this inequality in (4.27), we get

1

f κβ
m (t)

 t

tu


f β
m (t) − f β

m (s)
κ
f λ
m(s)p(s)ds ≤ −I

α
1+α (t)

α

2
I

1
1+α (t) −

(1 + α)|γ |
1
α

2


f λ−α
m (tu)
|α − λ|

 1
1+α

+ δm(tu)

for t ≥ tu which, in view of the above-proved relation (4.25), contradicts our additional assumption (4.3).
Consequently, the contradictions obtained prove that for any α > 0, inequality (4.20) holds, i.e.,

+∞

tu

g α
1+α (s)f

λα
1+α
m (s)ϱ(s) +γ g

α
1+α (s)f

λα
1+α

−α

m (s)
 1+α

α

ds < +∞, (4.28)
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where

γ := (−1)m

2α

− 1
 

|λ|

1+α

α

sgn λ.

Moreover, we have
+∞

tu

g α
1+α (s)f

λα
1+α

−α

m (s)
 1+α

α

ds =


+∞

tu
g(s)f λ−1−α

m (s)ds < +∞. (4.29)

Since the space L
1+α
α ([tu, +∞[; R) is linear, inequalities (4.28) and (4.29) guarantee the desired relation (4.4). �

Lemma 4.2. Let m ∈ {1, 2}, conditions (1.2), (1.3), and (1.8m) hold, andλ ∈ R be such that (−1)m−1(α−λ) > 0. Let, moreover,
(u, v) be a solution to system (1.1) fulfilling relation (4.1) with tu > 0. If inequality (4.4) is satisfied, where the functions fm and
ϱ are defined by formulas (2.1) (resp. (2.9)) and (4.5), then the function cm given by relation (2.3) (resp. (2.11)) has a finite limit

lim
t→+∞

cm(t; λ). (4.30)

Proof. Put

γ := (−1)m−1


|λ|

1 + α

α

sgn λ (4.31)

and

σ(t) :=
v(t)

|u(t)|αsgn u(t)
for t ≥ tu. (4.32)

Then the functions ϱ, σ are absolutely continuous on every compact interval contained in [tu, +∞[ and, in view of (1.1),
relations (4.5) and (4.32) yield that

ϱ′(t) = −p(t) − αg(t)|σ(t)|
1+α
α + (−1)m−1αγ

g(t)

f 1+α
m (t)

for a.e. t ≥ tu,

whence we obtain t

tu
f λ
m(s)ϱ′(s)ds = −

 t

tu
f λ
m(s)p(s)ds − α

 t

tu
g(s)f λ

m(s)|σ(s)|
1+α
α ds

+ (−1)m−1αγ

 t

tu
g(s)f λ−1−α

m (s)ds for t ≥ tu. (4.33)

Using the integration by parts on the left-hand side of (4.33), one gets

f λ
m(t)ϱ(t) = f λ

m(tu)ϱ(tu) −

 t

tu
f λ
m(s)p(s)ds + (−1)m−1αγ

 t

tu
g(s)f λ−1−α

m (s)ds

−

 t

tu
g(s)f λ−1−α

m (s)

α|f α

m (s)ϱ(s) + γ |
1+α
α + (−1)mλf α

m (s)ϱ(s)

ds

for t ≥ tu which, in view of (4.31), yields that

f λ
m(t)ϱ(t) = −

 t

tu
f λ
m(s)p(s)ds −

α

(−1)m−1γ − |γ |

1+α
α


|α − λ|

1

f α−λ
m (t)

−

 t

tu
g(s)f λ−1−α

m (s)

α|f α

m (s)ϱ(s) + γ |
1+α
α

− (1 + α)f α
m (s)ϱ(s)|γ |

1
α sgn γ − α|γ |

1+α
α


ds + f λ

m(tu)ϱ(tu) +
α

(−1)m−1γ − |γ |

1+α
α


|α − λ|

1

f α−λ
m (tu)

for t ≥ tu. (4.34)

Now we put

ℓm(t) := α|f α
m (t)ϱ(t) + γ |

1+α
α − (1 + α)f α

m (t)ϱ(t)|γ |
1
α sgn γ − α|γ |

1+α
α for t ≥ tu. (4.35)

According to Lemma 3.2, we have

ℓm(t) ≥ 0 for t ≥ tu. (4.36)
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Observe that inequality (4.29) holds and thus, assumption (4.4) guarantees that
+∞

tu
g(s)f λ−1−α

m (s)|f α
m (s)ϱ(s) + γ |

1+α
α ds < +∞. (4.37)

Moreover, by using the Hölder inequality, we get t

tu
g(s)f λ−1−α

m (s)|f α
m (s)ϱ(s)|ds ≤

 t

tu
g(s)f λ−1−α

m (s)ds
 1

1+α
 t

tu
g(s)f λ

m(s)|ϱ(s)|
1+α
α ds

 α
1+α

≤


f λ−α
m (tu)
|α − λ|

 1
1+α

 t

tu
g(s)f λ

m(s)|ϱ(s)|
1+α
α ds

 α
1+α

for t ≥ tu.

Therefore, in view of relations (4.4), (4.29) and (4.37), it follows from (4.35) and (4.36) that
+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds < +∞. (4.38)

On the other hand, using notation (4.35) in equality (4.34), we obtain

f λ
m(t)ϱ(t) = δm(tu) −

 t

0
f λ
m(s)p(s)ds −

 t

tu
g(s)f λ−1−α

m (s)ℓm(s)ds

−
α

γ (−1)m−1

− |γ |
1+α
α


|α − λ|

1

f α−λ
m (t)

for t ≥ tu

with

δm(tu) := f λ
m(tu)ϱ(tu) +

 tu

0
f λ
m(s)p(s)ds +

α

γ (−1)m−1

− |γ |
1+α
α


|α − λ|

1

f α−λ
m (tu)

,

whence we get t

tu

g(s)

f 1−α
m (s)

ϱ(s)ds =
δm(tu)
|α − λ|


f α−λ
m (t) − f α−λ

m (tu)


−

 t

tu

g(s)

f λ+1−α
m (s)

 s

0
f λ
m(ξ)p(ξ)dξ


ds

−

 t

tu

g(s)

f λ+1−α
m (s)

 s

tu
g(ξ)f λ−1−α

m (ξ)ℓm(ξ)dξ

ds −

α

γ + (−1)m|γ |

1+α
α


|α − λ|

ln
fm(t)
fm(tu)

for t ≥ tu. (4.39)

Observe that, in view of inequality (4.36), we have t

tu

g(s)

f λ+1−α
m (s)

 s

tu
g(ξ)f λ−1−α

m (ξ)ℓm(ξ)dξ

ds ≥

 t

τ

g(s)

f λ+1−α
m (s)

ds
 τ

tu
g(s)f λ−1−α

m (s)ℓm(s)ds

=


f α−λ
m (t)
|α − λ|

−
f α−λ
m (τ )

|α − λ|

  τ

tu
g(s)f λ−1−α

m (s)ℓm(s)ds for t ≥ τ ≥ tu

and thus

lim inf
t→+∞

|α − λ|

f α−λ
m (t)

 t

tu

g(s)

f λ+1−α
m (s)

 s

tu
g(ξ)f λ−1−α

m (ξ)ℓm(ξ)dξ

ds ≥


+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds, (4.40)

because inequality (4.38) holds. On the other hand, in view of inequalities (4.36) and (4.38), it is clear that t

tu

g(s)

f λ+1−α
m (s)

 s

tu
g(ξ)f λ−1−α

m (ξ)ℓm(ξ)dξ

ds ≤

 t

tu

g(s)

f λ+1−α
m (s)

ds


+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds

=


f α−λ
m (t)
|α − λ|

−
f α−λ
m (tu)
|α − λ|

 
+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds for t ≥ tu.

Consequently, by virtue of the above-proved relation (4.40), one gets

lim
t→+∞

|α − λ|

f α−λ
m (t)

 t

tu

g(s)

f λ+1−α
m (s)

 s

tu
g(ξ)f λ−1−α

m (ξ)ℓm(ξ)dξ

ds =


+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds. (4.41)
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Furthermore, the Hölder inequality yields that t

tu

g(s)

f 1−α
m (s)

ϱ(s)ds
 ≤

 t

tu
g(s)f α−1

m (s)|ϱ(s)|ds

≤

 t

tu
g(s)f α(α−λ)−1

m (s)ds
 1

1+α
 t

tu
g(s)f λ

m(s)|ϱ(s)|
1+α
α ds

 α
1+α

≤


1

α|α − λ|

 1
1+α

f
α(α−λ)
1+α

m (t)


+∞

tu
g(s)f λ

m(s)|ϱ(s)|
1+α
α ds

 α
1+α

for t ≥ tu, which guarantees the equality

lim
t→+∞

|α − λ|

f α−λ
m (t)

 t

tu

g(s)

f 1−α
m (s)

ϱ(s)ds = 0.

Finally, it is clear that

lim
t→+∞

1

f α−λ
m (t)

ln
fm(t)
fm(tu)

= 0. (4.42)

Therefore, using relations (2.3), (4.41)–(4.42), from equality (4.39) we get

lim
t→+∞

cm(t; λ) = δm(tu) −


+∞

tu
g(s)f λ−1−α

m (s)ℓm(s)ds

and thus the lemma is proved. �

Proof of Theorem 2.1. Assumeon the contrary that system (1.1) is not oscillatory, i.e., there exists a solution (u, v) to system
(1.1) fulfilling relation (4.1) with tu > 0.

If assumption (2.4) of the theorem is satisfied, then Lemma 4.1 withm = 1 immediately leads to a contradiction.
If assumptions (2.5) hold, by using Lemma 4.1 with m = 1, we get the validity of inequality (4.4) with m = 1, where

the functions f1 and ϱ are defined by formulas (2.1) and (4.5) with m = 1, respectively. However, Lemma 4.2 with m = 1
then guarantees that there exists a finite limit (4.30) with m = 1, which is in a contradiction with the second condition in
(2.5). �

Proof of Corollary 2.2. By using integration by parts, one gets t

0


f β

1 (t) − f β

1 (s)
α∗ f λ

1 (s)p(s)ds = α∗(α∗ − 1) · · · (α∗ − m + 1)βm
 t

0


f β

1 (t) − f β

1 (sα∗
)
α∗−m g(sα∗

)

f 1−β

1 (sα∗
)

×

 sα∗

0

g(sα∗−1)

f 1−β

1 (sα∗−1)

 sα∗−1

0
· · ·

 sα∗−m+1

0
f λ
1 (ξ)p(ξ)dξ


dsα∗−m+1 · · ·


dsα∗−1


dsα∗

for t > 0,m = 2, . . . , α∗. Therefore, we have

k1(t; α∗, α − λ, λ) = h1(t; λ) for t > 0

and thus the assertion of the corollary follows from Theorem 2.1 with κ = α∗ and β = α − λ. �

Proof of Corollary 2.5. Let n ∈ N be fixed such that n > max{1, α}. By using integration by parts, for any t > 0 one gets

k1(t; n, 1 − ν, λ) =
1

f n(1−ν)
1 (t)

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n
f λ
1 (s)p(s)ds

=
n(1 − ν)

f n(1−ν)
1 (t)

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−1 g(s)

f ν
1 (s)

 s

0
f λ
1 (ξ)p(ξ)dξ


ds

=
n(n − 1)(1 − ν)

f n(1−ν)
1 (t)

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2 g(s)

f 2ν−1
1 (s)

c1(s; λ, ν)ds.

Assume that there are A ∈ R and t0 > 0 such thatc1(t; λ, ν) ≥ A for t ≥ t0.
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Then we have

k1(t; n, 1 − ν, λ) ≥
n(n − 1)(1 − ν)

f n(1−ν)
1 (t)

 t0

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2 g(s)

f 2ν−1
1 (s)

c1(s; λ, ν) − A

ds

+ A
n(n − 1)(1 − ν)

f n(1−ν)
1 (t)

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2

g(s)f 1−2ν
1 (s)ds (4.43)

for t ≥ t0. It is clear that 1

f n(1−ν)
1 (t)

 t0

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2 g(s)

f 2ν−1
1 (s)

c1(s; λ, ν) − A

ds


≤

1

f 2(1−ν)
1 (t)

 t0

0


1 −


f1(s)
f1(t)

1−ν
n−2

g(s)

f 2ν−1
1 (s)

c1(s; λ, ν) − A
ds

≤
1

f 2(1−ν)
1 (t)

 t0

0

g(s)

f 2ν−1
1 (s)

c1(s; λ, ν) − A
ds for t ≥ t0

and thus

lim
t→+∞

1

f n(1−ν)
1 (t)

 t0

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2 g(s)

f 2ν−1
1 (s)

c1(s; λ, ν) − A

ds = 0.

On the other hand, by using integration by parts, one gets

(n − 1)
 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2

g(s)f 1−2ν
1 (s)ds

=
(n − 1) · · · (n − m + 1)

(m − 1)!

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−m

g(s)f m(1−ν)−1
1 (s)ds

for t ≥ 0,m = 2, . . . , n, which yields that

n(n − 1)(1 − ν)

f n(1−ν)
1 (t)

 t

0


f 1−ν
1 (t) − f 1−ν

1 (s)
n−2

g(s)f 1−2ν
1 (s)ds = 1 for t > 0.

Consequently from inequality (4.43) we get

lim inf
t→+∞

k1(t; n, 1 − ν, λ) ≥ A.

Therefore, we have proved that

lim
t→+∞

c1(t; λ, ν) = +∞ H⇒ lim inf
t→+∞

k1(t; n, 1 − ν, λ) ≥ A for every A > 0

H⇒ lim
t→+∞

k1(t; n, 1 − ν, λ) = +∞

and

lim inf
t→+∞

c1(t; λ, ν) > −∞ H⇒ lim inf
t→+∞

k1(t; n, 1 − ν, λ) > −∞.

Moreover, according to Remark 2.6(i), there exists a finite limit limt→+∞ c1(t; λ) if and only if there exists a finite limit
limt→+∞c1(t; λ, ν) because we have c1(t; λ) =c1(t; λ, λ + 1 − α) for t > 0.

Consequently, the assertion of the corollary follows from Theorem 2.1 with κ = n and β = 1 − ν. �

Proof of Corollary 2.7. It is clear that half-linear equation (1.4) is a particular case of system (1.1) in which g ≡ r
1

1−q and
α = q − 1. Therefore, the assertion of the corollary follows immediately from Corollary 2.5 with ν = 0. �

Proof of Theorem 2.8. Assumeon the contrary that system (1.1) is not oscillatory, i.e., there exists a solution (u, v) to system
(1.1) fulfilling relation (4.1) with tu ≥ 0.

If assumption (2.12) of the theorem is satisfied, then Lemma 4.1 withm = 2 immediately leads to a contradiction.
If assumptions (2.13) hold, by using Lemma 4.1 with m = 2, we get the validity of inequality (4.4) with m = 2, where

the functions f2 and ϱ are defined by formulas (2.9) and (4.5) with m = 2, respectively. However, Lemma 4.2 with m = 2
then guarantees that there exists a finite limit (4.30) with m = 2, which is in a contradiction with the second condition
(2.13). �
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Proof of Corollary 2.9. By using integration by parts, one gets t

0


f β

2 (t) − f β

2 (s)
α∗ f λ

2 (s)p(s)ds = α∗(α∗ − 1) · · · (α∗ − m + 1)|β|
m
 t

0


f β

2 (t) − f β

2 (sα∗
)
α∗−m g(sα∗

)

f 1−β

2 (sα∗
)

×

 sα∗

0

g(sα∗−1)

f 1−β

2 (sα∗−1)

 sα∗−1

0
· · ·

 sα∗−m+1

0
f λ
2 (ξ)p(ξ)dξ


dsα∗−m+1 · · ·


dsα∗−1


dsα∗

for t ≥ 0,m = 2, . . . , α∗. Therefore, we have

k2(t; α∗, α − λ, λ) = h2(t; λ) for t ≥ 0

and thus the assertion of the corollary follows from Theorem 2.8 with κ = α∗ and β = α − λ. �

Proof of Corollary 2.11. Let n ∈ N be fixed such that n > max{1, α}. By using integration by parts, for any t ≥ 0 one gets

k2(t; n, 1 − ν, λ) = f n(ν−1)
2 (t)

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n
f λ
2 (s)p(s)ds

= n(ν − 1)f n(ν−1)
2 (t)

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−1 g(s)

f ν
2 (s)

 s

0
f λ
2 (ξ)p(ξ)dξ


ds

= n(n − 1)(ν − 1)f n(ν−1)
2 (t)

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

c2(s; λ, ν)ds.

Assume that there are A ∈ R and t0 ≥ 0 such thatc2(t; λ, ν) ≥ A for t ≥ t0.

Then we have

k2(t; n, 1 − ν, λ) ≥ n(n − 1)(ν − 1)f n(ν−1)
2 (t)

 t0

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

c2(s; λ, ν) − A

ds

+ An(n − 1)(ν − 1)f n(ν−1)
2 (t)

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

ds (4.44)

for t ≥ t0. It is clear thatf n(ν−1)
2 (t)

 t0

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

c2(s; λ, ν) − A

ds


≤ f 2(ν−1)

2 (t)
 t0

0


1 −


f2(t)
f2(s)

ν−1
n−2

g(s)

f 2ν−1
2 (s)

c2(s; λ, ν) − A
ds

≤ f 2(ν−1)
2 (t)

 t0

0

g(s)

f 2ν−1
2 (s)

c2(s; λ, ν) − A
ds for t ≥ t0

and thus

lim
t→+∞

f n(ν−1)
2 (t)

 t0

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

c1(s; λ, ν) − A

ds = 0.

On the other hand, by using integration by parts, one gets

(n − 1)
 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

ds =
(n − 1) · · · (n − m + 1)

(m − 1)!

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−m g(s)

f m(ν−1)+1
2 (s)

ds

−

m−1
ℓ=2

(n − 1) · · · (n − ℓ + 1)

ℓ! (ν − 1)f ℓ(ν−1)
2 (0)


f 1−ν
2 (t) − f 1−ν

2 (0)
n−ℓ

for t ≥ 0,m = 2, . . . , n, which yields that

n(n − 1)(ν − 1)f n(ν−1)
2 (t)

 t

0


f 1−ν
2 (t) − f 1−ν

2 (s)
n−2 g(s)

f 2ν−1
2 (s)

ds

= 1 −


f2(t)
f2(0)

n(ν−1)

− f 2(ν−1)
2 (t)

n−1
ℓ=2

n · · · (n − ℓ + 1)f (ℓ−2)(ν−1)
2 (t)

ℓ! f ℓ(ν−1)
2 (0)


1 −


f2(t)
f2(0)

ν−1
n−ℓ
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for t ≥ 0 (note that we set
1

ℓ=2 = 0). Consequently from inequality (4.44) we get

lim inf
t→+∞

k2(t; n, 1 − ν, λ) ≥ A.

Therefore, we have proved that

lim
t→+∞

c2(t; λ, ν) = +∞ H⇒ lim inf
t→+∞

k2(t; n, 1 − ν, λ) ≥ A for every A > 0

H⇒ lim
t→+∞

k2(t; n, 1 − ν, λ) = +∞

and

lim inf
t→+∞

c2(t; λ, ν) > −∞ H⇒ lim inf
t→+∞

k2(t; n, 1 − ν, λ) > −∞.

Moreover, according to Remark 2.12(i), there exists a finite limit limt→+∞ c2(t; λ) if and only if there exists a finite limit
limt→+∞c2(t; λ, ν) because we have c2(t; λ) =c2(t; λ, λ + 1 − α) for t ≥ 0.

Consequently, the assertion of the corollary follows from Theorem 2.8 with κ = n and β = 1 − ν. �

Proof of Corollary 2.13. It is clear that half-linear equation (1.4) is a particular case of system (1.1) in which g ≡ r
1

1−q and
α = q − 1. Therefore, the assertion of the corollary follows immediately from Corollary 2.11 with ν = 2. �
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