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Introduction

Functional differential equations (FDE) have already appeared in the
18th century as mathematical formulations of certain problems in physics
and geometry. We can find them especially in the works of Euler and Con-
dorcet. However, until the end of the 19th century, FDE were investigated
only in connection with particular applications and we cannot speak about
their systematic study.

Only in the works of E. Schmidt, F. Schiirer and E. Hilb (see [32,33,64—
70]) from the first quarter of the twentieth century, first attempts of a sys-
tematic study of special equations with delayed argument appeared. The
interest in this type of FDE grew in the 1930s, especially in connection with
extensive applications in mechanics, biology, and economy. At that time,
the basics of the qualitative theory of equations with delayed argument and
of the so—called integrodifferential equations were put in the works of A.
Myshkis and R. Bellman (see [55]). They and a number of other math-
ematicians (Elsgole, Norkin, Hale, Halanay, Kolmanovskii, Razumikhin,
Azbelev, etc.) who followed this direction are to be credited for building
up the extensive qualitative theory of FDE that exists nowadays. This the-
ory is not only important in applications, but influences also wide areas of
pure mathematics (see, e.g., [1,2,30,55]).

In the 1970s, great deal of attention was devoted to the construction of
the theory of boundary value problems (BVP) for FDE. Various methods
were proposed to be used in these problems, e.g., the theory of Fredholm
operators, method of small parameters, topological methods, theory of in-
tegral manifolds and so on (detailed survey of these methods and corre-
sponding results is, e.g., in [1-3,30,55,58,62,63,71-87]). From the contem-
porary viewpoint, it can be said that the methods of functional analysis
and topological methods proved to be the most useful ones. By systematic
application of these methods, the foundations of the theory of BVP for a
large class of FDE were constructed (see [1,2,30,55,72], etc.).

However, until now, concrete BVP for FDE were studied only with
partial success. The difficulties arising in the study of FDE lie in the
nonlocal character of the equation and they appear even for the linear
equation. For example, the question of solvability of the simplest BVP, the
so—called initial value problem

u'(t) = p(t)u(r(t)) +q(t),  ula) =0,
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where p,q : [a,b] — R are Lebesgue integrable functions and 7 : [a,b] —
[a, b] is a measurable function, is far from being so trivial as for the ordinary
differential equations (ODE), i.e., for the case when 7(t) =t for t € [a, b].
Therefore we cannot be surprised by the fact that in the large monographs
[1,2,30,55,72], we cannot find detailed information on the solvability of the
initial value problem.

On the other hand, if the deviation 7(¢) —t is “small”, i.e., if the equa-
tion is “close” to the ODE, we intuitively expect that the given problem
possesses a unique solution. In simple cases, the validity of such hypothesis
can be verified directly. With more complicated problems, where global
methods do not provide sufficient accuracy, natural need for finding a more
precise technique for the investigation of the FDE arose.

As for the ODE, a sufficiently complete theory of BVP was already built
up, using namely the methods whose basis is laid in mathematical analysis
(see [35,38,49]). Last, but not least, this fact corresponded to the efforts
to modify the methods of mathematical analysis for the investigation of
FDE. In the last couple of years, these efforts were successful in the case of
some BVP for FDE. Especially in the works of I. Kiguradze and B. Puza
(see [12,36,37,39-48, 50-54]), sophisticated conditions for the solvability
and unique solvability of a quite wide class of BVP for FDE in both linear
and nonlinear cases were found (see also [9-11,13-29]).

Inspired by these results we decided to use the methods of mathemat-
ical analysis and investigation technique of BVP for ODE with appropri-
ate modifications for FDE. Mainly the method of a priori estimates and
technique of differential inequalities. The method of a priori estiamtes is
widely used in the theory of BVP both for ODE and FDE. The basis of
this method was laid down in the beginning of 20th century. Later this
method was succesfully developed in [35,38,49] even for singular ODE. Im-
portance of theorems on differential inequalities in connection with study
of Cauchy problem, resp. two—point BVP, was observed in the beginning
of 20th, as well (see [7, 8,34, 59] and references therein). Further this
technique was extended and generalized for BVP of various other types
(see [1,14,35,38,49,56,57]).



The present work deals with the questions of solvability and unique
solvability of BVP

W(t) = Fu)(@), (0.1)

Au(a) + pu(b) = h(u), (0.2)

where F' : C([a,b];R) — L([a,b];R), h: C([a,b];R) — R are continuous
operators satisfying the Carathéodory conditions, A\, u € R and |A| + || #

0. The particular cases of the boundary condition (0.2) are the initial
conditions

and
the periodic condition

and the antiperiodic condition
u(a) = —u(b).

A special case of the equation (0.1) is, for example, the equation with
deviating arguments

' (t) = f(t,u(t), u(ri(t)), ..., u(ta(t))),

where f : [a,b]x R"T! — Ris a Caratheodory function and 7 : [a, b] — [a, ]
(k=1,...,n) are measurable functions.

The work is divided into two chapters. In Chapter I, the question of
the unique solvability of the linear problem, i.e., of the problem

u'(t) = £(u)(t) + q(t),

0.3
Au(a) 4+ pu(b) = ¢, 03)

where ¢ : C([a,b]; R) — L([a,b]; R) is a linear bounded operator, ¢ €
L([a,b];R), AN i,c € Ry and |A\| + |u| # 0, is investigated. §§2, 4, and 7
contain the main results that are further expanded and detailed in §§3, 5,
6, 8, and 9 for the equation with deviating arguments of the form

L) =3 <pk<t>u<m<t>> - gk<t>u<uk<t>>) ),
k=

1
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where pg,gr € L([a, b};RJr), q € L([a,b];R), and 7k, v : [a,b] — [a,b]
(k=1,...,m) are measurable functions.

§2 is devoted to the question on the validity of a theorem on differential
inequalities. The results obtained here have an independent character since
they give the information on the sign of the solution of the problem (0.3)
(under certain natural sign assumptions imposed on the function g and the
number ¢). On the other hand, these results are used later for studying the
question on the solvability in both linear and nonlinear problems. In §§4
and 7, sufficient conditions for unique solvability of the BVP of periodic
(i.e., when A\p < 0) and antiperiodic (i.e., when Au > 0) type are estab-
lished. The presented results are optimal, which is demonstrated by the
appropriated examples.

Chapter II deals with the nonlinear problem and is arranged in a similar
way. On the basis of the technique developed in Chapter I, nonimprovable
sufficient conditions of the solvability and unique solvability of the problem
(0.1), (0.2) are established in §§12 and 14. In §§13 and 15, these results are
specified for an equation with deviating argument of the form

m

L= (pk@)um(t)) - gk<t>u<uk<t>>)+

k=1

+ [t u(t), w(C(?), - ulGa(t))),
where f:[a,b] x R"*! — R is a Caratheodory function, py, g, € L([a, bl; R+),

and 73, vk, ¢ [a,b] — [a,b] (K =1,...,m; j =1,...,n) are measurable
functions.



Notation

N is the set of all natural numbers;
R is the set of all real numbers;

Ry =[0,+c[, R_=]-00,0];

A is the closure of the set A;

C([a,b]; R) is the Banach space of continuous functions v : [a,b] — R with
the norm
lv]|c = max{|v(t)| : a <t < b}
C(la,b]; D) = {v e C(la,b; R) : v : [a,b] — D}, where D C R;
Cu(la,b); D) = {v € C([a,b]; D) : Mv(a) + po(b) = 0}, where D C R;
C ([a,b); D), where D C R, is the set of absolutely continuous functions
v : [a,b] — D;

Bi

)\HC([a,b];R), where A\, u,c € R and i € {1,2}, is the set of functions

v € C([a, b]; R) satisfying
[Av(a) 4+ po(b)] sgn ((2 —i)Av(a) + (i — 1)pv(d)) < c;

L([a,b]; R) is the Banach space of Lebesgue integrable functions p : [a, b] —
R with the norm

b
oz = / Ip(s)ds;

L([a,b]; D) ={p € L([a,b]; R) : p: [a,b] — D}, where D C R;
My is the set of measurable functions 7 : [a, b] — [a, b];

Lap is the set of linear bounded operators ¢ : C([a, b]; R) — L([a,b]; R) for
each of them there exists n € L([a, b]; R4) such that

[0(v)(t)] < n(t)||v]lc for almost all t € [a,b], v e C([a,b]; R);
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P.p is the set of linear operators ¢ € L, transforming the set C ([a, bl; R+)
into the set L([a, bl; R+);

K is the set of continuous operators F : C([a, bl; R) — L([a, bl; R) satis-
fying the Caratheodory conditions, i.e., for every r > 0 there exists
g¢r € L([a,b]; Ry) such that

|F(v)(t)] < qr(t) for almost all ¢ € [a,b], |[v|]c <r;

K([a,b] x A;B), where A C R", B C R, n € N, is the set of functions
f i [a,b] x A — B satistfying the Caratheodory conditions, i.e., f(-,z) :
[a,b] — B is a measurable function for all x € A, f(¢,-): A— Bisa
continuous function for almost all ¢ € [a, b], and for every r > 0 there
exists gr € L([a,b]; Ry) such that

|f(t,z)| < qr(t) for almost all ¢ € [a,b], z € A, ||z|] <7r;

2]+ = 3(lal +2), [2]- = 3(2[ - 2).

We will say that £ € L, is a to—Volterra operator, where tg € [a, b], if
for arbitrary a; € [a, to], b1 € [to,b], a1 # b1, and v € C’([a, bl; R) satisfying
the condition

v(t)=0 for te€as,bi],

we have
l(v)(t) =0 for almost all ¢ € [ay,b1].

An operator ¢ € L, is said to be nontrivial, if £(1) # 0.



CHAPTER 1

Linear Problem



§1. Statement of the Problem

Consider the problem on the existence and uniqueness of a solution of the
equation

W/ (t) = €(u)(t) + q(t) (L1)

satisfying the boundary condition
Au(a) + pu(b) = ¢, (1.2)

where £ € Lap, ¢ € L([a,b]; R), A\, pi,c € R, and |A| + || # 0. By a solution
of the equation (1.1) we understand a function u € 5([@, b]; R) satisfying
this equation almost everywhere in [a, b]. Note also that the equalities and
inequalities with integrable functions are understood almost everywhere.

Along with the problem (1.1), (1.2) we consider the corresponding ho-
mogeneous problem

u'(t) = L(u)(), (1.10)
Au(a) + pu(b) = 0. (1.29)

All results will be concretized for the differential equation with deviating
arguments (EDA), i.e., for the case, when the equation (1.1) has the form

m

L) =3 (m(t)um(t» - gk<t>u<vk<t>>) ), )

k=1

where py, gr € L([a,b]; Ry), ¢ € L([a,b]; R), Tk, vl € Moy (k=1,...,m),
and m € N.

The following result is well-known from the general theory of the bound-
ary value problems for functional differential equations (see, e.g., [1-3,42,
72].

Theorem 1.1. The problem (1.1), (1.2) is uniquely solvable iff the corre-
sponding homogeneous problem (1.1g), (1.29) has only the trivial solution.

Remark 1.1. It follows from the Riesz—Schauder theory that if the prob-
lem (1.1p), (1.20) has a nontrivial solution, then there exist ¢ € L([a, b]; R)
and ¢ € R such that the problem (1.1), (1.2) has no solution.



§2. On Differential Inequalities

Throughout this section we will assume that [A| + |u| # 0 and
Ap < 0. (2.1)

Furthermore, if A = —pu, then the operator ¢ € L, is supposed to be
nontrivial, i.e., £(1) # 0.

Definition 2.1. We will say that an operator ¢ € L,; belongs to the set
V(A ) (vesp. V., (A, p)), if the homogeneous problem (1.1p), (1.20) has
only the trivial solution and for every q € L([a, bl; R+) and ¢ € R satisfying

(sgn X —sgnp)c>0, (2.2)
the solution of the problem (1.1), (1.2) is nonnegative (resp. nonpositive).

Remark 2.1. According to Theorem 1.1, it is clear that if £ € V_I(X, u),
resp. £ € V(A p), then the problem (1.1), (1.2) is uniquely solvable for
any c € Rand q € L([a, b];R).

Note also that if ¢ € Py and £ € VI (A, ), then |u| < |A|, and if
—0 € Py and £ € V. (A, ), then || > [A].

Remark 2.2. Furthermore, V (),0) = O for every A # 0. Indeed, sup-
pose on the contrary that £ € V(X,0) for some A # 0. Then, according
to Remark 2.1, the problem (1.1), (1.2) with 4 = 0 and ¢ = 0 has a unique
solution for every ¢q € L([a, bl; R). Let Q be an operator, which assigns to
every ¢ € L([a,b]; R) the solution of the problem (1.1), (1.2) with g =0
and ¢ = 0. In view of Theorem 1.4 in [42], Q : L([a, b]; R) — C([a,b]; R) is
a linear bounded operator. Moreover, since ¢ € L, there exists a function
n € L([a,b]; Ry) such that

)] <nO)lollc for tefab], veC(ab:R).  (23)

Choose ty € |a, b[ satisfying

1l / n(s)ds < 1 (2.4)

and let g € L([a, bl; R+) be such that

q(t) =0 for ¢t € [to,0], q % 0. (2.5)
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Furthermore, let u be a solution of the problem (1.1), (1.2) with x = 0 and
¢ = 0. Obviously, the inequality (2.2) is satisfied and

/é ds+/ (s)ds for t € a,bl. (2.6)

On the other hand, according to the definition of the operator €2, we
have
u(t) = Qq)(t) for te€ a,b]

and thus,
lulle < [120llqllz- (2.7)

By virtue of (2.3) and (2.7), (2.6) yields

u(t) > / ds—/|£ §)lds >

t

> [ ateyds ~ [0 lal: / n(s)ds for ¢ € [a,b).

a a

Hence, with respect to (2.4) and (2.5), we obtain

to
ato) > lallz [ 1 - 12 / n(s)ds | >0,

which, according to Definition 2.1, contradicts the assumption £ € V_, (X, 0).
In a similar manner it can be shown that V.1 (0, 1) = @ for every u # 0.

Remark 2.3. It follows from Definition 2.1 that ¢ € VI (X, u) (resp. £ €
Voo (A, ) iff for the problem (1.1), (1.2) a certain theorem on differential

a ~
inequalities holds, i.e., whenever u,v € C’( [a, bl; R) satisfy the inequalities

(1) < Uu)(t) +alt), V(1) =)0 +alt) for € la],

[Aua) = |plu®) < [Av(a) = |plv(b),
then u(t) < v(t) (resp. u(t) > v(t)) for t € [a,b].
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In this section, we will establish sufficient conditions for an operator
¢ to belong to the sets V_I(X, u) and V(X p). These results have an
independent character in the sense that they give us the information about
sign of the solution of the problem (1.1), (1.2) (under certain natural sign
assumptions imposed on the function ¢ and the number ¢). On the other
hand, these results play an important role in the following investigation of
the solvability of considered problem both in linear and nonlinear cases.

2.1. On the Set V[ (\, n)

In this subsection, nonimprovable, in a certain sense, sufficient conditions
guaranteeing the inclusion ¢ € V;g()\, u) are established. First, in Theo-
rems 2.1-2.5, we consider the case |u| < |A|. Theorems 2.6-2.8 concern the
case |p| > |\

In the case, where |u| < ||, the following assertions hold.

Proposition 2.1. Let |u| < || and
0 € Pap. (2.8)
Then £ € V1 (X, p) iff the problem
' (t) < L(u)(t), Au(a) + pu(b) =0 (2.9)
has no nontrivial nonnegative solution.

Theorem 2.1. Let |u| < |\ and £ € Pyy. Then the operator £ belongs to
the set V;g()\, w) iff there exists a function v € C’([a, bl; 10, —|—oo[) satisfying
the inequalities

Y () > (y)(t) for t€ [a,b], (2.10)
[Aly(a) > [ply(b). (2.11)

Corollary 2.1. Let |u| < |A|, £ € Pap, and let at least one of the following
items be fulfilled:

a) £ is an a— Volterra operator and

b
4] exp / (1)(s)ds | < |3 (2.12)
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b) there exist m,k € N and a constant o € ]0,1[ such that m > k and

pm(t) < ap(t) for t € [a,b, (2.13)

where p1 =1 and

pisi(t) < !M’ﬁ’\ ‘/e pi)( ds+/£( 2)(s)ds (2.14)

fort € la,b], i € N;

c) there exists { € Py, such that

b
] exp ( / e<1><s>ds) +

+|)\\/£ s) exp (/Z ) ds < |A|,

and on the set C’AM([a, bl; R+) the inequality

L) (E) — L)) (v)(t) < L(v)(t) for tE€ a,b] (2.16)

holds, where

(2.15)

b t
I(w)(t) W‘f‘M/e(v)(s)ds+/av)(s)ds for telal. (217)

Then the operator { belongs to the set V.t (X, p).

Remark 2.4. Let |u| < |A|, £ € Pap, £ be an a—Volterra operator, and the
problem (1.1p), (1.29) has only the trivial solution. If, moreover, (instead

of (2.12)) the equality
b
il exp ( / f<1><s>d5> — I\ (2.18)

a

holds, then /¢ € Va'lt(/\,u) again (see On Remark 2.4, p. 50).



2.1. ON THE SET V! (X, ) 19

On the other hand, for every € > 0 there exists an a— Volterra operator
£ € Py, such that the problem (1.1p), (1.29) has only the trivial solution,

b
| exp / (1) (s)ds | = A +e,

and £ € VI (X, 1) (see Example 2.1, p. 51).

Remark 2.5. It follows from Corollary 2.1 b) (for £ = 1 and m = 2) that
if |u| < |A|, € € Pap, and

b
A / ((1)(s)ds < A — |,

then ¢ € V1 (X, u). Note that if the problem (1.1y), (1.29) has only the
trivial solution and

b
A [ s = A= ol (2.19)

then ¢ € V.I'(\, ;1) again (see On Remark 2.5, p. 52).
On the other hand, for every € > 0 there exists an operator £ € Py,
such that the problem (1.1p), (1.29) has only the trivial solution,

b
A / ((1)(s)ds = A — [l + <,

and £ € VI (\, pt) (see Example 2.2, p. 53).

Remark 2.6. Corollary 2.1 is nonimprovable in a certain sense. More
precisely, the assumption « € |0, 1] cannot be replaced by the assumption
a € ]0,1], and the strict inequalities (2.12) and (2.15) cannot be replaced
by the nonstrict ones (see Examples 2.3 and 2.4, p. 54).

Theorem 2.2. Let |u| < [A], —€ € Py, £ be an a—Volterra operator, and
let there ezist a function v € C([a,b]; Ry) satisfying

Y (t) < L(y)(t) for te€ [a,b], (2.20)
y(t) >0 for tela,bl. (2.21)

Then the operator £ belongs to the set V.t (A, p).
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Remark 2.7. Theorem 2.2 is nonimprovable in a certain sense. More pre-
cisely, the condition (2.21) cannot be replaced by the condition

v(t) >0 for te€a,bl, (2.22)
where by € |a,b[ is an arbitrarily fixed point (see Example 2.5, p. 55).

Theorem 2.3. Let |u] < |A|, =€ € P, £ be an a— Volterra operator, and

b
/|£(1)(s)|ds <1 (2.23)
Then the operator { belongs to the set V.t (X, p).

Remark 2.8. Theorem 2.3 is nonimprovable in the sense that the inequal-
ity (2.23) cannot be replaced by the inequality

b
/ 0(1)(s)|ds <1+, (2.24)

no matter how small € > 0 would be (see Example 2.5, p. 55).

Corollary 2.2. Let |u| < |A|, =€ € Pgp, ¢ be an a— Volterra operator, and

b s
/|Z(1)<s>}exp /]6(1)(5)]d§ ds <1, (2.95)
where
1)) = 0(0(0)) (t) = L) BI(0)(E)  for € [a,b],

)(t)
Ao) (1) < / (@) (s)ds for telab),
J (2.26)

3(t) & u(t) exp / () (s)ds | for t€ a,b.

a

Then the operator { belongs to the set Vi (X, p).
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Remark 2.9. Corollary 2.2 is nonimprovable in the sense that the inequal-
ity (2.25) cannot be replaced by the inequality

b s
[l e | [l | ds<1+e.

no matter how small e > 0 would be (see Example 2.5, p. 55).

Theorem 2.4. Let 0 # |u] < |A| and the operator ¢ admit the representa-
tion £ = £y — £, where

Lo, t1 € Pap- (2.27)
Let, moreover,
()l <1, (2.28)
1601l Al = |pl 7
- <l < |5|. (2.29)
1 —[leo(1)]lL |l A

Then the operator { belongs to the set Vi (X, p).

Remark 2.10. Let 0 # |u| < |\| and

A —
A (r,y) € Ry xRy : © <1, z W M<y§"u)
l—x |l A

(see Fig. 2.1).
According to Theorem 2.4, if £ = £y — {1, lo, {1 € Py, and

Q%ambwmmu)em

then ¢ € V. (A, u). Below we will show (see On Remark 2.10, p. 56) that
for every g, yo € R+, (z0,y0) & A there exists £ € L, such that £ = £y —{1,
o, l1 € Pas,

zo = [z, yo =[xz, (2.30)
and ¢ ¢ V1 (X, p). In particular, neither one of the inequalities in (2.28)
and (2.29) can be weakened.

Remark 2.11. In [6], there is proved that if —¢ € Py, then the condition
imposed on an operator £ to be of a—Volterra type is necessary for ¢ to



22 §2. ON DIFFERENTIAL INEQUALITIES

YA
5y 7
/
/
/
/
/
/
A /
/
/
/
/
/
/
/ >
[Al =kl T
Ry
Fig. 2.1.

belong to the set V1(1,0). On the other hand, it follows from Theorem 2.4
that if y #£ 0, —€ € Py, and

b
A / 10(1)(s)|ds < [ul,

then ¢ € V_I(X, p). Therefore, the condition imposed on an operator ¢ to
be of a—Volterra type is not necessary for ¢ to belong to the set V;l;(/\, 0
with u # 0.

Theorem 2.5. Let |u| < |\| and the operator ¢ admit the representation
0 =¥ty — L1, where £y, 01 € Pyy. If, moreover,

b eViAp,  —lieVi\p),
then the operator £ belongs to the set Vaﬁ()\,,u).

Remark 2.12. Theorem 2.5 is nonimprovable in the sense that the as-
sumption

60 € Va—g()‘aﬂ)a _él c Va—g(Aau)
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can be replaced neither by the assumption
nor by the assumption
20 € V(]jil;()\?lu’)’ _(]‘ - €)£1 € V(jb»(A’lu’)’

no matter how small € > 0 would be (see Examples 2.6 and 2.7, p. 57).

In the case, where |u| > |\|, the following statements hold.

Theorem 2.6. Let |p| > |A| # 0, —C € Pgp, and let there exist a function
v E CN'([a, bl; Ry.) satisfying the inequalities (2.10) and (2.11). If, moreover,
the inequality (2.23) holds, then the operator { belongs to the set V.1 (A, ).
Remark 2.13. Theorem 2.6 is nonimprovable in the sense that the in-
equality (2.23) cannot be replaced by the inequality (2.24), no matter how
small € > 0 would be (see Example 2.8, p. 59).

Note also that if || = |A| and —¢ € Pgp, then there exists a function
v € CN’([a, b]; R4) satisfying (2.10) and (2.11). Indeed, in this case the
operator £ is considered to be nontrivial and thus, the function

b

v(t) =1+ / |6(1)(s)|ds for ¢t € [a,b]

satisfies (2.10) and (2.11).
Nevertheless, if || > |A| # 0, then the strict inequality (2.11) cannot
be replaced by the nonstrict inequality

[Aly(a) = |ply(b) (2.31)

(see Example 2.9, p. 59).

Theorem 2.7. Let |u| > |A| # 0, —€ € Puy, £ be an a— Volterra operator,
and let there exist a function v € 6([a,b];R+) satisfying the inequalities
(2.10) and (2.11). If, moreover, there exists a function [ € 5([a,b];R+)
satisfying the inequalities

B(t) >0 for tela,b], (2.32)
B'(t) < UpB)(t) for telab], (2.33)
then the operator € belongs to the set V. (X, u).
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Remark 2.14. Theorem 2.7 is nonimprovable in the sense that the as-
sumption (2.32) cannot be replaced by the assumption

B(t) >0 for té€la,byf, (2.34)

where b € |a, b| is an arbitrarily fixed point (see Example 2.10, p. 60).
Note also that if || = |A| and —¢ € Py, then there exists a function
v € C~'([a,b];R+) satisfying (2.10) and (2.11) (see Remark 2.13).
Nevertheless, if |u| > |A| # 0, then the inequality (2.11) cannot be
replaced by the inequality (2.31) (see Example 2.9, p. 59).

Theorem 2.8. Let |u| > |A| # 0 and the operator ¢ admit the representa-
tion £ = £y — {1, where £y, €1 € Pyy,. Let, moreover,

A
ol < 3] (2.35)
I
e <. (2.36)
Al = el (D)1
Then the operator £ belongs to the set Va'g(/\,u).
Remark 2.15. Let |u| > |A| # 0 and
e A
Bd:f{(az7y)€R+><R+ < "7 |N|—1<y§1.}
wl A = |ple

(see Fig. 2.2; note also that if |u| > 2|\|, then B = 0).
According to Theorem 2.8, if £ = ¢y — {1, £o, 41 € Py, and

Q%UMbwmmu>ea

then ¢ € V1 (A, p). Below we will show (see On Remark 2.15, p. 61) that for
every o, 4o € R4, (z0,y0) € B there exists £ € Ly, such that £ = ¢y — (1,
Ly, 01 € Pap, (2.30) holds, and ¢ ¢ Va'lt(/\,u). In particular, neither one of
the inequalities in (2.35) and (2.36) can be weakened.

2.2. On the Set V_, (A, p)

In this subsection, nonimprovable, in a certain sense, sufficient conditions
guaranteeing the inclusion ¢ € V (A, p) are established. First, in Theo-
rems 2.9-2.11, we consider the case |u| < |A|. Theorems 2.12-2.16 concern
the case |u| > |A].
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In the case, where |u| < |A|, the following statements hold.

Theorem 2.9. Let 0 # |u| < |A|, £ € Pap, and let there exist a function
v E C([a, bl; R+) satisfying the inequalities (2.20) and

[Aly(a) < [ply(D). (2.37)
If, moreover,
b
/ (1)(s)ds < 1, (2.38)

then the operator £ belongs to the set V_, (A, ).

Theorem 2.10. Let 0 # |u| < |A|, € € Pap, £ be a b—Volterra operator,
and let there exist a function v € 6([a,b];R+) satisfying the inequalities
(2.20) and (2.37). If, moreover, there exists a function B € 6([a,b];R+)
satisfying

B(t) >0 for te€la,bl, (2.39)
B(t) = L(B)(t) for te[a,b], (2.40)
then the operator £ belongs to the set V_, (A, ).
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Theorem 2.11. Let 0 # |u| < |\| and the operator ¢ admit the represen-
tation £ = by — £y, where £y, €1 € Pyy. Let, moreover,

lailz < |5,

A
[l = (A€ (D)l

~1< bl < 1.

Then the operator € belongs to the set V_ (A, ).

In the case, where |u| > ||, the following assertions hold.

Proposition 2.2. Let |u| > || and —€ € Py,. Then £ € V, (A, ) iff the
problem

u'(t) > £(u)(t), Au(a) + pu(b) =0

has no nontrivial nonnegative solution.

Theorem 2.12. Let |u| > |\ and —€ € Pap. Then the operator { belongs to
the set V., (X, p) iff there exists a function v € C([a,bl;]0,400]) satisfying
the inequalities (2.20) and (2.37).

Corollary 2.3. Let |u| > |\|, =€ € Py, and let at least one of the following
items be fulfilled:

a) £ is a b—Volterra operator and
b
Neo | [ 160)lds | < ul:

b) there exist m,k € N and a constant « € 10, 1] such that m > k and
the inequality (2.13) is fulfilled, where py =1 and

b b
pia) ™~ B [ pas = [ etpisras

fortela,b], i€ N;
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c) there exists { € Py, such that

1A exp /w $)lds | +

ul / ) exp / ) (©)lde | ds < Jul,

and on the set C’M([a, bl; R+) the inequality
L)) () (8) — L) (t) < L(v)(t) for t€ [a,b]

holds, where

I (v)(t) def |M||)\||)\\ s)ds — /E(v)(s)ds for t € a,bl.

Then the operator £ belongs to the set V_ (X, ).

Theorem 2.13. Let |u| > |\, £ € Py, £ be a b—Volterra operator, and let
there exist a function v € C’([a, bl; R+) satisfying (2.10) and

y(t) >0 for te€la,b]. (2.41)
Then the operator € belongs to the set V_ (X, ).

Theorem 2.14. Let || > |A|, £ € Pap, £ be a b—Volterra operator, and
let the inequality (2.38) be satisfied. Then the operator ¢ belongs to the set

Va?) (>\’ /’I’) ‘
Corollary 2.4. Let |p| > |A|, £ € Pap, £ be a b—Volterra operator, and

b

/ s) exp /E ds <1,
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where

(0)(8) = £(8(0)) (1) — L) D8()(E)  for € [a,b],

b
Aoy (1) % — / (@) (s)ds for telab],

b

o(t) def v(t) exp —/Z(l)(s)ds for t € la,b.
t

Then the operator £ belongs to the set Voo (A, ).

Theorem 2.15. Let |u| > |\ # 0 and the operator { admit the represen-
tation £ = by — l1, where by, €1 € Pyy. Let, moreover,

M <1,

[z sl = A
I B1e8] (57 R

<ol < m

Then the operator £ belongs to the set V_ (X, ).

Theorem 2.16. Let || > |A| and the operator £ admit the representation
=1Ly — {1, where £y, L1 € Pyy. If, moreover,

by € Vaib(Aa”% —l € VGZ()‘Hu)v
then the operator £ belongs to the set V_, (A, ).
Remark 2.16. Let £ € Ly, g € L([a,b];R), and ¢ € R. Define the
operator ¢ : L([a,b]; R) — L([a,b]; R) by
Y(w)(t) = wla+b—t) for t€la,bl.

Let, moreover, ¢ be a restriction of ¥ to the space C’([a, bl; R) and

Hw)(t) = =(lp)(®),  Gt) = —(g)(t) for ¢ € [a,b].

It is clear that if u is a solution of the problem (1.1), (1.2), then the function

v ¢(u) is a solution of the problem

~

V' (t) = L(v)(t) + q(t), pv(a) + Av(b) = ¢, (2.42)
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and vice versa, if v is a solution of the problem (2.42), then the function
0 ©(v) is a solution of the problem (1.1), (1.2). R

Therefore, £ € V. (X, p) (resp. £ € V.E (X, 1)) if and only if £ € VI (1, A)
(resp. £ €V, (11, N)). N

It is also evident that if & € C([a, b]; R) satisfies the inequality

o/ (t) < L(a)(t), (resp. o'(t) >l(a)(t)) for t€ [a,b], (2.43)

then the function of () satisfies the inequality

B > W00, (resp. A <UD for telab,  (244)
and vice versa, if 8 € C ([a, b); R) satisfies the inequality (2.44), then the
function a % ©(3) satisfies the inequality (2.43).

Remark 2.17. According to Remark 2.16, Theorems 2.9-2.16, Proposi-
tion 2.2, and Corollaries 2.3 and 2.4 can be immediately derived from
Theorems 2.1-2.8, Proposition 2.1, and Corollaries 2.1 and 2.2. More-
over, by virtue of Remarks 2.4-2.15, the results guaranteeing the inclusion
¢ € V(X p) are nonimprovable in an appropriate sense.

2.3. Proofs

Proof of Proposition 2.1. First suppose that ¢ € V;g()\,u). If uis a
solution of the problem (2.9), then, according to (2.1), the assumption
¢ € V:E (A p), and Remark 2.3 (see p. 16), we obtain u(t) < 0 for ¢ € [a, b].
Therefore, the problem (2.9) has no notrivial nonnegative solution.

Now suppose that the problem (2.9) has no nontrivial nonnegative so-
lution. Let ug be a solution of the problem (1.1p), (1.2y). According to
(2.1) and (2.8), we obtain

[uo(®)]' = £uo)(8) sgnuo(t) < E(|ug)(t) for ¢ € [a,)],

Nuo(a)| + pluo(b)] = 0.

Therefore, |ug| is a solution of the problem (2.9). Hence, |ug| = 0, i.e., the
homogeneous problem (1.1y), (1.2¢) has only the trivial solution.

Let u be a solution of the problem (1.1), (1.2) with ¢ € L([a,b]; Ry)
and ¢ € R such that (2.2) is fulfilled. It easily follows from (2.2) that

csgn A
— =" >0. 2.4
A= 2° (2.45)
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Taking now into account (1.1), (2.8), (2.45), and the assumption ¢ €
L([a,b]; Ry), we get that on [a,b] the inequality

, sgno(t) — 1 csgn A ;
pOl < (0 + DL (40 + SE ) 0) < 4l

holds, where
csgn A
R

On the other hand, by virtue of (1.2) and (2.1),

for t € [a,b)]. (2.46)

Av(a) + po(b) = 0.
This equality, together with (2.1), yields

Alo(@)]- + uo(d)]- = 0.

Thus, [v]— is a solution of the problem (2.9). Hence, [v]- = 0. Taking
now into account (2.45) and (2.46), we get u(t) > 0 for ¢t € [a,b] and so
CeVEA ). O

Proof of Theorem 2.1. First suppose that there exists a function v €
5([a, b];]0, 4+00[) satisfying the inequalities (2.10) and (2.11).

Let u be a solution of the problem (1.1), (1.2), where g € L([a, b]; Ry)
and ¢ € R is such that the inequality (2.2) is fulfilled. It easily follows from
(1.2), (2.1), and (2.2) that

Mu(a) > [ulu(b). (2.47)

We will show that
u(t) >0 for t€a,b]. (2.48)

Assume the contrary that (2.48) is not valid. Then there exists ¢y € [a, b]
such that

u(to) < 0. (2.49)
Put 0
r= max{—fy(t) e [a,b]}
and

w(t) =ry(t) +u(t) for te [a,b]. (2.50)
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According to (2.49),

r>0. (2.51)
It is clear that
w(t) >0 for tela,b (2.52)
and there exists ¢, € [a, b] such that
w(ty) = 0. (2.53)

By virtue of (1.1), (2.8), (2.10), (2.51), (2.52), and the assumption g €
L([a, bl; R+), we get

w'(t) > L(w)(t) +q(t) >0 for t e [a,b)].

From the last inequality, (2.52), and (2.53), we obtain w(a) = 0 and, in
view of (2.11), (2.50), (2.51), and (2.52), we get

(Afu(a) = =r|Aly(a) < =rluly(0) = |pl(u(d) — w(b)) < |ulu(d),

which contradicts (2.47).

We have proved that if u is a solution of the problem (1.1), (1.2), where
q € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) holds, then
the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.1p), (1.2p) has only the trivial solution. Indeed, let up be a
solution of the problem (1.1p), (1.29). Obviously, —ug is a solution of the
problem (1.1p), (1.2¢), as well, and, according to the above-proved, we have

up(t) >0, —up(t) >0 for t€Ja,b].

Therefore, uy = 0.
Now suppose that £ € V1 (A, n). According to Definition 2.1 (see p. 15)
and Theorem 1.1 (see p. 14), the problem

V'(t) = L)), (2.54)
Ay(a) 4+ py(b) = sgn A (2.55)
has a unique solution v and
v(t) >0 for te€la,b]. (2.56)
By virtue of (2.1), (2.55), and (2.56), it is clear that (2.11) holds and
v(a) > 0. (2.57)

On account of (2.8), (2.56), and (2.57), it follows from (2.54) that (t) > 0
for t € [a, b]. O
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Proof of Corollary 2.1. a) Let ¢ be an a—Volterra operator. It is not
difficult to verify that the function

v(t) = exp /6(1)(8)d$ for t € [a,b

a

satisfies the inequality (2.10). On the other hand, on account of (2.12),
the condition (2.11) is fulfilled. Therefore, the assumptions of Theorem 2.1
(see p. 17) are satisfied.

b) It can be easily verified that the function

k m
YO E 1 -a)Y o)+ S pit) for tefab]
j=1 j=k+1

satisfies the assumptions of Theorem 2.1 (see p. 17).
c¢) According to (2.15), there exists € > 0 such that

b
€70 €Xp /E(l)(s)ds +

a

(2.58)
b

b
+Aho / 7(1)(s) exp / (1)) | ds < 1.

a

where
1

Y0 = .
Al = [ul exp (f 6(1)<s)ds>

(=

a

Put

t

10 = |cexp | [ o0 | + N [T e | [ dst

a

b b ¢
+|p| exp /6(1)(§)d§ /E(l)(s) exp /E(l)({)df ds| fort € [a,b].

a
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Obviously, v € 5([&, b]; 10, +oo[) and ~y is a solution of the problem
V() = L))y () + £(1)(1), (2.59)
Ay(a) 4 py(b) = esgn \. (2.60)

Since ¢,f € Py, and v(t) > 0 for t € [a,b], the inequality (2.59) yields
v/ (t) > 0 for ¢ € [a,b] and, in view of (2.58), we have y(t) <1 for t € [a, b].
Therefore, from (2.1), (2.59), and (2.60) we obtain

V() Z L)) + L(y)(t) for telab],  [Ar(a) > [uly(b).
Consequently, by Theorem 2.1 (see p. 17) we find
(e VEimp), (2.61)

where

) () & (1) t)(t) + L(v)(t) for t€ [a,b]. (2.62)

According to Proposition 2.1 (see p. 17), it is sufficient to show that the
problem (2.9) has no nontrivial nonnegative solution. Let u € C ([a, bl; R+)
satisfy (2.9). Put

w(t) = du)(t) for ¢t € [a,b], (2.63)

where 9 is defined by (2.17). Obviously,
w'(t) = L(u)(t) > u/'(t) for t€ [a,b
and
0 <u(t) <w(t) for tea,b, Aw(a) + pw(b) = 0. (2.64)

On the other hand, in view of (2.16), (2.62)—(2.64), and the assumptions
0,0 € Pgy, we get

w'(t) = L(u)(t) < L1)O)w(t) + Lw)(t) — Q) (H)w(t) =
= L(1)(H)w(t) + £9(w))(t) — L)) (u)(t) < L1 (R)w(t) + L(u)(t) <
<L) (B)w(t) + L(w)(t) = L(w)(t) for t € [a,b].

Now, by (2.61), (2.64), and Proposition 2.1 (see p. 17) we obtain w = 0.
Consequently, u = 0. O
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To prove Theorems 2.2 and 2.3 we need the following lemma.

Lemma 2.1. Let |p] < ||, =€ € Pap, and ¢ be an a— Volterra operator.
Let, moreover, u be a nontrivial solution of the problem (1.1), (1.2), where
q € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) holds, satisfying

min{u(t) : t € [a,b]} < 0.
Then there exist t, € |a,b] and t* € [a,t.] such that
u(ty) = min{u(t) : t € [a,b]},
u(t*) = max{u(t) : t € [a,t.]} > 0.
Proof. Put
m = —min{u(t) : t € [a, b},
I={tela,b]:u(t)=—-m}, t. =supl.

Obviously, m > 0 and
u(ts) = —m.

In view of (1.2), (2.1) and (2.2), it is clear that

if a€l, then |\ =]|u|, c=0, and t,=0.

Therefore, t, € |a,b].
We will show that

max{u(t) : t € [a,t.]} > 0.
Assume the contrary that

u(t) <0 for tela,ty.

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

Since ¢ is an a—Volterra operator, the integration of (1.1) from a to t,,
on account of (2.70) and the assumptions —¢ € Py, and ¢ € L([a, bl; R+),

results in
t*

u(ty) — u(a) = / 10()(s)]ds + /q(s)ds > 0.

a

(2.71)



2.3. PROOFS 35

From the last inequality, in view of (2.67) and (2.68), we obtain a € I and
thus, it follows from (2.69) that |A| = |u|, ¢ = 0, and ¢, = b. According to
(2.71) we find ¢ = 0 and ¢(u) =0, i.e.,

u(t) =u(a) = —m for t € [a,bl.

Hence, (2.71) implies

0 =m[e)] L.
Since we suppose that for |A| = |u| the operator ¢ is nontrivial, the last
equality yields m = 0, a contradiction. Ul

Proof of Theorem 2.2. Let u be a nontrivial solution of the problem
(1.1), (1.2), where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality
(2.2) holds. We will show that (2.48) is fulfilled. Assume the contrary that
the inequality (2.65) holds. According to Lemma 2.1 (see p. 34), there exist
t« € la,b] and t* € [a,t.[ such that (2.66) is valid. It is clear that there
exists to € |t*,t.[ such that

u(to) = 0. (2.72)
Put
w(t) =ry(t) —u(t) for te€ la,bl,
where
u(t)
r=max<{ —= :t € [a,to] ¢ -
(1)
Obviously,
r>0 (2.73)
and there exists ¢; € [a, o[ such that
w(ty) = 0. (2.74)
It is also evident that
w(t) >0 for tE€ Ja,to. (2.75)

Due to (1.1), (2.20), and (2.73), we get
w'(t) < L(w)(t) —q(t) for t € la,b].

Hence, by virtue of (2.75), the assumptions —¢ € Py, and g € L([a, bl; R+),
and the fact that £ is an a—Volterra operator, we obtain

w'(t) <0 for t € a,to]
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Thus, in view of (2.74),
w(t) <0 for te [tl,to],

whence, together with (2.21), (2.72), and (2.73), we find 0 < w(tp) <0, a
contradiction.

We have proved that if  is a nontrivial solution of the problem (1.1),
(1.2), where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2)
holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.1p), (1.29) has a nontrivial solution ug. Obviously, —ug
is a nontrivial solution of the problem (1.1¢), (1.2p), as well, and, according
to the above—proved, we have

up(t) >0, —up(t) >0 for te€Ja,b],
a contradiction. O

Proof of Theorem 2.3. Let u be a nontrivial solution of the problem
(1.1), (1.2), where ¢ € L([a,b]; R+) and ¢ € R is such that the inequality
(2.2) holds. We will show that (2.48) is fulfilled. Assume the contrary that
the inequality (2.65) holds. According to Lemma 2.1 (see p. 34), there exist
t« € la,b] and t* € [a,t,[ such that (2.66) is valid. The integration of (1.1)
from t* to t, yields

u(t?) —ulty) = — 7€(u)(s)ds - 7q(s)d5.

Hence, in view of (2.66), the assumptions —¢ € Pqp, q € L([a,b]; Ry), and
the fact that ¢ is an a—Volterra operator, we find

b
u(t”) <u(t”) + futs)] < u(t”) / [£(1)(s)]ds.

The last inequality, together with (2.23), implies the contradiction u(t*) <
u(t*).

We have proved that if  is a nontrivial solution of the problem (1.1),
(1.2), where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2)
holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.1p), (1.29) has a nontrivial solution ug. Obviously, —ug
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is a nontrivial solution of the problem (1.1p), (1.29), as well, and, according
to the above—proved, we have

ug(t) >0, —up(t) >0 for t€[a,b],
a contradiction. O

Proof of Corollary 2.2. Let u be a solution of the problem (1.1), (1.2),
where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) is
fulfilled. We will show that (2.48) holds. From (1.1) we get

W (1) = 0)()u(t) + Lu)(t) — 61)()u(t) + q(t) for te[ab]. (2.76)

On the other hand, the integration of (1.1) from a to t yields

t t

u(t) = u(a) + /E(u)(s)ds + /q(s)ds for t € a,b]. (2.77)

a a

By virtue of (2.77), from (2.76) we obtain
u'(t) = £(1)(H)u(t) + £(0(u))(t) — £(1)(1)0(u)(t)+

(2.78)
+qo(t) for t € la,b,
where
qo(t) = (g")(t) — L(1)(t)q" () + q(t) for t € [a,b], (2.79)
O(v)(t) = /E(v)(s)ds, q (t) = /q(s)ds for ¢ € [a,b)].

In view of the conditions —¢ € Py, q € L([a, bl; R+), and the fact that £ is
an a— Volterra operator, we have

g )(t) —L(1)(t)g*(t) >0 for t€ la,b].
Thus, due to the condition ¢ € L([a,b]; R}), (2.79) yields
qo(t) >0 for t€a,b]. (2.80)

Put

w(t) = u(t) exp (/E(l)(s)ds) for ¢ € [a,b)]. (2.81)
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Then
Aw(a) = Au(a) = ¢ — pu(b) = ¢ — pw(b), (2.82)

where
b

ii= e | [ d0@)s |
a
and since —¢ € Py, we have || < |p|. Clearly, A < 0.
Due to (2.78), it is evident that

w'(t) = exp /M(l)(s)|d8 ((w)(t) +qt) for tela,b], (2.83)

where £ is defined by (2.26) and

q(t) = qo(t) exp —/E(l)(s)ds for t € [a,b]. (2.84)

a

It is easy to verify that e P, and { is an a—Volterra operator. Thus,
in view of (2.25), the conditions Azx < 0 and || < |A|, and Theorem 2.3
(see p. 20), the operator T' defined by

T(v)(t) % 7(v)(t) exp / 0(1)(s)|ds | for t € [a,b],

belongs to the set Vi (A, ). Therefore, by virtue of (2.2), (2.80), (2.82)-
(2.84), and the condition Az < 0, we have w(t) > 0 for ¢ € [a,b]. Conse-
quently, in view of (2.81), the inequality (2.48) is satisfied.

We have proved that if u is a solution of the problem (1.1), (1.2), where
q € L([a,b); Ry) and ¢ € R is such that the inequality (2.2) holds, then
the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.1p), (1.2¢) has only the trivial solution. Indeed, let uy be a
solution of the problem (1.1p), (1.29). Obviously, —ug is a solution of the
problem (1.1p), (1.2¢), as well, and, according to the above—proved, we have

up(t) >0, —up(t) >0 for t€ [a,b].

Therefore, ug = 0. O
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To prove Theorem 2.4 we need the following lemma.

Lemma 2.2. Let 0 # |u| < ||, ¢ € L([a,b]; R-), and ¢ € R be such that
the inequality
csgn A <0 (2.85)

holds. Further, let the operator £ admit the representation £ = fy — {1,
where Ly and ¢y satisfy the condition (2.27). If, moreover,

[lo(Wllz  [A[ =[x
1— )L |l

oWz <1, <[]z, (2.86)

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality
u(t) >0 for te€]a,b]. (2.87)

Proof. Assume the contrary that the problem (1.1), (1.2) has a nontrivial
solution wu satisfying (2.87). Put

M = max{u(t) : t € [a,b]}, m = min{u(t) : t € [a,b]} (2.88)
and choose tyr,t,, € [a,b] such that
u(tyr) = M, u(tm) = m. (2.89)
Obviously, M > 0, m > 0, and either
ty <tm (2.90)

or
tar > tm. (2.91)

First suppose that (2.91) holds. The integration of (1.1) from t,, to ¢y,
on account of (2.27), (2.87)—(2.89), and the assumption ¢ € L([a,b}; R_),
results in

tm tm

M= = [ [to()(s) ~ 1)) + a(o))ds < M [ to(1)(s)ds < M to()].

Hence, by virtue of the first inequality in (2.86), we get

0< M1 - |[to(1)]|z) < m. (2.92)
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Now suppose that (2.90) is fulfilled. Clearly, the condition (1.2), in view
of (2.1), (2.85), (2.87), and the assumption |§| € ]0,1], implies

_csend o (2.93)

u(v) — ula) = | 5| u(®) - u(a) = 52

The integration of (1.1) from a to tj; and from ¢, to b, in view of (2.27),
(2.87)—(2.89), and the assumption q € L([a, bl; R_), yields

tar

b
M — u(a) < M/eoa)(s)ds, u(b) —m < M/Eg(l)(s)ds.

Summing the last two inequalities and taking into account (2.27), (2.86),
and (2.93), we find that the inequality (2.92) is satisfied.
Therefore, in both cases (2.90) and (2.91), the inequality (2.92) is valid.
On the other hand, the integration of (1.1) from a to b, in view of (2.27),
(2.88), and the assumption ¢ € L([a,b]; R_), implies

b
u(b) —u(a) = /[fo(u)(S) — £i(u)(s) + q(s))ds < M|[lo(1)][ — m[l2(1)]| -

Hence, by (1.2), (2.1), (2.85), (2.88), and the assumption 0 # |u| < |A|, we
have

w0l < Mltol+u(o) (1+2) - < Mea(wllsm (1-[2]).

Thus,

Al — |p
m ([ (W) + ———
( ]

This inequality, together with (2.92), results in

oMl 1A=
oL < _ ,
1MWl < T mmn ~ w

which contradicts the second inequality in (2.86). O

) < M)l

Proof of Theorem 2.4. Let u be a nontrivial solution of the problem
(1.1), (1.2), where ¢ € L([a,b]; R+) and ¢ € R is such that the inequality
(2.2) is fulfilled. We will show that (2.48) is satisfied.



2.3. PROOFS 41

Assume that u changes its sign. Put
M = max{u(t) : t € [a,b]}, m = —min{u(t) : t € [a,b]} (2.94)
and choose tr,ty, € [a,b] such that
u(tyr) = M, u(ty,) = —m. (2.95)

Obviously,
M >0, m > 0, (2.96)

and either (2.90) or (2.91) is valid.

First suppose that (2.90) is fulfilled. The integration of (1.1) from ¢,/ to
tm, in view of (2.27), (2.94), (2.95), and the assumption ¢ € L([a,b]; R.),
results in

Hence, according to (2.28), (2.29), (2.96), and the assumption |§| <1, we
get the contradiction M +m < M + m.

Now suppose that (2.91) holds. Clearly, the condition (1.2), in view of
(2.1) and (2.2), implies

& C

u(a) — ‘%‘ u(b) = 5 = 5 s8A 2 0. (2.97)

The integration of (1.1) from a to ¢, and from ¢, to b, on account of (2.27),
(2.94), (2.95), and the assumptions ‘%‘ €10,1] and ¢ € L([a, b]; Ry ), yields

tm tm
m -+ u(a) < M/El(l)(s)ds+m/£0(1)(s)ds,
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Summing these inequalities and taking into account (2.97), we obtain
|8 21+ m < M)+ milto()]

which, according to (2.28), (2.29), and (2.96), yields the contradiction
(6] M 4 m < |20 +m.

Therefore, u does not change its sign, and, by virtue of Lemma 2.2 (see
p. 39), the inequality (2.48) is valid.

We have proved that if u is a nontrivial solution of the problem (1.1),
(1.2), where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2)
holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.1p), (1.2g) has a nontrivial solution ug. Obviously, —ug
is a nontrivial solution of the problem (1.1p), (1.29), as well, and, according
to the above—proved, we have

up(t) >0, —ug(t) >0 for t€Ja,b],
a contradiction. O

Proof of Theorem 2.5. Let u be a solution of the problem (1.1), (1.2),
where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) is
fulfilled. Since —¢; € V;g()\, i), the problem

o/ (t) = —l1(a)(t) — Lo([u]-)(t), (2.98)
Aa(a) + pa(b) =0 (2.99)
has a unique solution a and
aft) <0 for t€[a,b]. (2.100)
In view of (1.1), (2.98), and (2.99), we get
(u(t) — at))' = 1 (u—a) + bo([ul+) +q(t) for t€ [a,b],
A(u(a) — a(a)) + p(u(b) — a(d)) = c.

According to (2.2) and the assumptions ¢y € Pap, ¢ € L([a,b]; R}), and
—01 € V(A p), it is obvious that

a(t) <wu(t) for tE€la,b]. (2.101)
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Now, (2.100) and (2.101) imply
a(t) < —[u(t)]- for tela,bl. (2.102)

On the other hand, according to (2.98), (2.100), (2.102), and the assump-
tions £g, 41 € Py, we have

o (t) > lo(a)(t) — () (t) > lo(a)(t) for t € [a,b].

Hence, the inclusion £y € V;l;()\,u), on account of (2.1), (2.99), and Re-
mark 2.3 (see p. 16), implies

a(t) >0 for tea,b].

It follows from this inequality and (2.101) that (2.48) holds.

We have proved that if u is a solution of the problem (1.1), (1.2), where
q € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) holds, then
the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.1p), (1.29) has only the trivial solution. Indeed, let up be a
solution of the problem (1.1¢), (1.29). Obviously, —up is a solution of the
problem (1.1p), (1.2¢), as well, and, according to the above-proved, we have

up(t) > 0, —up(t) >0 for t€ Ja,b].
Therefore, ug = 0. O

Proof of Theorem 2.6. Let u be a solution of the problem (1.1), (1.2),
where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) holds.
We will show that (2.48) is fulfilled.

Suppose that u changes its sign. Define the numbers M and m by
(2.94) and choose tys,ty, € [a,b] such that (2.95) is fulfilled. Obviously,
(2.96) holds and either (2.90) or (2.91) is satisfied.

First assume that (2.90) is fulfilled. The integration of (1.1) from s
t0 tm, in view of (2.94), (2.95), and the assumptions —¢ € P, and ¢ €
L([a,b]; Ry), results in

M+m=— 7€(u)(s)ds - 7q(s)ds < M/b 16(1)(s)|ds.

Hence, according to (2.23) and (2.96), we obtain M + m < M, which
contradicts (2.96).
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Now suppose that (2.91) holds. The integration of (1.1) from a to
tm and from ¢p to b, on account of (2.94), (2.95), and the assumptions
— Py and g € L([a, bl; R+), yields

tm tm

/12 s)ds —/ s)ds < M/w s)lds,  (2.103)
/e s)ds —/ s)ds < M/|€ s)lds.  (2.104)

Multiplying both sides of (2.103) by ‘%) and taking into account the as-

sumptions ‘%} €]0,1] and M > 0, we get

Summing the last inequality and (2.104), on account of (1.2), (2.1), (2.2),
and the condition M > 0, we find

’ ‘m<M/|€ s)|ds.

‘ ’m+M<‘ ‘m—i—M—i— sgn)\<M/\€ s)|ds.

1]

Hence, according to (2.23) and (2.96), we reach the contradiction ‘%‘ m +
M < M.

Therefore, u does not change its sign. Now assume on the contrary that
(2.48) is not valid. Due to the above—proved we have

u(t) <0 for té€la,b], uZ0. (2.105)

It follows from (1.1), (2.105), and the assumptions —¢ € Py, and g €
L([a,b]; Ry) that

u'(t) > l(u)(t) >0 for tea,b] (2.106)

Clearly, (2.105) and (2.106) imply u(a) < 0. Further, by virtue of (1.2),
(2.1), and (2.2), we have

|ulu(b) = [Mu(a) + esgn p < |Au(a). (2.107)
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Hence, with respect to the condition u(a) < 0 and the assumptions A # 0
and p # 0, we get u(b) < 0. Thus, (2.106) implies

u(t) <0 for te€a,b]. (2.108)
Put )
= max{ — L . a
r= { ult) te] ,b]}
and
v(t) =ru(t) +~(t) for tela,b. (2.109)

According to (2.11), (2.108), and the assumptions v € 5([a, b); R}) and
A # 0, we have

r> 0. (2.110)
It is clear that
v(t) <0 for tE€ [a,b] (2.111)
and there exists ¢y € [a, b] such that
v(tg) = 0. (2.112)

By virtue of (1.1), (2.10), (2.110), (2.111), and the assumptions —¢ € Py,
and ¢q € L([a, b];R+), we get

V' (t) > L(v)(t) +rq(t) >0 for t € |a,bl
From the last inequality, (2.111), and (2.112), we obtain v(b) = 0 and, in
view of (2.11) and (2.109)—(2.111), we find
ST S .
|plu(d) = ===4(b) > —=—=v(a) =

o (2.113)
= (uta) = ") > o),

which contradicts (2.107).

We have proved that if u is a solution of the problem (1.1), (1.2), where
q € L([a,b]; Ry) and ¢ € R is such that the inequality (2.2) holds, then
the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.1p), (1.29) has only the trivial solution. Indeed, let ug be a
solution of the problem (1.1p), (1.29). Obviously, —ug is a solution of the
problem (1.1p), (1.2¢), as well, and, according to the above-proved, we have

uo(t) >0, —ug(t) >0 for t€ Ja,b].
Therefore, ug = 0. O
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Proof of Theorem 2.7. Let u be a solution of the problem (1.1), (1.2),
where ¢ € L([a,b]; R+) and ¢ € R is such that the inequality (2.2) holds.
We will show that (2.48) is fulfilled.

Suppose that u(b) < 0. Then there exists ¢y € ]a, b] such that

u(t) <0 for t € [to,b]. (2.114)

Since / is an a—Volterra operator, the restriction of u to the interval [a, t(]
is a solution of the equation (1.1) with the condition u(tp) < 0. Moreover,
the restriction of 3 to the interval [a, to] is a positive absolutely continuous
function satisfying

B'(t) < L(B)(t) for t € [a,to].

According to Theorem 2.12 (for A = 0, u = 1, and b = ¢y, see p. 26), the
condition u(tg) < 0, and the assumptions —¢ € Py, and g € L([a, bl; R+),
we get

u(t) <0 for t € [a,tog).

This inequality, together with (2.114), yields (2.108). By the same argu-
ments as in the proof of Theorem 2.6 it can be shown that the inequality
(2.113) holds. On the other hand, by virtue of (1.2), (2.1), and (2.2), we
get (2.107), which contradicts (2.113).

Therefore, u(b) > 0. In view of (1.2), (2.1), and (2.2), the inequality

u(a) >0 (2.115)

holds. Since ¢ is an a— Volterra operator, with respect to (2.32), (2.33), and
Theorem 2.2 (see p. 19), we get £ € V.*(1,0), which, by virtue of (2.115)
and the assumption ¢ € L([a,b]; Ry), implies (2.48).

We have proved that if u is a solution of the problem (1.1), (1.2), where
q € L([a, b];R+) and ¢ € R is such that the inequality (2.2) holds, then
the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.1p), (1.29) has only the trivial solution. Indeed, let uy be a
solution of the problem (1.1¢), (1.29). Obviously, —ugp is a solution of the
problem (1.1p), (1.29), as well, and, according to the above—proved, we have

up(t) >0, —up(t) >0 for t€ [a,b].
Therefore, uy = 0. 0

To prove Theorem 2.8 we need the following lemma.
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Lemma 2.3. Let |u| > |\ #0, ¢ € L([a,b]; R-), ¢ € R be such that (2.85)
holds, and let the operator ¢ admit the representation £ = £y — {1, where £y
and {1 satisfy the condition (2.27). If, moreover,

A |l
[o(D)]lz < 'u , PG 1< |lei (D)1, (2.116)

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality (2.87).

Proof. Assume the contrary that the problem (1.1), (1.2) has a nontrivial
solution u satisfying the condition (2.87). Define the numbers M and m
by (2.88) and choose tyy, t,, € [a,b] such that (2.89) is satisfied. Obviously,
M >0, m > 0, and either (2.90) or (2.91) is valid.

First suppose that (2.91) holds. The integration of (1.1) from t,, to tas,

on account of (2.27), (2.87)—(2.89), and the assumptions ‘% € ]0,1] and
qE€ L([a, bl; R,), results in

'2‘ M-m<M-m t7[€0(u)(8) —L1(u)(s) +q(s)]ds <

m

< M/Eo(l)(s)ds < M||lo(1)||L-

Hence, by virtue of the first inequality in (2.116), we get
A
0<M e 1o(1)]|z ) < m. (2.117)

Now suppose that (2.90) is fulfilled. Clearly, the condition (1.2), on
account of (2.1) and (2.85), implies

C C

u(b) — " u(a) = — = il sgn A > 0. (2.118)

The integration of (1.1) from a to tj; and from ¢, to b, in view of (2.27),
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(2.87)—(2.89), and the assumptions }%‘ €]0,1] and g € L([a,b]; R—), yields

m (M = u(a)) < M —u(a) < 7lfo<u)(s>ds <M Zlfom(s)ds’

a

b b
u(b) —m < /Eo(u)(s)ds < M/Eo(l)(s)ds.

tm

Summing the last two inequalities and taking into account (2.118) and the
first inequality in (2.116), we find that the inequlity (2.117) is satisfied.
Therefore, in both cases (2.90) and (2.91), the inequality (2.117) is valid.
On the other hand, the integration of (1.1) from a to b, in view of (2.27),
(2.88), and the assumption g € L([a, bl; R_), results in

b
u(b) —u(a) = / [lo(u)(s) — fr(u)(s) + q(s)]ds < M|llo(1)][ L — mllr ()]

Hence, by (1.2), (2.1), (2.2), (2.85), (2.88), and the assumption ‘g‘ €10,1],

we have

C

]
SM%mm+M@—DD=MQ%mM—m+Q.

mwmeSMwamu+mm(rﬂﬂ)+ sgm <

This inequality, together with (2.117), yields

|1l _q
llleoMl

which contradicts the second inequality in (2.116). O

1 <
)l < 5=

In a similar manner one can prove the following assertion (we will need
it in §4).

Lemma 2.4. Let 0 # |u| < |A|, ¢ € L([a,b]; Ry), and ¢ € R be such that

csgn A > 0.
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Further, let the operator £ admit the representation £ = o — £1, where £y
and ¢y satisfy the condition (2.27). If, moreover,

A
C e =M

7!
Il < |5 ~ 1< (D,

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality (2.87).

Proof of Theorem 2.8. Let u be a nontrivial solution of the problem
(1.1), (1.2), where ¢ € L([a,b]; Ry) and ¢ € R is such that the inequality
(2.2) is fulfilled. We will show that (2.48) is satisfied.

Assume that u changes its sign. Define the numbers M and m by (2.94)
and choose tys,t, € [a,b] such that (2.95) is satisfied. Obviously, (2.96)
holds, and either (2.90) or (2.91) is fulfilled.

First suppose that (2.90) is valid. The integration of (1.1) from ¢y, to
tm, in view of (2.27), (2.94), (2.95), and the assumption ¢ € L([a,b}; R,),
results in

M+m= / [€1(u)(s) — Lo(u)(s)ds — q(s)]ds <

ty

<M/am@@+m/mn@w<mmmM+mwmh

Hence, according to (2.35), (2.36), (2.96), and the assumption ’%‘ <1, we
get the contradiction M +m < M + m.

Now suppose that (2.91) holds. Clearly, the condition (1.2), in view of
(2.1) and (2.2), implies

C C

u(a) —u(b) = T T sgn A > 0. (2.119)

The integration of (1.1) from a to ¢, and from ¢, to b, on account of (2.27),
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(2.94), (2.95), and the assumptions ‘%‘ €10,1] and ¢ € L([a,b); Ry ), yields

‘2‘ (m+u(a)) <m +u(a) < M]ﬁl(l)(s)ds + m/fo(l)(s)d&

b b
M —u(b) < M/61(1)(s)ds+m/€0(1)(3)ds.

Summing these inequalities and taking into account (2.119), we obtain
A
M| 7im s Mt (D) +mllo(D)] 2,

which, according to (2.35), (2.36), and (2.96), yields the contradiction M +
’%’ m < M +

Therefore, u does not change its sign, and, by virtue of Lemma 2.3 (see
p. 47), the inequality (2.48) is valid.

We have proved that if u is a nontrivial solution of the problem (1.1),
(1.2), where ¢ € L([a,b]; R4) and ¢ € R is such that the inequality (2.2)
holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.1p), (1.2p) has a nontrivial solution ug. Obviously, —ug
is a nontrivial solution of the problem (1.1p), (1.29), as well, and, according
to the above—proved, we have

A
2 om

ug(t) >0, —ug(t) >0 for t€ Ja,bl],

a contradiction. O

2.4. Comments and Examples

On Remark 2.4. Suppose that |p| < |A|, £ € Pgp, £ is an a—Volterra
operator, (2.18) holds, and the problem (1.1p), (1.29) has only the trivial
solution. According to Theorem 1.1 (see p. 14), the equation (1.1p) has
a unique solution u satisfying the condition

Au(a) 4+ pu(b) = sgn A. (2.120)
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Evidently, u # 0. According to Corollary 2.1 a) (see p. 17), we have
(e V1(1,0).
Therefore,
u(a) # 0 (2.121)

and, moreover, on account of the assumption ¢ € Py, either
u(t) >0 for t€a,b] (2.122)

or
u(t) <0 for te€la,b].

Thus, from (1.1p), (2.1), and (2.120) we have
lu(t)| = £(Jul)(t) for t€ [a,b], (2.123)
|[Au(a)] — |pu(d)| = sgnu(a). (2.124)

It follows from (2.123) that |u(t)|" > 0 for ¢ € [a, b] and therefore, since ¢ is
an a— Volterra operator, we have

lu(t)]” < (1) (t)|u(t)| for t € [a,b].

The last inequality yields

lu(t)] < |u(a)|exp /E(l)(s)ds for t € la,b],

a

whence, in view of (2.18), we get
[pu(b)] < |Au(a)l.

This inequality, together with (2.121) and (2.124), implies u(a) > 0 and so
(2.122) holds. Therefore, u is a positive solution of (1.19) and |Au(a) >
|12|u(b), thus, according to Theorem 2.1 (see p. 17), we have £ € V1 (X, ).

Example 2.1. Let 0 # |u| < |\, € > 0, and let p € L([a,b]; R4) be such

that
b

|| exp /p(s)ds =[N +e. (2.125)

a
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It is clear that the operator ¢ defined by
L)) Cpt)o(t) for t € [a,b] (2.126)

is an a—Volterra operator and satisfies

b
|| exp /E(l)(s)ds = |\ +e.

a

According to (2.125), the homogeneous problem (1.1¢), (1.29) has only the
trivial solution. Obviously, the function

u(t) = —exp /p(s)ds for t € [a,b

a

is a solution of the problem
u'(t) = L(u)(t), Au(a) + pu(b) = esgn .
On the other hand, u(t) < 0 for ¢t € [a,b], and so £ & VT (A, ).

On Remark 2.5. Suppose that |u] < |A|, £ € Py, (2.19) holds, and the
problem (1.1p), (1.29) has only the trivial solution. According to Theo-
rem 1.1 (see p. 14), the problem (1.1p), (2.120) has a unique solution u.
Assume that v admits negative values. Put

m = max{—u(t) : t € [a,b]} (2.127)
and choose ty € [a,b] such that u(tg) = —m. The integration of (1.1p)

from a to tp and from ¢y to b, in view of (2.8), (2.127) and the assumption
ul < A, yields

m+ u(a /€ ds<m/€
5= = ][z f 00
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Summing the last two inequalities and taking into account (2.1) and (2.120),
we obtain

b
m (1 — ’%D + |:>L\| < m/ﬁ(l)(s)ds.

The last inequality, together with (2.19), yields the contradiction m < m.

Consequently, u(t) > 0 for ¢ € [a,b] and, in view of (1.1p) and (2.8),
u'(t) > 0 for t € [a,b]. On the other hand, since A # 0, it follows from (2.1)
and (2.120) that

u(a) > 0, Au(a) =1+ |pu(b).

Hence, u(t) > 0 for t € [a,b] and |Au(a) > |p|u(b). Thus, according to
Theorem 2.1 (see p. 17), we have ¢ € Va“;(/\,,u).

Example 2.2. Let |u| < [\, e > 0, and let p € L([a, b]; R) be such that

b
N / p(s)ds = A — |ul +<.

It is clear that the operator ¢ defined by
L()(t) = p(t)v(b) for te [a,b] (2.128)

satisfies
b
A / 0(1)(s)ds = A — [l +e.

Moreover, the problem (1.1p), (1.2¢) has only the trivial solution. Indeed,
the integration of (1.1g) from a to b, in view of (1.29) and (2.1), implies
[AJu(b) = u(b)(|\| + €), i.e., u(b) = 0. Hence, by (1.19) we get u/(t) = 0 for
t € [a,b] and so u = 0.

On the other hand, the function

u(t) =¢e—|p| — |\ /p(s)ds for t e [a,b]

is a solution of the problem
u'(t) = L(u)(t), Au(a) + pu(b) = e
with u(b) = —|A|. Therefore, £ & VI (X, ).
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Example 2.3. Let 0 # |u| < |A| and let p € L([a, b]; R+) be such that

b

|| exp /p(s)ds = |\l

a

It is clear that the operator ¢ defined by (2.126) is an a—Volterra operator
and satisfies

b
4] exp / ((1)(s)ds | = A

On the other hand, the function

u(t) = exp /p(s)ds for t € [a,b

a
is a nontrivial solution of the problem (1.1p), (1.29), and so £ & V.t (X, p).
Example 2.4. Let |u| < [A|, and let p € L([a,b]; R1) be such that

b
A / p(s)ds = A — |l

Obviously,
b

b b
] exp / ((1)(s)ds | + | / 7(1)(s) exp / ()(€)de | ds = |,

s

where £ is defined by (2.128) and

b
1(v)(t) ¥ p(t)o(d) / p(s)ds for t€ [a,b].

It is also evident that the inequalities (2.13) (with o = 1, k = 2, and m = 3)
and (2.16) are fulfilled.
On the other hand, the function

u(t) = |p| + | Al /p(s)ds for t € la,b

is a nontrivial solution of the problem (1.1y), (1.29) and so £ & VI (X, ).
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Example 2.5. Let |u| < |A|, b1 € ]a, b, and let € € ]0,2[. Choose ¢ € |0, €]
such that 5 5

563 +§el+% +1—e% <eg,
and let g € L([a,b]; R+) be such that g # 0 in [by — 8o, by[ for some &y > 0,

and

Put

a for telab -
v(t) = {b for 1 [b bl[ () =
1 for t € [by,b] 0 for t € [b1, 0]

S o

g(s)ds for t € [a,b]

Obviously, the assumptions of Theorem 2.2 are fulfilled except of (2.21),
instead of which the condition (2.22) is satisfied, where ¢ is defined by

1)) ¥ —g)w(v(t) for t€ [a,b]. (2.129)

Evidently,
b

/w(l)(s)ws 146 <l4e

and, moreover,
b s
/]z(1)(s)|exp /15(1)(§)yd§ ds=1+0c3+ 0 r1-ch <1t

where £ is defined by (2.26).
On the other hand, the function

1-— ftg(s)ds for t € [a,b1]
(1-19) (1 —jg(s)ds) for t € [by, D]
is a solution of the problem

u'(t) = L(u)(t), Au(a) + pu(b) = X — 1o <1 - 6)

with u(b) = —3(1 — §) < 0. Therefore, £ & V.5 (A, ).

u(t) =
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On Remark 2.10. Let 0 # |u| < |\|. Below, for every zg,yp € R+ such
that (z0,y0) & A the functions p € L([a,b; R), ¢ € L([a,b]; R+) and
T € M are constructed such that

b b
wo= [loelads. = [ Ipls))-ds (2.130)
and the problem
W'(t) = pt)u(r(t)) +q(t),  Au(a)+ pu(d) =0 (2.131)

has a solution, which is not nonnegative. Thus, according to Definition 2.1
(see p. 15), we have ( ¢ Va'g()\,u), where £ = £y — {1 with

L)1) = pM)]so(r(®),  a)E) E pO]_v(r(t).  (2.132)

It is clear that if zo,yp € Ry and (xo,y0) € A, then (zg,yo) belongs at
least to one of the following sets:

A1={($7:U)€R+><R+ : ’g’ <y}7

|l }
1 — <
lly + A

A2:{(9C73/)€R+><R+ : yS’%
Let (zo,y0) € A;. Put a =0, b =3,

[

—yo forte0,1
yo forte] 2 forte 0,2
1L,2[, 7(t)= ,
3

p(t) =40 for t € [1,

1 fortel2,3
xo for ¢t € [2, 3] ort € [2,3]

0 for t € [0, 1]
qt) = INA +yo) — || forte(1,2] .
zo(|Ayo — |il) for t € [2,3]

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

[l = [Alyot for t € [0,1]

u(t) = S (A1 +yo) — |ul) (t = 2) +|A[  fort € [1,2]
Al for ¢ € [2, 3]
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with (1) = —(|Alyo — |#l) < 0.
Let (z9,y0) € Az. Put a =10, b =3,

L= et for ¢t € [0, 1] 1 fortel01]
p(t) = xo—l—l—m forte[1,2[, 7(t)=1<3 fortell,2[,
—Yo0 for ¢t € [2,3] 0 forte 23]
0 for t € [0,1[ U [2, 3]
10 =1 (ar: —1+%) for ¢ € [1,2] '
0 [1elyo+IA] ’

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution
—(lulyo + Al = |t = |p| - for ¢ € [0,1]
u(t) = =(lulyo + |A]) for ¢ € [1,2]
|1lyo(t = 3) — (Al for ¢ € [2,3]
with u(3) = —|A| < 0.

Example 2.6. Let |u| < ||, ¢ €]0,1[, and let p, g € L([a,b]; R+) be such
that

b
/p(s)ds =(1+e¢) A ‘;‘ ’“’, (2.133)

a

b

b
/g(s)ds <1, / §)ds < & (N — |u]). (2.134)

Let ¢ = fyg — ¢1, where

o)) ¥ ptw®), 60 Y gt (@) for telab.  (2.135)

According to (2.133), (2.134), Remark 2.5 (see p. 19), and Theorem 2.3
(see p. 20), we find

(L—e)lo € Vi (A ), —l € VE(A, ).

Note also that the problem (1.1p), (1.29) has only the trivial solution. In-
deed, the integration of (1.1p) from a to b, on account of (1.2¢), (2.1), and

(2.133), yields
Al = [p H
b — = 0.
o) (=P g 5]
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Now, by (2.134) we get u(b) = 0. Consequently, u(a) = 0, v/(t) = 0 for
t € [a,b] and so u = 0. Therefore, the problem (1.1p), (2.120) has a unique
solution wu.

On the other hand, the integration of (1.1p) from a to b, by virtue of
(2.133), implies

Al = lul

u(b) — u(a) = u(b)(1 +¢) K

u(a)lgll,

whence, in view of (2.1) and (2.120), we get

ute) (=P < gl [5]) = 5l -

By (2.134) we obtain u(b) < 0 and so £ & VI (X, p).

Example 2.7. Let |u| < |A|, € €]0,1[, and let p,g € L([a, b};RJr) be such
that

b b
Al = |l 14
/p(s)ds < BV /g(s)ds =1+e. (2.136)

Let ¢ = {y — ¢1, where £y, 1 are defined by (2.135). According to (2.136),
Remark 2.5 (see p. 19), and Theorem 2.3 (see p. 20), we find

by € V;’I;()\,u), —(1 — 5)51 S V(;'I;(A,u).

Note also that the problem (1.1p), (1.29) has only the trivial solution. In-
deed, the integration of (1.1p) from a to b, on account of (1.2¢), (2.1), and
(2.136), yields

u) (ol - 1-=|]) =0

Now, by (2.136) we get u(b) = 0. Consequently, u(a) = 0, u/(t) = 0 for
t € [a,b] and so u = 0. Therefore, the problem (1.1y), (2.120) has a unique
solution wu.

On the other hand, the integration of (1.1p) from a to b, by virtue of
(2.136), implies

u(b) — u(a) = u(d)|pllz — u(a)(1 +¢),

whence, in view of (2.1) and (2.120), we get

iy =) (Iplle =1 =< |5])
ol

By (2.136) we obtain u(b) < 0 and so £ & V_F(X, u).
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Example 2.8. Let [u| > [A| #£ 0, e > 0 and let g € L([a,b]; R1) be such

that
b

/g(s)ds =1+e.

a

It is clear that the operator ¢ defined by
L)) ¥ —g(tv(a) for t€ [a,b] (2.137)

satisfies
b

/E(l)(s)|ds =1+e.

a

Put
b
——a—i-/g ds for te€[a,b].

t
Obviously, there exists o € |a, b[ such that u(tg) = 0. Define the function
v E C([(I,b],R+) by

b
—e+ | g(s)ds for te€la,ty
MORE R A o tol
0 for t € [to,b]

It is not difficult to verify that v satisfies the inequalities (2.10) and (2.11).
On the other hand, u is a solution of the problem

u'(t) =(u)(t),  Au(a) + pu(b) = A — pe
with (sgn A — sgn u)(\ — pe) > 0. However, u(b) = —e < 0 and therefore,
0 V(N ).
Example 2.9. Let || > [A| # 0 and let g € L([a,b]; R+) be such that

b
1l / g(s)ds = [u] — A

It is clear that the condition (2.23) is fulfilled, where ¢ is defined by (2.137).
Moreover, the function

:]A]+|u|/g(s)ds for 1€ [a,b]
t
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satisfies the inequalities (2.32) and (2.33) and the function v = [ satisfies
the inequalities (2.10) and (2.31).

On the other hand, § is a nontrivial solution of the problem (1.1p),
(1.2). Therefore, £ & VT (X, ).

Example 2.10. Let |p| > |A| # 0, e > 0 and let by € ]a, b be an arbitrarily
fixed point. Choose ¢,q € L([a, b];R+) and ¢ € R such that (2.2) holds,
g Z 0 in [by — dg, by[ for some §y > 0, and

a b
by
qt) =0 for telb,b], g(s)ds = — c
a J9(s)ds —1
b1
Put
b1
Bt) = tfg(s)ds for t € [a,by] = {a for t € [a,by] |
0 for t e [bl,b] by for te€ [bl,b]

fbg(s)ds for t € [a,b]
() =" _
[g(s)ds for t € [by,]

Let the operator ¢ be defined by (2.129). Obviously, the function ~ satisfies

the inequalities (2.10) and (2.11). It is also evident that £ is an a—Volterra

operator and the function [ satisfies the inequalities (2.33) and (2.34).
On the other hand, the function

bl bl
< + c—&-}\us J g(s)ds — [q(s)ds for t € [a,bi]
J g(s)ds—1 ¢ t
u(t) =" ,
—e+5——— [yg(s)ds for t € [by, 0]
[ g(s)ds—1 t
by

is a solution of the problem (1.1), (1.2) with u(b) = —e < 0. Consequently,
g g Va—g(A7 lu‘)'
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On Remark 2.15. Let |u| > || # 0. Below, for every zg,yp € R+ such
that (zo,y0) ¢ B the functions p € L([a, b};R), q € L([a,b];R+), and
T € Mgy are constructed such that (2.130) holds and the problem (2.131)
has a solution, which is not nonnegative. Thus, according to Definition 2.1
(see p. 15), we find ¢ ¢ VJ(}‘»M)v where ¢ = ¢y — {1 with £y, ¢1 given by
(2.132).

It is clear that if zo,yo € Ry and (x0,y0) € B, then (zg,yo) belongs at
least to one of the following sets:

Blz{(xay)ERJrXRJr : 1<y}7

Al 1 1= 1A
By = T,y eR,. xR "_Sx,<y§1 7
2 {( ) ' " i 1+y A
— A
B3:{($,y)€R+XR+ : y<|u|‘/\“‘}
Let (zo,y0) € By. Put a =0, b =3,
- for t € ]0,1
(t) 0 forte[l 2{ (=" fortelodl
- or s y, T = ’
’ 1 fortell,3]
o for t € [2, 3]
0 for t € [0, 1]
q(t) = S I\ + |ul(yo — 1) forte[1,2] .
’M’l‘o(yo - 1) for ¢t c [2’ 3]

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

il = plyot for t € [0,1]
u(t) = 4 (Al + 1plyo — D) (E=2) +[A] - for t € [1,2]
Il for ¢t € [2, 3]

with (1) = —|p|(yo — 1) < 0.
Let 2|A| > |u| > ||, (zo,y0) € B2. Put a =0, b= 3,

—Yo for t € [0,1] 1 fortel0,1]
p(t) = ‘%‘ - 1+1yo for t € [1,2] , T(t)=<0 forte[l,2],
w0 3]+ ok forte (2,3 2 forte (2,3
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0 for t € [0, 2]
Al (o — 2] + 75 for t € [2,3]
It is not difficult to verify that (2.130) holds, and the problem (2.131) has

the solution

MZE t—|pl for t € [0,1]
u®) =3 (A - L) @1~ 1A forte[1,2]
—|Al for ¢t € [2,3]

with u(0) = —|u| < 0.
Let (z9,y0) € Bs. Put a=0,b=2, 7 = 2,

—yo forte|0,1 wl — Al = |Alyo  fort e 0,1
p(t) = 0 [0, 1] . qt) = | = [Al = [Alyo [0, 1] )
xo for t € [1,2] IA|zo for t € [1,2]

It is not difficult to verify that (2.130) holds, and the problem (2.131) has

(Il = ADE = Il for ¢ € [0,1]

the solution
(t) =
=l for t € [1,2]

with u(0) = —|pu| < 0.



§3. Differential Inequalities for EDA

In this section, the results from §2 will be concretized for the case, when
the operator £ € L,;, has one of the following forms:

(o)) = Y pro(m(t) for ¢ € [a,b], (3.1)
k=1
(o)1) E =3 gu(tyo(u(t)) for t € [a,0], (3.2)
k=1
((v)(1) déf2<pk<t>v<m<t>>gk<t>v<uk<t>>) for tefabl, (3.3)
k=1

where pg, gr € L([a,b];R+), Ty Uk € Mgy (k=1,...,m), and m € N.
We will also assume that the inequality (2.1) holds and |A| + |p| # 0.
Furthermore, if A = —pu, then the operator ¢ € L, is supposed to be

nontrivial, i.e., £(1) # 0.
In what follows we will use the notation

po(t) = ij(t), go(t) = Zgj(t) for t € a,b].
j=1 j=1

3.1. On the Set VL (A, p)

In the case, where |u| < |A|, the following assertions hold.

Theorem 3.1. Let |u| < ||, pr € L([a,b]; Ry), 7o € Mgy (k=1,...,m),
and let at least one of the following items be fulfilled:

a) T(t) <t fortea,b (k=1,...,m) and
b

4] exp / po(s)ds | < NI (3.4)

a

b) there exists a € |0, 1] such that on [a,b] the inequality

b t
‘/\"ﬁ’\ﬂ\ 5(5)d3+/5(3)d8 < (a—po) }70+/po(s)ds (3.5)

a
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holds, where
Tk (t)

) = et /m@@ for telab],
k=1

a

b

~ 1] /
Po= po(s)ds;

A= ul J

b
mmp/mm8+

a

3.6
7k (8) b ( )

b m
+W/mew>/m@ﬁwp/Manqm
a k=1 s

s

where

%@:%ﬂ+%mm@—ﬂ)ﬁrt€@M (k=1,....,m).

Then the operator { defined by (3.1) belongs to the set V.t (A, p).

Remark 3.1. Examples 2.3 and 2.4 (see p. 54) also show that the assump-
tion @ € ]0,1[ in Theorem 3.1 b) cannot be replaced by the assumption
a € ]0,1] and the strict inequalities (3.4) and (3.6) cannot be replaced by
the nonstrict ones.

Theorem 3.2. Let 0 # |u| < [A, pr € L([a,b];Ry), T € My, (b =
1,...,m), po Z0, and let there exist x € }O,IH ’%H such that

5 (t)

ess sup / po(s)ds:t € [a,b] p <n(z) (k=1,...,m), (3.7)

where
(1A = |ul)=

b
(Al(e® = 1) [ po(s)ds

S 1
n(z) . T+ In
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Then the operator £ defined by (3.1) belongs to the set V.t (A, p).

Corollary 3.1. Let 0 # |u| < |A, pr € L([a,b; Ry), T € Mg, (k =
1,...,m), po Z0, and

b
7k (t) [ po(s)ds In ’A‘
ess sup / po(s)ds : t € [a,b] p < & S In — a
t T Tt

for k =1,....,m. Then the operator ¢ defined by (3.1) belongs to the set
Va—’b_()\ﬂu)

Theorem 3.3. Let |u| < |A|, gx € L([a,b];R+), Vp € My, vi(t) < t for
t € [a,b] (k = 1,...,m), and let at least one of the following items be
fulfilled:

a)
b
/go(S)dS <1 (3.9)
b)
b m S m s
[0 [ Sa©ew| [ am|dis<i @)
R=L (s Vi)
¢) go Z0 and

¢
ess sup / go(s)ds : t € [a,b] p <n* (k=1,...,m), (3.11)

vk (t)

where

. 1
n" =sup —In| xz+ x>0, . (3.12)
X
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Then the operator £ defined by (3.2) belongs to the set V.t (A, p).

Remark 3.2. Example 2.5 (see p. 55) also shows that the inequalities (3.9)
and (3.10) in Theorem 3.3 cannot be replaced by the inequalities

b
/gg(s)ds <l+e¢

and
b m 5 m s
/ng(S) / > gi(€)exp /go(n)dn déds < 1+e¢,
a k=1 ve(s) "= vi(€)

no matter how small € > 0 would be.

Theorem 3.4. Let 0 # |u| < |A| and pg, gr € L([a,b]; Ry) (k=1,...,m).
Let, moreover,

b

/po(s)ds <1, (3.13)
[ m(s)a
po(s)ds b
“ . - W‘;‘M < /go(s)ds < ‘g’ (3.14)
1— [ po(s)ds a

Then the operator { defined by (3.3) belongs to the set V.5 (X, ).

Remark 3.3. The examples constructed in Subsection 2.4 (see On Re-
mark 2.10, p. 56) also show that neither one of the inequalities in (3.13)
and (3.14) can be weakened.

Theorem 3.5. Let |u| < |A|, pk,gx € L([a,b];R+), and T, v, € Mg
(k=1,...,m). Let, moreover, the functions px, 7 (k= 1,...,m) satisfy
at least one of the conditions a), b) or ¢) in Theorem 3.1 or the assumptions
of Theorem 3.2, while the functions gi, vy (k= 1,...,m) satisfy vi(t) <t
fort € [a,b] (kK =1,...,m) and at least one of the conditions a), b) or
¢) in Theorem 3.3. Then the operator ¢ defined by (3.3) belongs to the set
Vop (A ).



3.1. ON THE SET V! (X, n) 67

Remark 3.4. According to the optimality of Theorems 2.5, 3.1, and 3.3,
Theorem 3.5 is also nonimprovable in a certain sense.

In the case, where |u| > |A|, the following statements hold.

Theorem 3.6. Let |u| > |A] # 0, g € L([a,b]; R}), vp € My, (k =
17"'7m)7 907_éO)
b

/go(S)ds <1, (3.15)

a

, +00 [ such that

and let there exist x € [ln !%

t
ess inf / go(s)ds : t € a,b] p > w(x) (k=1,....,m), (3.16)
vi(t)

where

(Il = A=

b

|ul(e* = 1) [ go(s)ds
Then the operator { defined by (3.2) belongs to the set Vi (X, ).

Corollary 3.2. Let |u| > [A| # 0, g € L([a,b; Ry), vk € Mg (k =
1,...,m), go # 0, the inequality (3.15) hold, and

w(x) = —|* +1In (3.17)

b
t [ go(s)ds
ess inf / go(s)ds : t € [a,b] p > =
Wikl
b(®) J go(s)ds
for k =1,...,m. Then the operator ¢ defined by (3.2) belongs to the set
Va—g()\ﬂ /’L)

Remark 3.5. Example 2.8 (see p. 59) also shows that the inequality (3.15)
in Theorem 3.6 and Corollary 3.2 cannot be replaced by the inequality

n ||

In

1%

b

/go(S)dS <l+eg,

a

no matter how small € > 0 would be.
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Theorem 3.7. Let |u| > [A| #0, gi € L([a,b]; Ry), vk € Ma,
vp(t) <t for tela,b (k=1,...,m), (3.18)
go # 0, and let the condition (3.11) hold, where n* is defined by (3.12). If,

moreover,
b

Alexp / go(s)ds | > lul, (3.19)

a

then the operator ¢ defined by (3.2) belongs to the set VI (X, ).

Corollary 3.3. Let |u| > |\ #0, gk € L([a, b];R+), Vg € Map, vi(t) <t
fortela,b] (k=1,...,m), go Z0, the inequality (3.19) hold, and

t
/ go(s)ds <
v (t)

Then the operator { defined by (3.2) belongs to the set V.5 (X, ).

for te€la,b (k=1,...,m). (3.20)

Q|

Remark 3.6. It is clear that for the ordinary differential equations, i.e., if
{ is defined by

m
L)) E =3 gultyu(t) for te ab], (3.21)

k=1
where g € L([a,b]; Ry) (k = 1,...,m), the conditions (3.11) and (3.20)
are fulfilled, and the condition (3.19) is sufficient and necessary for the
operator ¢ given by (3.21) to belong to the set V.t (X, u) with |u| > |A] # 0.
Thus, the inequality (3.19) in Theorem 3.7 and Corollary 3.3 cannot be
weakened.
Theorem 3.8. Let [pu| > [\ # 0 and p, gx € L([a,b]; Ry) (k=1,...,m).
If, moreover,

: (3.22)

a/bpo(s)dé’ < '2
b

"“ﬂ 1< /go(s)ds <1, (3.23)
A=l fpols)ds

then the operator ¢ defined by (3.3) belongs to the set VI (A, ).
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Remark 3.7. The examples constructed in Subsection 2.4 (see On Re-
mark 2.15, p. 61) also show that neither one of the inequalities in (3.22)
and (3.23) can be weakened.

3.2. On the Set V_, (A, 1)

In the case, where |u| < |A|, the following assertions hold.

Theorem 3.9. Let 0 # |u| < |A, pr € L([a,b];Ry), 7 € Mg, (k =

1’~-»m),PO¢O,
b

/ po(s)ds <1, (3.24)

a

and let there exist x € [ln ‘%) ,+oo[ such that

(1)
ess inf / po(s)ds:t € [a,b] p > n(z) (k=1,...,m), (3.25)
t

where n is defined by (3.8). Then the operator £ defined by (3.1) belongs to
the set V(A ).

Corollary 3.4. Let 0 # |u| < [\, pr € L([a,b]; Ry), 76 € Mg (k =
1,...,m), po Z 0, the inequality (3.24) hold, and

b
7 () [ po(s)ds In ‘A’
ess inf / po(s)ds : t € [a,b] p > S In — a
: i p(s)ds

for k =1,...,m. Then the operator ¢ defined by (3.1) belongs to the set
Va;()\ﬂu)

Theorem 3.10. Let 0 # |u| < |\, pr € L([a,b]; Ry.), T, € Map, () >t
fort€la,b] (k=1,...,m), po Z0, and

T (t)

ess sup / po(s)ds:t € a,b] p <w* (k=1,...,m), (3.26)
t
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where

1
w'=supq —In| z+ ° x>0 (3.27)
x

exp <:cfpo(s)ds> -1

b
|| exp /po(s)ds > ||, (3.28)

a

then the operator ¢ defined by (3.1) belongs to the set V_ (A, ).

If, moreover,

Corollary 3.5. Let 0 # |u| < A, pr € L([a,b); Ry), Tk € Map, T(t) >t
fort€la,b] (k=1,...,m), po Z 0, the inequality (3.28) hold, and

Tk(t)

/ po(s)ds <

t

o |

for t€la,b (k=1,...,m).
Then the operator  defined by (3.1) belongs to the set V. (X, ).

Theorem 3.11. Let 0 # |u| < |A| and let py,gr € L([a,b]; Ry) (k =
1,...,m). If, moreover,

b

/ s)ds < ‘ )

b

A
‘b‘ —1</p0(s)ds§1,
W= foo(s)ds 4

then the operator £ defined by (3.3) belongs to the set V_ (A, ).

In the case, where |u| > |\|, the following statements hold.

Theorem 3.12. Let |M| > |)‘|; 9k GL([(I, b]a RJr); vk € Map (k =1,... )m))
and let at least one of the following items be fulfilled:
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a) vg(t) >t fort € [a,b] (k=1,...,m) and

b
|A| exp (/go(s)ds> < |ul;

a

b) there exists a € |0, 1] such that on [a,b] the inequality

b b b
WWW /g(s)der/E(s)ds < (@ —90) (§o+/90(5)ds) ;

holds, where

m b
30 => 0| [ aols)ds | for teat]

k=1 v (t)

b

~ IA| /

go = go(s)ds;
| — Al )

b
|\| exp (/gg(s)ds) +

a

a

b m s s
+lul / S g (s)(s) / go(€)de | exp ( / go<n>dn> ds < ul,
o k=1

vg(s)

where

ak(t):%(l—ksgn(t—yk(t))) for telabl  (k=1,...,m).

Then the operator £ defined by (3.2) belongs to the set V_ (X, ).



72 §3. DIFFERENTIAL INEQUALITIES FOR EDA

Theorem 3.13. Let |u| > |A| # 0, gr € L([a,b; Ry), vk € Ma, (k =
1,...,m), go £ 0, and let there exist x € ]O,IH ‘%H such that

1%

t
ess sup / go(s)ds : t € [a,b] p < w(x) (k=1,...,m),
(1)

where w is defined by (3.17). Then the operator £ defined by (3.2) belongs
to the set V_, (X, ).

Corollary 3.6. Let |u| > [A| # 0, g € L([a,b; Ry), v, € Mg (k =
1,...,m), go Z0, and

b
t [ go(s)ds I |ﬁ
ess sup / go(s)ds :t € la,b] p <= In [ In — A
o |4
i (t) A [ go(s)ds

for k =1,...,m. Then the operator { defined by (3.2) belongs to the set
Vag(A’M)

Theorem 3.14. Let |u| > |A, pr € L([a,b]; Ry), T € Mgy, () >t
fort € [a,b] (k=1,...,m), and let at least one of the following items be
Fulfilled:

y
b
[ miss <1
b)
b o, Tr(s) . 7i(§)
[3me [ Sn@ew| [ | deds <1
5 k=1 =1 p

¢) po Z 0 and the condition (3.26) holds, where w* is defined by (3.27).

Then the operator £ defined by (3.1) belongs to the set V_, (X, ).
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Theorem 3.15. Let |u| > |[A| # 0 and let pp, g € L([a,b; Ry) (k =
1,...,m). If, moreover,

b

/QO(S)d‘S < 17
J
go(s)ds b
a o ‘:U“‘ B |)‘| < ( )d < é
b A P Tl
1— [go(s)ds a

then the operator £ defined by (3.3) belongs to the set V_ (A, ).

Theorem 3.16. Let || > |\, pr, gk € L([a,b]; Ry), and Tk, v € Mgy
(k=1,...,m). Let, moreover, the functions px, 7, (k = 1,...,m) satisfy
TK(t) >t fort € [a,b] (k = 1,...,m) and at least one of the conditions
a), b) or ¢) in Theorem 3.14, while the functions gig,vi (K = 1,...,m)
satisfy at least one of the conditions a), b) or c¢) in Theorem 3.12 or the
assumptions of Theorem 3.13. Then the operator £ defined by (3.3) belongs
to the set V_ (A, ).

Remark 3.8. Similarly as in Subsection 3.1 one can show that Theo-
rems 3.9-3.12 and 3.14-3.16 and Corollaries 3.4 and 3.5 are also nonim-
provable in a certain sense.

3.3. Proofs

Proof of Theorem 3.1. a) The validity of the theorem immediately fol-
lows from Corollary 2.1 a) (see p. 17).
b) According to (3.5) we have

p3(t) < aps(t) for t € la,b),

where pg, p3 are defined by (2.14) and ¢ is given by (3.1). Therefore, the
assumptions of Corollary 2.1 b) (see p. 17) are fulfilled for £ = 2 and m = 3.
c) Let ¢ be an operator defined by

m 5 (t)

10Oy noa [

k=1 ¢

pi(s)v(ri(s))ds for t € [a,b],
1

m
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where o (t) = $(1+sgn(rg(t) —t)) for t € [a,b] (k =1,...,m). Obviously,
{ € Py and

m ()
L)1) = LRI (0)(E) = D pr(t) / > pis)o(ri(s))ds <
k=1 ;  i=1

<L(v)(t) for te€la,b], veC(a,b];Ry),

where ¥ is defined by (2.17). On the other hand, according to (3.6), the
inequality (2.15) holds. Hence, the assumptions of Corollary 2.1 ¢) (see

p. 17) are fulfilled. O
Proof of Theorem 3.2. According to (3.7), there exists ¢ € ]0,1[ such
that
b
Tk (1) fpo(s)ds .
o exe
/ po(s)ds < =———— In (3.29)
Al —|ple®
t S po(s)ds (e — 5457
fort € [a,b] (k=1,...,m). Put
0= (3.30)
J po(s)ds

Obviously, g > 0. By virtue of (3.29), (3.30), and the assumption x €
}O,ln ‘%H, we obtain

t T (t)
zo [ po(s)ds zo [ po(s)ds |)\’ — |,u|ex
Tpe o >e @ - (3.31)
Al = [#l
fort € [a,b] (k=1,...,m), and
b
xo/po(s)ds < x. (3.32)
Put .
T (s)ds A — x
y(t)=e s _ D= lufe for t € la,b]
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According to the assumption = € ]O,ln ‘% }, it is clear that ~(¢) > 0 for

t € [a,b] and, on account of (3.31), we obtain

T (1)
m zo [ po(s)ds Al — 1le®
(=Y mte) (2 B
k=1 H
Jpo(s)d
<po(t)zpe I =4/(t) for te€ la,bl,

where ¢ is defined by (3.1), i.e., the inequality (2.10) is fulfilled. On the
other hand, it follows from (3.32) that the inequality (2.11) holds. Thus,
the assumptions of Theorem 2.1 (see p. 17) are fulfilled. O

Proof of Corollary 3.1. The validity of the corollary immediately fol-

lows from Theorem 3.2 for x = In ’ﬁ‘ O

Proof of Theorem 3.3. a) The validity of the theorem immediately fol-
lows from Theorem 2.3 (see p. 20).

b) If (3.10) holds, then the operator ¢ defined by (3.2) satisfies the
condition (2.25), where £ is given by (2.26), and thus, the assumptions of
Corollary 2.2 (see p. 20) are satisfied.

c¢) According to (3.11), there exists € > 0 such that

14

t
/ go(s)ds <n*—e for tea,b] (k=1,...,m). (3.33)
. (t)

Choose o > 0 and § € ]0, 1] such that

.CC()(l - (5)

exp (:Eo fbgo(s)ds> - (1-9)

1
—In | zo+ >n' —e, (3.34)

o

and put

b
zo [ go(s)ds
t

v(t) =e —(1=9) for tE€]la,b].
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The inequalities (3.33) and (3.34) imply

b b
zo [ go(s)ds zo [ go(s)ds
Toe >e ® —(1-4¢) for tela,b]. (3.35)

Hence, we obtain

m zo [ go(s)ds
() == grt) | e O -(1=0)|=
k=1
fb (s)d
> —go(t)roe i =4/(t) for tela,b],

where / is defined by (3.2), i.e., the inequality (2.20) is fulfilled. Obviously,
(2.21) holds and thus, the assumptions of Theorem 2.2 (see p. 19) are
satisfied. O

Proof of Theorem 3.4. The validity of the theorem immediately follows
from Theorem 2.4 (see p. 21). O

Proof of Theorem 3.5. The validity of the theorem follows from Theo-
rem 2.5 (see p. 22) and Theorems 3.1, 3.2, and 3.3. O

Proof of Theorem 3.6. According to (3.16), there exists ¢ € |1,4o00[
such that

b
¢ afgo(s)ds o
/ go(s)ds 2 =—————1In+ (3.36)
Vi (£) {go(s)ds (GEI + |’le:;\7')
fort € [a,b] (k=1,...,m). Put
zg= . (3.37)
J g0(s)ds

a

Obviously, g > 0. By (3.36), (3.37), and the assumption = € [ln ‘%} ,+o00 [,

we obtain .
b
20 [go(s)ds _ To [ go(S)ds o yjer )
xoe ¢ <e "W

< NRp LA LAl (3.38)
1l = Al
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fort € [a,b] (k=1,...,m), and

b
:L'o/go(s)ds > x. (3.39)

Define the function v € 5([@, b]; R) by

b
wofoo)ds  [Ale” — |l
T2
Obviously, if ¢ is defined by (3.2), then (3.15) implies (2.23), and by virtue

of (3.39) and (3.40), the function v satisfies (2.11). Moreover, in view of
(3.38), we obtain

v(t) =e for t € [a,b]. (3.40)

b

m zo [ go(s)ds et —
()0 ==Y ault) [ e w0 4 I

b
zo [ go(s)ds
< —go()zoe 1T =) for t € [a0],
i.e., the inequality (2.10) is fulfilled. Therefore, according to Theorem 2.6
(see p. 23), £ € V.E (A, ). O

Proof of Corollary 3.2. The validity of the corollary immediately fol-
lows from Theorem 3.6 for z = In ‘%‘ O

Proof of Theorem 3.7. According to (3.11), there exists € > 0 such that
(3.33) holds. In view of (3.12), we can choose zp > 0 and ¢ € ]0, 1 such
that (3.34) is fulfilled. Put
fb (s)d
X go(s)as
Bt)y=e t —(1-08) for tea,bl.
The inequalities (3.33) and (3.34) imply (3.35). Hence, we obtain

b
m zo [ go(s)ds

(B == gilt) | e »® —(1-9)| >

> —got)zge 1 = @) for teab],
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where /¢ is defined by (3.2), i.e., the inequality (2.33) is fulfilled. Obviously,
B(t) > 0 for t € [a, b], i.e., the condition (2.32) holds.

It is not difficult to verify that, according to (3.18) and (3.19), the con-
dition (3.16) holds for z = In }% , where w is defined by (3.17). Therefore,
analogously to the proof of Theorem 3.6 it can be shown that there ex-
ists a function y € C([a, b]; R+ ), which satisfies the inequalities (2.10) and
(2.11).

Consequently, the assumptions of Theorem 2.7 (see p. 23) are fulfilled.

O

Proof of Corollary 3.3. The validity of the corollary immediately fol-
lows from Theorem 3.7. O

Proof of Theorem 3.8. The validity of the theorem immediately follows
from Theorem 2.8 (see p. 24). O

Proof of Theorem 3.9. Similarly to the proof of Theorem 3.6 one can
show that there exists a function v € C([a,b]; R;) satisfying (2.20) and
(2.37), where / is defined by (3.1), and thus, the assumptions of Theorem 2.9

(see p. 25) are satisfied. O
Proof of Corollary 3.4. It follows immediately from Theorem 3.9 for
z=1In )%’ O

Proof of Theorem 3.10. Similarly to the proof of Theorem 3.7 one can
show that there exists a function v € 5([a, b]; R;) satisfying (2.20) and
(2.37), and that there exists a function § € 5’([@, bl; R+) satisfying (2.39)
and (2.40), where ¢ is defined by (3.1). Thus, the assumptions of Theo-
rem 2.10 (see p. 25) are satisfied. O

Proof of Corollary 3.5. The validity of the corollary immediately fol-
lows from Theorem 3.10. O

Proof of Theorem 3.11. The validity of the theorem immediately fol-
lows from Theorem 2.11 (see p. 26). O

Proof of Theorem 3.12. a) The validity of the theorem immediately fol-
lows from Corollary 2.3 a) (see p. 26).

b) Similarly to the proof of Theorem 3.1 b) one can show that the
assumptions of Corollary 2.3 b) (see p. 26) are satisfied.

c¢) Similarly to the proof of Theorem 3.1 ¢) one can show that the
assumptions of Corollary 2.3 c) (see p. 26) are satisfied. O
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Proof of Theorem 3.13. Similarly to the proof of Theorem 3.2 one can
show that there exists a function v € C([a,b];]0,400[) satisfying (2.20)
and (2.37), and thus, the assumptions of Theorem 2.12 (see p. 26) are
fulfilled. O

Proof of Corollary 3.6. The validity of the corollary immediately fol-
lows from Theorem 3.13 for x = In }%’ O

Proof of Theorem 3.14. a) The validity of the theorem immediately fol-
lows from Theorem 2.14 (see p. 27).

b) Similarly to the proof of Theorem 3.3 b) one can show that the
assumptions of Corollary 2.4 (see p. 27) are satisfied.

c¢) Similarly to the proof of Theorem 3.3 c¢) one can show that there
exists a function v € C~’([a, b); Ry) satisfying (2.10) and (2.41) and thus,
the assumptions of Theorem 2.13 (see p. 27) are satisfied. O

Proof of Theorem 3.15. The validity of the theorem immediately fol-
lows from Theorem 2.15 (see p. 28). O

Proof of Theorem 3.16. The validity of the theorem follows from The-
orem 2.16 (see p. 28) and Theorems 3.12, 3.13, and 3.14. O
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for unique solvability of the problem (1.1), (1.2), where
the boundary condition (1.2) is of a periodic type, i.e., when the inequal-
ity (2.1) is satisfied. In Subsection 4.1, the main results are formulated.
Theorems 4.1-4.5 deal with the case |u| < |A|, while the case |u| > |A] is
considered in Theorems 4.7-4.11. Moreover, Theorems 4.6 and 4.12 are
valid for the case A # 0 and pu # 0, respectively. The proofs of the main
results can be found in Subsection 4.2. Subsection 4.3 is devoted to the
examples verifying the optimality of the main results.

As above, throughout this section, if A = —pu, then the operator £ is
supposed to be nontrivial, i.e., £(1) # 0.

4.1. Existence and Uniqueness Theorems

In the case, where |u| < ||, the following statements hold.

Theorem 4.1. Let 0 # |u| < |\, the operator £ admit the representation
0 =¥ty — 1, where Ly, {1 € Py, and let either

o (1)l < 1, 1)
Jo(Wlle A= | "
ST <l <1+ 5+ 2y T= TR0l (12)
Iz < |4, (43)
A ;
e~ < el <22y /|[S[-lami. @)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.1. Let 0 # |u| < |\|. Denote by HT, resp. H™ the set of pairs
(z,y) € Ry x Ry such that

r A=

T <1,
-z |l

] <y<1+‘§’+2\/1—m,



4.1. EXISTENCE AND UNIQUENESS THEOREMS 81

RY 1
R N
lul = [y A

(see Fig. 4.1; note that if |A\| > 4|u|, then H~ = ).

resp.

I
< e
y ‘ A

242/ z

Fig. 4.1.

According to Theorem 4.1, if £ = £y — {1, {o, {1 € Py, and

(ueomuL, wl)uL) € H* UH-,

then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 4.1, p. 94) that for every xg,yo € Ry, (zo,y0) € HT UH ™~
there exist £y, 41 € Pup, q € L([a, bl; R), and ¢ € R such that (2.30) holds,
and the problem (1.1), (1.2) with £ = ¢y — ¢1 has no solution. In particular,
neither one of the strict inequalities in (4.1)—(4.4) can be replaced by the
nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case y = 0.
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Theorem 4.2. Let p = 0, the operator £ admit the representation £ =
lo — £y, where by, b1 € Py, and let

(D)l <1, (4.5)
(Dl <1+2v/1—=[bD)L- (4.6)

Then the problem (1.1), (1.2) has a unique solution.
Remark 4.2. Let ;4 = 0. Denote by H the set of pairs (z,y) € Ry X R4

such that
<1, y<l4+2V1—-=x
(see Fig. 4.2).

Fig. 4.2.

According to Theorem 4.2, if £ = £y — {1, {o, {1 € Pyp, and

<||€0(1)HL, uzl(l)nL) e H,

then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 4.2, p. 97) that for every xo,y0 € Ry, (x0,y0) &€ H there
exist £o, 01 € Pu, q € L([a, b];R), and ¢ € R such that (2.30) holds, and
the problem (1.1), (1.2) with £ = ¢y — ¢; has no solution. In particular, the
strict inequalities (4.5) and (4.6) cannot be replaced by the nonstrict ones.
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Theorem 4.3. Let || < |A| and let there ezist Ly, {1 € Pap such that on
the set C')\#([a, bl; R) the inequality

[£(v) () + L (v)(8)] < Lo([v])(t)  for t € [a,b] (4.7)

holds. If, moreover,
1
by € VE(A ), —5h e V(A 1), (4.8)

then the problem (1.1), (1.2) has a unique solution.

Remark 4.3. The inequality (4.7) in Theorem 4.3 cannot be replaced by
the inequality

[£(0)(t) + G (v)(E)] < (1 +e)bo(|v])(t) for € [a,b], (4.9)

no matter how small € > 0 would be (see Example 4.1, p. 98). Moreover,
the assumption (4.8) can be replaced neither by the assumption

1
(1 - 8)60 € Va—g(AJJ’)v _561 € Va—g()VIU’) (410)

nor by the assumption

1

+ _
EOGVab()‘HU“)a 2+€

gl 6 V(jl;()\’ N)?

no matter how small € > 0 would be (see Examples 4.2 and 4.3, p. 98).

Theorem 4.4. Let || < |)|, the operator £ admit the representation £ =
by — {1, where Ly, €1 € Py, and let there exist v € C([a, bl; 10, +oo[) satisfy-
mg

Y () > bo(y)(#) + 1(1)(t)  for t € [a,b], (4.11)
[Alv(a) > [u]y(b), (4.12)
+(B) = 7(a) < 3+ \;‘ . (4.13)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.4. Theorem 4.4 is nonimprovable in the sense that the strict
inequality (4.13) cannot be replaced by the nonstrict one (see Example 4.4,
p. 100).
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Theorem 4.5. Let 0 # |u| < |A[, £ € Pap, and let there exist a function
v E C'([a7 bl; R+) such that

V() <L) for L€ [a,b], (4.14)
[Alv(a) < [uly(b). (4.15)
Let, moreover, at least one of the following items be fulfilled:
a)
K.
lele < 2+2¢/|]5 (4.16)
b)
e Vi(1,0); (4.17)
c)
eV, (0,1). (4.18)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.5. Theorem 4.5 is nonimprovable in the sense that the strict
inequality (4.16) cannot be replaced by the nonstrict one (see Example 4.5,
p. 101).

Note also that if [\ = [u] and £ € Pgp, then there exists a function
v € C([a,b]; Ry) satisfying (4.14) and (4.15). Indeed, in this case the
operator £ is supposed to be nontrivial and thus, the function

¢
v(t) =1+ /K(l)(s)ds for t € [a,b]

satisfies (4.14) and (4.15).
Nevertheless, if 0 # |u| < |A|, then the inequality (4.15) cannot be
replaced by the inequality

[Aly(a) < |ply(b) (4.19)

(see Example 4.6, p. 102).

The following theorem does not deal only with the case |u| < |A]. On
the other hand, the assumption A\ # 0 is necessary (see Remark 2.2, p. 15).
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Theorem 4.6. Let A\ # 0 and let there exist an operator
by € V.E(A 1) (4.20)
such that on the set CAM([a, bl; R) the inequality
L(v)(t)sgnv(t) < Lo(|v])(t) for t € [a,b] (4.21)
holds. Then the problem (1.1), (1.2) has a unique solution.

Remark 4.6. Examples 4.1 and 4.2 (see p. 98) also show that if |u| <
|A|, then the assumption (4.20) in Theorem 4.6 cannot be replaced by the
assumption

(1 - ) € VEOL ), (4.22)
and the inequality (4.21) cannot be replaced by the inequality
L(v)(t)sgnu(t) < (1+e)lo(jv])(t) for t € [a,bl, (4.23)

no matter how small € > 0 would be.
Furthermore, if |p| > |A| # 0, then the inequality (4.21) in Theorem 4.6
cannot be replaced by the inequality

L(v)(t)sgnu(t) < (1 —e)lo(Jv])(t) for t € [a,b (4.24)
and the condition (4.20) cannot be replaced by the condition
(L+e)lo € VoL (A p), (4.25)

no matter how small € > 0 would be (see Example 4.7, p. 103).

In the case, where |u| > |\, the following assertions hold.

Theorem 4.7. Let |u| > |\ # 0, the operator £ admit the representation
{ =¥ty — 1, where Ly, {1 € Py, and let either

Mz <1,

Ml el = A
L= flea()le Al

A
<o)L <1+ M N TP
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or

66(1)]1 < m |

]
IAl = [ullllo(D)]lL

Then the problem (1.1), (1.2) has a unique solution.

A
<@l <242 ]u'—wou)m.

The next theorem can be understood as a supplement of the previous
one for the case A = 0.

Theorem 4.8. Let A = 0, the operator £ admit the representation ¢ =
by — L1, where g, 01 € Py, and let

leMe <1,
oWz < 1+2y1—[lta(D)]lz -
Then the problem (1.1), (1.2) has a unique solution.

Theorem 4.9. Let |u| > |\ and let there exist Ly, {1 € Pap such that on
the set C)\#([a, bl; R) the inequality

[£(v) () — (V) ()] < Lo([v])(t)  for t € [a,b]
holds. If, moreover,
—lo €V, (A, 1), %El eV (A ),

then the problem (1.1), (1.2) has a unique solution.

Theorem 4.10. Let |u| > ||, the operator £ admit the representation
{ = £y — L1, where £y,€1 € Py, and let there exist v € C([a,b];]0,+oo[)
satisfying

—'(t) = (a(7)(t) + Lo (1)(t)  for t € [a,b], (4.26)
IAly(a) < |ulv(b), (4.27)
(@) —~(b) < 3+ m | (4.28)

Then the problem (1.1), (1.2) has a unique solution.
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Theorem 4.11. Let |u| > || # 0, —€ € Py, and let there exist a function
v € C([a,b]; Ry) such that
V() 2 L)) for te€ab],
[Aly(a) > [uly(D).
Let, moreover, at least one of the following items be fulfilled:

a)

?

A
)l < 2+2 \M

b) the condition (4.18) is fulfilled;
¢) the condition (4.17) is fulfilled.

Then the problem (1.1), (1.2) has a unique solution.

The last theorem does not deal only with the case |u| > |A]. On the
other hand, the assumption p # 0 is necessary (see Remark 2.2, p. 15).

Theorem 4.12. Let p # 0 and let there exist an operator by € V_ (X, 1)
such that on the set CAM([a, bl; R) the inequality

(o) (t)sgno(t) = Lo(|v])(t)  for t€la,b]
holds. Then the problem (1.1), (1.2) has a unique solution.

Remark 4.7. According to Remark 2.16 (see p. 28), Theorems 4.7-4.12
can be immediately derived from Theorems 4.1-4.6. Moreover, by virtue of
Remarks 4.1-4.6, Theorems 4.7-4.12 are nonimprovable in an appropriate
sense.

4.2. Proofs

According to Theorem 1.1 (see p. 14), it is sufficient to show that the
homogeneous problem (1.1y), (1.29) has no nontrivial solution.
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Proof of Theorem 4.1. First suppose that (4.1) and (4.2) hold. Assume
that the problem (1.1p), (1.29) has a nontrivial solution u. According to
Lemma 2.2 (see p. 39), u changes its sign. Define numbers M and m by
(2.94) and choose tyr,ty, € [a,b] such that (2.95) is fulfilled. Obviously,
M > 0, m > 0, and without loss of generality we can assume that t,, < tys.
The integration of (1.1p) from a to t,,, from t,, to tys, and from tps to
b, by virtue of (2.94), (2.95), and the assumptions £y, {1 € Pgp, results in

u(a) +m < M/Kl(l)(s)ds + m/ﬂo(l)(s)ds, (4.29)
M+m < M/EQ s)ds + m/ﬁl(l)(s)ds, (4.30)
M —u(b) < M/Kl ds—i—m/ﬂ() (4.31)

Multiplying both sides of (4.31 by ‘ﬂ and taking into account (2.1), (2.94),
and the assumption }%‘ €10,1], we get

‘M‘MJr —u(b) <M/€1 d8+m/€0

Summing the last inequality and (4.29), by virtue of (1.2y), we obtain

‘M‘M+m<M/£1 ds+m/€0 (4.32)

where J = [a, ty,) U [tar, b]. It follows from (4.30) and (4.32) that

M(1-D)<m(B-1), m{1-0C) §M<A— )%D (4.33)
where
A= /61(1)(3)ds, B = /Mﬁl(l)(s)ds,
! tm (4.34)

tyr

C= /60(1)(s)ds, D= /60(1)(s)ds.

J tm
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Due to (4.34) and (4.1), C < 1 and D < 1. Consequently, (4.33) implies
A> &, B>1, and

0<(1-C)1-D)< (A—‘%D (B—1). (4.35)

Obviously,
1-C)1-D)>1—(C+D)=1—|to(1)||z >0,
O T ()

By the last inequalities, (4.35) results in

0<4(1 = llto(Mllz) < [l — (1+ H)]Q

which contradicts the second inequality in (4.2).

Now suppose that (4.3) and (4.4) are fulfilled. Assume that the problem
(1.1p), (1.209) has a nontrivial solution w. According to Lemma 2.4 (see
p. 48), u changes its sign. Define numbers M and m by (2.94) and choose
tarstm € la,b] such that (2.95) is fulfilled. Obviously, M > 0, m > 0,
and without loss of generality we can assume that ¢, < tp;. In a similar
manner as above, one can show that the inequalities (4.29)—(4.32) hold,
where J = [a, t;,]) U [tar, b]. It follows from (4.30) and (4.32) that

m(1— B) < M(D — 1), M(‘%‘ —A) < m(C —1), (4.36)

where A, B, C, D are defined by (4.34). According to (4.3) and (4.34),
A< ‘%} and B < ‘%} < 1. Consequently, (4.36) implies C' > 1, D > 1, and

0< (‘g‘—A) (1-B) < (C—1)(D—1). (4.37)
Obviously,
[ [ u
Ll _ D L N el
(|5]-a)a-B)= |5 -+ B) = %] - la@) >0,
4C—-1)(D—=1) < (C+D—2)* = ([bo(1)||l — 2)*
By the last inequalities, (4.37) results in

0<4 (/5] 16Wi) < (o —2)

which contradicts the second inequality in (4.4). O
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Proof of Theorem 4.2. It can be proved in a similar manner as Theo-
rem 4.1. Moreover, the proof of Theorem 4.2 can be found in [5]. O

Proof of Theorem 4.3. Let u be a solution of the problem (1.1p), (1.2¢).
Then, in view of (1.1p), u satisfies

u’(t):—%El(u)(t)+€(u)(t)+%€1(u)(t) for telabl.  (438)

By virtue of the assumption —4¢; € V.F(\, 1) and Theorem 1.1 (see p. 14),
the problem

(1) = ~ 3 u(0)(0) + o ful) (1) + 5 (1), (439)

Aa(a) + pa(b) =0 (4.40)

has a unique solution . Moreover, since £y, {1 € P, and —%El € V:l;()" 1),
a(t)>0 for tea,b].

The equality (4.39), in view of (4.7) and the condition ¢; € Py, yields

0 (t) > —241(a)(t) + Lu) () + %El(u)(t) for té [a,b],

1
2
(—a(t)) < —%61(—04)(15) +e(u)(t) + %El(u)(t) for ¢ [a,b].

From the last two inequalities and (4.38), on account of (2.1), (4.40), the
assumption —3¢; € V.1 (A, 1), and Remark 2.3 (see p. 16), we get

lu(t)| < a(t) for t € [a,bl. (4.41)

On the other hand, due to (4.41) and the conditions ¢y, ¢1 € Py, the
equality (4.39) results in

o (t) < lo(a)(t) for te€la,b].

Since ly € V,} (A, 1), the last inequality, together with (4.40), yields a(t) <
0 for ¢ € [a,b]. Consequently, it follows from (4.41) that u = 0. O

Proof of Theorem 4.4. Assume that the problem (1.1p), (1.2¢) possesses
a nontrivial solution w.

According to Theorem 2.1 (see p. 17) and the assumptions (4.11), (4.12),
and £y, 01 € Py, it is clear that ¢y € V;g()\,u). It follows easily from
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Definition 2.1 (see p. 15) and the assumptions ¢y, ¢1 € Py that u changes
its sign. Define numbers M and m by (2.94) and choose ¢y, ¢, € [a, b] such
that (2.95) holds. Obviously,

M>0, m>0, (4.42)

and without loss of generality we can assume that ty; < t,. From (1.1p),
(1.29), (2.1), (4.11), and (4.12), with respect to (2.94) and (4.42), we find

(M~ (t) +u(t)) = bo(My +u)(t) + 6(M —u)(t) >

(4.43)
> ly(M~y+u)(t) for te€a,b],
[Al(M~r(a) +u(a)) — |ul(My(b) + u(b)) = 0, (4.44)
and
(my(t) — u(t)) > Lo(mry —u)(t) + Lr(m +u)(t) >
(4.45)

> lo(my —u)(t) for t € [a,b],

[Al(my(a) = u(a)) — |p|(my(b) — u(d)) = 0. (4.46)

Hence, according to the condition ¢y € VI (X, ) and Remark 2.3 (p. 16),
we get

M~(t) +u(t) >0, my(t) —u(t) >0 for tE€ [a,b].

By virtue of the last two inequalities and the assumption £y € Py, it follows
from (4.43) and (4.45) that

(M~(t) +u(t)) >0, (my(t) —u(t)) >0 for tela,b]. (4.47)

The integration of the first inequality in (4.47) from tp; to t,,, in view
of (2.95) and (4.42), results in

M~(tm) —m — M~(tar) — M >0,

B ) = (ta0) 2 147 (1.49

On the other hand, the integration of the second inequality in (4.47) from
a to ty and from t,, to b, on account of (2.95), yields

my(tar) = M —my(a) +u(a) > 0,

my(b) — u(b) — my(ty,) —m > 0.
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Summing these two inequalities and taking into account (4.42) and

o -t =0 (1 4] (1~ 2],

we get
W M
1) = A{m) +7(0) —(a) > [ 421 (4.49)
Now, from (4.48) and (4.49) we have
pp, m M ‘u’
- >1+ b= s> £
1) = (@) 2 1+ |5+ T+ =284 |5,
which contradicts (4.13). O

Proof of Theorem 4.5. Let u be a solution of the problem (1.1p), (1.2¢).
First we will show that each of the assumptions (4.16), (4.17) or (4.18)
ensure u not to assume both positive and negative values. Suppose on the
contrary that u changes its sign. Define numbers M and m by (2.94) and
choose tps,tm € [a,b] such that (2.95) holds. Obviously, (2.96) is satisfied.
If (4.16) is fulfilled, then analogously to the proof of Theroem 4.1 (with
ly =/ and ¢; = 0), it can be shown that

0 <4|4] < (I —2)%

which contradicts (4.16).

If (4.17) holds, then, in view of Definition 2.1 (see p. 15), the assumption
u(a) > 0 (resp. u(a) < 0) implies u(t) > 0 (resp. u(t) < 0) for ¢t € [a,b],
which contradicts (2.96).

If (4.18) holds, then, in view of Definition 2.1 (see p. 15), the assumption
u(b) > 0 (resp. u(b) < 0) implies u(t) > 0 (resp. u(t) < 0) for ¢t € [a,b],
which contradicts (2.96).

Therefore, u does not change its sign and without loss of generality we
can assume that

u(t) >0 for te€]la,b]. (4.50)

It follows from (1.1p), (4.50), and the assumption ¢ € Py that
u'(t) >0 for t€la,b. (4.51)
Suppose that u(a) > 0. Then, in view of (4.51), we have

u(t) >0 for t€a,b]. (4.52)
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Put
= max () a
r= {u(t)'te[ ,b]} (4.53)
and
v(t) = ru(t) —~v(t) for te€a,b)]. (4.54)

According to (4.15), (4.52), (4.53), and the assumptions 0 # [u| < [A] and
v e C([a,b];R+), we get
r > 0. (4.55)

It is clear that
v(t) >0 for t€ la,b] (4.56)

and there exists ¢y € [a, b] such that
v(tg) = 0. (4.57)

By virtue of (1.1g), (1.20), (2.1), (4.14), (4.15), (4.54)~(4.56), and the as-
sumption £ € Py, we have

V'(t) > L(v)(t) >0 for te€ la,b], |Av(a) > |[p|v(b).
From the last two inequalities, (4.56), and the assumption A\ # 0, we get
7
v(tg) > v(a) > )X‘ v(b) >0,

which contradicts (4.57). Therefore, u(a) = 0 and, on account of (1.2p),
(4.51), and the assumption pu # 0, we find u = 0. O

Proof of Theorem 4.6. Let u be a solution of the problem (1.1p), (1.2¢).
Then, in view of (2.1) and (4.21), we get

()] = e(u)(®) sgnu(®) < Lo(lul)(t) for ¢ € [a,b],
u(a)| — |u(b)] = 0.

Now, according to (4.20) and Remark 2.3 (see p. 16), we obtain |u(t)| < 0
for t € [a,b], i.e., u=0. O



94 §4. PERIODIC TYPE BVP

4.3. Comments and Examples

On Remark 4.1. Let 0 # |u| < |A|. Below, for every zo,y0 € R,
(zo,y0) € HT U H™ the functions p € L([a, b];R) and T € My, are con-
structed such that (2.130) holds, and the problem

u'(t) = p(t)u(r(t)), Au(a) + pu(b) =0 (4.58)

has a nontrivial solution. Then by Remark 1.1 (see p. 14), there exist ¢ €
L([a,b]; R) and ¢ € R such that the problem (1.1), (1.2), where £ = £y — {
and £y, {1 are defined by (2.132), has no solution.

It is clear that if xp,yo € Ry and (wo,y0) € HT U H~, then (z9,%0)
belongs at least to one of the following sets:

(2,y) € Ry X Ry : < 1, 1+‘%‘+2\/1—x§y},

{:Uy eRi xRy : y<‘§), 2+21/"§’—y§x},

le{(xy)€R+XR+ A

y+1-|8<

(x,y) €R+><R+:y<‘ﬁ \

i\

<z <

Ay +1) — !u!}
Il = [Aly ’

A
H5:{(x,y)€R+><R+ : 1—‘§‘<x<1, Sla-ntis

S CSSIEITY
IZ[Q )]
ng{(x,y)€R+xR+ : 1—’§’<x<1, :c—l—i—‘%‘ﬁ

(w—l)—i—l}.

’)\
<y< |-
7!

Let (xo,y0) € Hi. Puta=0,b=4

— |5 for t € [0,1]

p(t) = ro—1  fortell,2] (t) = 4 forte0,1[U[3,4]
& —yo forte(2,3] 1 fortell,3 '
1 for t € [3,4]
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It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

lu|(1—t) fort e [0,1]
u(t) =40 fort € [1,3[ .
IA[(t—3) fort e [3,4]

Let (zo,y0) € Hy. Put a =0, b:6,a:\/l—xo,ﬁ:yo—l—‘§‘—2a,

—|&| forte[0,1]

—p for t € [1,2] 6 fortel0,1[U[2,3[U[5,0]
p(t) =< —« forte (2,4, 7T()=1<1 fortell,2]

-1 for t € [4,5] 3 forte3,5]

xo for t € [5, 6]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

(1=t for t € [0, 1]
0 for t € [1,2]
a2 —t) for t € [2,3]
u(t) =19 , .
a®(t—3)—a forte[3,4]
a(t —5)+a? forte[4,5]
(zo(t—6)+1 forte[5,6]
Let (xo,y0) € Hs. Put a=0,b=6, a = |§‘—yo,ﬁ:xo—2—2a,
(o for t € [0,1]
—yo fortel,2
w fortell2 4 fortel0,1[U[3,4]
5 forte[23
p(t) = , T(t)=<6 forte[l,2[U[4,6] .
1 for ¢t € [3,4]
2 forte[2,3]
a for t € [4,5]
1 for t € [5, 6]

\

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
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the nontrivial solution

—a?t+ |4 forte[0,1]
yo(2 — t) for t € [1,2]
u(t) = 0 for t € [2,3] '
a3 —t) for ¢t € [3,4]
a(t—5) for t € [4,5]
t—5 for t € [5, 6]

Let (zo,y0) € Hy. Put a =0,b=2, a = |\[(1 +yo) — |pl,

)

t—{2 if [A| = |p|, 2o =0, yo =0
0=

1 _ + 2 otherwise
zo a

—yo forte 0,1 2 fortel0,1
p(ty={ % O = 010
xo for t € [1,2] to fortell,2]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

sy [ Wl Torre
alt—2)+ |\ fortell,2]

Let (zg,y0) € Hs. Put a =0, b = 2, a = WM’ 8

—x 1—xz¢’

x for t € [0,1 1 forte|0,1
p(t) =" O = 011
—yo forte[l,2] to fort e l,2]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

ult) = Bt + | for t € [0,1]
al2—t)+ |\ forte(1,2]

—yo|A
Let (20,0) € He. Puta =0,b=2, o = [+ []\|(mo—1), to = 2Ll +2,

, T(t) =

p(t) = {—yo for t € [0,1]

to forte0,1]
xo for t € [1,2]

2 fortel1,2]
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It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

_J—at+ |y for t € [0,1]
zo|\(t—2)+ |\ forte1,2]

On Remark 4.2. Let p = 0. Below, for every zg,y0 € Ry, (x0,y0) € H
the functions p € L([a, b];R) and 7 € My, are constructed such that
(2.130) holds, and the problem (4.58) has a nontrivial solution. Then by
Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that the
problem (1.1), (1.2), where £ = ¢y — ¢1 and {y, {1 are defined by (2.132), has
no solution.

It is clear that if xo,y0 € R+ and (zo,y0) € H, then (x¢,yp) belongs at
least to one of the following sets:

le{(.%',y)ER+XR+ : 1S$},
[;rQ:{(;I;,y)GR+><R+ Dx < 1, 1+QMS?J}-

Let (xo,90) € Hi.Puta=0b=2ty= L

xo?

rg  forte|0,1] to forte0,1]
p(t) = , T(t) = :
—yo forte(l,2] 0 fortell,?2]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

ult) = {t for t € [0,1]

1 fortell,2]

Let (wo,yO)Eﬁlg. Puta=0,b=5 a=+v1—x9, 8=y —1—2a,

— for t € |0,1
’ 0.1] 0 fortel0,1]
—a forte[1,2[U[3,4]
p(t) = , T(t)=<5 forte[l,2[U[4,5] .
-1 forte[2,3]
2 forte[2,4]
xzo fort e [4,5]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
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the nontrivial solution

0 for t € [0,1]

a(l—1t) for t € [1,2]

u(t) = ¢ alt —3) for t € [2,3]
a?(t — 3) for ¢t € [3,4]

(zo(t —5)+1 forte[4,5]

Example 4.1. Let |u| < [A|, € > 0, and let the operators ¢, £y, {1 € Ly be
defined as follows:

%Mi%ﬂ+dmm%)hrtﬂm% (4.59)
lo()(t) € pt)u(b) for te[ab], =0,
where p € L([a, b]; Ry) is such that
b
/@@ms—éﬂlﬁm. (4.60)

a

According to Remark 2.5 (see p. 19), we have
+ 1 +
by € Vab ()\, u), —551 S Vab ()\, u).
Therefore, the assumptions of Theorem 4.3 are fulfilled except of the in-

equality (4.7), instead of which the inequality (4.9) is satisfied.
On the other hand, the problem (1.1y), (1.2¢) has the nontrivial solution

u(t) = |pu| + (1 +¢)[A| /p(s)ds for t € a,b].

Therefore, according to Remark 1.1 (see p. 14), there exist q € L([a, bl; R)
and ¢ € R such that the problem (1.1), (1.2) has no solution.

Example 4.2. Let || < ||, € €]0,1[, and let £ € L, be defined by

L)) ¥ p)od) for t€ la,bl, (4.61)
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where p € L([a, bl; R+) is such that

b
_ A= ul
/p(s)ds =T (4.62)

a

Put ¢y = ¢, 1 = 0. Evidently, the inequality (4.7) is fulfilled and, according
to Remark 2.5 (see p. 19), we have

1
(1—e)lo € V(A p), —551 e VIO p).

On the other hand, the problem (1.1p), (1.2¢) has the nontrivial solution
¢
u(t) = |p| + | Al /p(s)ds for t € [a,b].

Therefore, according to Remark 1.1 (see p. 14), there exist ¢ € L([a, bl; R)
and ¢ € R such that the problem (1.1), (1.2) has no solution.

Example 4.3. Let [u| < |A[,a=0,b=3,6>0, = Egi‘ig)h‘;"), and £ € Ly
be an operator defined by

1)) ¥ ptu(r(t)) for te [ab], (4.63)
where
Pl =5 fort € [0,1] 3 fortel0,1]
p(t) = § -5 forte (1,2, 7T(t)=<1 forte[l,2] .
-2 for t € [2, 3] 2 forte[2,3]

Let, moreover,

L)1) O] co(ro(®),  a@)E) E pO)]-v(ni(t) for t € [a,b],
(4.64)
where 79 = 3 and
0 fortel0,1]
Ti(t) =41 forte[l,2] .
2 forte (2,3
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It is clear that ¢y, ¢1 € Py and the condition (4.7) is fulfilled. Moreover,

3 1

I P P B e 7
/Vanwm8—55a>d S e S

0

Consequently, according to Remark 2.5 (see p. 19), we have ¢y € V:l;()" ).
It is not difficult to verify that the homogeneous problem

1

!
t) = —
u(?) 24¢

01 (u)(t), Au(0) + pu(3) =0

has only the trivial solution, and for arbitrary g € L([O, 3; R+) and c € R
satisfying (2.2) the solution of the problem

W) =~ GO +a), Xal0) + () = ¢

is nonnegative. Therefore, by Definition 2.1 (see p. 15), we obtain

1
2+¢

l € Va—g()\,/j,).
On the other hand, the function

(W—é)t—i—!%‘ for t € [0,1]
ut) =9 (2-0)1—t)+1—-48 fortell,?2

2t —5 for ¢t € [2, 3]

is a nontrivial solution of the problem (1.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist q € L([a, bl; R) and ¢ € R such that
the problem (1.1), (1.2) has no solution.

Example 4.4. Let |u| < [\, a=0,b=4,¢ >0,

=0, 1 (v)(t) e g(t)v(v(t)) for t e [a,b], (4.65)
where
1+ |&| fortel0,1] 3 forte|0,1]
gt)y=1<1 forte[1,3[, v(t)=<1 fortell,3[.

€ for t € [3,4] 2 fort e [3,4]
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Put

y(t) =0+ /g(s)ds for t € [a,b)]. (4.66)

b -
where ¢ > % [ g(s)ds. Tt is clear that v € C([a, b];]0, +o0]), the condi-
tions (4.11) and (4.12) hold, and

1) = @) =3+ | 4]+
On the other hand, the problem
u'(t) = —g(u(v(t)),  u(a)+ pu(d) =0
has the nontrivial solution

il = (ul + Dt for € [0,1]
u(t) = ¢ ||t —2) for t € [1,3] .
iy for ¢ € [3,4]
Therefore, according to Remark 1.1 (see p. 14), there exist g € L([a, bl; R)

and ¢ € R such that the problem (1.1), (1.2) with { = ¢y — ¢; has no
solution.

Example 4.5. Let 0 # |pu| < |A], € > 0,a=0,b=05, and let £ € Py, be
defined by (4.63), where

|4 for te[0,1[U[2,3] 2 for te]0,2]
pt) =41 for te[l,2[Uu[3,4 ., T()=4q4 for te2,4] .
£ for te4,5] 3 for te[4,5]

Let, moreover, the function v € CN'([a, bl; R+) be defined by

0 for t€]0,3]
y(t)=<t—3 for te[3,4] .
1 for te[4,5]

Obviously,
b 5

/6(1)(s)ds = /p(s)ds =2+2 ’

a 0

‘—Fa

>|=
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and the function v satisfies (4.14) and (4.15).
On the other hand, the problem (1.1p), (1.29) has a nontrivial solution

|| (1 —¢) for te[0,1]

VM1 —t) for te (L2

u(t) =< /[t —3) for te€[2,3] .
IA[(t —3) for te[3,4]

LA for te[4,5]

Therefore, according to Remark 1.1 (see p. 14), there exist q € L([a, bl; R)
and ¢ € R such that the problem (1.1), (1.2) has no solution.

Example 4.6. Let 0 # |u| < [\ and let £ € P,y be defined by

1)) Y pt)o(t) for t € la,b],

Let, moreover, the function v € L([a, bl; R+) be defined by

~(t) = |p| exp /p(s)ds for t e a,b].

a

Obviously, v satisfies (4.14) and (4.19). Furthermore, if ’%‘ € 9o, 1], where

dp € ]0,1] is such that
1
1115* :2+2\/50,
0

then the condition (4.16) is fulfilled. Moreover, according to Theorem 3.1
a) (see p. 63) and Theorem 3.14 b) (see p. 72), we have £ € V.t (1,0) and
LeV,(0,1).

On the other hand, the function « is a nontrivial solution of the problem
(1.1p), (1.2g). Therefore, according to Remark 1.1 (see p. 14), there exist
qE L([a, bl; R) and ¢ € R such that the problem (1.1), (1.2) has no solution.
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Example 4.7. Let |u| > |A\| # 0. Below, the operator ¢ € L, is con-
structed in such a way that the homogeneous problem (1.1p), (1.2¢) has
a nontrivial solution. Then, according to Remark 1.1 (see p. 14), there
exist ¢ € L([a,b]; R) and ¢ € R such that the problem (1.1), (1.2) has no
solution.

Let £ € ]0,1] and 4,4y € Ly, be defined by

def 1

L)) = —g(t)o(t), L)1) = —7—9t)o(t),
where g € L([a,b]; R4) is such that
b
/g(s)ds =In ’%‘ . (4.67)

a

According to Corollary 3.3 (see p. 68), we have £y € V.1 (A, ). Obviously,
the assumptions of Theorem 4.6 are fulfilled except of the condition (4.21),
instead of which the condition (4.24) is satisfied.

On the other hand, the problem (1.1y), (1.2¢) has the nontrivial solution

b

u(t) = |\ exp /g(s)ds for ¢ € la,b. (4.68)

Thus, the inequality (4.21) in Theorem 4.6 cannot be replaced by the in-
equality (4.24), no matter how small ¢ > 0 would be.
Let € > 0 and ¢ € L, be defined by

L)) E —g(t)u(t) for t€ [a,b],

where g € L([a,b]; Ry) is such that (4.67) holds. Put ¢y = ¢. Evidently,
the condition (4.21) is fulfilled and, according to Corollary 3.3 (see p. 68),
we have (1 +¢)ly € V.1 (A, p).

On the other hand, the problem (1.1y), (1.2¢) has the nontrivial solution
u given by (4.68). Thus, the assumption (4.20) in Theorem 4.6 cannot be
replaced by the assumption (4.25), no matter how small € > 0 would be.
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In this section, we will establish some consequences of the main results
from §4 for the equation with deviating arguments (1.1"). Here we will also

suppose that the inequality (2.1) is fulfilled.
In what follows we will use the notation

po(t) = ij(t), go(t) = Zgj(t) for t e [a,b]

Jj=1 Jj=1

and we will suppose that if A = —u, then py Z go.

5.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following statements hold.

Theorem 5.1. Let 0 # |u| < |A, pe,ge € L([a,0); Ry) (k= 1,...

and let etther

Ipollz <1,
Ipoll 1A= I u
- <lgollz < 1+ 4] +23/T=Twollz
T=Tpolle ~ Jul X
or
loollz < ||,

Al p
— 1< lpollz < 2+2¢/|5] = llgollz-
il = Mllgollz X

Then the problem (1.1'), (1.2) has a unique solution.

Remark 5.1. The examples constructed in Subsection 4.3 (see On Re-
mark 4.1, p. 94) also show that neither one of the strict inequalities in

(5.1)—(5.4) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous

one for the case y = 0.
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Theorem 5.2. Let =0, pg, gx € L([a,b];R+) (k=1,...,m), and let
[pollz <1, (5.5)

lgollz <14 2v/1—lpollL - (5.6)
Then the problem (1.1"), (1.2) has a unique solution.

Remark 5.2. The examples constructed in Subsection 4.3 (see On Re-
mark 4.2, p. 97) also show that the strict inequalities (5.5) and (5.6) cannot
be replaced by the nonstrict ones.

Theorem 5.3. Let |u| < |\, pk,gr € L([a,b];R+), and Ty, v, € Mg
(k=1,...,m). Let, moreover, the functions px, 7, (k = 1,...,m) satisfy
at least one of the conditions a), b) or c¢) in Theorem 3.1 (see p. 63) or
the assumptions of Theorem 3.2 (see p. 64), while the functions g, vy (k =
1,...,m) satisfy vi(t) <t fort € [a,b] (k=1,...,m) and at least one of
the following items:

a)
b
/go(s)ds <2
b)
b S m 1 s
[0 [ S a©@ew|; [ atnan | deds <.
a B e vi(€)
¢) go #0 and
t
ess sup go(s)ds : t € [a,b] p < 21" (k=1,...,m),
vk ()
where

. 1
N =sup —In | x+
x
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Then the problem (1.1'), (1.2) has a unique solution.
Theorem 5.4. Let |u| < |A|, pr, gk € L([a,b]; Ry), and 7, € Moy (k =

1,...,m) such that
b
sl exp ( / po(S)dS) <, (5.7)

a

T(t) <t for te€[a,b] (k=1,...,m), (5.8)

b b
LM—%! /ﬁd@wp(/@d@%)dy<3+w. (5.9)
Al = || exp <fp0(8)d8> a s

and

Then the problem (1.1'), (1.2) has a unique solution.

Theorem 5.5. Let |u| < |A|, pr,gr € L([a,b]; Ry), and 7, € Mgy (k =
1,...,m) such that

b
|A||;||“| (/go(s)ds+a1) +(3+ )%Dﬁl <3+ ‘%\ (5.10)
where
b, Tk (8) b
o = G/;pk(S) a/ go(§)d€ | exp (S/po(ﬁ)dé) ds, (5.11)

(5.12)

Jk(t):%(1+sgn(7k(t)—t)) for telab (k=1,....m). (5.13)

Then the problem (1.1'), (1.2) has a unique solution.
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Remark 5.3. Example 4.4 also shows (see p. 100) that the strict inequality
(5.9) in Theorem 5.4 and the strict inequality (5.10) in Theorem 5.5 cannot
be replaced by the nonstrict ones.

Theorem 5.6. Let 0 # |u| < ||, pr € L([a,b]; Ry) (k=1,...,m), po %
0, and let there exist x € H%‘ ,+oo{ such that the condition (3.25) holds,

where n is defined by (3.8). Let, moreover, at least one of the following
items be fulfilled:

a)
b
/po(s)<2+2 ‘% ;
b) there exists a € ]0,1[ such that
t o T (s) ¢
/Zpk(s) / po(€)dg | ds < a/po(s)ds for t € a,bl;
a k=1 a a
c)
b o Tk (s) b
/Zpk(s)ak(s) /po(f)df exp /pg(n)dn ds <1,
w k=1 s s

where oi(t) = $(1 +sgn(r(t) — t)) fort € [a,b] (k=1,...,m);

T*

d) [ po(s)ds # 0 and

75 (t)

ess sup / po(s)ds : t € [a,b] p <n* (k=1,...,m), (5.14)
t

where

1
n*=supq —In|z+ x>0 (5.15)
x€x T

exp (x T pg(S)dS) _1
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e) T(t) >t fort € [a,b] (k=1,...,m) and

Tr(s 7i(£)

b m )m
/ZPk(S) / Zpi(f)eXp /po(n)dn deds < 1.
a k=1 S =1

s

Then the problem (1.1), (1.2) with gr = 0 (k = 1,...,m) has a unique
solution.

In the case, where |u| > ||, the following assertions hold.

Theorem 5.7. Let [pu| > [\ # 0, pr, gk € L([a,b; Ry) (k= 1,...,m),
and let either

lgollz <1,

lgollz —— [ul —IAl
1 —1lgollz R

A
<HpoHL<1+'N‘+2 T Toollz
or

A
Ipollz < |1
I

A
gl <242 H —pollz-
X = |llpoll .

Then the problem (1.1'), (1.2) has a unique solution.

The next theorem can be understood as a supplement of the previous
one for the case A = 0.

Theorem 5.8. Let A =0, pg, gx € L([a,b];R+) (k=1,...,m), and

lgollz <1,

[pollz < 1+424/1—|lgollL -

Then the problem (1.1"), (1.2) has a unique solution.
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Theorem 5.9. Let |u| > |\, pr,gr € L([a,b];R+), and T, v, € Mg
(k=1,...,m). Let, moreover, the functions gi,vx (k =1,...,m) satisfy
at least one of the conditions a), b) or ¢) in Theorem 3.12 (see p. 70) or
the assumptions of Theorem 3.13 (see p. 71), while the functions py, Ty
(k=1,...,m) satisfy 7(t) >t fort € [a,b] (k=1,...,m), and at least
one of the following items:

a)
b
/po(s)ds <2;
b)
b Tr(s) ) 7i(€)
[3ome [ Sn@ew| s [ mindn| s <a
o k=1 2=l ,
¢) po Z0 and
Tk(t)
ess sup / po(s)ds : t € [a,b] p < 2w™ (k=1,...,m),
t
where

T

exp <§ jzpo(s)ds> -1

1
w*=sup —In|z+ x>0
X

Then the problem (1.1'), (1.2) has a unique solution.

Theorem 5.10. Let || > |A|, pr,gx € L([a,b]; Ry), and v, € Mg (k =
1,...,m) such that

b
I\l exp / go(s)ds | < lul,

a

vp(t)y >t for tela,b (k=1,...,m),
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and

s

b
= /PO(S) exp /go(f)df ds < 3+ ‘)“
’ 1
1l = A exp ( fgo(s)ds> J /

Then the problem (1.1'), (1.2) has a unique solution.

Theorem 5.11. Let |u| > ||, pr,gr € L([a,b); Ry), and v, € Moy (k =
1,...,m) such that

b
e (4[5 &<+ [
‘,LL’ a/p0(8)d8+a2) +(3+ 1 /62<3+ [ )

where

b
P2 = 2 exp /go(s)ds +
b m s s
+ / > auslonts) (/) g0(€)de | exp / go(€)de | ds,

ox(t) = éu Fsan(t— () for telab (k=1,...,m).

Then the problem (1.1'), (1.2) has a unique solution.

Theorem 5.12. Let |u| > [\ # 0, gv € L([a,b; Ry) (k = 1,...,m),
go Z 0, and let there exist v € H%‘ ,+oo| such that the condition (3.16)
holds, where w is defined by (3.17). Let, moreover, at least one of the
following items be fulfilled:

@)

I

b
A
/gg(s)<2+2 “,
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b) there exists a € |0, 1] such that

s

b m b
[>Sa | [ wie|ds<a [ais jor 1€ a

k=1 vi(s)

S

t
/90(§)d§ exp /go(n)dn ds <1,
k()

1% a

b m
/ng(s)ak(s)
u k=1

where oy (t) = 5(1 + sgn(t — vy (1)) fort € [a,b] (k=1,...,m);

d) fbgo(s)ds # 0 and

t
ess sup / go(s)ds :t €a,b] p <w (k=1,...,m),
(1)

14

where

X

exp (:Ufbgo(s)ds> -1

x>0

1
w*=sup{ —In| xz+
T

with v, = min { ess inf{vy(t) : t € [a,b]} : k=1,...,m};

e) vp(t) <t fortela,bl (k=1,...,m) and

S

/ng(é’) / > gi(€) exp /go(n)dn deds < 1.
a k=1 I/k(s) i=1 Vz(ﬁ)

Then the problem (1.1'), (1.2) with pr = 0 (k = 1,...,m) has a unique

solution.

Remark 5.4. Similarly as in the case |u| < |A| one can show that Theo-
rems 5.7, 5.10 and 5.11 are also nonimprovable in a certain sense.
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5.2. Proofs

Proof of Theorem 5.1. The validity of the theorem immediately follows
from Theorem 4.1 (see p. 80). O

Proof of Theorem 5.2. The validity of the theorem immediately follows
from Theorem 4.2 (see p. 81). O

Proof of Theorem 5.3. It is a consequence of Theorem 4.3 (see p. 83)
and Theorems 3.1-3.3 (see pp. 63-65). O

Proof of Theorem 5.4. According to (5.9), there exists € > 0 such that

(5.16)
Al = |l

b
Al = || exp (fpo(S)

+

go ) exp po(&)dE d5<3+‘u‘

2 exp | [ pols
Al = Iulexp<fpo > /

Put

€

A(t) = b xp | [ mids | +
|A] — || exp (fpo(s)ds> a

a

A

T b
Al = |p] exp (fpo(S)dS

|| exp (fpo(s)ds) b .
* : b /90(5) exp /po(ﬁ)df ds for t € [a,b)].
Al = || exp <fpo(8)d8> t s
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Then ~ is a solution of the problem

Y(t) =po(t)v(t) +go(t),  My(a) + py(b) = esgn . (5.17)

Since € > 0, in view of (5.7), we have v(¢) > 0 for t € [a,b]. Consequently,
(5.17) implies v/(¢t) > 0 for ¢ € [a,b], and thus, (5.8) yields

pe(t)y(t) = pe(t)y(1(t))  for t€la,b] (k=1,...,m).  (5.18)

On account of (2.1) and (5.16)—(5.18), the function ~ satisfies the inequal-
ities (4.11), (4.12), and (4.13) with

L)1) L pr(t)o(ri(t) for t € [a,b],
k=1

- (5.19)
def
G(0)(t) Y ge(tu(ui(t)) for t€ [a,b].
k=1
Therefore, the assumptions of Theorem 4.4 (see p. 83) are satisfied. O

Proof of Theorem 5.5. Let the operators ¢y and ¢; be defined by (5.19).
From (5.10) we obtain #; < 1. Consequently, the assumptions of Theo-
rem 3.1 ¢) (see p. 63) are fulfilled, and thus, ¢y € V.1 (A, 1). Choose § > 0
and € > 0 such that

b
1-=3)" o+ /go(s)ds <3+ ‘%‘ — 9, (5.20)

a

Al = |l
Al

o=

b
BYRST exp —/pg(s)ds . (5.21)

a

According to the condition ¢y € V.}' (X, ) and Remark 2.1 (see p. 15), the
problem

V() = pi)y(Fi(t) + go(t), (5.22)
=1
My(a) + py(b) = Ae (5.23)

has a unique solution ~. It is clear that the conditions (4.11) and (4.12) are
fulfilled. Due to the conditions ¢y € V.I'(, ) and € > 0, we get y(t) > 0
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for t € [a,b]. Hence, the condition (4.12) implies y(a) > 0. Taking now
into account (5.22), it is evident that y(¢) > 0 for ¢ € [a,b]. On the other
hand, v is a solution of the equation

Tk (1)

VO = O+ > m) [ Y mlntn(s)dst

=1

Tk (t)

+Zpk / (s)ds + go(t).

t

Hence, the Cauchy formula implies

b b
2(b) < Bry(b) + on + / go(s)ds + e exp / po(s)ds

The last inequality results in

b b

V)< (=B o+ / go(s)ds | +2(1 — B1) L exp / po(s)ds | |

a a

and thus, in view of (5.20), (5.21), and (5.23), we have

[AL = lul

1(6) = 7(a) <

()<3+\§(.

Therefore, the assumptions of Theorem 4.4 (see p. 83) are fulfilled. O

Proof of Theorem 5.6. To prove the corollary it is sufficient to show
that the assumptions of Theorem 4.5 (see p. 84) are satisfied.

Let £ € L4, be defined by (3.1). Obviously, £ € Py. First we will show
that, on account of (3.25) with 7 given by (3.8), there exists a function
v € C([a,b]; Ry) satisfying (4.14) and (4.15). Indeed, according to (3.25),
there exists € € |1, 4o00[ such that

b

T(t) fpo(s)ds ox
p exe
po(s)ds > . In — (5.24)

@ |\
' f pols)ds (o= + g )
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fort € [a,b] (k=1,...,m). Put

0= (5.25)
[ po(s)ds
Obviously, zp > 0. By (5.24), (5.25), and the assumption = € [ln ‘% ,+00 [,
we obtain that for £k = 1,..., m the inequality
[ po(s)d " pote
T s)ds T s)ds T _
xoeoapo <e @ " —|—M for t € [a,b] (5.26)
Al = [pl
holds, and
b
xg/po(s)ds > . (5.27)
Define the function v € 6([@, bj; R4) by
t
T (s)ds T I\
() = AP e =W g b e ). (5.28)

Al = ln

Obviously, by virtue of (5.27) and (5.28) the function v satisfies (4.15).
Moreover, in view of (5.26), we obtain

TR (1)

zo [ po(s)ds et — I\
[ e — A

Uy)(t) = ;pk@) ¢ A = [u]

t
T (s)ds
> po(t)zoe Olpo =4/(t) for te€ la,bl,

i.e., the inequality (4.14) is fulfilled.

It remains to show that each of the assumptions a), b), c), d) or e) in
Theorem 5.6 ensures that at least one of the assumptions a), b) or ¢) in
Theorem 4.5 (see p. 84) is satisfied.

It is clear that the assumption a) implies the condition (4.16). Moreover,
according to Theorem 3.1 b) and c¢) (with A = 1 and p = 0, see p. 63),
the assumptions b) and c¢) yield the condition (4.17). On the other hand,
on account of Theorem 3.14 b) (with A = 0 and p = 1, see p. 72), the
assumption e) implies the condition (4.18).
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Finally we will show that the condition d) yields the condition (4.17).

Indeed, according to (5.14), there exists ¢ > 0 such that

71 (t)
/ pos)ds <n* —e for telabl  (k=1,....m).  (5.29)
t

Choose 1 > 0 and ¢ € ]0, 1] such that

1 l’1(1—5)

- In |z + p >nt—¢ (5.30)
' exp <:c1 fpo(S)dS> - (1-9)
and put
t
x (s)ds
y(t)=e 1{1)0 —(1—=9) for te€]la,b].

Obviously, v € C ([a, b];]0,4+00[). Moreover, the inequalities (5.29) and
(5.30) imply that for k = 1,..., m the inequality

t Tk (1)
x (s)ds T (s)ds
xlelafpo >e Lo —(1—=9) for te]la,b]

holds. Hence, we obtain

T (t)
m z1 [ po(s)ds
5(7)(t)=Zpk(t) e @ —(1-9)| <
k=1
J po(s)d
<poBmie @ =4(t) for te€a,b],

i.e., the inequality (2.10) is fulfilled. Thus, according to Theorem 2.1 (with
A=1and u =0, see p. 17), the condition (4.17) is satisfied. O]

Proof of Theorem 5.7. The validity of the theorem immediately follows
from Theorem 4.7 (see p. 85). O

Proof of Theorem 5.8. The validity of the theorem immediately follows
from Theorem 4.8 (see p. 86). O
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Proof of Theorem 5.9. It is a consequence of Theorem 4.9 (see p. 86)
and Theorems 3.12-3.14 (see pp. 70-72). O

Proof of Theorem 5.10. Similarly to the proof of Theorem 5.4 one can
show that there exists a function v € C([a,b];]0,+00[) satisfying (4.26),
(4.27), and (4.28), where ¢y and /¢; are defined by (5.19). Therefore, the
assumptions of Theorem 4.10 (see p. 86) are satisfied. O

Proof of Theorem 5.11. Similarly to the proof of Theorem 5.5 one can
show that there exists a function v € 5([&, b];]0, 4+00[) satisfying (4.26),
(4.27), and (4.28), where ¢y and ¢; are given by (5.19). Therefore, the
assumptions of Theorem 4.10 (see p. 86) are satisfied. O

Proof of Theorem 5.12. In a similar manner as in the proof of Theo-
rem 5.6 one can show that the assumptions of Theorem 4.11 (see p. 87) are
satisfied. O
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This section deals with the special case of the equation (1.1) with m = 1
and 71 = ;. In that case the equation (1.1") can be rewritten in the form

u'(t) = p(thu(r(1)) + q(t), (6.1)

where p, q € L([a, bl; R) and 7 € M. Throughout the section we will also
suppose that the inequality (2.1) is satisfied.

In §5, there were established effective sufficient conditions for unique
solvability of the problem (6.1), (1.2). Although those results are, in gen-
eral, nonimprovable, in the special case, when 7 maps the segment [a, b]
into some subsegment [1,71] C [a,b], some of them can be improved in
a certain way.

Therefore, in the sequel we will assume that there exist 79,71 € [a, b],
70 < 71 such that 7(t) € [m9,71] for almost all ¢ € [a,b]. Thus, it will be
supposed that

70 = ess inf{7(t) : t € [a,b]}, 71 = ess sup{7(t) : t € [a,b]}.
Note also that if 79 = a@ and 7 = b, then obtained results coincide with the
appropriate ones from §5.
In Subsection 6.1, the main results are formulated, Subsection 6.2 is

devoted to their proofs, and the examples verifying the optimality of the
main results can be found in Subsection 6.3.

6.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following statements hold.

Theorem 6.1. Let |u| < || and

1 b
A= [polds+ 5] [).ds. (6.2)
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If

(6.4)

and either

o b
/[p(s)]ds +[4] /[p(s)]ds <|%|+vi=a, (6.6)

a

1 b
/[p(s)]_ds + ‘%] /[p(s)]_ds <1+ \%‘ N (6.7)

a

0 b

/[p(s)]_ds + |4 /[p(s)]_ds >[4+ vi—4, (6.8)
/[p(s)]ds <14 S C(69)
70 Jlp(s))=ds + |§] [Ip(s)]-ds — [%|

then the problem (6.1), (1.2) has a unique solution.

Remark 6.1. Theorem 6.1 is nonimprovable in the sense that neither one
of the strict inequalities (6.4), (6.5), (6.7), and (6.9) can be replaced by the
nonstrict one (see Examples 6.1-6.4, pp. 144-148).
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Theorem 6.2. Let 0 # |u| < |A| and

- b
5= [lo)ds+[5] [(s)-a

If
p<t]
(‘%‘ _B) (1+]1[p(3)]+d5) >
>1- /To[p< eds— |5 /b [p(s)]+ds,
(/ +ds+’ ‘/ +ds)( / s)]— ds)>
>1-— ‘ ‘ /[p dS-f-‘ ‘/[p
and either

/ +ds+) ‘/ +ds<1+\/HiB

T1

/[P( )+ds+M/[p +ds<2+2\/m7—3

T1

70 b
Jwoneas +[%] [ipnas = 1+ /|4] - 5,

HB

or

T1

Jbtshads <1+ |
70 f[p +ds+‘|f[p |4ds —1

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)
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then the problem (6.1), (1.2) has a unique solution.

Remark 6.2. Theorem 6.2 is nonimprovable in the sense that neither one
of the strict inequalities (6.12), (6.13), (6.15), and (6.17) can be replaced
by the nonstrict one (see Examples 6.5-6.8, pp. 149-153).

Note also that if 7o = a and 71 = b, then the assumptions of Theo-
rems 6.1 and 6.2 coincide with the assumptions of Theorems 5.1 and 5.2
(see p. 104).

Theorem 6.3. Let |u| < |A|,

/[p(s)]+ds <1, /[p(s)]_ds <1, (6.18)

and either

T b
A [t s+l [ () ds-

. . (6.19)
[ lpte))-ds -+l [p)l-ds | (1-T) <3~ [u
!M/[ #m+m/' Vods | (1-7)-
(6.20)
AM/ @—u¢/@sw>aﬂ—nmu—Ty
where " "
T = max /[p(s)]+ds, /[p(s)]_ds . (6.21)

Then the problem (6.1), (1.2) has a unique solution.

Remark 6.3. Theorem 6.3 is nonimprovable in the sense that the strict
inequalities (6.19) and (6.20) cannot be replaced by the nonstrict ones (see
Examples 6.9-6.11, pp. 154-156).
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Note also that if the segment |79, 71] is degenerated to a point ¢ € [a, b],
ie, 7(t) = cfort € [a,b], then T'= 0 and the inequalities (6.19) and (6.20)
can be rewritten as

c b

A/p(S)ds—u/p(S)dS#/\Jru,

a C

which is sufficient and necessary for the unique solvability of the problem
(6.1), (1.2) with 7(t) = ¢ for t € [a,b].

Theorem 6.4. Let |u| < |\| and let there exist y € C~'([a,b];]0,+oo[) such
that

Y'(t) > [p)]4 (T () + [p(t)] - for t€[a,b], (6.22)
[Aly(a) > |uly(b), (6.23)
and either
Al (v(10) = (@) + |l (v(b) = (11)) < |Al+1ul, (6.24)
&1 (1) = 2(r) +9(m) = v(a) < 3+ %] (6.25)
Al (v(70) = () + | (v(B) — v(71)) > [A| + |ul, (6.26)
Al

Y(11) —v(m0) <1+ (6.27)

A (v(70) = (@) + [l (v(b) = +(m1)) — |ul
Then the problem (6.1), (1.2) has a unique solution.

Remark 6.4. Theorem 6.4 is nonimprovable in the sense that the strict
inequalities (6.25) and (6.27) cannot be replaced by the nonstrict ones (see
Examples 6.3 and 6.4, p. 146).

Note also that if 79 = a and 71 = b, then from Theorem 6.4 we obtain
Theorem 4.4 (see p. 83).

In the case, where |u| > |\, the following assertions hold.
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Theorem 6.5. Let |u| > || and

5|3 / [p(s))_ds + /b [p(s)]ds.

If
B<1,

(2Z[p(s)]+ds+j[p(s)]+ds (1]1[;9(3)]@) > m 14 B,

T1

(1-B) (1+ / [p<s>]+ds) > :\ - \2]Z[p<s>]+ds— /b p(s)] s

70 T1

and either

m Z[p(s)]+ds + /b[p(8)1+ds < m +\/1-B,

T1

2 / [p(s)] s+ /b polds <1+ |2+ 211 - B

70

or

p jwsms + /b p(o)eds > 2] + /1 - B,

[Jlps)ads <14 —— =
& 2 Jp)eds + [lp(s))cds [}

T1

i

then the problem (6.1), (1.2) has a unique solution.
Theorem 6.6. Let [p] > || # 0 and

- m / [p(s)] s + /b [p(s)] s

70

123
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If
A< /\’,
1

(12~ 1) (1+ ﬁ[p(s)]ds) >1- 2] / [p(s)]_ds —

. ﬁ/[p<s
(' ]/ s+ [ )(12@( >]+ds) >

SHLN H/ s [t

and either

b

])[p(s)]der/[p(s)]ds 14 m i

2 Z[p(s)]ds+j[p(5)]d8< 2+2 '2

H/[p d+/[p W

/[()] ds < 1+ -4
” 2 i) d+T{[p ds

=I>

—A

or

then the problem (6.1), (1.2) has a unique solution.

)]7d87
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Theorem 6.7. Let |u| > |)|, the condition (6.18) be fulfilled, and let either

A ]O[m J-ds + |u / ds-
(A/[p +d8+|u|/[p +ds) (1=T) < |ul - A

or

1 b
(A / [p(s)]_ds + [ul / [p(s)]ds) (1-

—w/ +ds—w/ Neds > (lul = [A) (1 - 7).

where T is defined by (6.21). Then the problem (6.1), (1.2) has a unique
solution.

Theorem 6.8. Let |u| > |\| and let there exist v € C~’([a,b];]0,+oo[) such
that

= (t) = [p(®)]- (7)) + [p(O)]+  for t € [a,b],
[Aly(a) < [uly(b),
and either

IM(v(a) = v(10)) + [l (v(71) = v(0)) < [AI + |l

(7(@) = 7(70)) + () = 7(b) < 3+ m

A (v(a) = v(10)) + |l (v(11) = v (B)) > [A| +|ul,

||
IX(v(a) = v(70)) + |l (v(11) = (b)) = [A]

Then the problem (6.1), (1.2) has a unique solution.

v(10) = () <1+
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Remark 6.5. Let p,q € L([a, bl; R), T € Mgy, and ¢ € R. Put

POY pat+b—1t), F&)Ea+tb—rlat+b—1),

i)Y —gla+b—1t) for teab).

It is clear that if u is a solution of the problem (6.1), (1.2), then the function
v, defined by v(t) def u(a+b—t) for t € [a,b], is a solution of the problem

V() = p(t)v(T(t)) + q(t), pv(a) + Av(b) = ¢, (6.28)

and vice versa, if v is a solution of the problem (6.28), then the function
u, defined by u(t) dof v(a+b—t) for t € [a,b], is a solution of the problem
(6.1), (1.2).

Remark 6.6. According to Remark 6.5, Theorems 6.5-6.8 can be immedi-
ately derived from Theorems 6.1-6.4. Moreover, by virtue of Remarks 6.1—
6.4, Theorems 6.5-6.8 are nonimprovable in an appropriate sense.

6.2. Proofs

According to Theorem 1.1 (see p. 14), to prove Theorems 6.1-6.4 it is
sufficient to show that the homogeneous problem

u'(t) = p(t)u(r(t)), (6.10)
Au(a) + pu(b) =0

has only the trivial solution.
First introduce the following notation

Alszsmczs, 4o = / s, As= [lps)ds,

T0 T1 b

Bi= [o)ds,  Ba= [pe)lds,  Ba= [lps)-ds

a 70 T
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Proof of Theorem 6.1. Assume that the problem (6.1¢), (1.29) possesses
a nontrivial solution u.

First suppose that u does not change its sign in [rp, 71]. Without loss
of generality we can assume that

u(t) >0 for te [, (6.30)
Put
M = max{u(t) : t € [10,71]}, m = min{u(t) : t € [10, 1]},  (6.31)
and choose tyr,t,, € [10,71] such that
u(ty) = M, u(tm) = m. (6.32)
Furthermore, let

ap = min{tys, tm }, a1 = max{tay, tm}, (6.33)

@Q aq

An = [peds, An = [Ipe))ds, An= [lp)ds,

70

3 31 . (6.34)
Ba= [p(e))-ds, Boa= [lp()-ds, Baa= [Ip(o))-ds.
7 &0 ai
It is clear that
m >0, M >0, (6.35)

since if M = 0, then, in view of (6.1p), (6.30), and (6.31), we obtain
u(79) = 0 and /(t) = 0 for ¢ € [a,b], i.e., u = 0. Obviously, either

tar < tm (6.36)

or

tar > tm. (6.37)

First suppose that (6.36) holds. The integrations of (6.1p) from a to
tar, from tps to ty,, from ¢, to 71, and from 71 to b, on account of (6.29),
(6.31)—(6.34), and the assumption ‘%{ € [0, 1], result in

M) = [ treds = [pe) e oo

< M(A1 + A21) — m(Bl + B21)>
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m— M = / ()] u(r(s))ds — / [p(s)]_u(r(s))ds <

t (6.39)
< M Ags — mBaa,
‘%’ (u(ﬁ) — m) <u(mn)—m= /[p(s)}Jru(T(s))ds—
N m (6.40)
— /[p(s)]_u(T(s))ds < M Ay3 — mBog,
’ b b
u(b) — u(r) = / [p($)] 4 u(r(s))ds — / P s <o

< MA3 —mBs.

Multiplying both sides of (6.41) by |%|, summing with (6.38) and (6.40),
and taking into account (1.2p) and (2.1), we get

M =Bl < M (A1 + Ant + A+ | 5] 45) -

_ lad
m(B1+Bz1+B23+))\‘Bs>~
Hence, by virtue of (6.2), (6.3), (6.29), (6.34), and (6.35), the last inequality

implies

O<M<1—A1—A21—A23— ]’A‘)A3> <
(6.42)
< m< ’g’ — B1 — By — Bos — ‘%‘ B3>-
On the other hand, with recpect to (6.34) and (6.35), (6.39) results in
0 <m(1+ Bag) < M(1+ Apy). (6.43)
Thus, it follows from (6.42) and (6.43) that

<1 — Ay — Ay — Agz — ‘g’ A3> (1+ Bag) <
(6.44)

< <‘§‘ — B1 — Bo1 — By — ‘i‘B:s) (1+ Ag).
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Obviously, on account of (6.2), (6.29), (6.34), and the assumption |§| €
[0, 1], we find

(1 — Ay — Ag — Aoz — )%‘A%) (14 Bx) =
- (1—A1—A2— ‘g’A?,) (1+ By)—
_ (1 Ay~ Ay — )g’Ag) (Bo1 + Ba3) + Ass (1 + Ba) >

> (1 — A) (1 + BQ) — (321 + B23) + Ao
and

(5]~ =[5 0+ 20 -
[ = e )1

< ‘%‘ — By — ‘%‘ Bz + Az — (Ba1 + Bas).
By virtue of the last two inequalities, (6.44) yields
[ [
1—-A)(1+B <H—B —HB,
( )( + 2) =15 1 N

which, in view of (6.29), contradicts (6.5).

Now suppose that (6.37) is fulfilled. The integrations of (6.1p) from a to
tm, from t,, to tps, and from ¢ps to b, on account of (6.29) and (6.31)—(6.34),
result in

m—u@)= [ = [pEl e o
;M(Al + Asgy) — m(l; + Ba1),
M == [ cutrods - [p)]-u(r(s)ds < (6.46)
" < MAg — mg;%
b b
u(b) — M - / [p(s)]u(r(s))ds y / pEl-ur(e)ds <o

< M (Ag3 + A3) — m(Bas + Bs).
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Multiplying both sides of (6.47) by |&|, summing with (6.45), and taking
into account (1.2p) and (2.1), we get

o 503 o+ 1+ £ )

(6.48)
-m (31 + Bo1 + ‘g’ Bas + ‘%‘ 33) .

Hence, by virtue of (6.2), (6.3), (6.29), (6.34), and (6.35), it follows from
(6.46) and (6.48) that

0< M(l—Agz) Sm(l—ng),
1 1
0 §m<1+B1 + Ba1 + }X‘B23+ ‘)\’Bs) <

<o ] e 2] 4] )
Thus,

<1+B1 + Bo1 + ‘§‘323+ ‘i‘Bg)(lAm) <
(6.49)
< <’i‘ + A1+ Ao + ‘%’A%-i- ‘i‘z‘h) (1 — Ba).

Obviously, in view of (6.2), (6.3), (6.29), (6.34), and the assumption |§| €
[0, 1], we obtain

(1+B1 + Boy + ’%‘st-l- ‘%‘Bs) (1—Agp)=1—Axn+
+<B1 + Bo1 + ‘%‘322-# ‘%‘323+ ’%‘33) (1 —Azz)—‘g‘Bm(l — Ag) >
-t (s ) 020 2]

and

(5] e [ i  [5] 45) (0= B2) =

— ‘%‘Bzﬂ- (Al + A1 + ‘%‘Azﬁ- ‘%‘A?)) (1 Bx) <

IN

L
5
i
A

- ‘g‘BQQ‘f‘Al + A1 + Axp + ‘;‘A%—i— ‘%’A:a — Ay <

IN

A 4] o aa
’)\ h\ 29 + 22.
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By virtue of the last two inequalities, (6.49) implies
[ [ u
B HB HB) 1—Ay) < Hq A,
(1+)\2+)\3( 2)_>\ +
which, in view of (6.29), contradicts (6.4).
Now suppose that u changes its sign in [r9, 71]. Put
mo = —min{u(t) : t € [10,71]}, My = max{u(t) : t € [10,71]} (6.50)
and choose «ag, a1 € [9, 71| such that
u(ag) = —mo, u(aq) = M. (6.51)

It is clear that
My > 0, mo > 0, (6.52)

and without loss of generality we can assume that oy < ay. Furthermore,
define numbers Asg;, By; (i = 1,2,3) by (6.34) and put
1—A

()€
T e B+ [5B[4

vz for x>‘§‘—31—‘§‘33, (6.53)

where A is given by (6.2).
The integrations of (6.1p) from a to «ag, from ap to a;, and from «a; to
b, in view of (6.29), (6.34), (6.50), and (6.51), result in

u(a) +mo = [p(s)-ulr(s)ds = [ p(s))cu(r(s)ds <

(6.54)
< ]\40(31 + 321) + mo(A1 + AQl)v
Mo+ mg = a/ [p(s)] - u(r(s))ds — a/ [p(s)]-u(7(s))ds < (6.55)
< MyAss + moBaa,
b b
Moy — u(b) :O/[p(s)}_u(T(s))ds —o/[p(s)]+u(7(5))ds < (6.56)

< Mo (Bas + B3) +mg(Azs + As).
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Multiplying both sides of (6.56) by ‘%‘, summing with (6.54), and taking
into account (1.29), (2.1), (6.52), and the assumption || € [0,1], we get

‘%‘Mo—i-mo < My (B1+Bz1+323+ ‘%‘33 +

(6.57)
+mo (A1 + Aoy + Agz + ’ﬁ‘ AS) -
A
Due to (6.2), (6.3), (6.29), and (6.34), we have
A1+A21+A23+‘§‘A3<17 Ay < 1.
Thus, it follows from (6.52), (6.55), and (6.57) that
Bas > 1, Bl+Bm+Bzg+‘§‘Bg>\§‘, (6.58)
and
M,
Bos >1+ 70(1 — AQQ) s (659)
mo
M, 1—A; —Agp — Aog — |5 A
2o 5 e 51 =1y (6.60)
mo ~ Bi+ Bai + Bag + |&| Bs — | 4]
According to (6.58) and the fact that
w
— — Ay — Ay — Ags — | = >
(1— Ap) (1 Ay — A9y — Ags ’)\ ‘ As) >
ZI_AI_A21_A22_A23_‘%‘Afi:l_Aa
from (6.59) and (6.60) we get
1-A
Bas > 1+ (6.61)

Bi+ Bay + By + |§] Bs — [ 5]

First suppose that (6.6) and (6.7) are satisfied. By virtue of (6.58),
from (6.61) we have
1—A< (By—1) (31—1—3214-3234-’%‘33—‘% ) <

<1<B 4 By + Boy+ B +‘M’B 1 (“DQ—
= 1 21 22 23 /\ 3 )\ —
1

© B2
Bi+ B+ [§|Ba-1-|3]),
4( 1+ 2—1-)\ 3 h\
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which, in view of (6.3), (6.29), (6.34), and (6.58), contradicts (6.7).

Now suppose that (6.8) and (6.9) are fulfilled. It is not difficult to
verify that, on account of (6.8) and (6.29), the function g defined by (6.53)
is nondecreasing in [0, +o00[. Therefore, from (6.61) we obtain

1-A
Bi 4 Ba1 + Bag + |&| Bs — | 4]
1-A
By + K| Bs - [§

Boy + Bag + Baz > 1+ + Bo1 + Bag =

=1+ g(Ba + Ba3) >1+g(0) =1+

)

which, in view of (6.29) and (6.34), contradicts (6.9). O

Proof of Theorem 6.2. Assume that the problem (6.1p), (1.2¢9) has a
nontrivial solution w.

First suppose that u does not change its sign in [rp, 71]. Without loss
of generality we can assume that (6.30) is fulfilled. Define numbers M and
m by (6.31) and choose tys,ty, € [10,71] such that (6.32) holds. Further-
more, define numbers ag, a1 and Asg;, By; (i = 1,2,3) by (6.33) and (6.34),
respectively. It is clear that (6.35) is satisfied, since if M = 0, then, in view
of (6.1p), (6.30), and (6.31), we obtain u(79) = 0 and /(¢t) = 0 for ¢ € [a,b],
ie.,, u=0. It is also evident that either (6.36) or (6.37) is fulfilled.

First suppose that (6.36) holds. The integrations of (6.1p) from ts to
tm, from a to 79, and from 7y to b, in view of (6.29)—(6.32), result in

M—m= /[p(s)]u(T(s))ds - /[p(s)]+u(7(s))ds < M B, (6.62)

u(a) — u(m) = / [p(s)]_u(r(s))ds — / ()] u(r(s))ds <

J / (6.63)
< MBl — mA1,
b b
) —ut) = [ nr)ds = [plnrionas<

< M(B2 —I—Bg) — ’I?’L(A2 —|—A3)

Multiplying both sides of (6.64) by ‘%’, summing with (6.63), and taking
into account (1.29), (2.1), (6.31), (6.35), and the assumption |4| € ]0,1],
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we get

o (4] -1) =t (2]
1 (5 4]+ 2] 3) - (2] 0+ 2] )

ie.,
2 1%
< — — <
0_m<A1+‘)\‘A2+‘>\’A3) <

(6.65)
[ [ [

<M 1—H B HB HB .
< ( 3 + b1+ \ 2+ N

On the other hand, with respect to (6.10), (6.11), (6.29), (6.35), and
the assumption |§| € ]0,1], (6.62) yields

0< M(1—By) <m. (6.66)
Thus, it follows from (6.65) and (6.66) that
[ [ [ [ [
Ll [ _ <1_|E L L
<A1+‘/\‘A2+’)\‘A3>(1 Ba) =1 ’A‘JFBIJF’A‘B?JF)A‘B?”

which, on account of (6.29), contradicts (6.13).

Now suppose that (6.37) is fulfilled. The integrations of (6.1p) from a to
tm, from t,, to tpr, and from ¢, to b, on account of (6.29) and (6.31)—(6.34),
yield

u(a) —m = / [p($)]_u(r(s))ds — / [p(3)] 4 u(r(s))ds <

(6.67)
< M(Bi + Ba1) — m(A; + Aa),
m—t = [ uro)is =~ [pelacees o
" < M By — mzilw;m
b b
M — u(b) :t/[p(s)]_u(T(S))dS —t/[P(S)1+“(T(S))dS = (6.69)

< M (Ba3 + Bs) — m(Azz + As).
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Multiplying both sides of (6.69) by ‘%‘, summing with (6.67), and taking
into account (1.2p) and (2.1), we get

p u p
= —m < [l ~ _
’)\‘M m—M(BlJrBQlJF‘A‘B?ﬁ’A‘B?’)
© K
m(A1+A21+))\‘A23+‘)\‘A3>-

Hence, by virtue of (6.10), (6.11), (6.29), (6.34), (6.35), and the assumption
}%’ € ]0,1], the last inequality results in

ool mom s fn)s
< m(l —Ap — Ao — )%‘AZB_ ‘i‘A?))

On the other hand, with respect to (6.34) and (6.35), (6.68) implies
0 <m(1+ Az) < M(1+ B). (6.71)

Thus, it follows from (6.70) and (6.71) that

(5 2] )0
(6.72)
< <1 — Ay — Ay — ‘%‘A%— K‘A‘s) (1+ Ba2).

Obviously, on account of (6.10), (6.29), (6.34), and the assumption ‘§| €
10, 1], we obtain

(51 - - 2] 0
_ (‘%‘ _ By — By — By — )%‘ng _ ‘%(33) (14 Az) + Baz(1+ Ag) -
- (‘g’ — By — Bay — ’%’323 - ‘§)33> (Ag1 + Ags) >

1 0
> QX‘ —B) (1+ A2) + Baa — ‘X‘ (A21 + Ag3)
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and

(1 Ay — Ay — ‘%‘Agg _ ‘%‘Ag) (14 By) =1— A—

- ‘%’Ag — (A21+ ‘%’Azza) + (1—A1 — A1 — ‘%‘A%_ ‘%‘A:%) Bas <

<1-A4A - ’%‘Az& — ‘g’ (A21 4+ Ag3) + Baa.

By virtue of the last two inequalities, (6.72) yields
3 -7) A
Sl=B)(14+A4)<1—-A4;—|~|A
(‘)\ (1 42) < I

which, in view of (6.29), contradicts (6.12).

Now suppose that u changes its sign in [y, 71]. Define numbers mg and
My by (6.50) and choose «, a1 € [0, 71] such that (6.51) holds. It is clear
that (6.52) is satisfied and without loss of generality we can assume that
ap < a1. Moreover, define numbers Ay;, By; (i = 1,2,3) by (6.34) and put

5B

() <
g _l‘—{—Al—F‘%‘Ag—l

o for m>1—A1—’§‘A3, (6.73)

where B is given by (6.10).

In a similar manner as in the second part of the proof of Theorem 6.1,
it can be shown that the inequalities (6.55) and (6.57) hold. Due to (6.10),
(6.11), (6.29), (6.34), and the assumption |§| € ]0,1], we have

Bl+321+323+‘§‘33<‘§ , Byy < 1.

Thus, by virtue of (6.52), it follows from (6.55) and (6.57) that

Aoy > 1, A+ Ao + Aoz + ’%‘ Az > 1, (674)
and
mo
Ay >1+—(1-B .
222 1+ Mo( 22) ) (6.75)

mo _ 4] = By~ B — By~ |4] By

6.76
My = Ay + Ag + Aps + | 5| A3 — 1 (6.76)
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According to (6.74), the assumption |§| € ]0,1], and the fact that
(1 — Bay) (‘E‘—B1—B21—B23—’H‘B3> >
A A
5 A R
> |H By~ Boy — |E| By — Bos — |E| By > |E| - B
_‘)\ 1 21— || B2 28~ |3]| P32 ;

from (6.75) and (6.76) we get

5l-B

Az > 1+ .
- Ap 4 Agy + Ao + |5 A3 — 1

(6.77)

First suppose that (6.14) and (6.15) are satisfied. By virtue of (6.74),
from (6.77) we have

[ [
Bl _B< — Elas—1) <
‘/\’ B < (Ag 1)(A1+A21+A23+})\’A3 1)_
<1(A 4 Aoy 4 Agy + A +}H‘A —2)22
< 7 (A 21 22 23+ || 43
1 o 2
=7 A+ aer |5l A —2)
which, in view of (6.11), (6.29), (6.34), and (6.74), contradicts (6.15).
Now suppose that (6.16) and (6.17) are fulfilled. It is not difficult to

verify that, on account of (6.16) and (6.29), the function g defined by (6.73)
is nondecreasing in [0, 4+o00[. Therefore, from (6.77) we obtain

5| - B
Aoy + Agg + Aoz > 1 Y A
21 + Ago + Aoz 2> +A1+A21+A23+’%‘A3—1+ o1 + Aos
:1+9(A21+A23)>1+g(0):1+ ‘%‘_B
B A1+‘%‘A3—1’
which, in view of (6.29) and (6.34), contradicts (6.17). =

Proof of Theorem 6.3. Assume that the problem (6.1p), (1.29) has a
nontrivial solution w.

First suppose that u has a zero in [rp, 71]. Define numbers mgy and My
by (6.50) and choose ag, a1 € |79, 71] such that (6.51) holds. Obviously,

mg > 0, My > 0, mo + My > 0, (6.78)
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since if mp = 0 and My = 0, then, in view of (6.1p) and (6.50), we obtain
u(r0) = 0 and u/(t) = 0 for t € [a,b], i.e., u = 0. It is also evident that
without loss of generality we can assume that ag < a;.

The integration of (6.1p) from ap to ai, on account of (6.50), (6.51),
and (6.78), yields

Mo + mo = / [p($)] 4 u(r(s))ds — / [p(s)]_u(r(s))ds <
0 - (6.79)

T1

< Mo / [p(3)] 4 ds + mo / [p(s)]_ds,

70 70

which, by virtue of (6.18) and (6.78), results in My + mg < My + mo, a
contradiction.

Now suppose that u has no zero in |19, 71]. Without loss of generality
we can assume that u(t) > 0 for t € [r9,7]. Define numbers M and m
by (6.31) and choose tys, ty, € [70, 1] such that (6.32) holds. Furthermore,
denote

t b
10 [plas+ 5] [l o te o,
¢ ! (6.80)

t b
0 déf/[p(s)]ds—k‘i‘/[p(s)]ds for € a,b.

It is obvious that
M >0, m > 0, (6.81)

and either (6.36) or (6.37) is satisfied.
If (6.36) holds, then the integration of (6.1¢) from ¢ps to ¢,,, on account
of (6.31), (6.32), and (6.81), results in

M == [p)-atr(s)ds [ ps)]cutr(s)ds < M [lp(s)-ds

If (6.37) holds, then the integration of (6.1p) from t,, to tys, in view of
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(6.31), (6.32), and (6.81), results in

ty ty

M—m= / ds—/[()] 3<M/ )] +ds.

tm

Therefore, with respect to (6.18) and (6.81), in both cases (6.36) and (6.37)
we have

0<M(1-T)<m, (6.82)

where T is defined by (6.21).
First suppose that (6.19) holds with 7" given by (6.21). The integrations
of (6.1p) from a to tps and from ¢y to b, on account of (6.31) and (6.32),

imply

M = u(a) = / [p(5)] s u((s))ds — / [p(s)]_u(r(s))ds <
“tM t; (6.83)
< M [[p(s)]4ds —m / [p(s)]_ds,
b b
u(b) ~ M = [ [p(s)]yulr(s))ds — / [p(s)]_u(r(s))ds <

(6.84)

< M/b[p(S)]+d8 —m/b[P(S)]dS

Multiplying both sides of (6.
into account (1.2¢), (2.1), and (6.80), we get

(1[4 (/ oo 5] fo)
. (6.85)
—m (/[ d3+’ )/ ) = M fy(tar) = mf-(ta).

a

(6.83), and taking

It is easy to verify that, in view of the assumption ’%‘ € [0, 1], the functions
f+ and f_ defined by (6.80) are nondecreasing in [a,b] and thus, with
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respect to (6.29) and (6.80), it follows from (6.85) that

M (1= |5|) < MFelta) = mf—(tar) < Mfo(r) = mf—(70) =
(6.86)
st (a8 ) (5 5 5] ).

By virtue of (6.82), (6.86) yields
(1) £ 40
(o[22 ) -

which, in view of (6.29) and (6.81), contradicts (6.19).
Now suppose that (6.20) holds with 7" given by (6.21). The integrations
of (6.1p) from a to t,, and from ¢,, to b, on account of (6.31) and (6.32),

imply

tm tm

“ . tZ (6.87)
> m [ [p(s))ds = [ [p(s))-ds.
b b
u(b) —m = [ [p(s)]su(r(s))ds — / [p(s)]_u(r(s))ds >
tm (6.88)

Multiplying both sides of (6.
into account (1.2p), (2.1), and (6.80), we obtain

(6.87), and taking

tm b

m(1-[E) = m ( [itsaas+|5] [ [p<s>1+ds> -
(/ ds+’u‘/ ) — mf i (tm) — Mf—(tm).
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As above, in view of the assumption || € [0,1], the functions fi and f_
defined by (6.80) are nondecreasing in [a, b] and thus, with respect to (6.29)
and (6.80), it follows from (6.89) that

m (1= |5]) 2 me(tm) = MF- () = mfo(m0) = MS-(71) =

(6.90)

_ H ad _ ad

*m<A1+ ‘A‘Aﬁ ’)\‘A?’) M(Bl+BQ+ ’)\‘B?’)'
By virtue of (6.18), (6.21), and (6.82), (6.90) implies

[ 7 [
B T > Lt L _T)_
m(l ‘)\D -1 *m(AlJr MA2+ ‘/\‘A?’) (1-=1)
_ ad
m(31+32+ ‘A‘Bz),

which, in view of (6.29) and (6.81), contradicts (6.20). O

Proof of Theorem 6.4. Assume that the problem (6.1p), (1.29) has a
nontrivial solution .

According to Theorem 2.1 (see p. 17) and the assumptions (6.22) and
(6.23), it is clear that G € V.1 (A, ), where

G(v)(t) = [p(D)]yo(r(t)) for € fa,b].

Now it follows easily from Definition 2.1 (see p. 15) that u changes its sign
in [19, 71]. Define numbers mgy and My by (6.50) and choose ag, a1 € [0, 71]
such that (6.51) holds. Obviously, (6.52) is satisfied and without loss of
generality we can assume that a; < ag. From (6.1p), (1.29), (6.22), and
(6.23), with respect to (2.1), (6.50), and (6.52), we obtain

(Moy(t) +u(t)) >
> [p(t)]+ (Moy(7(t)) +u(r(1)) + [p(t)]- (Mo — u((t))) > (6.91)
> G(Myy+u)(t) for tela,bl],

A (Mor(a) + (@) — |1l (Mor(b) + u(b)) > 0,
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and
(moy(t) — u(t))" >
> [p(t)]+ (moy(7(t)) — u(T(t))) + [p(t)]- (mo + u(r(t)) > (6.92)

> G(moy —u)(t) for t€la,b],

Al (moy(a) = u(a)) — |pl(moy(b) — u(b)) > 0.

Hence, according to the condition G € V. (A, 1) and Remark 2.3 (see p. 16),
we get

Moy (t) +u(t) >0, moy(t) —u(t) >0 for t€Ja,b].
By virtue of the last inequalities, it follows from (6.91) and (6.92) that
(Mo (t) + u(t))/ >0, (moy(t) — u(t)), >0 for tela,b]. (6.93)

The integration of the first inequality in (6.93) from oy to ag, in view
of (6.51) and (6.52), yields

Moy(ag) —mo — Moy(o) — My > 0,

ie.,

wmw—vmﬁ21+%%. (6.94)

On the other hand, the integrations of the second inequality in (6.93)
from a to ay and from ag to b, on account of (6.51), imply

moy(a1) — Mo — moy(a) + u(a) > 0, (6.95)
moy(b) — u(b) — moy(ap) —mo > 0. (6.96)

Multiplying both sides of (6.96) by %‘, summing with (6.95), and taking
into account (1.2¢), (2.1), and (6.52), we get

yan) = 2(a) + 5] 60) - o) = [§[+ 22 6m)

First suppose that (6.24) and (6.25) are fulfilled. Summing (6.94) and
(6.97) and taking into account (6.52), we obtain

Yao) = (@) + | §| (16) = v(a0)) =

(6.98)
- A mo My — A



6.2. PROOFS 143

On the other hand, by virtue of the fact that the function + is nondecreasing
in [a,b], and the assumption |&| € [0,1], we get

170) + (1= [5]) 7m0 = 2@ 2 [5]20) + (1= [5]) 2a0) =10,

which, together with (6.98), contradicts (6.25).

Now suppose that (6.26) and (6.27) are satisfied. According to (6.26),
(6.52), and the fact that the function + is nondecreasing in [a, b], it follows
from (6.97) that

mo Al
Mo~ [N (v(a1) =~(a)) + |ul (v(b) = v(a0)) — ||
and thus, (6.94) implies

Al

vieo) =vlen) 2 14 A (v(a1) —~(a)) + 1ul(v(b) = v(ao)) — |ul (6.99)
Let N
dﬁf i or X . .
o) & D for @ (6.100)

By virtue of (6.99), (6.100), the assumption |£| € [0,1[, and the fact that
the function +y is nondecreasing in [a, b], we get

y(m1) —v(70) =
= v(ao) —v(a1) + (1) — v(ao) +y(e1) — y(70) >
Al N
(v(a1) =~(a)) + |u| (v(b) — v(a0)) — |l

1+
(6.101)
5] () = 100)) +2(1) = 20 =
= 1+ g(IM (v(@1) = (@) + [l (7(b) — 7(a0)))+

+1(a) = y(r0) + | 5| (v(r) = 2(®)).

It is easy to verify that the function g is nondecreasing in [|A|+|u|, +00[ and
thus, according to (6.26) and the fact that the function 7 is nondecreasing
in [a, b], we find

g(IM(v(a1) =~(a)) + [ul(v(b) — v(a0))) >
> g(IA(v(10) = v(@)) + || (v(b) = 7(11)))-
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Therefore, (6.101) yields

Y(11) = v(70) > 1+ g(IAl(v(70) — v(a)) + |l (v(b) = y(71)))+
+ (@) = () + | 5| (v(m) = 7(0)) =

Al
I (v(0) — (@) + |l (v(b) = ~v(11)) — |ul’

which contradicts (6.27). O

=14+

6.3. Comments and Examples
Example 6.1. Let |u| < |\ and let z;,y; € Ry (i = 1,2,3) be such that
w
:L‘1+:B2+’X‘x3< 1 (6.102)
and
(s + |5l + [F o) 0 =22) =[5 =1+ 21025 |as

Let, moreover, a =0, b =7,

—y1 for te[0,1]
x1 for te[l,2]
T2 for te[2,3]
p(t) = < —1o for tel3,4] , (6.103)
0 for te[4,5]
T3 for te[5,6]
[ —y3 for tel6,7]
and
2 for te0,1[U[3,4[U[6,7]
T(t) =43 for te[1,3[U[5,6]
4
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Obviously, T = 2, . = 4, and

70 T1

b
Jisnsds =1, [leds =oa, [ [p(s))ds = s
a T0 T1
. - b (6.104)
Jits-ds=un. [lpe)ds =, [Ip(s)-ds = n.
a T0 T1
On the other hand, the function
(yl(l—azg)(l—t)—l—l—xl—xg for te[O,l[
z1(t—2)+1—xo for te[l,2]
xo(t —3)+ 1 for te[2,3]
u(t) = Qy2(l —a9)(3—t)+1 for te[3,4]
1 —yo(1 —x2) for te[4,5]
x3(t —5) + 1 —yo(1l — x2) for te[5,6]
y3(1—$2)(7—t)+1+$3—(yg—l—yg)(l—xg) for te [6,7]

is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.4)
cannot be replaced by the nonstrict one.

Example 6.2. Let |u| < |A| and let z;,y; € Ry (i = 1,2,3) be such that
(6.102) holds and

(1= == [fes) () = 5] =w =[S

Let, moreover, a =0,b="7,p € L([a, bl; R) be defined by (6.103), and

2 for te[4,5]
T(t) =<3 for tel,3[U][56] :
4 for te€]0,1[U[3,4[U6,7]

Obviously, 79 = 2, 7 = 4, and (6.104) is fulfilled.
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On the other hand, the function

yi(l—t)+1+y2 — (z1 + 22)(1 + y2) for te[0,1]
(1 +y2)(t—2) + 14+ y2 — x2(1 + y2) for tell,2]
xo(1+y2)(t —3)+ 1+ 1y for te[2,3]
u(t) =< yo(4—1t) +1 for te€[3,4]
1 for te[4,5]
z3(l+y2)(t —5) +1 for te[5,6]
(Y3(7—1) +1—y3 +x3(1 +y2) for tel6,7]

is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.5)
cannot be replaced by the nonstrict one.

Example 6.3. Let |u| < |\| and let z;,y; € Ry (i = 1,2,3) be such that
(6.102) holds and

o o< 5] 1 [

y1+y2+’§‘y321+V;‘+2\/I—x1—$2—’i‘$3-

Put a = \/l—xl — g — |&|zs and k = |§| + o — y1 — |§]ys. Obviously,
k>0 and yo > 1+ a + k. Let, moreover, a =0, b = 10,

7

-y for te[0,1]
x1 for te[l,2]
x2 for te[2,3]
—k for te[3,4]
p(t) = -1 for te[4,5] ’ (6.105)
—(y2—1—a—k) for te[5,6]
- for te[6,7]
0 for te|[7,8]
x3 for te€[8,9]
—Y3 for ¢ e€9,10]
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and
7 for te0,1[U[3,4[U [9,10]
4 f te|1,3|U|4,5/U 6,7 U |8,9
T(t) = or te LUV TV (6.106)
5 for te[5,6]
2 for te|[7,8]
Obviously, 7o = 2, 71 = 7, and (6.104) is satisfied.
On the other hand, the function
ayr(1—t)+ak+z1 +x2 —1 for te€[0,1]
r1(2—t)+ak+x2—1 for tel,2]
x2(3 —t)+ak—1 for te€[2,3]
ak(4—t)—1 for te[3,4]
t—>5 f te 4,5
u(t) = or teldsl 5 0m
0 for te€[5,6]
a(t —6) for t€[6,7]
a for te|[7,8]
z3(8 —t) + « for te€[8,9]
ay3(10 —t) + o — x3 — ays for te[9,10]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.7)
cannot be replaced by the nonstrict one.

Further, in addition, let |u| < |A| and z; =0 (i = 1,2,3). Put

v(t) =8+ /[p(s)]ds for t € a,b), (6.108)

where & > oL (41 + o + ys) and p € L([a,b]; R) is defined by (6.105).

Obviously, ~ satisfies (6.22) with 7 € My, given by (6.106), (6.23), and

Y(10) —v(a) =y1, (1) —v(10) =y2,  (b) —v(m1) =y3.  (6.109)
Thus, (6.24) is fulfilled and

‘%‘ (v() = v(71)) +~(11) —v(a) = y1 +y2 + }%‘ys >3+ ‘%‘
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On the other hand, as we have shown, the problem (6.1p), (1.2g) has
a nontrivial solution u given by (6.107). Therefore, according to Remark 1.1
(see p. 14), there exist q € L([a, bl; R) and ¢ € R such that the problem
(6.1), (1.2) has no solution.

Consequently, this example also shows that in Theorem 6.4 the strict
inequality (6.25) cannot be replaced by the nonstrict one.

Example 6.4. Let |u| < |\| and let z;,y; € Ry (i = 1,2,3) be such that
(6.102) holds and

y1+"/<‘3/32‘/;’-l-\/l—ﬂcl—m—)i‘xg,

Putazlfxlfng‘ﬂxg andﬁ:y1+’§

@_
Il
o

6>0,and yo > 1+ % Let, moreover, a = 0,
T for te]0,1]
-1 for tell,2]
x2 for te2,3]
-1 for te[3,4]
pt)=q—(—1-5§) for te[4,5], (6.110)
-5 for te[5,6]
0 for te[6,7]
—y3 for te|7,8]
L 23 for te 8,9
and
3 for tel0,1[U[2,4[U[56[U[8,9]
6 f te|l,2/U|7,8
T(t) = > 1,20 {7.8] (6.111)
4 for te[4,5]
2 for tel6,7]

Obviously, 79 = 2, 71 = 6, and (6.104) is satisfied.
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On the other hand, the function

Bri(1—t)+pa—(1—2x9)3  for te]0,1]
ay1(2—1t) — (1 —xz9)8 for te|[l,2]
Bra(3—t)—p for te2,3]
Bt —4) for te[3,4]
u(t) =<0 for te[4,5] (6.112)
a(t —5) for te[5,6]
a for te€[6,7]
ay3(7T—1) +« for te|[7,8]
 Br3(9 — 1) + (1l —y3) — B3 for te[8,9]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist q € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.9)
cannot be replaced by the nonstrict one.

Further, in addition, let |u| < |[A| and z; = 0 (i = 1,2,3). Define the
function v € 6([@,6];]0,—}—00[) by (6.108), where ¢ > %(yl + Y2 + y3)
and p € L([a,b]; R) is given by (6.110). Obviously, v satisfies (6.22) with
T € My given by (6.111), (6.23), and (6.109). Thus, (6.26) is fulfilled and

o 1
B S — @+ [E (0 =) — 4]

On the other hand, as we have shown, the problem (6.1p), (1.2g) has
a nontrivial solution u given by (6.112). Therefore, according to Remark 1.1
(see p. 14), there exist q € L([a, b];R) and ¢ € R such that the problem
(6.1), (1.2) has no solution.

Consequently, this example also shows that in Theorem 6.4 the strict
inequality (6.27) cannot be replaced by the nonstrict one.

(1) —=v(10) =92 > 1+

Example 6.5. Let 0 # |u| < |A| and let z;,y; € Ry (i = 1,2,3) be such
that

y1+yz+}§‘y3<‘§‘ (6.113)

and
(5] =1 —e = [§[us) 0+ 22) =1 =01 = [§] s,
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Let, moreover, a =0, b= 17,

-y for te|0,1]
x1 for te[l,2]
0 for te[2,3]
p(t) =< —1o for te[3,4],
To for te[4,5]
x3 for te[5,6]
[ —y3 for te€[6,7]
and
5 for tel0,1[U[3,4[U6,7]
T(t) =<4  for tel,2[U[4,6]
3 for te[2,3]

Obviously, 7o = 3, 71 = 5, and (6.104) is fulfilled.
On the other hand, the function

(1 (14 22)(1 —t) + 1 — 21 + ya(1 + 22)
21t —2) + 1+ y2(1 + 2)
1+ y2(1 + 29)
ya(l+ax2)(4—t)+1
x2(t —5)+ 1+ 22
x3(t —5) + 14 2o
(Y31 +22)(T— 1) + 1+ 22+ 23 — y3(1 + 22)

for
for
for
for
for
for

for

(6.114)

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a, bl; R) and ¢ € R such that

the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.12)

cannot be replaced by the nonstrict one.

Example 6.6. Let 0 # |u| < |\ and let x;,y; € Ry (i = 1,2,3) be such

that (6.113) holds and

(3l

h $2+‘M‘$3) 1—y2)—1—‘u‘+y1+‘)\‘ (y2 +y3).
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Let, moreover, a =0,b="7,p € L([a, bl; R) be defined by (6.114), and

3  for te0,1[U[3,4]
T(t) =144 for te[1,2[U[4,6]
5 for tel[23]

Obviously, 7o = 3, 71 = 5, and (6.104) is fulfilled.
On the other hand, the function

is a nontrivial solution of the problem (6.1p), (1.2y). Therefore, according

yi(1—t)+1—21(1—y2)
(1 —yo)(t —2) +1

—

y2(3 — 1) +

932(1*3/2)( —4)+1—yo

z3(1 —y2)(t —5) + 1 —yo + z2(1 — o)
(

y3(7T—t) +1—y2 —y3 + (22 + 23)(1 — y2)

for
for
for
for
for
for

for

to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.13)

cannot be replaced by the nonstrict one.

Example 6.7. Let 0 # |u| < |A\| and let x;,y; € Ry (i = 1,2,3) be such

that (6.113) holds and

Puta:\/‘ﬁ‘—yl

5 5l 5l
Slrg <1 Sl - — |5 us,
£E1+‘)\ 3 +\/)\ Y1 — Y2 )\ys

bz 2oy -n [
SE1+IB2+‘)\ T3 > 2+ h\ Y1 — Y2 )\ys-

— Yy — ‘§|y3 and k=1+a— 21 — ‘§|x3 Obviously,
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k>0 and 2 > 14 a+ k. Let, moreover, a = 0, b = 10,

T for te€[0,1]
—U1 for te|l,2]
—Y2 for te€[2,3]
k for te[3,4]
p(t) = « for te[4,5] |
T2 —1—-a—k for te[5,6]
1 for ¢€[6,7]
0 for te|[7,8]
z3 for te[8,9]
~y3 for te€[9,10]
and
4 for t€[0,1[U[3,4[U8,9[
=17 for teL3[UEEVETU,10
5 for te[5,6]
2 for te|[7,8]

Obviously, 7o = 2, 71 = 7, and (6.104) is satisfied.

On the other hand, the function

ari(l—t)+y1+y2 +a(k—1) for te[0,1]
yi(2—1t)+y2+a(k—1) for te|l,2]

y2(3 —t) +a(k—1) for te[2,3]
ak(4—t) — « for te[3,4]

u(t) = a(t —5) for te[4,5]
0 for te[5,6]

t—6 for te€[6,7]

1 for tel7,§
ar3(8—t)+1 for te[8,9]
kyg,(l()—t)+1—yg—ozacg for te€[9,10]

is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.
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This example shows that in Theorem 6.2 the strict inequality (6.15)
cannot be replaced by the nonstrict one.

Example 6.8. Let 0 # |u| < |A| and let z;,y; € Ry (i = 1,2,3) be such
that (6.113) holds and

Put o = [§] —y1 —y2 — |

RN (T
SE1+‘)\ z3 > 1+ h\ Y1 — Y2 )\ys,

\§|—y1—y2—\§]y3

T2 > 1+

zy+ | §|ws =1

G >0,and 22 > 1+ % Let, moreover, a =0, b =9,

and

for
for

for

N =~ O W

for

for
for
for
for
for
for
for
for

for

Obviously, 79 = 2, 71 = 6, and (6.104) is satisfied.

y3 and 3 =z + |§‘ x3 — 1. Obviously, a > 0,
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On the other hand, the function

az1(l1—1t)+ By +y2) — « for te[0,1]
By1(2—t) + By — « for tefl,2]
By2(3 —1) —« for te[2,3]
a(t —4) for te[3,4]
u(t) =40 for te[4,5]
B(t —5) for te[5,6]
6] for te[6,7]
Bys(7T—1t)+ for te|[7,8]
ar3(9—t)+ B(1 —y3) — axs for tel8,9]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist q € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.17)
cannot be replaced by the nonstrict one.

Example 6.9. Let 0 # |u| < |A] (for the case u = 0 see Example 6.10),
k €]0,1[, and € > 0. Choose m > 0 such that

< {4, 0% )
M7 |ul(T—=Ek) + ek
and put a =0, b =3, and
|| —[A]m
- Hmm for ¢ [0,1] 1 for tel0,1]
p(t) = k_Tm for te[l,2], 7(t)=<(2 for te[l,2[,
|p|(1—Fk)+ek for te [2’3] t* for t¢ [2,3]

[k

where

1 |p|(1—k)k .
= L+ k—m (\,u,l\u(l—k)—l-sk - m) it m#k )
2 it m=k
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It is not difficult to verify that p = 1, 71 = 2, and

T - )
oo = [ipenaas =222 [ = HEZREE
f b

[ivt)-as - W [i-ds = [iots)-ds =0

a T0 T0

Thus, the conditon (6.18) holds, T' = k= 2™, and instead of (6.19) we have

N / ads + |1 / Jads—

([ p)ds + lu / p(s)]ds | (1=T) = A = |l + <.

On the other hand, the function

|l = (] = [Alm)t for ¢€0,1]
u(t) = ¢ IA(k=m)(t—=1)+ |Am  for ¢€][1,2]
IA[(1—Kk)(t—3) + |\l for te€2,3]

is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 6.10. Let ¢ =0, k > 1, and € > 0. Choose m > 0 such that

k[l

m <
A +e

and put a =0, b =2, and

{l’\|/\+€ for te[0,1] {t* for ¢te€]0,1]
1

E

— &=t for tell,2]
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It is not difficult to verify that 7o = 1, 71 = t*, and

T1 T1

_Al+e -
a/[p(S)]+d8 =T T[[p(s)]erg =0,
/[P(S)]—ds =0, /[p(s)}_ds _ (k= m;{(t* —1)

Thus, the conditon (6.18) holds, T = %, and instead of (6.19) we
have

[l ds = N1 = 7) [ Ip(s))-ds = N + <.

On the other hand, the function

(0 = Akt for te[0,1]
M =m)2—t) + [Nm  for te[l,2]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 6.11. Let [u| < |\, k> 1, and ¢ € [0, |A|[. Choose M > 7"1‘;&"“
and put a =0, b =4,

AIM —|p|—e M

i for tel0,1]
Mk for tel2 t for tel0,1]
pt) =94 ..} ‘ 5 T(t) =41 for tell1,3],
M or €23 2 for te[3,4]
0 for € [3,4]

where

(M—=k)(I\|M —|pu[—M)

]2 SAE if M #k
2 if M=k
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It is not difficult to verify that p = 1, 71 = 2, and

0 b "
/[p(s)]+ds — |A| M _‘)J;ZJ —eM 7 /[p(s)]+ds = /[p(s)]+ds =0,
T1 T1 b
/[p(s)]_ds = /[p(s)]—ds = T_k? /[P(s)}_ds = % .

Thus, the conditon (6.18) holds, 7' = -% and instead of (6.20) we have
0 b
[l ds+ il [o)ds | (1-7) -
a 70

1 b
Y / p(5)-ds ] [ [p(s))-ds = (N = ) (1~ T) —=.

On the other hand, the function

[l + (XM — |ul)t for ¢ €[0,1]
ult) = IAN[(M —E)(2—1t)+ |\|k for te|[l,2]
IA(k—1)(3—1t) + || for te(2,3]
|A| for ¢ e [3,4]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for unique solvability of the problem (1.1), (1.2), where the
boundary condition (1.2) is of an antiperiodic type, i.e., when the inequality

Ap >0 (7.1)

holds. In Subsection 7.1, the main results are formulated. Theorem 7.1
deals with the case |u| < |A|, while the case |u| > |A| is considered in
Theorem 7.2. The proof of Theorem 7.1 can be found in Subsection 7.2.
Subsection 7.3 is devoted to the examples verifying the optimality of the
main results.

7.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following assertion holds.

Theorem 7.1. Let |u| < ||, the operator £ admit the representation { =
by — 01, where by, €1 € Pyy, and let either

ol <1 (&) (72)

la @l <1=5+2v/1= 6] (7.3)
1= (5) < 16l (74)
loW)llz+ Sl <1+ 5 (75)

Then the problem (1.1), (1.2) has a unique solution.

Remark 7.1. Let |u] < |A|. Denote by G the set of pairs (z,y) € R+ X R4
satisfying either

2
x<1—(§) , y<1—§+2\/1—x
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YA

Fig. 7.1.

or

2
1—<H) <z, §y<1+§—x

(see Fig. 7.1).
According to Theorem 7.1, if £ = £y — {1, {g, {1 € Py, and

(Heou)HL, ||el<1>|L) ca,

Y
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then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 7.1, p. 163) that for every xg,yo € R+, (0,y0) € G there
exist £o, 01 € Pup, q € L([a, b];R), and ¢ € R such that (2.30) holds, and
the problem (1.1), (1.2) with ¢ = ¢y — ¢; has no solution. In particular,
neither one of the strict inequalities (7.3) and (7.5) can be replaced by the

nonstrict one.

In the case, where |u| > |\|, the following statement holds.

Theorem 7.2. Let |u| > |A|, the operator £ admit the representation { =
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bo — b1, where £y, £1 € Pyp, and let either

A\ 2 A
leWllL <1 - () L Ml <1-2 42/ T a0
u [
or
A\ 2 A A
1—(2) <160, )+ oML <1+ 2.
(M) <@l 1Ol + 2l <1+

Then the problem (1.1), (1.2) has a unique solution.

Remark 7.2. According to Remark 2.16 (see p. 28), Theorem 7.2 imme-
diately follows from Theorem 7.1. Moreover, by virtue of Remark 7.1,
Theorem 7.2 is nonimprovable in an appropriate sense.

7.2. Proofs

According to Theorem 1.1 (see p. 14), it is sufficient to show that the
homogeneous problem (1.1p), (1.29) has no nontrivial solution.

Proof of Theorem 7.1. Assume that the problem (1.1p), (1.29) has a
nontrivial solution w. It follows from (1.2p) and (7.1) that u has a zero.
Define numbers M and m by (2.94) and choose t,t,, € [a,b] such that
(2.95) is fulfilled. Obviously,

M >0, m > 0, M +m > 0. (7.6)
Without loss of generality we can assume that ty; < t;,.

The integration of (1.1p) from a to tj; and from ¢, to b, in view of
(2.94), (2.95), and the assumptions fy, {1 € Py, results in

ta ty tar

M — u(a) :/[eo(u)(s)—el( (s )]ds<M/£0 ds—l—m/él

)+m = /60 s) — 41 (u)(s )]ds<M/£0 ds+m/£1
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Summing the last two inequalities and taking into account (1.29), (7.1),
and (2.94), we obtain

M +m - m@+§><M+m+mm@+§)§

ds—{—m/El

g\

and

M+m— M( )<M+m—M®O+A>§

0!
ds-i—m/fl

g\

where J = [a,tprr] U [tm, b]. Thus,

M—§mgMC+mA (7.7)
and \
m—;MSMC’—i—mA, (7.8)
where
A:/MU@@, 0:/%m@@. (7.9)
J J

On the other hand, the integration of (1.1p) from ¢ps to t,,, on account
of (2.94), (2.95), and the assumptions £y, {1 € Py, implies

M+m= /a —%gﬂﬂ@<M/& w+m/@

tym

M+m < MB+mD, (7.10)

B = /51(1)(5)d8, D = /Eo(l)(s)ds. (7.11)
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First suppose that ||[¢o(1)]| > 1 holds, i.e., the conditions (7.4) and
(7.5) are fulfilled. According to (7.5), ||/1(1)||z < 1 and thus, A < 1 and
B < 1. Therefore, it follows from (7.6), (7.8), and (7.10) that

OSm(l—A)§M<C+)\>, 0<M(1—-B)<m(D-1).
1
Consequently, M >0, m >0, D > 1, and
0<(1-A4)(1-B)< <C+2> (D—-1). (7.12)

Obviously,
(1-A)(1-B)21-(A+B)=1—|t1)]r. (7.13)

According to (7.5) and the condition § € ]0,1], we have [[£o(1)|, <1+ %
Hence, D — 1 < ﬁ and thus

A A A A AA A
<C+ ) (D-1)=—-D—-—+4+C(D—-1) < —=(C+D)—— = —||lbo(1)||.—— -

M T 7 poop M
By the last inequality and (7.13), it follows from (7.12) that

A A
1-— 511 LS*éol L — —»
[[€1(1)]] MII el .

which contradicts the inequality (7.5).
Now suppose that ||¢p(1)]|]z < 1. Obviously, C < 1, D < 1, and by
(7.6), (7.7), and (7.10) we get

ogM<1—o)gm(A+§), 0<m(l—D)<M(B-1).
Consequently, M >0, m >0, B > 1, and
0<(1-C)1-D)< (A+§) (B —1). (7.14)
It is clear that
(1-C)1-D)>1—(C+D)=1—|bo(1)] - (7.15)

First assume that (7.4) and (7.5) hold. Then we have ||¢1(1)||r <1+ 4.
Hence, B — 1 < & and

(4+B) -5 =Lla@l -5

(A+ﬁ)(3—1):HB—§+A(B—1)g x

A A

>|=
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By the last inequality and (7.15), it follows from (7.14) that

I

I
L=flloMllz = SNl =7,

which contradicts the inequality (7.5).
Now assume that (7.2) and (7.3) are satisfied. According to (7.15) and
the fact that

4(A+§) (B—1)< (A+B_1+§)2 — (uelu)u—uﬁf,

the inequality (7.14) implies

2
1
0<at- ol < (Iawl - (1-5) ). @19
On the other hand, since B > 1, we have
16> 1

which, together with (7.16), contradicts the inequality (7.3). O

7.3. Comments and Examples

On Remark 7.1. Let |u| < |\|. Below, for every o, yo € Ry, (z0,y0) € G
the functions p € L([a, b];R) and 7 € Mg, are constructed such that
(2.130) holds, and the problem (4.58) has a nontrivial solution. Then, by
Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that the
problem (1.1), (1.2), where ¢ = ¢y — {1, £y, {1 are defined by (2.132), has no
solution.

It is clear that if xg,yo € R+ and (xg,y0) € G, then (xg,yp) belongs at
least to one of the following sets:

Go={(r,y) e R- xRy : 1

2
(x,y)€R+xR+ : 1—(%) <z<l1, 1—:L'—|-M§l;y}’

2 7
G4:{(w,y)ER+XR+ : xﬁl—(—) 71—X-|-2 1—x§y}.
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Let (x0,y0) € Gi. PutazO,sz,a:w,ﬁzl’\i
tO:g—i_?lov

zg  forte|0,1] to fort e€]0,1]
p(t) = ;o T(t) = :
—yo forte|l,2] 1 fortell,2]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

(t) = —at+ for t € [0,1]
CUTABE—2) N forte2)

Let (xo,90) € G2. Put a =0, b =4,

zg—1 fortel0,1]

1—y fort € [1,2 0 fortel0,2
py=17 " T o

1 for t € [2,3] 3 forte[2,4]

-1 for t € [3,4]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

0 for t € [0,2]
u(t)=<t—2 forte(2,3].
A—t fortel[3,4]

Let (zo,y0) € G3. Put a = 0, b = 2, a = £ ﬁ:w,

1—x¢

T for t € [0,1 1 forte]|0,1
p(t)= 1™ O - ol
—yo forte(l,2] to fortell,2]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

() at + for t € [0,1]
B2 A forte2
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Let (zo,50) € G4. Put a =0,b=5, a =1 -9, 6 =1—-yo+2a - ¥,
to =3 — a,

(©
E—qa fortel0,1
A 0,1] 5 fortel0,1]
- for t € [1,2]
for t € [1, 3]
p(t) =4 —1 fort € [2,3], 7(t)= .
to fort e [3,4]
Ié; for t € [3,4]
5 forte[4,5]
xo for ¢t € [4, 5]

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

((a—§)t+4 fortel0,1]
?(1—t)+a forte[l,2]
u(t) =< a(3—t)—a? fortel2,3[ .

[3,4]
[4,5]

—a? for t €
zo(b—t)—1 forte

I

)
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In this section, we will establish consequences of Theorems 7.1 and 7.2 from
§7 for the equation with deviating arguments (1.1").
In what follows we will use the notation

po(t) = pi(t),  g(t)=>_g;(t) for te]a,b].
P =1

and we will suppose that the inequality (7.1) is fulfilled.

From Theorems 7.1 and 7.2 immediately follows the following state-
ments. The first of them deals with the case |u| < |A| and the second one
with the case |u| > |A|.

Theorem 8.1. Let |u| < ||, pr, gk € L([a,b; Ry) (k=1,...,m), and let
either

b b
/QO(S)dS <1l- % +2 |1- /po(s)ds (8.1)

or

>|=

b
/go(s)ds <1+h (8.2)

/bpo(s)dS +

Then the problem (1.1'), (1.2) has a unique solution.

Remark 8.1. The examples constructed in Subsection 7.3 (see On Re-
mark 7.1, p. 163) also show that the strict inequalities (8.1) and (8.2)
cannot be replaced by the nonstrict ones.
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Theorem 8.2. Let |u| > |A|, pk, gk € L([a, b];R+) (k=1,...,m), and let

either
b
/gg(s)ds <1- <
b
A
po(s)ds <1——+2

1

or

b
A A
/go(s)ds + — /po(s)ds <1l+-—.
u 1

a
Then the problem (1.1'), (1.2) has a unique solution.

Remark 8.2. Similarly as in the case |u| < |\| one can show that Theo-
rem 8.2 is also nonimprovable in a certain sense.
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This section deals with the special case of the equation (1.1") with m =1
and 71 = v1. In that case the equation (1.1') can be rewritten in the form
(6.1). Throughout the section we will also suppose that the inequality (7.1)
is satisfied.

In §8, there were established effective sufficient conditions for unique
solvability of the problem (6.1), (1.2). Although those results are, in gen-
eral, nonimprovable, in the special case, where 7 maps the segment [a, b]
into some subsegment [79,71] C [a,b], those results can be improved in
a certain way.

Therefore, in the sequel we will assume that there exist 79,7 € [a,b],
70 < 11 such that 7(t) € [19, 1] for almost all ¢ € [a,b]. Thus, it will be
supposed that

7o = ess inf{7(t) : t € [a,b]}, 71 = ess sup{7(¢t) : t € [a,b]}.

Note also that if 79 = @ and 7, = b, then obtained results coincide with the
appropriate ones from §8.

In Subsection 9.1, the main results are formulated, Subsection 9.2 is
devoted to their proofs, and the examples verifying the optimality of the
main results can be found in Subsection 9.3.

9.1. Existence and Uniqueness Theorems
Theorem 9.1. Let the condition (6.18) be fulfilled and let either

T1 b
\M/@@h%+hﬂ/wﬁk%—
¢ o (9.1)

0 b
—IM/MMJB+M/@@M% (1-T) <A+ |u
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or

\M/[ #u+w/ (1-1)-

4M/@< w—u¢/ Vads > (A + |u) (1 - T) .

(9.2)

where T is defined by (6.21). Then the problem (6.1), (1.2) has a unique
solution.

Remark 9.1. Theorem 9.1 is nonimprovable in the sense that the strict
inequalities (9.1) and (9.2) cannot be replaced by the nonstrict ones (see
Examples 9.1 and 9.2, p. 181).

Note also that if the segment [rp, 71] is degenerated to a point ¢ € [a, b],
ie, 7(t) = ¢ for t € [a,b], then T = 0 and the inequalities (9.1) and (9.2)
can be rewritten as

c b

A/p(S)dS—u/p(S)dS#A+u,

a C

which is sufficient and necessary for the unique solvability of the problem
(6.1), (1.2) with 7(t) = ¢ for t € [a,b].

The following theorems can be understood as a supplement of the pre-
vious one for the case T' > 1, where T is given by (6.21). The first of them
deals with the case |u| < |\| and the second one with the case |u| > |A|.

Theorem 9.2. Let |u| < |A|,

1 b
1= [Ip(e)lds + ) [Ints))-ds. (9.3)

and let one of the following items be fulfilled:

a)

T1

[)as = 1. (9.4)

70
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(A / |ds + |u] / +ds) ( / >}+dsl)+

A / [p(s)]+ds + |1 / [p(s)]—ds < |A| + |1l

b) ]
JCRCESS
e ()

(A/ dsw\/ +ds)(/ >}dsl)+

A / [p($)] s + [ul / [p(s)]_ds < A + |ul

¢) the condition (9.6) holds,

2
()
and either
0 b
Jits)-ds+ % [p(o)ads < =5+ vI=H,

b
/ [p(s)]ds + / ps)sds <12 42y T=H

or
o b

[+ 5 [po)ds = -5+ VI

a T1

and the condition (9.8) holds.

(9.6)

(9.7)

(9.8)

(9.10)

(9.11)

(9.12)
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Then the problem (6.1), (1.2) has a unique solution.

Remark 9.2. Theorem 9.2 is nonimprovable in the sense that neither one
of the strict inequalities (9.5), (9.8), and (9.11) can be replaced by the

nonstrict one (see Examples 9.3-9.6, pp. 183-186).
Note also that if 79 = a and 7, = b, then from Theorems 9.1 and 9.2 we

obtain Theorem 8.1 (see p. 166).

Theorem 9.3. Let |u| > |\,

T0 b
_ A
qu/@@uw+/@@]w,

and let one of the following items be fulfilled:

a)
!
[ipo)-ds =1
70
and the condition (9.8) holds;
b)
T1 _ )\ 2
/[p(s)]+dszl, H21—<> ,
T0 /J/
and the condition (9.5) holds;
c)

]Ex@hus>1, ﬁ<:1—<;)2,

70

and either
AT ; A
> [en-ds+ [eds <=2+ v1- 7.
a T1

| >
—
=
&
T
Q,
V)
_l_
S\@
SA
&
.
joH
(Va)
AN
—
|
= >
+
[\)
—
|
un
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T0 b
Z Jits)-ds+ [plo)as = —2 VO

and the condition (9.5) holds.
Then the problem (6.1), (1.2) has a unique solution.

Remark 9.3. According to Remark 6.5 (see p. 126), Theorem 9.3 can be
immediately derived from Theorem 9.2. Moreover, by virtue of Remark 9.2,
Theorem 9.3 is nonimprovable in an appropriate sense.

9.2. Proofs

According to Theorem 1.1 (see p. 14), to prove Theorems 9.1 and 9.2 it is
sufficient to show that the homogeneous problem (6.1p), (1.29) (see p. 126)
has only the trivial solution.

In the sequel, numbers 4;, B; (i = 1,2,3) are defined by (6.29).

Proof of Theorem 9.1. Assume that the problem (6.1¢), (1.29) possesses
a nontrivial solution u.

First suppose that u has a zero in [rp, 71]. Define numbers mg and M
by (6.50) and choose ag, a1 € [19, 71| such that (6.51) holds. Obviously,
(6.78) is satisfied, since if my = 0 and My = 0, then, in view of (6.1p) and
(6.50), we obtain u(79) = 0 and «/(¢t) = 0 for ¢ € [a, b], i.e., u = 0. It is also
evident that without loss of generality we can assume that ap < a;.

The integration of (6.1p) from oy to ay, by virtue of (6.50), (6.51), and
(6.78), yields the inequality (6.79), which, on account of (6.18) and (6.78),
results in My + mg < My + mg, a contradiction.

Now suppose that u has no zero in |19, 71]. Without loss of generality
we can assume that u(t) > 0 for t € [r9,7]. Define numbers M and m
by (6.31) and choose ¢y, ty, € [10,71] such that (6.32) holds. It is obvious
that (6.81) is fulfilled and either (6.36) or (6.37) is satisfied. Analogously
as in the proof of Theorem 6.3 one can show that, in both cases (6.36) and
(6.37), the inequality (6.82) holds, where T is defined by (6.21).

On the other hand, the integrations of (6.1p) from a to ¢y, from ts to
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b, from a to t,,, and from t,, to b, in view of (6.31) and (6.32), yield

tym tm

M — u(a) = / p()]-u(r(5))ds — / p())—u(r(5))ds <

tar tA{

<M/ +ds—m/

>m 7[p(8)]+d8 - M 7[1?(8)]—618,

Put

[p(s)]+ds for t € [a,b],

[p(s)]-ds for te€ [a,b],

173

(9.13)

(9.14)

(9.16)

(9.17)
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b
£a) S [po)eds = 501 [lp(o)ads tor 1 o],
! (9.18)

t b
Fat) % 0 / p(s)]ds — & m / p(s)_ds for 1€ [ab]
a t

First suppose that (9.1) holds, where T is defined by (6.21). Multiplying
both sides of (9.14) by £, summing with (9.13), and taking into account
(1.29), (7.1), and (9.17), we get

tymr b
M (14 8) <0 [ls)eds = §m [ lp(s))ds-

. . (9.19)
(m/w@1mﬁM/@@]w)ﬁmnﬁwn

It is easy to verify that the functions f; and fy defined by (9.17) are nonde-
creasing in [a, b] and therefore, with respect to (6.29) and (9.17), it follows
from (9.19) that

M (1 + %) < filtar) — fao(tar) < fi(m1) — fa(mo) =
(9.20)

=M (A1 + Az + 5 B+ £ By) = m (By+ £ 4g).

Thus, (6.82) and (9.20) imply
1t [ [ 7
M(1+8) <M (Av+ Ao+ BBy Bpg) - (B Say) (1= 1),

which, in view of (6.29) and (6.81), contradicts (9.1).

Now suppose that (9.2) is satisfied, where T" is defined by (6.21). Mul-
tiplying both sides of (9.16) by &, summing with (9.15), and taking into
account (1.2g), (7.1), and (9.18), we obtain

tm b
m (L4 8) 2 m [lps)ads = 501 [lps)sds-

(9.21)

tm

b
{3 [ipte-ds = L m [1p(s))-ds | = fattu) = alt).
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It is easy to verify that the functions f3 and f4 defined by (9.18) are non-
decreasing in [a,b] and thus, with respect to (6.29) and (9.18), it follows
from (9.21) that

m (1 + %) > f3(tm) — fa(tm) > f3(70) — fa(m1) =

(9.22)
_ H _ ad ad
—m(Al-i-)\Bg) M(Bl+BQ+)\A2+)\A3>.
By virtue of (6.18) and (6.21), (6.82) and (9.22) yield
[ 7
= _ > Ll _7T\_
m(1+5) -1 =m (4 +58)(1-1)
_ lad ad
m<B1+Bz+)\A2+>\A3)7
which, in view of (6.29) and (6.81), contradicts (9.2). O

Proof of Theorem 9.2. Assume that the problem (6.1p), (1.2) possesses
a nontrivial solution w.

First suppose that u changes its sign in [79, 71]. Define numbers mg and
My by (6.50) and choose «, a1 € [0, 71] such that (6.51) holds. It is clear
that (6.52) is satisfied and without loss of generality we can assume that
ap < a. Furthermore, define numbers Ay;, By; (i = 1,2,3) by (6.34).

The integrations of (6.1p) from a to agp, from ap to aq, from ag to b,
and from 7 to b, in view of (6.29), (6.34), (6.50), and (6.51), result in

“mo = (@) = [ p)eu(r(s)ds — [(s)]-u(r(s)ds <

(9.23)
< Mo (A1 + A1) + mo(By + Ba),

u(a) + mo = / p(5)]-u(r())ds / POl s
< Mo(By + Ba1) +mo (A1 + Az),

My +mo = / [p(s)] 4 u(r(s))ds — / Pl s

< MyAa + moBaa,



176 §9. ANTIPERIODIC TYPE BVP FOR TWO TERMS EDA

b

b
My — u(b) = / [p(s)]—u(r(s))ds — / [p($)] s u(r(s))ds <

aq

(9.26)
< Mo (Bas + B3) + mo(Aas + As),

b

u(b) — Mo < u(b) —u(m) = /[p(S)]+U(T(S))dS—

T1

. (9.27)

- / [p())—u(r(s))ds < MyAs + moBs.

Multiplying both sides of (9.26) by &, summing with (9.23), and taking
into account (1.2y) and (7.1), we get

BMo—m()SMO (A1+A21+H323+H33)+
A A A (928)

+mo <B1 + Bo1 + %A% + %A:z) -

Analogously, (9.24) and (9.27) imply

mo — gMo < My (Bl + Ba1 + §A3) + mo (Al + A21 + §B3> . (9:29)

First suppose that the assumption a) holds. According to (6.34), (9.4),
and (9.5), we have By < 1. Consequently, in view of (6.52), (9.25) yields

0< mo(l — ng) < M (A22 — 1). (930)
Moreover, by virtue of (7.1) and (9.4), it follows from (9.5) that

Agy <1+ % (9.31)

From (9.28) we get

[t [ [
My(E— A1 — Ay — By —EBy) <
0()\ 1 21 2 23 2\ 3>

§m0<Bl+B21+/;A23+/;\A3+1>7
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which, together with (9.30), implies

(M—Al—Am—uB%—MBs)(l—Bm) <

A A A
(9.32)
< <B1 + Ba1 + §A23+ §A3+ 1) (Age —1).
Obviously,
p 0 0
T — A — Ay —323—33)(1—322) >
(A A A (9.33)

> g — Ay — Ay — %(322-1-323-1-33)-

On the other hand, by virtue of (9.31) and the assumption § € 0, 1],
we obtain

<B1+le+§A23+§A3+1> (Ap—1) =

= (Bl + %As) (A2 — 1) + Boy (Ao — 1) + %Az?) (A2 — 1)+ (9.34)

+A20 — 1< (Bl +§A3) (A2 —1) +§Bz1 + Aoy + Az — 1.

Using (6.29), (6.34), (9.33), and (9.34), (9.32) results in
M u 7
— — — > —
A1+A2+>\(BQ+BS)+(31+)\A3>(AQ )=1+7,

which, in view of (6.29) and (7.1), contradicts (9.5).

Now suppose that the assumption b) holds. According to (6.34), (9.6),
and (9.8), we have Ay < 1. Consequently, on account of (6.52), (9.25)
implies

0< Mo(l — A22) < myg (B22 — 1) (935)

Moreover, it follows from (7.1), (9.3), and (9.6)—(9.8) that

By <1+ g . (9.36)

From (9.29) we obtain

mo(l—Al—Am—%Bs) §M0(31+B21+§A3+§>7
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which, together with (9.35), yields

<1—A1—A21—//<33)(1—A22) <

(9.37)
< (Bl + Ba1 + %Ag + %) (Bag — 1).
Clearly,
<1—A1 — Ay —§‘33>(1—A22) >
(9.38)

Zl_Al_AQl_A22_§B3-

On the other hand, by virtue of (9.36) and the assumption & € 0, 1],
we get,

(Bl‘f’BQl"‘HAg‘i‘H) (322—1) =

AT
— (B + %Ag))) (B 1)+ Bu(B—1) + 5B -5 < (9.39)
< <B1 + %Az,) (Ba—1) + %(le + Ba) — %

Using (6.29), (6.34), (9.38), and (9.39), (9.37) implies
,u 1 i
— — — > —
A1+A2+/\(BQ+B3)+<31+)\A3)(BQ 1) =1+,

which, in view of (6.29) and (7.1), contradicts (9.8).
Finally suppose that the assumption c¢) holds. According to (6.29),
(6.34), (9.3), and (9.9), we have

Aoy < 1, A1+A21+§Bg<1.

Thus, it follows from (6.52), (9.25), and (9.29) that

Boy > 1, Bl+321+%,43+§>0, (9.40)

and

<1—A1 —A21 — /;\B3> (1_A22) S
(9.41)

< <B1+le+/;/13+/;> (Ba2 —1).



9.2. PROOFS 179

According to (9.3), (9.40), and the fact that
(1—A1 — Ag1 — §B3) (1— Ag) >
21—A1—A21—A22—§B32 1-H,

from (9.41) we get

1-H

Bos > 1+ .
2 = Bl+B21+%A3+§

(9.42)

First suppose that (9.10) and (9.11) are satisfied. By virtue of (9.40),
from (9.42) we obtain

1—H§<31+Bgl+)\A3+)\>(BQQ—1)

1 2
- — <
4<B1+B21+BQQ+)\A3 1+)\) <

<i(BeBrla 1t h)

which, in view of (6.29), (9.9), and (9.40), contradicts (9.11).
Now suppose that (9.8) and (9.12) are fulfilled. Let

1-H
g(ac)déf +az for x> Bl——Ag——

4+ B+ 5 A+ 5§ A A

where H is given by (9.3). It is not difficult to verify that, on account of
(6.29) and (9.12), the function g is nondecreasing in [0, 4+oo[. Therefore,
from (9.42) we obtain

1-H
Bl+BQl+%A3+%
1-H
By +5A3+ &7

By + Bag + Baz > 1 + + Bo1 =

=1+g(Ban)>1+g(0)=1+

which, in view of (6.29), (6.34), (7.1), and (9.3), contradicts (9.8).

Now suppose that u does not change its sign in [rg, 71]. Without loss of
generality we can assume that (6.30) is satisfied. Define numbers M and
m by (6.31) and choose tps,t,, € [10,71] such that (6.32) holds. It is clear
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that (6.35) is satisfied, since if M = 0, then, in view of (6.1p), (6.30), and
(6.31), we obtain u(m) = 0 and «'(¢t) = 0 for ¢ € [a,b], i.e., u=0.

The integrations of (6.1p) from a to ¢y, from ¢, to b, from a to 79, and
from 7 to b, in view of (6.29)—(6.32), result in (9.13), (9.14),

—u(a) < u(r) — u(a) =

70 70

= /[P(S)]+U(T(3))ds — /[p(s)]—u(T(s))ds < MA,, (9.43)
—u(b) < u(m) —u(b) =
| b (9.44)
N /[p(s)]‘“(T(S))dS - /[p(S)]+U(T(S))ds < MBs.

Moreover, from (9.13) and (9.14), in view of (6.29) and (6.35), we find
M —u(a) < M(A; + A2), (9.45)
M — u(b) < M(BQ + Bg). (9.46)

Multiplying both sides of (9.44) by £, summing with (9.45), and taking
into account (1.2¢), (7.1), and (6.35), we get

Ay + Ay + %Bg >1. (9.47)

Analogously, (9.43) and (9.46) yield

[ u 7
A —B — B3> —. 4
1—1-/\ 2—1-)\ 323 (9.48)

First suppose that the assumption a) holds. By virtue of (6.29), (7.1),
(9.4), and (9.48), (9.5) results in

1+H>A1+A2+§(B2+Bg)21+ s (9.49)

A

>|=

a contradiction.

Now suppose that the assumption b) holds. With respect to (6.29),
(7.1), (9.6), and (9.47), (9.8) implies (9.49), a contradiction.

Finally suppose that the assumption c) holds. On account of (6.29) and
(9.3), (9.47) contradicts (9.9). O



9.3. COMMENTS AND EXAMPLES 181

9.3. Comments and Examples

Example 9.1. Let £ > 1, and € > 0. Choose m > 0 such that
k(A |k
< {1, A
(IAl+ )k + [u|
and put a =0, b =3, and

%W for te[0,1] t* for te€[0,1]
p(t) = —k_km for te|l,2] T(t) =141 for te[l,2],
Lm for tel2,3] 2 for tel2,3]

where

1 k(A[k+]p) ;
o R <(\)\|+£)k+|u| - m) it m#k _
1 if m=k
It is not difficult to verify that o = 1, 71 = 2, and

T1

T b
Jwtoeas = B s = 22 s o,

70

[ivts)-ds=o. i@@ﬂds:]}@nds:k;m.

a

Thus, the conditon (6.18) holds, T = ]“_Tm, and

1 b
\A/@@h@+«¢/@@kw—
()\/[ ds—|—|,u|/ +d8) (1=T) = |\ +|ul+e.

On the other hand, the function

(IAlk + [}t = [ul for ¢€10,1]
u(t) = ¢ IA(k=m)(2—t)+ |\m  for te€]l,2]
IA[(1—m)(t—3)+ |} for te2,3]
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is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 9.2. Let k € ]0,4[, and € € [0, M [ Choose

(T
= Tul = [Nk — <k
and put a =0, b = 3, and
—W for te€f0,1] t* for te[0,1]
p(t) = ¢ M=k for te[1,2[, 7(t)=<{2 for te[1,2],
_ M+1 for te[2,3] 1 for te(2,3]

2 if M=k
It is not difficult to verify that 7o = 1, 74 = 2, and

L (M=) -
. {1+ i (AU, — k) it Mk

T0 T1

JO /b poleds = [Io(s))eds = 25

a T0

Jivten-as = =ERES [ as o, [ipo)as =25

a 70 T1

Thus, the conditon (6.18) holds, T = k, and

A / [p(s)]+ds + |1 / p(s)]_ds | (1-T)-

- () ds—\m/ Nids = (1N + [l) (1= T) —e.

On the other hand, the function

[l = (el = IXIR)E for ¢€0,1]
u(t) = ¢ IA[(M —k)(t—1)+ Ak for tell,2]
N +1)B—t) =\ for te23]
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is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 9.3. Let |u| < |\ and let z;,y; € Ry (i = 1,2,3) be such that
T9 > 1
and
(Al(@1 +2) + [l (y2 + y3) + (Alyr + |ples) (22 — 1) = [A] + 4.

Let, moreover, a =0, b = 8§,

—13 for te€

-1 for te0,1]
x1 for tell,2]
x9 —1 for te2,3]
0 for te (3,4
=14, for te{zx,s{’

—Yya for te[5,6]

[6,7]

[7,8]

T3 for te|7,8
and
7
T(t) =<5 for te€[1,3[U[4,7] .
6 for te[3,4]

Obviously, 79 = 2, 7 = 6, and (6.104) is satisfied.
On the other hand, the function

yi(we — D)t —-1)+1—22— 11 for te[0,1]
z1(t—2)+1—x2 for tell,2]
(xa —1)(t —3) for te[2,3]
ult) = 0 for te[3,4]
t—4 for te€[4,5]
y2(b—1t)+1 for te[5,6]
y3(6—1t) +1—yo for te€[6,7]
x3(xo — 1)(T—t)+1—y2— ys3 for tel(7,8]
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is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 9.4. Let |u| < |\ and let z;,y; € Ry (i = 1,2,3) be such that

p %
- (5
Y2 = £C1+9€2+>\y3_ \

and
IAl(z1 + x2) + |l (2 +y3) + ([Myr + [plzs) (y2 — 1) = [M] + |l

Let, moreover, a =0, b = 8§,

/

1 for te|0,1]
-1 for tell,2]
T2 for te[2,3]
o(t) = -1 for te[3,4] ,
0 for te[4,5]
—(yp—1)  for tel5,6]
x3 for te€[6,7]
—y3 for te|[7,8]
and
3 for te0,1{U[2,4[U[5,6[U[7,8]
T(t) =96  for te[l,2[U][6,7]
2 for te[4,5]

Obviously, 79 = 2, 71 = 6, and (6.104) is satisfied.
On the other hand, the function

ri(t—1)+1—23 —y1(y2 — 1) for te[0,1]

y1(y2 )(t—2)+1—m2 for tell,2]

xa(t —3) + for te[2,3]

ult) = 4—t for te[3,4]
0 for te[4,5]

(o —1)(6 —t) + 1 — gy for tel[5,6]
3y — (7T —t) +1—ya —x3(ya — 1) for te€[6,7]

y3(8—1t) +1—ya—x3(y2 — 1) —ys3 for t€[7,8]
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is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.

Example 9.5. Let || < || and let x;,y; € Ry (i = 1,2,3) be such that

% A%
y2 > 1, $1+$2+Xy3<1— VAR (9.50)

y1+§x3<—/;+\/1—x1—x2—/;y3,

T p 1
Bas>1-Lqo/1—m -z -y,
yl+y2+>\$3_ /\—I- \/ T — X2 )\y3

Put o = \/1—1‘1—:52—%?;3 and k = a — § —y1 — § 3. Obviously, k > 0

and yo > 1+a+k. Let, moreover, a = 0, b = 10, p € L([a, b]; R) be defined
by (6.105), and

8 for te[0,1[U[3,4[U[8,9]
=1t for te[L3UEME[VIETU,10

5 for te[5,6]

2 for te|[7,8]

Obviously, 79 = 2, 71 = 8, and (6.104) is satisfied.
On the other hand, the function

(ay1(1—t) + a1+ a9+ ka—1  for tel0,1]
x1(2—t)+ 22+ ka—1 for te|l,2]
223 —t)+ka—1 for te[2,3]
ka(4—1t)—1 for te [3,4]
u(t) = t—5 for te[4,5]
0 for te€[5,6]
a(t —6) for te[6,7]
a for te|7,8]
azrs(t—8) +« for te[8,9]
\yg(t —9)+a+axs for te9,10]

is a nontrivial solution of the problem (6.1p), (1.2p). Therefore, according
to Remark 1.1 (see p. 14), there exist ¢ € L([a,b]; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.
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Example 9.6. Let |u| < |\ and let z;,y; € Ry (i = 1,2,3) be such that
(9.50) holds and

=

y1+§x3 - \/1—331—962—/;1/3,

IAl(z1 + 22) + |l (2 + y3) + (Myr + [plzs) (y2 — 1) > [A] + |l

Put o =1—21 —292—§yz and 8 = y1 + § 23+ §. Obviously, « >0, 8 > 0,
and y9 > 1+ % Let, moreover, a =0,b=09, p € L([a, bl; R) be defined by
(6.110), and

3 for te[0,1[{U[2,4[U[5,6[U][7,8]
(t) = 7 for te[l,2[U][8,9]

4 for te[4,5]

2 for te[6,7]

Obviously, 7o = 2, 1 = 7, and (6.104) is satisfied.
On the other hand, the function

181 —t) + yra+ 228 — B for te[0,1]

yla(2 —t)+ :cgﬁ g for tell,2]

(3 —1t) — for te2,3]

B(t — 4) for te[3,4]

u(t) =40 for te€[4,5]
a(t —5) for te5,6]

! for te[6,7]

ysB(t —T7)+ « for tel7,8]

xza(t —8) + o+ y3f for tel8,9]

is a nontrivial solution of the problem (6.1p), (1.2g). Therefore, according
to Remark 1.1 (see p. 14), there exist q € L([a, bl; R) and ¢ € R such that
the problem (6.1), (1.2) has no solution.



Suplementary Remarks

The main ideas of the results presented in Chapter I can be found in [22,24,
26-29], where the special case of the boundary condition (1.2) with A =1
is considered.

Theorems 2.1-2.3 and 2.5 are proved in [27], Theorems 2.9 and 2.10 are
proved in [26], Theorems 2.4, 2.11, and 4.1 are proved in [24], Theorems 4.3
and 4.6 are proved in [29], Theorem 4.4 is proved in [29], and Theorem 7.1
one can find in [28].






CHAPTER II

Nonlinear Problem



8§10. Statement of the Problem

In this chapter, we will consider the problem on the existence and unique-
ness of a solution of the equation

u'(t) = F(u)(t) (10.1)
satisfying the boundary condition
Au(a) + pu(b) = h(u), (10.2)

where F' € Ko, A\,pp € R, |A| + |p| # 0, and h : C([a,b];R) — R is
a continuous functional satisfying that for every » > 0 there exists M, € R
such that

|h(v)] < M, for |jv|c <.

By a solution of the equation (10.1) is understood a function u e 5([a, b); R)
satisfying this equation almost everywhere in [a,b]. Note also that as in
Chapter I, the equalities and inequalities with integrable functions are un-
derstood almost everywhere.

The following result is well-known from the general theory of boundary
value problems for functional differential equations (see, e.g., [39]).

Proposition 10.1. Let there exist £ € Ly, such that the problem
W) = 0)(t),  u(a) + pu(b) = 0
has only the trivial solution and on the set C’([a, b); R) the inequalities

[F(0)(t) = £(v)@)] < q(t, [[vllc)  for t€a,b], (10.3)

|h(v)] < ¢ (10.4)

hold, where ¢ € Ry and q € K ([a,b] x Ry;Ry) is nondecreasing in the
second argument and satisfies

b
1
lim /q(s,z:)dszO. (10.5)

r—+oco I
a

Then the problem (10.1), (10.2) has at least one solution.
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According to Proposition 10.1 and the results from Chapter I, effective
sufficient conditions for solvability of the problem (10.1), (10.2) can be
immediately established. Although these results are nonimprovable (since
they are nonimprovable for the special case of the problem (10.1), (10.2),
for the linear problem (1.1), (1.2)), we will show that, in some cases, the
assumptions (10.3) and (10.4) can be weakened to the one-side restrictions.

All results will be concretized for the differential equation with deviating
arguments (EDA) of the form

m

L) =3 (pka)u(m(t)) - gk<t>u<uk<t>>)+

k=1

+ f(t7 ’U,(t), U(Cl (t))v tet 7U(Cn(t)))a

where f € K([a,b] x R"";R), p,gr € L([a, b];R+), Ty Vg € Mgy (K =
L....om),(€EMg (j=1,...,n), mn € N.

(10.1')
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In this section, we will establish some auxiliary results for solvability and
unique solvability of the problem (10.1), (10.2).

Lemma 11.1. Let {y € Ly, and let the homogeneous problem
v'(t) = bo(v)(t),  Av(a) + pv(b) =0

have only the trivial solution. Then there exists a positive number ro such
that for any q € L([a, b); R) and ¢ € R the solution v of the problem

V'(t) = Lo(v)(t) +q(t), Mv(a) + po(b) =¢ (11.1)

admits the estimate
lolle < ro(lel + llgllz)- (11.2)

Proof. Let
Rx L([a,b);R) ={(c,q9):¢€ R, € L([a,b]; R)}
be the Banach space with the norm

1@ Dl rxz = le| + [[gllz,

and let Q be an operator, which assigns to every (¢,q) € R x L([a, bl; R)
the solution v of the problem (11.1). According to Theorem 1.4 in [42],
Q: Rx L([a, bl; R) — C’([a, b};R) is a linear bounded operator. Denote
by ro the norm of . Then, clearly, for any (¢,q) € R x L([a,b]; R) the
inequality

126 Dlle < ro(fel + lal)

holds. Consequently, the solution v = Q(¢,q) of the problem (11.1) admits
the estimate (11.2). O

Now let us formulate the result from [41, Theorem 1] in a suitable for
us form.

Lemma 11.2. Let there exist a positive number p and an operator £ €
Lay such that the homogeneous problem (1.1p), (1.29) has only the trivial
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solution, and let for every 6 € |0,1[ and for an arbitrary function u €
C([a,b); R) satisfying

u'(t) = (u)(t) + 6[F(u)(t) — L(u)(t)] for tE€ la,b], (11.3)
Au(a) + pu(b) = dh(u), (11.4)

the estimate
ullc < p (11.5)

hold. Then the problem (10.1), (10.2) has at least one solution.

Proof. Since ¢ € Ly, and F € K, there exist n,w € L([a, b];R+) such
that

L) < n(®)llvlc for t€la,b], veC(lab;R),
F)(®)] <w(t) for telab], [v]e < 2.
Moreover, there exists a € R, such that
h@) <a for |ollc <2

(see §10). Put

v(t) def w(t) 4+ 2pn(t) for te [a,b],

for 0<s<p
o(s) =<¢2— % for p<s<2p, (11.6)
for s>2p

w(©)(t) E o(|[v]lc) [F) () — €@)(®)] for te [ab],

co(v) = o ([lv]lc) h(v).

(11.7)

Then for every v € C([a,b]; R) and almost all t € [a, b], the inequalities

[ <~(#),  la@)| <o

hold.
For arbitrarily fixed u € C ( [a, b]; R), let us consider the problem

V() = L) (®) + qou)(t),  Av(a) + p(b) = co(w). (11.8)
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According to Theorem 1.1 (see p. 14), the problem (11.8) has a unique
solution v and, moreover, by virtue of Lemma 11.1, there exists § > 0 such
that

Il < B(leo(w)] + llgo(w)]L)-

Therefore, for arbirarily fixed u € C ([a, bl; R), the solution v of the problem
(11.8) admits the estimates

[vllc < po, (O] <*(t) for teab], (11.9)

where py = B(||7]|z + @) and v*(t) = pon(t) +~(t) for t € [a,D].

Let Q : C’([a,b];R) — C([a,b];R) be an operator which to every
u € C([a,b]; R) assigns the solution v of the problem (11.8). Due to The-
orem 1.4 from [42], the operator 2 is continuous. On the other hand, by
virtue of (11.9), for every u € C([a,b]; R) we have

19Wlle < po, [Q)(E) — Qu)(s)| < / v (E)de| for st € [ab].

s

Thus the operator ) continuously maps the Banach space C ([a, bl; R) into
its relatively compact subset. Therefore, using the Schauder’s principle,
there exists u € C([a, b]; R) such that

Qu)(t) =u(t) for tela,b].

By the equalities (11.7), u is obviously a solution of the problem (11.3),
(11.4) with
§=o([lullc). (11.10)

Now we will show that u admits the estimate (11.5). Suppose the contrary.
Then either
p <llullc < 2p (11.11)

or
lullc > 2p. (11.12)

If we assume that the inequalities (11.11) are fulfilled, then, on account
of (11.6) and (11.10), we have ¢ € ]0,1[. However, by the conditions of the
lemma, in this case we have the estimate (11.5), which contradicts (11.11).

Suppose now that (11.12) is satisfied. Then by (11.6) and (11.10), we
have § = 0. Hence u is a solution of the problem (1.1p), (1.29). But
this is imposible because the problem (1.1p), (1.2p) has only the trivial
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solution. Thus, above—obtained contradiction proves the validity of the
estimate (11.5).

By virtue of (11.5), (11.6), and (11.10), it is clear that 6 = 1 and thus,
u is a solution of the problem (10.1), (10.2). O

Definition 11.1. We will say that an operator ¢ € L4, belongs to the set
A ()\,,u), i € {1,2}, if there exists a positive number 7 such that for any

q* € L([a,b]; Ry) and ¢ € Ry every function u € 5([(1, b]; R) satisfying the
inequalities

[Au(a) + pu(d)] sgn ((2 — i)Au(a) + (i — Dpu(d)) <c, (11.13)
(—1)tt [u/(t) — £(u)(t)] sgnu(t) < ¢*(t) for t€ [a,b] (11.14)

admits the estimate
lulle < r(e+lla*llL). (11.15)

Lemma 11.3. Leti € {1,2}, c€ R4,
h(v)sgn ((2 — i)Av(a) + (i — Dpw(b)) <c  for ve C(la,b;R), (11.16)

and let there exist £ € Ai()\,u) such that on the set Bf\uc([a,b];R) the
inequality

(D) F()(t) — L) (1)) sgno(t) < q(t, |[olle)  for ¢ € [ab] (11.17)

is fulfilled, where q € K([a, b] x R+;R+) is mondecreasing in the second
arqgument and satisfies (10.5). Then the problem (10.1), (10.2) has at least
one solution.

Proof. First note that due to the condition ¢ € Ai(A, ,u) the homogeneous
problem (1.1p), (1.29) has only the trivial solution.

Let r be the number appearing in Definition 11.1. According to (10.5),
there exists p > 2rc such that

b
1 1
— d — f . 11.1
x/q<8’$)5<2r or T >p (11.18)

a

Now assume that a function u € 5’([@, b]; R) satisfies (11.3) and (11.4)
for some § € ]0,1[. Then, according to (11.16), u satisfies the inequality

(11.13), i.e., u € Bﬁ\#c([a, bl; R). By (11.17) we obtain that the inequality
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(11.14) is fulfilled with ¢*(t) = q(¢, ||u||c¢) for t € [a,b]. Hence, by the con-
dition £ € A’ ()\, u) and the definition of the number p we get the estimate
(11.5).

Since p depends neither on u nor on 4, it follows from Lemma 11.2 that
the problem (10.1), (10.2) has at least one solution. O

Lemma 11.4. Leti € {1,2},

[h(v) — h(w)] sgn ((2 — i) (v(a) — w(a))+

(11.19)
(i — L)p(v(b) —w(b))) <0 for v,we C([a,b];R),

and let there exist { € Ai()\,u) such that on the set Bj

)\MC([(I, b];R), where
¢ = |h(0)|, the inequality

(=D)FHE()(t) = Fw)(t)-
(11.20)
—l(v—w)(t)] sgn (v(t) —w(t)) <0 for t€la,b]

holds. Then the problem (10.1), (10.2) is uniquely solvable.

Proof. It follows from (11.19) that the condition (11.16) is fulfilled, where
¢ = |h(0)]. By (11.20) we see that on the set B;HC([a, b]; R) the inequal-
ity (11.17) holds, where ¢ = |F'(0)|. Consequently, the assumptions of
Lemma 11.3 are fulfilled and so the problem (10.1), (10.2) has at least one
solution. It remains to show that the problem (10.1), (10.2) has at most
one solution.

Let uj, ug be arbitrary solutions of the problem (10.1), (10.2). Put

u(t) = ui(t) —ug(t) for te[a,b).
Then, by (11.19) and (11.20) we get
[Au(a) + pu(b)] sgn ((2 — i)Au(a) + (i — 1)pu(b)) <0,
(=1)" ! (t) — £(u)(t)] sgnu(t) <0 for t€ [a,b].

This, together with the condition ¢ € Ai(A,u), results in u = 0. Conse-
quently, u; = us. Ul

Definition 11.2. We will say that a pair (€, ¢1) € Pup X Lgp belongs
to the set B(\, ) if there exists a positive number r such that for any
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q* € L([a,b]; Ry) and ¢ € Ry every function u € 5([0,, b]; R) satisfying the
inequalities

[Au(a) + pu(b)] sgn (Au(a)) <, (11.21)

[u/(t) + 01 (u)(t)] sgnu(t) < bo(|ul)(t) + ¢*(t) for t€la,b]  (11.22)
admits the estimate (11.15).
Lemma 11.5. Letc € R,

h(v)sgn (Av(a)) <c for ve C([a,b];R), (11.23)

and let there exist ({o,¢1) € B(\, 1) such that on the set B}

)\uc([a, bl; R) the
inequality

[F(0)(8) + (1(0) ()] sgno(t) < Lo(Jv])(t)+
+q(t,|lvlle)  for t€la,b]

(11.24)

holds, where q € K([a,b] X R+;R+) is nondecreasing in the second argu-
ment and satisfies (10.5). Then the problem (10.1), (10.2) has at least one
solution.

Proof. First note that due to the condition (¢, ¢1) € B(\, u) the homoge-
neous problem (1.1p), (1.29) with £ = —¢; has only the trivial solution.
Let r be the number appearing in Definition 11.2. According to (10.5),
there exists p > 2rc such that (11.18) holds.
Now assume that a function u € 5’([@, b]; R) satisfies (11.3) and (11.4)
for some § € ]0,1] with £ = —/¢4, i.e.,

W' (t) 4+ 01 (u)(t) = 6[F(u)(t) + (1 (u)(t)] for ¢ € [a,b], (11.25)
Au(a) + pu(b) = dh(u).

According to (11.23), the function u satisfies the inequality (11.21), i.e.,
u € B}\“C([a,b];R). By virtue of (11.24) and (11.25), we obtain that the
inequality (11.22) is fulfilled with ¢*(t) = q(¢, ||u|lc) for t € [a,b]. Hence,
by the condition (¢y,¢1) € B(\, ) and the definition of the number p we
get the estimate (11.5).

Since p depends neither on w nor on 4, it follows from Lemma 11.2 that

the problem (10.1), (10.2) has at least one solution. O
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Lemma 11.6. Let
[h(v) — h(w)] sgn (A(v(a) —w(a))) <0 for v,we C([a,b];R) (11.26)

and let there exist (Lo, €1) € B(A, ) such that on the set B}\Mc([a, b;R),
where ¢ = |h(0)|, the inequality

[F(v)(t) = F(w)(t) + (v — w)(t)] sgn (v(t) — w(t))
< lo(Jlv—wl)(t) for t€la,b]

IN

(11.27)

holds. Then the problem (10.1), (10.2) is uniquely solvable.

Proof. It follows from (11.26) that the condition (11.23) is fulfilled, where
¢ = |h(0)|]. By (11.27) we see that on the set B}\“C([a, b]; R) the inequal-
ity (11.24) holds, where ¢ = |F'(0)|. Consequently, the assumptions of
Lemma 11.5 are fulfilled and so the problem (10.1), (10.2) has at least one
solution. It remains to show that the problem (10.1), (10.2) has at most
one solution.

Let uj, ug be arbitrary solutions of the problem (10.1), (10.2). Put

u(t) =ui(t) —ug(t) for t € a,b].
Then, by (11.26) and (11.27) we get
[Au(a) + pu(d)] sgn (Au(a)) <0,
[/ (t) + 01 (w)(t)] sgnu(t) < Lo(Jul)(t) for t € [a,b].

This, together with the condition (¢o,¢1) € B(A, pt), results in u = 0. Con-
sequently, u; = us. O



§12. Periodic Type BVP

In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for solvability and unique solvability of the problem (10.1),
(10.2), where the boundary condition (10.2) is of a periodic type, i.e., when
the inequality (2.1) is satisfied. In Subsection 12.1, the main results are
formulated. Theorems 12.1-12.12 deal with the case |u| < |A|, while the
case |u| > || is considered in Theorems 12.13-12.24. The proofs of the
main results can be found in Subsection 12.2. Subsection 12.3 is devoted
to the examples verifying the optimality of the main results.

In the sequel, we will assume that the function ¢ € K ([a, b] X Ry; R+)
is nondecreasing in the second argument and satisfies (10.5), i.e.,

b

1
lim /q(s,x)ds:O.

r——+0co I
a

12.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following statements hold.

Theorem 12.1. Let 0 # |u| < ||, c € Ry,
h(v)sgn (Mv(a)) <c for ve C(la,b];R), (12.1)

and let there exist
lo, 01 € Pap (12.2)

such that on the set B}\uc([a, bl; R) the inequality

[F(v)(t) = Lo(v)(t) + t(v)(t)] sgnu(t) < q(t, [vllc) for t€ [a,b] (12.3)

holds. If, moreover,
(D)l <1 (12.4)

and

[loMllz A=l
e~ < 1aWls<2vi-leml . (125

then the problem (10.1), (10.2) has at least one solution.
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Remark 12.1. Let 0 # |u| < |A|. Denote by D the set of pairs (z,y) €
R4 x R4 such that

Al —
T <1, * —|’ |M|<y<2\/1—x
l-z |l

(see Fig. 12.1, p. 201).
According to Theorem 12.1, if (12.1) holds, there exist £y, {1 € Pyp such

that the inequality (12.3) is satisfied on the set B}\Hc([a, b); R), and

(wo(l)HL, HM)HL) e D,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.1, p. 240) that for every xg,yo € Ry, (xo,y0) ¢ D there exist
F € Kap, o, 01 € Pap, and ¢y € R such that (12.1) (with h = ¢o, ¢ = |co|)
and (12.3) hold,

zo = [z, yo = [a(W)]lz,

and the problem (10.1), (10.2) with A = ¢y has no solution. In particular,
neither one of the strict inequalities in (12.4) and (12.5) can be replaced by
the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case y = 0.

Theorem 12.2. Let p =0, ¢ € R, the condition (12.1) be fulfilled, and
let there exist £y, {1 € Py such that on the set B;\Nc([a, bl; R) the inequality
(12.3) holds. If, moreover,

o)l < 1 (12.6)

and
(W[ <2v1 =l (12.7)

then the problem (10.1), (10.2) has at least one solution.
Remark 12.2. Let © = 0. Denote by E the set of pairs (z,y) € R+ X R4

such that
T <1, y<2Vl—=x
(see Fig. 12.2).
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According to Theorem 12.2, if (12.1) holds, there exist £y, ¢1 € Py such
that the inequality (12.3) is satisfied on the set Biuc([a, b); R), and

(neo(l)uL, ||el<1>||L) ¢,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.2, p. 243) that for every xo,y0 € R+, (x0,y0) ¢ E there exist
F € Ky, lo,01 € Papy, and ¢g € R such that (12.1) (with h = ¢p, ¢ = |co|)
and (12.3) hold,

zo = [[LoWlz,  yo =[Gz,

and the problem (10.1), (10.2) with A = ¢y has no solution. In particular,
the strict inequalities (12.6) and (12.7) cannot be replaced by the nonstrict
ones.

Theorem 12.3. Let 0 # |u| < ||, c € Ry,
h(v)sgn (pv(b)) <c¢ for v e C([a,b]; R), (12.8)

and let there exist o, l1 € Py such that on the set B?\#C([a, bl; R) the in-
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equality
[F)(1) ~ fo(0)1) + ((0)(0)] seno(t) > .
> gt lollc) for tefat]
holds. If, moreover,
Iz < |5 (12.10)
and
e~ 1<l < 2[5 - Il 0z

then the problem (10.1), (10.2) has at least one solution.

Remark 12.3. Let 0 # |u| < |A|. Denote by W the set of pairs (z,y) €

R, x R, such that
Al 1
B
1l = [Aly A

7
< e
y ‘ )

(see Fig. 12.3).

Fig. 12.3.

According to Theorem 12.3, if (12.8) holds, there exist £y, 1 € Py such

that the inequality (12.9) is satisfied on the set B?\#C([a, b); R), and

Q%mmwamu)em
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then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.3, p. 245) that for every xg,yo € R+, (z0,%0) € W there exist
F € Kap, o, 01 € Pay, and ¢y € R such that (12.8) (with h = co, ¢ = |co)
and (12.9) hold,

zo = [[€o(1)]| L, vo = [z,

and the problem (10.1), (10.2) with A = ¢y has no solution. In particular,
neither one of the strict inequalities in (12.10) and (12.11) can be replaced
by the nonstrict one.

Theorem 12.4. Let |u| < |A|, ¢ € Ry, the inequality (12.1) be fulfilled,
and let there exist o, l1 € Py such that on the set B}\Mc([a, bl; R) the in-
equality

[F(0)(t) + L1 (v)(8)] sgno(t) < Lo(lv])(t)+

+q(t, |lvllc) for t€a,b

(12.12)

holds. If, moreover,
gO € V(;’I;()‘au)) _El S Va—‘g()\nu’)v (1213)
then the problem (10.1), (10.2) has at least one solution.

Remark 12.4. Theorem 12.4 is nonimprovable. More precisely, the in-
equality (12.12) cannot be replaced by the inequality

[F(0)() + C(0) ()] sgnv(t) < (1+)o(o)(t) + alt,lollc),  (12.14)

no matter how small ¢ > 0 would be. Moreover, the assumption (12.13)
can be replaced neither by the assumption

(1—e)lo € VH (A ), —l1 € VE(A ), (12.15)
nor by the assumption
loe V),  —(1 =)t e Vg p), (12.16)

no matter how small ¢ > 0 would be (see On Remark 12.4 and Exam-
ple 12.1, p. 247).

Remark 12.5. By the last theorem and the results from §2, one can ob-
tain several effective sufficient solvability conditions for the problem (10.1),
(10.2).
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Theorem 12.5. Let |u| < |\, ¢ € Ry, the inequality (12.1) be fulfilled,
and let there exist Lo, f1 € Py such that on the set Biuc([a, bl; R) the in-

equality (12.3) holds. If, moreover, there exists v € 5([@,6];]0,+oo[) sat-
isfying

Y () > bo(Y)(#) + 1(1)(t)  for t € [a,b], (12.17)
[Alv(a) > [uly(b), (12.18)
~v(b) —~v(a) < 2, (12.19)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.6. Theorem 12.5 is nonimprovable in the sense that the in-
equality (12.19) cannot be replaced by the nonstrict one (see Example 12.2,
p. 249).

In the next theorem if |u| = |A|, then the operator £y € Py, is supposed
to be nontrivial.

Theorem 12.6. Let 0 # |u| < |A|, ¢ € R4, the inequality (12.8) be ful-
filled, and let there exist £y, €1 € Py such that on the set B/Q\HC([a, bl; R) the
inequality

[F(v)(t) = Lo(v)(t) = tr(v)(t)] sgno(t) >

(12.20)
> —q(t,[[vllc) for tela,b]
holds. If, moreover,
bo € V(A 1) (12.21)
and
b
/(Eg(l)(s) + 01(1)(s))ds < 2 ‘% : (12.22)

a

then the problem (10.1), (10.2) has at least one solution.

Remark 12.7. Theorem 12.6 is nonimprovable in the sense that, in gen-
eral, the strict inequality (12.22) cannot be replaced by the nonstrict one
(see Example 12.3, p. 251).

Note also, that if |[A\| = |u| and the conditions (12.20) and (12.22) are
fulfilled for some £y, 1 € Py, then, without loss of generality, the operator
{p can be chosen such that the condition (12.21) is satisfied. Indeed, in this
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case the operator £y is supposed to be nontrivial and thus, it can be chosen
such that

b
0< /60(1)(s)ds <1,

which guarantees that the condition (12.21) is fulfilled (see Theorem 2.11
with ¢ =0, p. 26).

Nevertheless, if 0 # || < |A|, then, in general, the assumption (12.21)
cannot be replaced by the assumption

(1+e)lo € V(A p), (12.23)

no matter how small e > 0 would be (see On Remark 12.7, p. 253).

In Theorems 12.7-12.12; the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 12.7. Let 0 # |u| < |A,
[A(v) — h(w)] sgn (A(v(a) —w(a))) <0 for v,we C([a,b];R), (12.24)

and let there exist £y, 01 € Py such that on the set B}\#c([a, b];R), where
c = |h(0)], the inequality

[F(v)(t) = F(w)(t) — bo(v —w)(t)+

(12.25)
+01 (v — w)(t)] sgn (v(t) —w(t)) <0 for t€ [a,b]

holds. If, moreover, the conditions (12.4) and (12.5) are fulfilled, then the
problem (10.1), (10.2) is uniquely solvable.

Remark 12.8. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(12.4) and (12.5) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case y = 0.

Theorem 12.8. Let i = 0, the condition (12.24) be fulfilled, and let there
exist Lo, {1 € Pgp such that on the set B}\HC([a,b];R), where ¢ = |h(0)|, the
inequality (12.25) holds. If, moreover, the conditions (12.6) and (12.7) are

fulfilled, then the problem (10.1), (10.2) is uniquely solvable.
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Remark 12.9. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (12.6) and (12.7)
cannot be replaced by the nonstrict ones.

Theorem 12.9. Let 0 # |u| < |A[,
[h(v) = h(w)]sgn (u(v(b) — w(b))) <0 for v,we C([a,b];R), (12.26)

and let there exist £y, 01 € Py such that on the set B?\#C([a, b];R), where
c = |h(0)], the inequality
[F(0)(t) = F(w)(t) — Lo(v — w)(t)+

(12.27)
+01 (v —w)(t)] sgn (v(t) —w(t)) =0 for t€[a,b]

holds. If, moreover, the conditions (12.10) and (12.11) are fulfilled, then
the problem (10.1), (10.2) is uniquely solvable.

Remark 12.10. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(12.10) and (12.11) can be replaced by the nonstrict one.

Theorem 12.10. Let |u| < |A|, the condition (12.24) be fulfilled, and let
there exist Lo, {1 € Pap such that on the set B}\HC([a, b]; R), where ¢ = |h(0)],
the inequality

[F(v)(t) = F(w)(t) + (v — w)(t)] sgn (v(t) — w(t)) <

(12.28)
< lo(Jv —w|)(t) for tE€Ea,b]

holds. If, moreover, the condition (12.13) is satisfied, then the problem
(10.1), (10.2) has a unique solution.

Remark 12.11. The examples constructed in Subsection 12.3 (see On Re-
mark 12.4 and Example 12.1, p. 247) also show that the the inequality
(12.28) cannot be replaced by the inequality

[F(0)(t) — F(w)() + (v — w)(8)] sgn (v(2) — w(t)) <
< (1+4¢e)lp(jv —wl|)(t) for t € [a,b]

and the assumption (12.13) can be replaced neither by the assumption
(12.15) nor by the assumption (12.16), no matter how small € > 0 would
be.
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Theorem 12.11. Let |u| < |A|, the inequality (12.24) be fulfilled, and let
there exist Lo, €1 € Py such that on the set B}\MC([CL, b];R), where ¢ =
|h(0)], the inequality (12.25) holds. If, moreover, there exists a function

v € C([a,b];]0,400[) satisfying the inequalities (12.17)~(12.19), then the
problem (10.1), (10.2) is uniquely solvable.

Remark 12.12. The examples constructed in Subsection 12.3 (see Exam-
ple 12.2, p. 249) also show that the strict inequality (12.19) cannot be
replaced by the nonstrict one.

In the next theorem if || = |A|, then the operator ¢y € Py is supposed
to be nontrivial.

Theorem 12.12. Let 0 # |u| < |A|, the inequality (12.26) be fulfilled,
and let there exist by, {1 € Py such that on the set B/Q\Mc([a, b];R), where
¢ = |h(0)|, the inequality
[F(v)(t) = F(w)(t) = bo(v — w)(t)—
(12.29)
—l1(v —w)(t)] sgn (v(t) —w(t)) =0 for t€l[a,b]

holds. If, moreover, the conditions (12.21) and (12.22) are satisfied, then
the problem (10.1), (10.2) has a unique solution.

Remark 12.13. The examples constructed in Subsection 12.3 (see Exam-
ple 12.3 and On Remark 12.7, pp. 251 and 253) also show that, in general,
the assumption (12.21) in Theorem 12.12 cannot be replaced by the as-
sumption (12.23), no matter how small ¢ > 0 would be, and the strict
inequality (12.22) cannot be replaced by the nonstrict one.

In the case, where |u| > |\, the following assertions hold.

Theorem 12.13. Let |u| > |A| # 0, ¢ € Ry, the inequality (12.8) be
fulfilled, and let there exist £y, €1 € Py, such that on the set Biuc([a, bl; R)
the inequality (12.9) holds. If, moreover,

(D]l <1 (12.30)

and

8O W ), <o TTEDT 02

then the problem (10.1), (10.2) has at least one solution.
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The next theorem can be understood as a supplement of the previous
one for the case A = 0.

Theorem 12.14. Let A =0, ¢ € R, the inequality (12.8) be fulfilled, and
let there exist £y, €1 € Py, such that on the set Bf\uc([a, bl; R) the inequality
(12.9) holds. If, moreover,

[l <1 (12.32)
and
[o(M)]z <2v1— Mz, (12.33)

then the problem (10.1), (10.2) has at least one solution.

Theorem 12.15. Let |pu| > |A| # 0, ¢ € Ry, the inequality (12.1) be
fulfilled, and let there exist £y, €1 € Py such that on the set B}\MC([a, bl; R)
the inequality (12.3) holds. If, moreover,

A
()]s < H (12.34)
1
and
iy <y <2 M M. (1233
SO "

then the problem (10.1), (10.2) has at least one solution.

Theorem 12.16. Let |u]| > |A|, ¢ € Ry, the inequality (12.8) be fulfilled,
and let there exist Lo, l1 € Py such that on the set Bzuc([a, bl; R) the in-
equality

[F(v)(t) = 1 (v)(t)] sgnv(t) = —Lo(lv])(t)—
—q(t, [[vllc) for t€a,b]

holds. If, moreover,
—fy € Vaz ()\,,u), l € Vaz ()\,,u), (12.36)

then the problem (10.1), (10.2) has at least one solution.
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Theorem 12.17. Let |u| > |A|, ¢ € Ry, the inequality (12.8) be fulfilled,
and let there exist Lo, f1 € Py such that on the set BE\MC([a, bl; R) the in-

equality (12.9) holds. If, moreover, there exists v € 5([@,6];]0,+oo[) sat-
isfying

= (t) = ti(y) () + Lo(1)(t)  for t € [a,b], (12.37)
|Alv(a) < [ulv(b), (12.38)
v(a) —y(b) <2, (12.39)

then the problem (10.1), (10.2) has at least one solution.

In the next theorem if |u| = |A|, then the operator ¢y € Py is supposed
to be nontrivial.

Theorem 12.18. Let |pu| > |A| # 0, ¢ € Ry, the inequality (12.1) be
fulfilled, and let there exist £y, €1 € Py such that on the set B}\Mc([a, bl; R)
the inequality

[F(0)(8) + Lo(v)(t) + t(v)(t)] sgno(t) <

(12.40)
<at|lvle) for t€la,b]
holds. If, moreover,
—ly € VE(N 1) (12.41)
and
b
/(60(1)(3) +41(1)(s))ds < 2 ’2 : (12.42)

a

then the problem (10.1), (10.2) has at least one solution.

In Theorems 12.19-12.24, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 12.19. Let |u| > |A| # 0, the condition (12.26) be fulfilled, and
let there exist by, 01 € Pu, such that on the set Biuc([a,b]; R), where ¢ =
|h(0)|, the inequality (12.27) holds. If, moreover, the conditions (12.30) and
(12.31) are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

The next theorem can be understood as a supplement of the previous
one for the case A = 0.
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Theorem 12.20. Let A = 0, the condition (12.26) be fulfilled, and let there
exist by, 01 € Py such that on the set Biuc([a,b];R), where ¢ = |h(0)|, the
inequality (12.27) holds. If, moreover, the conditions (12.32) and (12.33)
are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

Theorem 12.21. Let |u| > |A| # 0, the condition (12.24) be fulfilled, and
let there exist by, 01 € Py, such that on the set Biuc([a,b]; R), where ¢ =
|h(0)|, the inequality (12.25) holds. If, moreover, the conditions (12.34) and
(12.35) are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

Theorem 12.22. Let |p]| > |A|, the inequality (12.26) be fulfilled, and let
there exist Lo, {1 € Pyp such that on the set B/Q\“C([a, bl; R), where ¢ = |h(0)],
the inequality

[F()(t) — Fw)(t) — (v — w)(®)] sen (v(t) — w(®)) =
> —lo(jo—w)(t) for teab]

holds. If, moreover, the condition (12.36) is satisfied, then the problem
(10.1), (10.2) has a unique solution.

Theorem 12.23. Let |p]| > |A|, the inequality (12.26) be fulfilled, and let
there exist £y, 01 € Py such that on the set Biuc([a, b];R), where ¢ =
|h(0)|, the inequality (12.27) holds. If, moreover, there exists a function

v € C([a,b];]0,+00]) satisfying (12.37)—(12.39), then the problem (10.1),
(10.2) is uniquely solvable.

In the next theorem if |u| = |A|, then the operator ¢y € Py is supposed
to be nontrivial.

Theorem 12.24. Let |u| > |\ # 0, the inequality (12.24) be fulfilled,
and let there exist £y, 01 € Py such that on the set B}\HC([a, b];R), where
c = |h(0)|, the inequality

[F(v)(t) = F(w)(t) + bo(v — w)(t)+

(12.43)
+01 (v — w)(t)] sgn (v(t) —w(t)) <0 for tE€ [a,b]

holds. If, moreover, the conditions (12.41) and (12.42) are satisfied, then
the problem (10.1), (10.2) has a unique solution.
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Remark 12.14. Let ¢» and ¢ be operators defined in Remark 2.16 (see
p. 28). Put

D(F(p(w))(t) for tea,b],  hw)= hip(w)).

It is clear that if u is a solution of the problem (10.1), (10.2), then the

function v & ©(u) is a solution of the problem

F(uw)(t) = -

V() =F)t),  pv(a)+ Av(b) = h(v), (12.44)
and vice versa, if v is a solution of the problem (12.44), then the function
0 ©(v) is a solution of the problem (10.1), (10.2).

Remark 12.15. According to Remark 12.14 and Remark 2.16 (see p. 28),
Theorems 12.13-12.24 can be immediately derived from Theorems 12.1—
12.12. Moreover, by virtue of Remarks 12.1-12.4 and 12.6-12.13, Theo-
rems 12.13-12.24 are nonimprovable in an appropriate sense.

12.2. Proofs

First we will prove several lemmas.

Lemma 12.1. Let 0 # |u| < |\| and let the operator ¢ admit the represen-
tation £ = Ly — {1, where Ly, L1 € Pay. If, moreover, the conditions (12.4)
and (12.5) hold, then ¢ € A'(\, p).

Proof. Let ¢* € L([a, b];R+), ce€ Ry,and u € 5([a,b];R) satisfy (11.13)
and (11.14) for i = 1. Put

1
po = max {1, |ul}, )\O—max{l,w}. (12.45)

We will show that (11.15) holds with

- o + Ao(pll[6 (D)L + (Al = |ul) n
(1= o)) (pll ()| + [A] = ul) = |l [[€o ()]
Ao([(D)flr +1)

L=l = gl

(12.46)

_l’_

It is clear that

W (8) = Lo(u)(t) — b1 (u)(t) +d(t) for te[a,b], (12.47)
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where
q(t) = u'(t) — L(u)(t) for t€ [a,b]. (12.48)
Obviously,
q(t)sgnu(t) < q¢*(t) for tela,b], (12.49)
and
[Au(a) + pu(b)] sgn (Au(a)) < c (12.50)

First suppose that u does not change its sign. According to (2.1),
(12.50), and the assumption |4| €]0,1], we obtain

lu(a)| = [u(b)] < oy (12.51)

and
lu[ = [Al | e

| e

u(a)] = [u(b)] < fu(a)| (12.52)
Put
M = max{|u(t)| : t € [a, ]}, m = min{|u(t)| : t € [a,b]}  (12.53)
and choose t1,t2 € [a,b] such that ¢; # ty and
lu(t1)| = M, lu(tz)] = m. (12.54)
Obviously, M > 0, m > 0, and either
t <ty (12.55)

or

t1 > to. (12.56)
Due to (12.2), (12.49), and (12.53), (12.47) implies

lu(t)]" < Mlo(1)(t) —m ey (1)(t) +¢*(t) for t€ [a,b]. (12.57)

If (12.55) holds, then the integration of (12.57) from a to ¢; and from 2 to
b, in view of (12.2), m > 0, and (12.54), results in

~+
-

t1

M~ fu(w)] < 3 [ 6(1)(ds + [ ¢*(s)ds,
ab ab
lu(b)| —m < M/fo(l)(s)ds + /q*(s)ds.
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Summing the last two inequalities and taking into account (12.2) and
(12.51), we obtain

J— & -_— Ewd *
M—m— = <M-—m+ ub)] —[u(a)] < M|l + [lg°]

If (12.56) is fulfilled, then the integration of (12.57) from ¢2 to ¢;, on account
of (12.2), m > 0, and (12.54), yields

t1 t1
Mm-S <M-m<M / 1o(1)(s)ds + / ¢ (s)ds < TNVl + 1] 1.

to to

Therefore, in both cases (12.55) and (12.56), the inequality

S

—m - o < M|lbo(1)||z + llg*]z (12.58)

holds.
On the other hand, the integration of (12.57) from a to b yields

u(d)| — [u(a)| < Mlbo(D)]| —m] 4D+ llg"|lz.

Hence, by (12.52), (12.53), and the assumption |u| < |A|, we get

ml (D)l < Mlbo(1)]|z + |u(a) ot

— —|A . c
< Wto(vs 47 LRy 4 S
1z 1z
From the last inequality and (12.58), in view of (12.4) and the assumption

|&| €10,1], it follows that

2l L RS 5
| =+l <

A — — .
0<m (Helan + W) < Tl + gl +

0<MA—|loMW))z) <m+|q*ll +

<
||’
C

Al
Thus, on account of (12.5) and (12.45),

lulle = M < ro(po + Mo(Iulller(D)lz + AT = 1) (e + llg”]l£),

-1
where ro = [(1—[[o(1)[|2) (|| (1)l + Al =) = lelll€o(1)][ ] . There-
fore, the estimate (11.15) holds.
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Now suppose that u changes its sign. Put
M = max{u(t) : t € [a,b]}, m = —min{u(t) : t € [a,b]}, (12.59)
and choose tyr,tn, € [a,b] such that
u(ty) =M,  u(ty) =-—m. (12.60)
Obviously, M > 0, m > 0, and either
tm < tur (12.61)

or
tm > tar. (12.62)

First suppose that (12.61) is fulfilled. It is clear that there exists as €
|tm, tar] such that

u(t) >0 for s <t <ty, u(az) = 0. (12.63)
Let
ap = inf{t € [a,ty] : u(s) <0 for t <s <tp}. (12.64)
Obviously,
u(t) <0 for a3 <t <ty (12.65)
and
if a3 >a, then wu(a;)=0. (12.66)
Put
b if u(b)>0
as =4 Cu®) 20 9 6p)
inf{t € Jtar,b] : u(s) <0 fort <s<b} if u(b) <0

It is clear that
if a3<b, then wu(t)<0 for az<t<b, wulag)=0. (12.68)

The integration of (12.47) from «j to t,,, from ag to ¢y, and from as to
b, in view of (12.2), (12.49), (12.59), (12.60), (12.63), (12.65), and (12.68),
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(o) +m < M/£1(1)(s)ds+m/z0(1)(s)ds+/q*(s)ds, (12.69)
M < M/Eo(l)(s)ds+m/€1(1)(s)ds+/q*(s)ds, (12.70)

u(az) —u(b) < M /bz ds+m/€0 ds+/b “(s)ds. (12.71)

Evidently, either
u(b) = 0 (12.72)

or

u(b) < 0. (12.73)

If (12.72) holds, then, according to (2.1), (12.50), (12.64), and (12.66), we
obtain u(ay) > —ﬁ. Thus, it follows from (12.69) that

N —l—m<M/€1 ds—l—m/EO ds+/ *(s)ds,  (12.74)

where I = [aq,ty)].
Now let (12.73) hold. According to (2.1) and (12.50), it is clear that

i
a) — ‘X‘ u(b) > _W [Au(a) + pu(b)] sgn (Au(a)) > _W

By virtue of (12.64) and (12.66), we find

c

Rk (12.75)

u(ay) — ’%)U(b) > -

Multiplying both sides of (12.71) by |4| and taking into account (12.67),
(12.68), and the assumption ‘)\} €] ,1], we get

B /b ds+m/eo ds—i—/b *(s)ds.



216 §12. PERIODIC TYPE BVP

Summing the last inequality and (12.69), by (12.75) we obtain that the
inequality (12.74) holds, where I = [, t] U [as, b].

Thus, in both cases (12.72) and (12.73), the inequality (12.74) is ful-
filled, where I = [aq,tm] U [, b].

It follows from (12.70) and (12.74) that
<
Al
<

Al

M1 —Cy) <mArL+ ||| +

(12.76)
m(1—Dy) < MBy + ||| +

where
Al—/iﬂnQM& Bl—/ign@m&

a2 I

qz/%m@@, m:/%m@w

s T
Due to (12.4), C1 < 1, Dy < 1. Consequently, (12.45) and (12.76) imply
c
0<M(1-Ci)(1—Dy) <A (MB1 + gl + W) +

* C *
+ gl + 737 < MALB1 + o ([lg" ]|z + o) ([ (D)2 + 1),

A
(12.77)
0<m(l—Cp)(1—Dp) < By <mA1 + |lg*]lz + |§|> +
* c *
+ eIz + oS mA1B1 + Ao ([l¢7]|z + o) (D2 +1).
Obviously,
(1-C1)(1=D1)>1—(C1+D1) >1—|[lo(1)|z >0,
4A1By < (Ay + B1)? < |le1 (1)) 2.
By the last inequalities and (12.5), from (12.77) we get
M < rido((laM + e+ llg*ln),
(12.78)

m < rido([Ga W)z + e+ g ),
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where .
1 ]
n= (1 6l - Hlaiz) (1279

The inequalities (12.78), on account of (12.46), (12.59), and (12.79), imply
that the estimate (11.15) holds.

Now suppose that (12.62) is fulfilled. It is clear that there exists as €
Jtar, tm[ such that

u(t) <0 for a5 <t <ty, u(as) = 0. (12.80)
Let
ay = inf{t € [a,tpr] s u(s) >0 for t < s <tp}. (12.81)
Obviously,
u(t) >0 for ay <t <ty, (12.82)
and
if a4>a, then wu(ayg)=0. (12.83)
Put
b if u(b) <0
ag =1 i u(b) < (12.84)
inf{t € |t;, 0] u(s) >0 for t <s <b} if u(b) >0

It is clear that
if ag<b, then wu(t)>0 for ag<t<b, u(ag) = 0. (12.85)

The integration of (12.47) from a4 to tps, from as to t,,, and from ag to
b, in view of (12.2), (12.49), (12.59), (12.60), (12.80), (12.82), and (12.85),
results in

ty tar

M —u(ay) < M/EO ds+m/£1 ds+/ *(s)ds, (12.86)

a4

m < M/El ds—|—m/€0 ds+/ *(s)ds, (12.87)

¢ (s)ds. (12.88)

m\@ c;v

b
u(b) —u(ag) < M /E d5+m/€1 s)ds +
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Evidently, either
u(b) <0 (12.89)

or

u(b) > 0. (12.90)

If (12.89) holds, then, according to (2.1), (12.50), (12.81), and (12.83), we
obtain u(ay) < ﬁ Thus, it follows from (12.86) that

) +M<M/€0 d5—|—m/€1 ds+/ *(s)ds,  (12.91)

where J = [ay, trr].
Now let (12.90) hold. According to (2.1) and (12.50), it is clear that

1" 1 c
‘X‘ u(b) — u(a) > _W [)\u(a) + uu(b)] sgn ()\u(a)) > —m

By virtue of (12.81) and (12.83), we find

Cc

W .

‘ﬁ‘u(b) ~ o) > —

\ (12.92)

Multiplying both sides of (12.88) by }%‘ and taking into account (12.84),
(12.85) and the assumption || € ]0,1], we get

b

SM/EO ds+m/€1 d5+/ *(s)ds.

ap

Summing the last inequality and (12.86), by (12.92), we obtain that the
inequality (12.91) holds, where J = [au4, tar] U [ag, ).

Thus, in both cases (12.89) and (12.90), the inequality (12.91) is ful-
filled, where J = [au, tar] U o, ).

It follows from (12.87) and (12.91) that

. c
m(l —C2) < MAs + ||¢*||L + o

(&
M(1 - Dy) <mBs+ ||¢*|L + Bk

(12.93)
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where

A2 :/51(1)(s)d3, BQ == /fﬂl)(s)ds,

Due to (12.4), Cy < 1, Dy < 1. Consequently, (12.45) and (12.93) imply

0< m(l — CQ)(l — D2) < Ay (mBg + Hq*HL + f\’) +

* c *
+llg*llL + o <mA2Bs + Mo(llg* || + o) ([ (D] + 1),
(12.94)

0<M(1—-Ch)(1—D3) < By (MAz + |lg*]lz + |§|> +
* c *
+ ¢l + o < MABy + Ao(llg* [l + o) (14 (D)2 + 1).
Obviously,
(1-C2)(1—=D3) >1—(Cy+ Dg) >1—|[lo(1)| >0,
445By < (As + Bo)? < |1 (1)]F.

By the last inequalities and (12.5), (12.94) implies (12.78), where ry is
defined by (12.79). The inequalities (12.78), on account of (12.46), (12.59)
and (12.79), imply that the estimate (11.15) holds. O

Lemma 12.2. Let 0 # || < |A| and let the operator £ admit the represen-
tation £ = by — L1, where Ly, {1 € Papy. If, moreover, the conditions (12.10)
and (12.11) hold, then £ € A*(\, p).

Proof. Let ¢* € L([a, b];R+), c€ Ry, and u € 6’([@,()];]%) satisfy (11.13)
and (11.14) for ¢ = 2. Define the number Ao by (12.45). We will show that
(11.15) holds with

MM o (D)l + 1) .
(el = PG (Dl = NTE T = N+ T

Mol +1)
5= () — He)2

r =
(12.95)
+




220 §12. PERIODIC TYPE BVP

Obviously, u satisfies (12.47), where ¢ is defined by (12.48). Clearly,
—q(t)sgnu(t) < q*(t) for t € a,b] (12.96)

and
[Au(a) + pu(b)] sgn (pu(b)) < c. (12.97)

First suppose that u does not change its sign. According to (2.1),
(12.97), and the assumption |&| €10,1], we obtain
c

5] ) = e < 55 (12.8)

e A~

+ (12.99)
R A
Define the numbers M and m by (12.53) and choose t1,ts € [a,b] such that
t1 # ty and (12.54) is fulfilled. Obviously, M > 0, m > 0, and either (12.55)

or (12.56) holds. Due to (12.2), (12.53), and (12.96), (12.47) implies

[u(b)| = u(a)] < [u(b)]

—|u®)|" < M1 (1)(t) — mbo(1)(t) + ¢*(t) for t € [a,b]. (12.100)

If (12.56) holds, then the integration of (12.100) from a to t2 and from ¢;
to b, in view of (12.2), m > 0, and (12.54), results in

lu(a)] —m < M [ £1(1)(s)ds + /q*(s)ds, (12.101)
ab ab
M —|u(b)| < M/El(l)(s)ds+ /q*(s)ds. (12.102)

t1 t1

Multiplying both sides of (12.102) by ‘§| and taking into accout (12.2) and
the condition |§| €]0,1], we obtain

b b
)%‘M_ ‘%’ [u(0)] SM/El(l)(s)dH/q*(s)ds.

1
Summing the last inequality and (12.101), in view of (12.98), we get
H’ A —
5[ -m

c _ M55 — p — .
_ = < |ElM= B < .
e 2107 =7+ uta)| = |5 | lu®)] < MG @)l + gl
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If (12.55) is fulfilled, then the integration of (12.100) from ¢; to ta, on
account of (12.2), m > 0, (12.54), and the assumption |§| €10,1], yields

to to
‘%‘M—m—ﬁ SM—mgM/El(l)(s)ds—i—/q*(s)dsS
t1 t1

< Mle@)llz + llg* ] .-

Therefore, in both cases (12.55) and (12.56), in view of (12.10), the in-
equality

C

0< 2 (| )

= Ia)le) <m -+l + (12.103)

>|=

holds.
On the other hand, the integration of (12.100) from a to b implies

u(a)] = u(®)| < M6 (D)) —ml W)L + gL
Hence, by (12.99), (12.53), and the assumption |u| < |A|, we get

__ — A= | c

mlllo(V)]l < D) (1)]|1 + Ju(b)] HM\H L

A= lul
A

Al = !M!) N ¢
+llg* Il + -
A A

+l¢llz <

Cc

< My (D)||p + M i

+ Mgl +

ZMO%®M+

The last inequality and (12.103), in view of (12.11), (12.45), and (12.53),
result in o
[ulle = M < roXo| Al([[6o(Dz + 1) (¢ + ll¢"[L),

where ro = [(Jl = € (D)1 1€0(D)l — I (DIl — 1A+ [f] . There-
fore, the estimate (11.15) holds.

Now suppose that u changes its sign. Define the numbers M and m by
(12.59) and choose tys, ty, € |a,b] such that (12.60) is fulfilled. Obviously,
M >0, m > 0, and either (12.61) or (12.62) holds.

First suppose that (12.61) is fulfilled. It is clear that there exists a; €
Jtm, tar[ such that

u(t) <0 for t, <t<ai, u(ag) = 0. (12.104)
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Let
ag = sup{t € [ta,b] s u(s) > 0 for tpr < s < t}. (12.105)
Obviously,
u(t) >0 for ty <t<as (12.106)
and
if as <b, then wu(az)=0. (12.107)
Put
if <0
az=14" fu@<0 9 108)
sup{t € [a,tm[:u(s) >0 fora <s <t} if u(a)>0

It is clear that
if asz>a, then wu(t)>0 for a<t<as, ulaz)=0. (12.109)

The integration of (12.47) from t,, to aq, from ¢y to ag, and from a to as,
in view of (12.2), (12.59), (12.60), (12.96), (12.104), (12.106), and (12.109),
yields

m < M/Zo ds+m/€1 ds—l—/ *(s)ds, (12.110)

M—u(ag)gM/Zl ds+m/£0 ds+/ “(s)ds, (12.111)

tym

u(a) —u(ag) < M/El ds+m/€o ds—l—/ *(s)ds. (12.112)

Evidently, either
u(a) <0 (12.113)

u(a) > 0. (12.114)

If (12.113) holds, then, in view of (2.1), (12.97), (12.105), and (12.107),
we obtain u(ag) < %' Thus, from (12.111), on account of ‘%{ €10,1], it
follows that

‘M’M—W M/él ds+m/£0 ds—i—/ *(s)ds, (12.115)
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where I = [tpr, aa).
Now let (12.114) hold. According to (2.1) and (12.97), it is clear that

1 c
-4 ~yeta) + p(®)] sgm () = 3
By virtue of (12.105) and (12.107), we find
W c
—|£ > .
u(a) ]A’u(QQ)__ |A| (12.116)

Multiplying both sides of (12.111) by }%’ and taking into account the as-
sumption ‘%} €10,1], we get

’M‘M—‘—‘ u(as) <M/£1 d8+m/€0 ds—i—/ *(s)ds.

M

Summing the last inequality and (12.112), according to (12.108), (12.109),
and (12.116), we obtain that the inequality (12.115) holds, where I =
[a, as] U [tar, aal.

Thus, in both cases (12.113) and (12.114), the inequality (12.115) is
fulfilled, where I = [a, a3] U [ta, 2]

It follows from (12.110) and (12.115) that

C
m(l— A1) < MCy + ||¢°|| + Bk

1 c
M(H—B)< D L+
3 1) <mD1+ |q HL—l-W

(12.117)

where

Due to (12.10), 4; < |§|, B1 < |%|. Consequently, (12.45) and (12.117)
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imply
C
0< m(l —Al) (‘%‘ — Bl> S Cl <mD1 + ||q*||L + |)\|> +

* & *
+1l¢*llz + o] < mC1 Dy + Mo(ll¢*]|z + ) ([leo(1)]|L + 1),
(12.118)

0< M- (|5 -B1) <D <M01+ ||q*\L+‘§‘> 4

Cc

B < MC1Dy 4 Mo(llg*llz + o) ([l(D)][z + 1)

+ "z +

Obviously, in view of the assumption ‘§| €10,1],
M poo| u
1-4 (H—B>>H_HA y >H—£ 1)l >0,
( V(|5 ) 2|5~ 5[4 - Bz 3| - el >
4C1Dy < (C1+ D1)? < |bo(1)]12-
By the last inequalities and (12.11), from (12.118) we get

M < rido([[o(D)lz + 1) (e +[lg"();

m < rido([[€o(Dllz + D(e+llg™L),

(12.119)

where .

n= (5~ 1 - Hewi) - a2

The inequalities (12.119), on account of (12.59), (12.95), and (12.120),
imply that the estimate (11.15) holds.

Now suppose that (12.62) is fulfilled. It is clear that there exists oy €
|tar, tim] such that

u(t) >0 for ty <t< oy, u(ayq) = 0. (12.121)
Let
as = sup{t € [tm,b] : u(s) <0 for ¢, <s < t}. (12.122)
Obviously,
u(t) <0 for t, <t<as (12.123)
and

if as<b, then wu(as)=0. (12.124)
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Put

a if u(a)>0
g = . . (12.125)
sup{t € [a,tpr] s u(s) <0 fora<s <t} if u(a)<O0

It is clear that
if ag>a, then wu(t)<0 for a<t<ag ulag)=0. (12.126)

The integration of (12.47) from tys to ay, from t,, to as, and from a to «g,
in view of (12.2), (12.59), (12.60), (12.96), (12.121), (12.123), and (12.126),
yields

M < M/El ds—l—m/EQ ds+/ *(s)ds, (12.127)

tvr

u(as) +m < M/Eo ds—l—m/fl ds+/ *(s)ds, (12.128)

t m

w(ag) — u(a) <M/€0 ds+m/£1 ds+/ “(s)ds. (12.129)

Evidently, either
u(a) >0 (12.130)

u(a) < 0. (12.131)

If (12.130) holds, then, in view of (2.1), (12.97), (12.122), and (12.124),
we obtain u(ag) > — a7+ Thus, from (12.128), on account of |4| €]0,1], it
follows that

’u‘m—— M/Eo ds—l—m/fl ds+/ *(s)ds, (12.132)

where J = [t,, as].
Now let (12.131) be satisfied. According to (2.1) and (12.97), it is clear
that

" 1
5[ (0) —ula) > 5 Do) + pu(®)) s () > 57
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By virtue of (12.122) and (12.124), we find

g) u(as) —u(a) > —ﬁ .
Multiplying both sides of (12.128) by }%‘ and taking into account the as-
sumption ‘%} €10,1], we get

’i‘ u(as —i—Hm<M/€o ds+m/€1 ds+/ *(s)ds.

Summing the last inequality and (12.129), according to (12.125), (12.126),
and (12.133), we obtain that the inequality (12.132) holds, where J =
[a, ag] U [tm, as).

Thus, in both cases (12.130) and (12.131), the inequality (12.132) is
fulfilled, where J = [a, ag] U [ty 5]

It follows from (12.127) and (12.132) that

(12.133)

C
M(1— Ay) <mCs + ||¢"||L + Bk

M‘ ) * ¢
~—|—By) <MD —
m (5] = B2) <MDz + 0"+ 1

(12.134)

where

Due to (12.10), Ay < |§|, B2 < |%|. Consequently, (12.45) and (12.134)
yield

0<M(1- ) (|5~ B) (MD2+||q I+ IM)+

+ ¢ + W < MC2Da 4 Mo(llq¢*]| 2 + ) (leo(1)]| + 1),

(12.135)
0 < m(l— Ay) (H . Bg) < Dy <m02 + g + |A|>

+1l¢*lL + 7 £ mCeDa + Ao(llg*[| 2 + ) (l€o(1) ]| + 1).

!AI
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Obviously, in view of the assumption |£| € ]0, 1],
p IR u

1- A H—B >H_HA ~B >H—e 1 ,

(1= 42) (|5]=B2) = |5| = 5| 42— B2 = |5| = ) > 0

ACyDy < (Cy 4 Da)? < |/6o(1)]12.

By the last inequalities and (12.11), (12.135) implies (12.119), where r;
is defined by (12.120). The inequalities (12.119), on account of (12.59),
(12.95), and (12.120), imply that the estimate (11.15) holds. O

Lemma 12.3. Let |u| < |A|, lo,41 € Pap, and
by € V:l;()\,u), —{l € VJ;()\,/J,).
Then (50,61) S B()\,[L)

Proof. Let ¢* € L([a, b];R+), ¢c € Ry, and u € 6([a,b];R) satisfy the
inequalities (11.21) and (11.22). In view of the condition ¢y € VL (X, p),
the assumptions of Lemma 11.1 (see p. 192) are satisfied. We will show
that (11.15) holds, where r = rg is the number appearing in Lemma 11.1
(see p. 192).

It is clear that

u'(t) = —l1(u)(t) + q(t) for te[a,b], (12.136)

where
qt) =u'(t) + l1(u)(t) for tE€ [a,b].

According to (11.22), evidently
q(t)sgnu(t) < lo(|ul)(t) +¢*(t) for t€ [a,b]. (12.137)

From (12.136), in view of the assumption ¢; € Py and the inequality
(12.137), we get

[u(®)]y < Ga([ul-) (1) + Lo(Jul)(t) + " (t) =
= —L1([u]£)(t) + La(Ju]) (@) + Lo([ul)(t) + ¢*(t) for 1€ [a,b],

(12.138)

[u(®)]” < a([ul)(t) + Lo(Jul)(t) + 4" (t) =
= —l1([u]-) (@) + La(|ul)(t) + Lo([ul)(t) + ¢*(t) for T € [a,b].

(12.139)
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Since —¢1 € V.1 (A, u), by virtue of Theorem 1.1 (see p. 14), the problem

o/ (t) = —r(@)(t) + G ([ul)(8) + Lo(lul)(t) + ¢" (1),

(12.140)
Aa(a) + pa(b) = csgn A
has a unique solution a. According to (2.1) and (11.21), we find
(Mu(@)]+ = [ul[u®)l <e [AMul@)]- = [pllu®)]- <e  (12.141)

From (2.1), (12.138)—(12.141), on account of the condition —¢1 € V.1 (X, n)
and Remark 2.3 (see p. 16), it follows that

[u®)]s < at),  [u®)]- <o) for tcla,b],

consequently,
lu(t)| < a(t) for t € a,b]. (12.142)

By (12.142) and the conditions £y, £1 € Py, (12.140) results in
o (t) < lo(a)(t) +q*(t) for te€la,b]

By virtue of ¢y € V_I(X, 1) and the boundary condition in (12.140), the
latter inequality yields

a(t) <o(t) for tela,b, (12.143)

where v is a solution of the problem (11.1) with § = ¢* and ¢ = c¢sgn .
Now it follows from (12.142) and (12.143), according to Lemma 11.1 (see
p. 192), that the estimate (11.15) holds with r = rq. O

Lemma 12.4. Let |u| < |\ and the operator ¢ admit the representa-
tion £ = by — 01, where Ly, €1 € Py. If, moreover, there exists a func-
tion v € 6’([@, bl; 10, +oo[) satisfying the inequalities (12.17)—(12.19), then
e AL\ p).

Proof. Let ¢* € L([a, b];R+), ¢ € Ry, and u € 6([a,b];R) satisfy the
inequalities (11.13) and (11.14) for ¢ = 1. Obviously, u satisfies (12.47),
where ¢ is defined by (12.48). It is also evident that the inequalities (12.49)
and (12.50) hold.

According to Theorem 2.1 (see p. 17), the conditions ¢y, ¢; € Py, and
the inequalities (12.17) and (12.18) yield ¢y € V.t (A, u). Therefore, the
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assumptions of Lemma 11.1 (see p. 192) are fulfilled. Let r¢ be the number
appearing in Lemma 11.1 and put

r=ro (144(1490) = 2(@) (4= (O) —(@)?) ") . (12149)

We will show that (11.15) holds, where r is defined by (12.144).
First suppose that u does not change its sign. Then from (12.47), in
view of (12.49) and the assumptions £y, {1 € Pgp, we have

u(t)]" < Lo(lul)(t) +q*(t) for t € [a,b],
and from (2.1) and (12.50) we get
[Au(a)] = |pu(b)] < c.

Therefore, by Remark 2.3 (see p. 16), in view of the condition ¢y € VL (X, u),
we have
lu(®)| <w(t) for te€ a,bl,

where v is a solution of the problem (11.1) with § = ¢* and ¢ = ¢sgn A.
Due to Lemma 11.1 (see p. 192), the function v admits the estimate (11.2),
and thus, in view of (12.144), the estimate (11.15) holds.

Now assume that u changes its sign. Define the numbers M and m by
(12.59) and choose tpr,ty, € [a,b] such that (12.60) holds. It is clear that

M >0, m > 0,

and either (12.61) or (12.62) is fulfilled.

Let v be a solution of the problem (11.1) with § = ¢* and ¢ = csgn A.
According to (2.1), (12.17), (12.18), (12.59), (11.1), and the assumptions
Lo, £1 € Pup, we have

(MA(t) +v(t)) > bo(Mry +v)(t) + M(1)(t) + ¢* () >
> fo(M~ +0)(t) + G([u] L) (E) + ¢ (t) for t€ [a,b], (12.145)
[Al(M~(a) +v(a) — [p[(My(b) +v(b) = c,
and
(my(t) +v(t) > bo(mry +v)(t) +mbi(1)(t) +¢*(t) >
> bo(mey +v)(t) + 1 ([u]_)(t) + ¢*(t) for ¢t € [a,b], (12.146)

[Al(my(a) +v(a)) = [u[(my(b) + v (b)) = c.
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On the other hand, from (12.47) and (12.50), on account of (2.1) and
(12.49), we obtain

[u@®)]y < lo(ful)(t) + i ([u] ) () + ¢ () for t € [a,b],
Allu(@)]y = [ul[u®)]+ <

(12.147)

and
[u(®)]Z < lo([u]-)(t) + ta([ul+)(t) + ¢*(t) for ¢ € [a,b],
[Alfu(a)]- = |p|[u(b)]- < e

Since £y € V. (A, p), from (12.145), (12.148) and from (12.146), (12.147),
on account of Remark 2.3 (see p. 16), we get

(12.148)

M~(t) + v(t) > [u(t)]- for t € a,b,
(12.149)
my(t) +v(t) > [u(t)]+ for t € la,b].

Inequalities (12.145)—(12.148), by virtue of (12.149) and the assumption
Ly € Pup, imply

[u(t)]” < (M~(t) +v(t))" for t€[a,b], (12.150)
[u(®)), < (my(t) +o(t) for t€ [a,b]. (12.151)

Note also that, in view of the condition ¢y € V.1 (X, p),
v(t) >0 for t€la,bl. (12.152)

First suppose that (12.62) is fulfilled. The integration of (12.150) from
tar to tm, on account of (12.59), (12.60), and (12.152), results in

m < My(tm) + 0(tm) — MA(tar) — vltar) <

< M(y(tm) —v(tm)) + v]lc

On the other hand, the integration of (12.151) from a to tj; and from ¢,
to b, in view of (12.59), (12.60), and (12.152), yields

M — [u(a)ly <mry(tar) +v(tar) — my(a) —v(a) <
< m(y(tm) = v(a)) = v(a) +[lv]c,
[u(®)]+ < my(b) +v(b) = my(tm) — v(tm) <

<m(y(b) = y(tm)) + v(b).

(12.153)

(12.154)

(12.155)
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Multiplying both sides of (12.155) by |4 | and taking into account the facts
that m > 0, v is a nondecreasing function, and ‘%} € [0,1], we obtain

)%‘ [u(®)]+ < m(y(b) = (tm)) + ‘%‘ (b

Summing the last inequality and (12.154) and taking into account (2.1),
and the boundary conditions in (11.1) and (12.147), we get

M <m(y(tu) —v(tm) +7(b) —v(a)) + [vllc. (12.156)

From (12.153) and (12.156), with respect to (12.59), (12.62), and the con-
dition ~/(t) > 0 for ¢ € [a, b], it follows that

lulle < llulle (v(tm) = v(tar) (v(Ear) = ¥(tm) +7(0) = ~(a))+
+(1+7(0) = y(a))vllc-
Consequently, by virtue of the inequality

AB < (A + B)?, (12.157)

the inequality

< lulle ||c 2
lullc (v(b) = (@)™ + (1 +(b) = v(a)) vllc
holds. Hence, by virtue of (12.19) we find

lulle < 4(1+7(6) = (@) (4 = (v(b) = ¥(@))*) " [[v]le (12.158)

Therefore, according to (11.2) and (12.144), the estimate (11.15) holds.
Now suppose that (12.61) is fulfilled. The integration of (12.151) from
tm to tar, on account of (12.59), (12.60), and (12.152), results in

M < mry(ty) +v(tm) — my(tm) — v(tm) <

< m(y(ta) = (tm)) + [|vlle-

On the other hand, the integration of (12.150) from a to ¢,, and from ¢,
to b, in view of (12.59), (12.60), and (12.152), yields

m — [u(a)]- < My(tp) + v(tm) — My(a) —v(a) <
< M(v(tm) = v(a)) —v(a) +|lvllc,
[u(d)]— < M~(b) +v(b) — My(ta) — v(tar) <

< M(y(b) = ~(tu)) +v(b).

(12.159)

(12.160)

(12.161)
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Multiplying both sides of (12.161) by ‘%} and taking into account the facts
that M > 0, ~v is a nondecreasing function, and ‘§| € [0,1], we obtain

|8 ®)]- < M (v(0) = A(tan) + || 0(0):

Summing the last inequality and (12.160) and taking into account (2.1) and
the boundary conditions in (11.1) and (12.148), we get

m < M (y(tm) — v(tar) + () —(a)) + [[v]le- (12.162)

From (12.159) and (12.162), with respect to (12.59), (12.61), and the con-
dition ~/(t) > 0 for ¢ € [a, b], it follows that

lulle < llulle (v(tar) = ¥(tm)) (V(tm) — ¥ (tar) +(b) — v(a))+
+(1+7(b) = ~v(a) [v]lc-

Consequently, by virtue of (12.19) and (12.157), the inequality (12.158) is
fulfilled. Therefore, according to (11.2) and (12.144), the estimate (11.15)
holds. O

Lemma 12.5. Let 0 < |p| < |A and € = by + {1, where by, {1 € Pgyp.
If, moreover, the conditions (12.21) and (12.22) are fulfilled, then ¢ €
.A2()\,u).

Proof. Let ¢* € L([a, b];R+), ¢c € Ry, and u € 5([a,b];R) satisfy the
inequalities (11.13) and (11.14) for i = 2. Obviously, u satisfies

' (t) = L(u)(t) + q(t) for te a,bl, (12.163)

where ¢ is defined by (12.48). It is also evident that the inequalities (12.96)
and (12.97) hold.

Since the inclusion ¢y € V, (A, j1) holds, the assumptions of Lemma 11.1
(see p. 192) are fulfilled. Let ro be the number appearing in Lemma 11.1
and put
Mo(lleM)L +1)
|51 = zlleiz
where )¢ is given by (12.45). We will show that (11.15) holds, where r is
defined by (12.164).

First suppose that v does not change its sign. It is evident that either
there exists ¢y € [a, b] such that u(tp) = 0 or |u(t)| > 0 for ¢ € [a, b].

r=rg+ (12.164)
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Let there exists tg € [a, b] such that
u(to) = 0. (12.165)
According to (12.163), (12.96), and the assumption ¢ € P, we have
lu(t)]' > —q*(t) for t € [a,b (12.166)
and from (2.1) and (12.97) we get
|[Au(a)| — |pu(d)] > —ec. (12.167)

Put
M = max{|u(t)| : t € [a,b]} (12.168)

and choose t; € [a, b] such that
lu(ty)| = M. (12.169)

If t1 < tg, then the integration of (12.166) from t; to tg, in view of of
(12.165) and (12.169), results in

to
Afs/fwwssme+a
t1

Thus, on account of (12.45), (12.164), and (12.168), we find that the esti-
mate (11.15) holds.

If t; > to, then the integration of (12.166) from a to to and from ¢; to
b, in view of (12.165) and (12.169), yields

to

wws/f@m

a
b

3 - ) < [ 4" (s)ds

From the last two inequalities, using (12.45), (12.167), and the assumption
£l €10,1], we get

c A .
ww+Msmmwm+q

b
M < /q*(s)d8+ ‘)\
,u

t1
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Thus, on account of (12.164) and (12.168), we find that the estimate (11.15)
holds.
Now let
lu(t)] >0 for t € [a,b]. (12.170)

According to (12.163), (12.96), (12.170), and the assumption ¢ = ¢y + ¢;
with £y, 41 € Py, we have

[u(®)] = Lo(Jul)(t) + i ([ul)(t) = g7 () = Lo(|ul)(t) — ¢"(t) for ¢ € [a,b].

Moreover, (2.1) and (12.97) yield (12.167). Therefore, by Remark 2.3 (see
p. 16), the condition £y € V_, (A, ) implies

lu(t)| <w(t) for te€ la,bl, (12.171)

where v is a solution of the problem (11.1) with § = —¢* and ¢ = —csgn \.
According to Lemma 11.1 (see p. 192), the function v admits the estimate
(11.2) and thus, on account of (12.164) and (12.171), the estimate (11.15)
holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tpr, tm, € [a, b] such that (12.60) holds. Obviously, M >
0, m > 0, and either (12.61) or (12.62) is satisfied.

First suppose that (12.61) is fulfilled. It is clear that there exists a; €
|tm, tar] such that

u(t) <0 for t, <t<a, u(ay) = 0. (12.172)
Let
ag =sup {t € [tar,b] : u(s) >0 for tpy < s < t}. (12.173)
Obviously,
u(t) >0 for ty <t<a (12.174)
and
if ap<b then wu(az)=0. (12.175)
Put
if <
az=14" fu(a) <0 19 176)
sup{t € [a,t,[: u(s) > 0 for a < s <t} if u(a) >0

It is clear that

if ag>a, then wu(t)>0 for a<t<asg, ulag)=0. (12.177)
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The integration of (12.163) from ¢, to a1, from typs to ag, and from a to
as, in view of (12.59), (12.60), (12.96), (12.172), (12.174), (12.177), and
the assumption £ € Py, yields

m < M/E ds+/ *(s)ds, (12.178)
t’"L
a2
—u(ag) < m/ d5+/ *(s)ds, (12.179)
u(a) — u(ag) < m/€ ds—l—/ *(s)ds. (12.180)
Evidently, either
u(a) <0 (12.181)
or
u(a) > 0. (12.182)

If (12.181) holds, then, in view of (2.1), (12.97), (12.173), and (12.175),
we obtain u(ag) < l—/jl Thus, from (12.179), on account of the assumption

|4| €10,1], it follows that

mM—w m/ﬁ ds+/ *(s)ds, (12.183)

where I = [tys, o).
Now let (12.182) hold. According to (2.1) and (12.97), it is clear that
1
— ’ﬁ‘ b) > —W[Au(a) + pu(b)] sgn (pu(b)) > —ﬁ.
Hence, by virtue of (12.173), (12.175), and (12.182), we find

a) — ‘g’ u(ag) > —ﬁ. (12.184)

Multiplying both sides of (12.179) by }%‘ and taking into account the as-
sumption |§| €0, 1], we get
a2
"U‘M ‘—‘ u(ag) <m/ d8+/q()ds.

2%
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Summing the last inequality and (12.180), according to (12.176), (12.177),
and (12.184), we obtain that the inequality (12.183) holds, where I =
[a, as] U [tar, cal.

Thus, in both cases (12.181) and (12.182), the inequality (12.183) is
fulfilled, where I = [a, a3] U [tar, o).

It follows from (12.178) and (12.183) that

m < MAy + ||q"||z,
c (12.185)

M‘ *
—I M <mB
5|2 < mB e+

where
a1
Ay = / ((1)(s)ds,  Bi— / 0(1)(s)ds.
tm I
Consequently, on account of (12.45) and the assumption |u| < |A|, the
inequalities (12.185) imply

C
o) Tl <
IAI)

<mA1Bi + Xo(llg" |z + ) (D)L + 1),

‘%‘m < Ay <mB1+ llg* |l +

(12.186)

* * c
5[ < B+l + 0l + 5 <

< MA1B1+ o(llg" [z + o) (el + 1)

Obviously,
4A1By < (A1 + B1)® < [[€(1)]I3.

By the last inequality and (12.22), from (12.186) we get
m < rido([[E(D)]z + e+ llq"[|z),

(12.187)
M < rido(le(D)L + 1) (e + [lg*(|z),

where .

= [4] - fhenz) (12.158)

Inequalities (12.187), on account of (12.59), (12.164), and (12.188), imply
that the estimate (11.15) holds.
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Now suppose that (12.62) is fulfilled. It is clear that there exists ay €
|tar, tim| such that

u(t) >0 for ty <t < ay, u(ayg) = 0. (12.189)
Let
as = sup {t € [tm,b] : u(s) <0 for ¢, <s <t}. (12.190)
Obviously,
u(t) <0 for t, <t<as (12.191)
and
if as<b then wu(as)=0. (12.192)
Put
if >0
ag=14" fufa) 20 19 193)
sup{t € [a,tp[: u(s) <O fora<s <t} ifu(a)<O0

It is clear that
if ag>a, then wu(t)<0 for a<t<ag ulag)=0. (12.194)

The integration of (12.163) from t5; to ay, from t,, to as, and from a
to ag, in view of (12.59), (12.60), (12.96), (12.189), (12.191), (12.194), and
the assumption £ € Py, yields

M < m/€ ds+/ q*(s)ds, (12.195)
as
u(os) +m < M/ﬁ d3+/ *(s)ds, (12.196)
tT’L
&79)
u(ag) — u( <M/ ds+/ “(s)ds. (12.197)
Evidently, either
u(a) >0 (12.198)

] u(a) < 0. (12.199)
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If (12.198) holds, then, in view of (2.1), (12.97), (12.190), and (12.192),
we obtain u(as) > —ﬁ. Thus, from (12.196), on account |§‘ € 10,1}, it
follows that

‘m—m / ds+/ *(5)ds, (12.200)

where J = [t,, as].
Now let (12.199) hold. According to (2.1) and (12.97), it is clear that

1
’%‘ u(b) —u(a) 2 Y [Au(a) + pu(b)] sgn (pu(b)) > —m
Hence, by virtue of (12.190), (12.192), and (12.199), we find
,u c
< - > = 12.201
5| wles) —ul@) = 5 (12:201)

Multiplying both sides of (12.196) by }%‘ and taking into account the as-
sumption ‘%} €10, 1], we get

Qs

/;‘ u(as +’M‘m<M/£ ds+/ *(s)ds.

tm

Summing the last inequality and (12.197), according to (12.193), (12.194),
and (12.201), we obtain that the inequality (12.200) holds, where J =
[a, o] U [tm, as).

Thus, in both cases (12.198) and (12.199), the inequality (12.200) is
fulfilled, where J = [a, ag] U [tm, as].

It follows from (12.195) and (12.200) that

M <mAs + ||¢"||L,
(12.202)

H‘ < MB ¥ <
K< MB 4 e+

where
Q4

Ag = /E(l)(s)ds, By = /E(l)(s)ds.

tar J
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Consequently, in view of (12.45) and the assumption |u| < |A|, the inequal-
ities (12.202) imply

Cc

8ar <t (3B 10tk 5 )+ ol <

< MA3By + (gl + ) (141l + 1),
9 B9 ollld*lle )UE)] ) (12.203)

* * c
K[ < Bolmaz +107e) + 0l + 55 <

< mAzBy + Ao(llg* [z + o) ([[€(1)[|z +1).

Obviously,
449B, < (A2 + B2)* < [[€(1)]IF.

By the last inequality and (12.22), (12.203) implies (12.187), where r; is
defined by (12.188). Inequalities (12.187), on account of (12.59), (12.164),
and (12.188), imply that the estimate (11.15) holds. O

Theorem 12.1 follows from Lemma 11.3 (see p. 195) and Lemma 12.1
(see p. 211).

Proof of Theorem 12.2. It can be proved in a similar manner as Theo-
rem 12.1. Moreover, the proof of Theorem 12.2 can be found in [4]. O

Theorem 12.3 follows from Lemma 11.3 (see p. 195) and Lemma 12.2
(see p. 219). Theorem 12.4 follows from Lemma 11.5 (see p. 197) and
Lemma 12.3 (see p. 227). Theorem 12.5 follows from Lemma 11.3 (see
p. 195) and Lemma 12.4 (see p. 228). Theorem 12.6 follows from Lemma 11.3
(see p. 195) and Lemma 12.5 (see p. 232). Theorem 12.7 follows from
Lemma 11.4 (see p. 196) and Lemma 12.1 (see p. 211). Theorem 12.9 follows
from Lemma 11.4 (see p. 196) and Lemma 12.2 (see p. 219). Theorem 12.10
follows from Lemma 11.6 (see p. 198) and Lemma 12.3 (see p. 227). The-
orem 12.11 follows from Lemma 11.4 (see p. 196) and Lemma 12.4 (see
p. 228). Theorem 12.12 follows from Lemma 11.4 (see p. 196) and Lemma
12.5 (see p. 232).
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12.3. Comments and Examples

On Remark 12.1. Let 0 # |u| < |A|. It is clear that if z9,yo € R4+ and
(xo,y0) & D, then (xo,yo) belongs at least to one of the following sets:

Dy ={(z,y) e Ry x Ry : 1<z},
Al — A —
D2:{($,y)ER+xR+: || |'u|§x<]_,y§ x _|‘ |,LL|}7

Dy={(z,y) € R xRy : v <1, 21—z <y}.

Let (z0,y0) € D1. Put a=0,b=3, ¢ = |A\(‘1/iyo)’
- for t € [0,1
(t) = " for t ) [1’2[ (t) = 0 for t € [0, 2]
p(t) = § Zo ortell,2[, =20)= _% ortc23
0 for t € [2, 3] (@o+e—1)(t—3)

(t) = {1 for t € [0,1]

3 fortel1,3]
It is not difficult to verify that

b b
vo= [Wds. = [lols)-ds (12.204)
and the problem
u'(t) = p(t)u(r(t)) + z(t)u(t), Au(a)+ pu(b) =0 (12.205)

has the nontrivial solution
(lu] = [Ale)t — |l for t € [0,1]
u(t) = ¢ —wo|\|(t — 1) — |Ne fort € [1,2] .
IN(zg+e—1)(t—3)— |\ fortel[23]

Then, by Remark 1.1 (see p. 14), there exist gy € L([a,b];R) and ¢g € R
such that the problem (10.1), (10.2) with

F)(t) < pt)o(r(t) + 2()o(t) + qot),  h(v) Eep  (12.206)
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has no solution, while the conditions (12.1) and (12.3) are fulfilled, where

L) &) E pO1o(r®), L@ () L p6)]-v(r (),

(12.207)
q = |qol, c=col.
Let (20,90) € D2. Put a =0, b = 3,
for t € (0,1
0 x0 f01f ' L { " 1 fortel0,1]
= - or ) ) T == ,
g 0 0 fortell,3]
0 for t € [2, 3]
(t) {O for t € [0,2]
A |l [\ (1~0) | ulyo (1=x0) .
I =0)— (i~ W= a0)~ [l (1—zo) =)  ort € [2,3]

It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

— 2t — |yl for t € [0,1]
u(t) = < [plyo(t —1) — 1%0 fort € [1,2] .
(w - !u!m) (t—3)— |\ forte 23]

Then, by Remark 1.1 (see p. 14), there exist gy € L([a, b];R) and ¢g € R
such that the problem (10.1), (10.2) with F' and & given by (12.206) has no
solution, while the conditions (12.1) and (12.3) are fulfilled, where ¢, ¢1,
g, and c are defined by (12.207).

Let (xo,y0) € D3. Put a =0, b =6,

0 for t € [0,1[ U [2,3]

o(t) = —V1—1x9 for t € [1,2[U [3,4
o for t € [4, 5] ’
21 —z9—yo fortel5,0]

6 forte|0,3[U[M4,5]
T(t)=4¢2 forte[3,4]
1 fort € [5,6]
Obviously, (12.204) holds. Furthermore, define the operator G € K, by
—v(t)jv(t)| fort€[0,1[U[2,3]
G)(t)=<0 for t € [1,2[U[3,5] ,
qo(t) for t € [5, 6]
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where qg € L([a, bl; R) is such that

qo(S)dS >14+y—vV1—xg. (12.208)

m\@

We will show that the problem (10.1), (10.2) with
def def
F)(t) = pt)v(r(t) + G0)(@),  h(v) =0 (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where

L)) E p@®)]4u(r(®), G () E p)]_v(r (),

q = |qol, c=0.

(12.210)

Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equality (1.2g) holds
and

u'(t) = p(t)u(r(t)) + G(u)(t) for t € [a,b]. (12.211)

From (12.211) we get

u(l) = %, (12.212)

u(2) = u(1) — u(6)v/1 — zo, (12.213)

u(3) = 7 ffzzzﬂ : (12.214)

uw(4) = u(3) —u(2)v/1 — ¢, (12.215)

u(5) = u(4) + u(6)zo (12.216)
6

u(6) = u(b) — (yo - 2m>u(1) + 5/qo(s)ds. (12.217)

The equalities (12.213) and (12.215)-(12.217) imply

u@—(m—¢uwgmn—j%@w. (12.218)
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Hence, by virtue of (12.212), (12.214) and (12.218) yield

w0 w2
T+ u(0)] 1T+ |u(2)]

6
5/ do(s)ds = (y - F)

uO)l )
< (0= V=30 Ty * T oy < L VIR

which contradicts (12.208).

On Remark 12.2. Let p = 0. It is clear that if xg, yo € R4 and (zg, y0) &
E, then (zg,yo) belongs at least to one of the following sets:

Elz{(x,y)ER+xR+ : 1§$},
Ey={(z,y) € Ry xRy : v <1, 21—z <y}.
Let (20,y0) € E1. In the example appearing in On Remark 4.2 (see the

case (zo,y0) € Hi, p. 97), the functions p and 7 are constructed such that
(12.204) holds, and the problem

W (8) = pOu(r(t),  Mu(a) + pu(b) = 0

has a nontrivial solution. Then, by Remark 1.1 (see p. 14), there exist
g0 € L([a,b); R) and ¢y € R such that the problem (10.1), (10.2) with

has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
Ly, 41, q, and c are defined by (12.207).
Let (zo,y0) € Fa. Put a =10, b =5,

—/1 —xg for t € [0,1[ U [2,3]
0 for t € [1,2

p(t) = e
o for t € [3,4]
21 =29 —yo forte[4,5]

t) = {4 for t € [0,2(U[3,5]

1 fortel2,3]
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Obviously, (12.204) holds. Furthermore, define the operator G € K, by

0 for t € [0,1[ U [2,3[ U [4,5]
G)(t) = ¢ —v(t)|v(t)] fort € [1,2] ,
qo(t) for ¢t € [3,4]

where qg € L([a, bl; R) is such that

4
/qo(s)ds >1. (12.219)
3

We will show that the problem (10.1), (10.2) with F" and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
Ly, 1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.2y) and
(12.211) hold. From (12.211), in view of (1.29), we get

u(1) = —u(d)vI =0, (12.220)
__u(l)
u(2) =77 Tk (12.221)
u(3) =u(2) —u(1)v1 -z, (12.222)
4
u(4) = u(3) + u(4)zo + /qo(s)ds. (12.223)

3

The equalities (12.220), (12.222), and (12.223) imply

4
/qo(s)ds = —u(2).
3
Hence, the last equality, by virtue of (12.221), yields

4
/qg(s)ds:— w® D]y
3

L fu(D)] = 14 Ju(1)]

which contradicts (12.219).
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On Remark 12.3. Let 0 # |u| < |A|. It is clear that if zg,yp € R4+ and
(zo,y0) & W, then (x,yp) belongs at least to one of the following sets:

le{(x,y)GRXR : ‘%‘gy}

Wgz{(x,y)ERxR:y<" _|M| |)\|y 1},

Wgz{(x,y)ERxR : y<‘§’, 21/’)\‘—y§x}.

Let (zg,y0) € Wi. Put a=0,b=3, ¢ = 1+1’0

0 for t € [0,1]
p(t) =14 -y forte[l,2], 7(t)=
x0 for ¢t € [2, 3]

)

3 fortel0,2]
2 forte|2,3]

(IAl(yo+e)—[ul)t+ul

IAl(yo+e)—|u for t € [0,1]
zZ(t) = ’ '
( ) O for te [173}

It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

(IMl(wo +&) = |uDt + || for t €[0,1]
u(t) = S yo (2 —t) + |Me for t € [1,2[ .
IAl(1 —e)(t—3) + || for ¢t € [2, 3]

Then, by Remark 1.1 (see p. 14), there exist gy € L([a, b];R) and cg € R
such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where £y, ¢1,
¢, and c are defined by (12.207).

Let (z9,y0) € Wa. Put a =0, b = 3,

—yo fort €0,
1

p(t) = < x9 for t € [1,

1]
_J3 fortel0,1]
2[ T = {1 fort € [1,3]

0 for t € [2, 3]
(t) {0 for t € [0, 2[
)= A= (il = Alyo) (14-0) :
= Ual=Pwo) (1 reo) -3y o ¢ € [2,3]
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It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

—yo| At + || for t € [0,1]
u(t) = § wollul — [Alyo)(t = 1) + |l = [Alyo for t € [1,2[ .
(AT = (Il = [Alyo) (X + 20))(t = 3) + [A| for t € [2,3]

Then, by Remark 1.1 (see p. 14), there exist gy € L([a, b];R) and cg € R
such that the problem (10.1), (10.2) with F' and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where £y, ¢1,
q, and ¢ are defined by (12.207).

Let (z9,y0) € W3. Put a =0, b = 6,

—v0 for t € [0,1]

\/m for t € [1,2[ U [3,4]
Pt =19, for t € [2,3[U[4,5]

xo_g\/m for t € [5, 6]

and
6 fortel0,1[U[3,6]
T(t) = .
3 fortell,3]

Obviously, (12.204) holds. Furthermore, define the operator G € K by

0 for t € [0,1[ U [3,4] U [5, 6]
G(v)(t) = ¢ qo(t) for t € [1,2] ,
v(t)|v(t)] fort e [2,3[U[4,5]

where gy € L([a, bl; R) is such that

2
(s)ds > 1+ /| 2] —yo. (12.224)
1/q() + })\‘ Yo

We will show that the problem (10.1), (10.2) with F" and h given by (12.209)
has no solution, while the conditions (12.8) and (12.9) are fulfilled, where
Ly, 1, q, and c are defined by (12.210).
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Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F' and h given by (12.209), i.e., the equalities (1.2y) and
(12.211) hold. From (12.211) we get

u(1) = u(0) — u(6)yo , (12.225)

u(2) = u(l) + "(S)W + /2q0(s)ds, (12.226)
d

u(2) = 7 fﬁz ik (12.227)

u(4) = u(3) + u(6) ‘% ~ %, (12.228)

u(4) = % (12.229)

The equalities (12.225), (12.226), and (12.228), in view of (1.2p) and (2.1),

result in
2
u(2) = ul@)y/|4] -0+ /qg(s)ds.
1

Hence, by virtue of (12.227) and (12.229), we get

2
_u@B) u(d) Bl
/QO(S)dS_ 15 @) 1+ u)] 5| w0 <

S I R

which contradicts (12.224).

On Remark 12.4. Let |p| < |, € > 0, 4,4y € Ly be defined by (4.59),
where p € L([a,b]; R;) satisfies (4.60). According to Example 4.1 (see
p. 98), the problem (1.1y), (1.2p) has a nontrivial solution. By Remark 1.1
(see p. 14), there exist gy € L([a, bl; R) and ¢y € R such that the problem
(10.1), (10.2) with

F)®) o)) + qo(t) for telab], hv) e  (12.230)
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has no solution, while the conditions (12.1), (12.13), and (12.14) are ful-
filled with ¢4 = 0, ¢ = |cg|, and ¢ = |qo|. Thus, the condition (12.12) in
Theorem 12.4 cannot be replaced by the condition (12.14), no matter how
small € > 0 would be.

Let |u| < |Al, € € ]0,1[, £ € L4 be defined by (4.61), where p €
L([a,b]; Ry) satisfies (4.62). According to Example 4.2 (see p. 98), the
problem (1.1p), (1.2¢) has a nontrivial solution. By Remark 1.1 (see p. 14),
there exist gy € L([a,b]; R) and ¢o € R such that the problem (10.1), (10.2)
with F" and h given by (12.230) has no solution, while the conditions (12.1),
(12.12), and (12.15) are fulfilled with ¢y = ¢, ¢1 =0, ¢ = |co|, and ¢ = |qo]-
Thus, the condition (12.13) in Theorem 12.4 cannot be replaced by the
condition (12.15), no matter how small € > 0 would be.

Example 12.1. Let |u| < |[A], a = 0, b = 5, and € € ]0,1]. Choose
d €]0,¢[ and ¥ > 0 such that

19<min{€_5,1—(5}.
1—¢

Let, moreover, ¢ € L,, be an operator defined by (4.63), where

L/\M—(S for t € [0, 1]
o|| for t € [1,2[ U [3,4 5 fortelD.1]
PO=3" 10 e {2’3% P =11 el
=5 OrEELS 3 forte 3,5
—(1+49) fortel4,5]
and let £y, {1 € Ly, be defined by (4.64), where pg = [p]+, p1 = [p]—, 70 = 5,
and
0 fortel0,1]
Ti(t) =491 forte[l,3] .
3 fort e [3,5]
Put
0 fort € [0,1[ U [2,3[ U [4,5]
—6—19
S for t € [3,4]

5

1
/50(1)(8)0[8_/]30(8”8 |>\||/\||M| 5 < |>\||/\||M|
0

0
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Consequently, according to Remark 2.5 (see p. 19), we have ¢y € V;g()\, 1).
Furthermore, it is not difficult to verify that the homogeneous problem

' (t) = —(1 — &)y (u)(t), Au(0) + pu(5) =0

has only the trivial solution and, for arbitrary gy € L([0,5]; R+) and ¢o € R
satisfying cosgn A > 0, the solution of the problem

W(t) = —(1—e)a(u)(t) +qt),  Au(0) + pu(5) =co
is nonnegative. Therefore, by Definition 2.1 (see p. 15), we obtain
—(1—-¢e)y € VaZ()\,,u).

On the other hand, the function

(<|/\‘|;““|—(5>t+‘%‘ for t € [0,1]
1-6—-9)(1—-t)+1—-¢6 forte]l,2]
u(t) =9 (14+9)(2—t)+0 for ¢ € [2,3]
(1-9(t-3)—-1 for ¢t € [3,4]
(1+0)(t —4)— 9 for t € [4, 5]

is a nontrivial solution of the problem (12.205). Therefore, according to
Remark 1.1 (see p. 14), there exist go € L([a,b]; R) and ¢o € R such that
the problem (10.1), (10.2) with F' and h given by (12.206) has no solution,
while the conditions (12.1), (12.12), and (12.16) are fulfilled with ¢ = ||
and g = |qo.

Example 12.2. Let |p| < |A and € > 0. Put a =0, b =5,

0 forte|0,1[U[2,3] 5 forte]0,3]
gt)=q1 forte[1,2[U[3,4] , v(t)=492 forte[3,4].
e fortel[4,5] 1 fort € [4,5]
Furthermore, define the operator G € K, by
—v(t)|v(t)] forte[0,1[U[2,3]
G)(t) =<0 for t € [1,2[ U [3,4] ,

qo(t) for t € [4, 5]



250 §12. PERIODIC TYPE BVP
where qg € L([a, bl; R) is such that
5
/qo(s)ds >2+¢€. (12.231)
4

Let, moreover, the function v be defined by (4.66), where 6 > %(2—&-
g). It is clear that v € 5’([@, b];10, 4+00[),

7(0) =~(a) =2+,

and the conditions (12.17) and (12.18) hold with ¢y and ¢ given by (4.65).
We will show that the problem (10.1), (10.2) with

F)) ¥ —gwwt) + G)(t),  hv) o (12.232)

has no solution, while the conditions (12.1) and (12.3) are fulfilled, whith
q = |qo] and ¢ = 0.

Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F' and h given by (12.232), i.e., the equality (1.2) holds
and

' (t) = —g(t)u(v(t)) + G(u)(t) for t € [a,b]. (12.233)

From (12.233) we get

u(l) =17 (0] (12.234)

w(2) = u(1) — u(5), (12.235)

u(3) = 1+u|(522)| , (12.236)

u(4) =u(3) —u(2), (12.237)
5

u(5) = u(4) —eu(l) + /qo(s)ds. (12.238)
4

The equalities (12.235), (12.237), and (12.238) imply

5
u(3) = (1+¢)u(l) — /qo(s)ds.
4
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Hence, by virtue of (12.234) and (12.236), we get

5
B u(0) u(2)
4/ q0(s)ds = (14 &) T @ ~ T @)

O] | [u@)]

< )@ T )

<2+4e¢,

which contradicts (12.231).

Example 12.3. Let §p € |0, 1] be a number satisfying

0 e,

do

}%‘ € |00,1], € >0, a =0, b =5, and let £y, l; € L4 be operators defined
by

L) (1) € po(t)o(r(t), @) (1) L pi(t)o(r(t) for t e la,b],

where
i 0 for ¢e0,2[U[3,4]
po(t)z{ 5| for tefoaf ()= JIE] for tef23] |
0 for ¢ e [1,5]
e for te [4,5]
(1) = 2 for te]0,2]
s for tes
Put
qo(t) for t € [0,1]
G)(t) = qo®)|v(t)| forte[1,2[U][3,4] ,
0 for t € [2,3[ U [4, 5]

where qg € L([a, bl; R) is such that

1
/qo(s)ds > 1+ ‘%( (12.239)
0
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It is clear that £y, /1 € Py, and

b

5
] 66+ 665) = [ o)+ (o) =2/ [5] 4=
0

a
Moreover, according to the condition
b

o=

a

and Theorem 2.11 (with ¢; = 0, see p. 26), we find €y € V, (A, ).
We will show that the problem (10.1), (10.2) with

F)() € (po(t) + pi(1)o(r(8)) + G)(t),  h(v) 0 (12.240)

has no solution, while the conditions (12.8), (12.20), and (12.21) are fulfilled
with ¢ = |qo| and ¢ = 0.

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F' and h given by (12.240), i.e., the equality (1.2y) holds
and

u'(t) = (po(t) + p1(t))u(r(t)) + G(u)(t) for t€ [a,b]. (12.241)
From (12.241) we get

u(1) = u(0) + u(2) ‘%‘ —f—/lqo(s)ds, (12.242)
0

u(l) = 1f|(jg ik (12.243)

w(3) = u(2) + u(5) ‘g , (12.244)

u(3) = m. (12.245)

The equalities (12.242) and (12.244), in view of (1.2p) and (2.1), result in
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Hence, by virtue of (12.243) and (12.245), we get

1
/%@“:1f@qufﬁ@uﬂﬂﬁ

: 1fy(jz|2)|+1f|(jzl1)|\/m<”\/g’

which contradicts (12.239).

On Remark 12.7. Let dp € |0, 1] be a number satisfying

4 = 2./5,,

do
|4] €160,1[, € > 0, and £y € L be defined by

Co(v)(t) E p(tyo(t) for t e [a,b],

where p € L([a, bl; R+) is such that

/ p(s)ds = In

a

Put ¢; = 0. Then the condition (12.22) holds and according to Corollary 3.5
(see p. 70), we have (14 ¢)ly € V (A, p).
On the other hand, the problem

u'(t) = Lo(u)(t), Au(a) + pu(b) =0

ik

has a nontrivial solution
t
u(t) = || exp /p(s)ds for ¢ € [a,b)].

a

Therefore, by Remark 1.1 (see p. 14), there exist gy € L([a, b];R) and
co € R such that the problem (10.1), (10.2) with

F)(t) € to(0)(t) + 60) (1) + qo(t) for t€ab],  h(v) ¥ e

has no solution, while the conditions (12.8), (12.20), (12.22), and (12.23)
are fulfilled with ¢ = |go| and ¢ = |¢o|.
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In this section we will establish some consequences of the main results from
§12 for the equation with deviating arguments (10.1’). Here we will also
suppose that the inequality (2.1) is fulfilled.

In what follows we will use the notation

m m

po(t) = pi(t),  got) =D g;(t) for tea,b)

j=1 j=1
and we will suppose that the function ¢ € K ([a, bl x R; R+) is nondecreas-
ing in the second argument and satisfies (10.5), i.e.,
b

1
lim /q(s,x)ds:O.

r——+oco I
a

13.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following assertions hold.

Theorem 13.1. Let 0 # |u| < |A|, pr,gr € L([a,b; Ry) (k= 1,...,m),
c € Ry, the condition (12.1) be fulfilled, and let on the set [a,b] x R™! the
inequality

flt,z,xy, ... xy)sgna < q(t, |z|) (13.1)

hold. If, moreover,
Ipollz <1, (13.2)
[lpolle [l

— |ul
- <lgollz < 2v/1—|pollL » (13.3)
1 — [lpollz |

then the problem (10.1"), (10.2) has at least one solution.

Remark 13.1. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(13.2) and (13.3) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case y = 0.
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Theorem 13.2. Let u =0, p,gr € L([a,b];Ry) (k=1,...,m), c € Ry,
the condition (12.1) be fulfilled, and let on the set [a,b]x R™ "1 the inequality
(13.1) hold. If, moreover,

[poll <1, (13.4)

lgollz < 2v1 —lpollz (13.5)

then the problem (10.1"), (10.2) has at least one solution.

Remark 13.2. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (13.4) and (13.5)
cannot be replaced by the nonstrict ones.

Theorem 13.3. Let 0 # |u| < |A|, pr, gk € L([a,b; Ry) (k=1,...,m),
c € Ry, the condition (12.8) be fulfilled, and let on the set [a,b] x R™ ! the
inequality

f(t,l’,l’l,...,l'n) sgn > —q(t,|3§'|) (136)
hold. If, moreover,
90l < )% : (13.7)

Al p
~1<lpolle <2y/|5[ = ooll ,  (138)
il = ATl )

then the problem (10.1"), (10.2) has at least one solution.

Remark 13.3. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(13.7) and (13.8) can be replaced by the nonstrict one.

Theorem 13.4. Let |u| < |A|, pr,gr € L([a,b]; Ry), Th,vi € Map (b =
1,...,m), ¢ € Ry, the condition (12.1) be fulfilled, and let on the set
[a,b] x R™"L the inequality (13.1) hold. Let, moreover, the functions py, Tx
(k=1,...,m) satisfy at least one of the conditions a), b) or c) in Theo-
rem 3.1 (see p. 63) or the assumptions of Theorem 3.2 (see p. 64), while the
functions gi, vk (k=1,...,m) satisfy vi(t) <t fort € [a,b] (k=1,...,m)
and at least one of the conditions a), b) or ¢) in Theorem 3.3 (see p. 65).
Then the problem (10.1"), (10.2) has at least one solution.

Theorem 13.5. Let |u| < [\, proge € L(la.bliRs), m € May (h =
1,...,m), ¢ € Ry, the conndition (12.1) be fulfilled and let on the set
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[a,b] x R™*! the inequality (13.1) hold. If, moreover,

b
|u| exp (/po(S)dS) <AL (13.9)

T(t) <t for telab (k=1,...,m), (13.10)

and

b b
AL = |l /go(s) exp (/po(g)dg) ds <2, (13.11)

Al = [u] exp (fbpo(é’)ds> a s

then the problem (10.1"), (10.2) has at least one solution.

Theorem 13.6. Let [u| < [N, pooge € L{a bl Ry), m € May (k =
1,...,m), c € Ry, the condition (12.1) be fulfilled, and let on the set [a, b] X
R™ ! the inequality (13.1) hold. If, moreover,

b
|A||;||”| (/go(s)ds+a1> 428, <2, (13.12)

where

b o 5 (8) b

o = (s) (&)d¢ | ex (&)d¢ | ds, (13.13)
! /kZpk / 90 p (/Po )

1

a a

b
61 = ‘%)exp (/pg(s)ds) +

a

b o T (s) b
—i—/zpk(s)ak(s) / po(&)dE | exp (/p0(§)d§) ds,

s

s

(13.14)

or(t) = = (L +sgn(mi(t) —t)) for tela,b (k=1,...,m), (13.15)

DO | =

then the problem (10.1"), (10.2) has at least one solution.
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Remark 13.4. Example 12.2 (see p. 249) also shows that the strict in-
equalities (13.11) in Theorem 13.5 and (13.12) in Theorem 13.6 cannot be
replaced by the nonstrict ones.

The next theorem concerns the equation with deviating arguments of

the form
m

L) =3 (m(t)u(rk(t» n gk<t>u<uk<t>>> T

k=1
+ f(tv u(t)v U(Cl (t))a ce 7u(<n(t)))a

where f € K([a,b] x R"™Y R), pr,gr € L([a, b];R+), Tiy Vg € Mgy (K =
L...,m),( €My (j=1,...,n),and m,n € N.

(13.16)

Theorem 13.7. Let 0 # |u| < ||, pr,gr € L([a, b};RJr), Ti, Ve € Map
(k=1,...,m), c € Ry, the condition (12.8) be fulfilled, and let on the set
[a,b] x R™"! the inequality (13.6) hold. Let, moreover,

/(po(S) +g0(s))ds < 2 (%‘ (13.17)

a

and the functions pg, 7 (k = 1,...,m) satisfy the assumptions of Theo-
rem 3.9 (see p. 69) or Theorem 3.10 (see p. 69). Then the problem (13.16),
(10.2) has at least one solution.

In Theorems 13.8-13.14, the conditions guaranteeing the unique solv-
ability of the problem (10.1"), (10.2) are established.

Theorem 13.8. Let 0 # |u| < |A|, pr, gk € L([a,b; Ry) (k=1,...,m),
the condition (12.24) be fulfilled, and let on the set [a,b] x R™""! the in-
equality

[ft,z, 1, .. xn) — fF(E Yy, 01,5 un)] sgn(z —y) <0 (13.18)

hold. If, moreover, the inequalities (13.2) and (13.3) are fulfilled, then the
problem (10.1"), (10.2) is uniquely solvable.

Remark 13.5. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(13.2) and (13.3) can be replaced by the nonstrict one.
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The next theorem can be understood as a supplement of the previous
one for the case y = 0.

Theorem 13.9. Let u = 0, pr,gr € L([a,b];R+) (k = 1,...,m), the
condition (12.24) be fulfilled, and let on the set [a,b] x R™*! the inequality
(13.18) hold. If, moreover, the inequalities (13.4) and (13.5) are fulfilled,
then the problem (10.1"), (10.2) is uniquely solvable.

Remark 13.6. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (13.4) and (13.5)
cannot be replaced by the nonstrict ones.

Theorem 13.10. Let 0 # |u| < ||, pi,gx € L([a,b]; Ry) (k=1,...,m),
the condition (12.26) be fulfilled, and let on the set [a,b] x R"™ ! the in-
equality

[f(t,x, 21, xn) — f(E, Y91y -5 Yn)] sgn(z —y) >0 (13.19)

hold. If, moreover, the inequalities (13.7) and (13.8) are fulfilled, then the
problem (10.1"), (10.2) is uniquely solvable.

Remark 13.7. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(13.7) and (13.8) can be replaced by the nonstrict one.

Theorem 13.11. Let |u| < |\, pi, gk € L([a,b]; Ry), Th, vk € Mgy (k =
1,...,m), the condition (12.24) be fulfilled, and let on the set [a,b] X
R™ 1 the inequality (13.18) hold. Let, moreover, the functions py, . (k =
1,...,m) satisfy at least one of the conditions a), b) or ¢) in Theorem 3.1
(see p. 63) or the assumptions of Theorem 3.2 (see p. 64), while the func-
tions gk, vp (k=1,...,m) satisfy vi(t) <t fort € [a,b] (k=1,...,m) and
at least one of the conditions a), b) or c¢) in Theorem 3.3 (see p. 65). Then
the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.12. Let || < ||, pr,gr € L([a,b]; Ry), 7 € Mg (k =
1,...,m), the condition (12.24) be fulfilled, and let on the set [a,b] x R"!
the inequality (13.18) hold. If, moreover, the inequalities (13.9)—(13.11) are
satisfied, then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.13. Let |u| < ||, pr,gr € L([a,b];Ry), T € Mg (k =
1,...,m), the condition (12.24) be fulfilled, and let on the set [a,b] x R™*!
the inequality (13.18) hold. If, moreover, the inequality (13.12) holds, where
ay and (1 are defined by (13.13) and (13.14) with oy, (k=1,...,m) given
by (13.15), then the problem (10.1'), (10.2) is uniquely solvable.
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Remark 13.8. Example 12.2 (see p. 249) also shows that the strict in-
equalities (13.11) in Theorem 13.12 and (13.12) in Theorem 13.13 cannot
be replaced by the nonstrict ones.

The next theorem deals with the equation with deviating arguments
(13.16).

Theorem 13.14. Let 0 # |u| < ||, pk, 9% € L([a, b];R+), Ti, Ve € Mg
(k=1,...,m), the condition (12.26) be fulfilled, and let on the set |a,b] X
R™ ! the inequality (13.19) hold. Let, moreover, the inequality (13.17) be
fulfilled and the functions pg, 1, (k = 1,...,m) satisfy the assumptions of
Theorem 8.9 (see p. 69) or Theorem 3.10 (see p. 69). Then the problem
(13.16), (10.2) has a unique solution.

In the case, where |u| > |A|, the following statements hold.
Theorem 13.15. Let |u| > |A| # 0, pi,gr € L([a,b]; Ry) (k=1,...,m),
c € Ry, the conndition (12.8) be fulfilled, and let on the set [a,b] x R™ !

the inequality (13.6) hold. If, moreover,

lgollz <1, (13.20)

gollL pl = IA
lgollz | ‘)\” | < lpollz < 2v1 = llgollz » (13.21)

1 —1lgollz
then the problem (10.1"), (10.2) has at least one solution.

The next theorem can be understood as a supplement of the previous
one for the case A = 0.

Theorem 13.16. Let A\ = 0, pg,gr € L([a,b];R+) (k=1,...,m), c €
Ry, the conndition (12.8) be fulfilled, and let on the set [a,b] x R™"! the
inequality (13.6) hold. If, moreover,

llgollL <1, (13.22)

Ipollz <2v1—llgollz (13.23)

then the problem (10.1"), (10.2) has at least one solution.
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Theorem 13.17. Let |u| > |A| # 0, pi,gr € L([a,b]; Ry) (k=1,...,m),
c € Ry, the condition (12.1) be fulfilled, and let on the set [a,b] x R" the
inequality (13.1) hold. If, moreover,

A
Ipoll < ‘u‘ (13.24)

1z A
ST~ L <llgolle <24/|=| = llpollz (13.25)
Al = lelllpoll [

then the problem (10.1"), (10.2) has at least one solution.

Theorem 13.18. Let |u| > |\, pr, gk € L([a, b];R+), Tiy Vg € Mgy (kK =
1,...,m), ¢ € Ry, the condition (12.8) be fulfilled, and let on the set [a, b] X
R™1 the inequality (13.6) hold. Let, moreover, the functions pg, 7 (k =
1,...,m) satisfy Ti(t) >t fort € [a,b] (k=1,...,m) and at least one of
the conditions a), b) or c¢) in Theorem 3.14 (see p. 72), while the functions
gk, vk (k= 1,...,m) satisfy at least one of the conditions a), b) or c) in
Theorem 3.12 (see p. 70) or the assumptions of Theorem 3.13 (see p. 71).
Then the problem (10.1"), (10.2) has at least one solution.

Theorem 13.19. Let |u| > |, poge € L([a.bli Re), v € Muy (k =
1,...,m), ¢ € Ry, the conndition (12.8) be fulfilled, and let on the set
[a,b] x R™*! the inequality (13.6) hold. If, moreover,

b

Neso | [ anls)ds | <|ul (13.20)
v(t) >t for telab] (k=1,...,m), (13.27)
and
A / :
= |b| /po(s) exp /go(f)d§ ds <2, (13.28)
|| — [A exp (fgo(s)ds> a a

then the problem (10.1"), (10.2) has at least one solution.
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Theorem 13.20. Let |M| > ’A|7 Dk, gk € L([aa b];R—l-)y vk € Map (k =
1,...,m), ¢c € Ry, the condition (12.8) be fulfilled, and let on the set [a, b] X
R™ ! the inequality (13.6) hold. If, moreover,

b
Iu||;||A (/po(s)ds+a2) +26, < 2, (13.20)
where '
b b .
aQ_a/;gk(s) yké) po(€)d¢ [ exp a/%(ﬁ)éif ds, (13.30)
A b
Ba = U exp (a/go(s)ds) +

(13.31)

+/b§:9k(5)o'k(5) j 90(§)d¢ | exp (/Sgﬂ(f)dg) ds,

l/k(S) a
1
or(t) = 3 (14 sgn(t —vg(t))) for tela,b (k=1,...,m), (13.32)
then the problem (10.1"), (10.2) has at least one solution.

The next theorem concerns the equation with deviating arguments of
the form

m

At =—3 <pk<t>u<m<t>> n gk<t>u<uk<t>>) T

k=1
+ f(tvu(t)au(cl(t))7 <. ,U(Cn(t)))y
where f € K([a,b] x R""Y R), pr,gx € L([a,b]; Ry), T, vk € Mgy (k =
L....om),(j€EMg (j=1,...,n), and m,n € N.
Theorem 13.21. Let |u| > |A| # 0, pr, gk € L([a,b]; Ry), Thove € My

(k=1,...,m), c € Ry, the condition (12.1) be fulfilled, and let on the set
[a,b] x R™L the inequality (13.1) hold. Let, moreover,

(13.33)

/b(po(S) +go(s))ds < 2 m (13.34)

a
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and the functions gi, vy (k = 1,...,m) satisfy the assumptions of Theo-
rem 3.6 (see p. 67) or Theorem 3.7 (see p. 68). Then the problem (13.33),
(10.2) has at least one solution.

In Theorems 13.22-13.28, the conditions guaranteeing the unique solv-
ability of the problem (10.1"), (10.2) are established.

Theorem 13.22. Let |u| > |A| # 0, pr, gk € L(a bl; R+) (k=1,...,m),
the condition (12.26) be fulfilled, and let on the set [a,b] x R™" the in-
equality (13.19) hold. If, moreover, the inequalities (13.20) and (13.21) are
fulfilled, then the problem (10.1"), (10.2) is uniquely solvable.

The next theorem can be understood as a supplement of the previous
one for the case A = 0.

Theorem 13.23. Let A = 0, pi,gx € L([a7b];R+) (k =1,...,m), the
condition (12.26) be fulfilled, and let on the set [a,b] x R™"! the inequality
(13.19) hold. If, moreover, the inequalities (13.22) and (13.23) are fulfilled,
then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.24. Let || > |A| # 0, pi, gk € L([a,b]; Ry) (k=1,...,m),
the condition (12.24) be fulfilled, and let on the set [a,b] x R™! the in-
equality (13.18) hold. If, moreover, the inequalities (13.24) and (13.25) are
fulfilled, then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.25. Let |u| > ||, pr, gk € L([a, b];R+), Ti, Vi € Mgy (k=
1,...,m), the condition (12.26) be fulfilled and let on the set [a,b] x R"T!
the inequality (13.19) hold. Let, furthermore, the functions pg, 1, (k =
1,...,m) satisfy 7i(t) >t for t € [a,b] (k=1,...,m) and at least one of
the conditions a), b) or c) in Theorem 3.1} (see p. 72), while the functions
gk, vk (k= 1,...,m) satisfy at least one of the conditions a), b) or c) in
Theorem 3.12 (see p. 70) or the assumptions of Theorem 3.13 (see p. 71).
Then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.26. Let |u| > |A|, pr,gr € L([a,b]; Ry), vy € Ma (k =
1,...,m), the condition (12.26) be fulfilled, and let on the set [a,b] x R™*!
the inequality (13.19) hold. If, moreover, the inequalities (13.26)—(13.28)
are satisfied, then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 13.27. Let |u| > |\, pk,gr € L([a,b];R+), v € My, (kB =
1,...,m), the condition (12.26) be fulfilled, and let on the set [a,b] x R™!
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the inequality (13.19) hold. If, moreover, the inequality (13.29) holds, where
ay and P are defined by (13.30) and (13.31) with oy, (k=1,...,m) given
by (13.32), then the problem (10.1'), (10.2) is uniquely solvable.

The next theorem deals with the equation with deviating arguments

(13.33).

Theorem 13.28. Let |u| > |A| # 0, pr,gr € L([a, b];R+), Ti, Ve € Mgy
(k=1,...,m), the condition (12.24) be fulfilled, and let on the set [a,b] X
R™1 the inequality (13.18) hold. Let, moreover, the inequality (13.34) be
fulfilled and the functions g, vy (k = 1,...,m) satisfy the assumptions of
Theorem 3.6 (see p. 67) or Theorem 3.7 (see p. 68). Then the problem
(13.33), (10.2) has a unique solution.

Remark 13.9. According to Remark 12.14 (see p. 211), Theorems 13.15-
13.28 can be derived from Theorems 13.1-13.14. Moreover, by virtue of
Remarks 13.1-13.8, Theorems 13.15-13.17, 13.19, 13.20, 13.22-13.24, 13.26,
and 13.27 are nonimprovable in an appropriate sense.

13.2. Proofs

Proof of Theorem 13.1. Obviously, the conditions (13.1)—(13.3) yield
the conditions (12.3)—(12.5), where

m

F)H &y <pk<t>v<m<t>> - gk<t>v<uk<t>>)+

k=1

+f(ta u(t)a u(<1(t))a T U(Cn(t)))7 (13.35)

L)) LY o), G = gt)u(t).

k=1 k=1

Consequently, the assumptions of Theorem 12.1 (see p. 199) are fulfilled.
O

Proof of Theorem 13.2. Similarly to the proof of Theorem 13.1 one can
show that the assumptions of Theorem 12.2 (see p. 200) are satisfied. [J

Proof of Theorem 13.3. Similarly to the proof of Theorem 13.1 one can
show that the assumptions of Theorem 12.3 (see p. 201) are satisfied. [
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Proof of Theorem 13.4. Clearly, the condition (13.1) yields the condi-
tion (12.12), where F, ¢y, and ¢; are defined by (13.35). Moreover, ac-
cording to Theorems 3.1-3.3 (see pp. 63-65), the condition (12.13) holds.
Therefore, the assumptions of Theorem 12.4 (see p. 203) are satisfied. [

Proof of Theorem 13.5. Obviously, the condition (13.1) yields the con-
dition (12.3), where F, ¢y, and ¢; are defined by (13.35). Moreover, simi-
larly to the proof of Theorem 5.4 (see p. 112), one can show that there exists
a function v € 6([&, b];]0, 4+00[) satisfying the inequalities (12.17)~(12.19).
Therefore, the assumptions of Theorem 12.5 (see p. 204) are fulfilled. [

Proof of Theorem 13.6. Obviously, the condition (13.1) yields the con-
dition (12.3), where F, ¢y, and ¢; are defined by (13.35). Moreover, simi-
larly to the proof of Theorem 5.5 (see p. 113), one can show that there exists
a function v € 5([@, b]; 10, +ool) satisfying the inequalities (12.17)—(12.19).
Therefore, the assumptions of Theorem 12.5 (see p. 204) are fulfilled. [

Proof of Theorem 13.7. Obviously, the conditions (13.6) and (13.17)
yield the conditions (12.20) and (12.22), where

m

F)H) &S <pk<t>v<m<t>> n gk<t>v<uk<t>>)+

k=1

+f(ta u(t)a u(c1(t))a T u(Cn(ﬂ))? (13.36)

L)) LY p®om®), G = get)u(t).

k=1 k=1

Consequently, the assumptions of Theorem 12.6 (see p. 204) are fulfilled.
O

Proof of Theorem 13.8. Obviously, the conditions (13.2), (13.3), and
(13.18) yield the conditions (12.4), (12.5), and (12.25), where F, ¢y, and
¢y are defined by (13.35). Consequently, the assumptions of Theorem 12.7
(see p. 205) are fulfilled. O

Proof of Theorem 13.9. Similarly to the proof of Theorem 13.8, one can
show that the assumptions of Theorem 12.8 (see p. 205) are satisfied. [

Proof of Theorem 13.10. Similarly to the proof of Theorem 13.8, one
can show that the assumptions of Theorem 12.9 (see p. 206) are satisfied.
O
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Proof of Theorem 13.11. Clearly, the condition (13.18) yields the con-
dition (12.28), where F', ¢y, and ¢; are defined by (13.35). Moreover, ac-
cording to Theorems 3.1-3.3 (see pp. 63-65), the condition (12.13) holds.
Therefore, the assumptions of Theorem 12.10 (see p. 206) are satisfied. [J

Proof of Theorem 13.12. Similarly to the proof of Theorem 13.5 one
can show that the assumptions of Theorem 12.11 (see p. 207) are satisfied.
O

Proof of Theorem 13.13. Similarly to the proof of Theorem 13.6 one

can show that the assumptions of Theorem 12.11 (see p. 207) are satisfied.
O

Proof of Theorem 13.14. Obviously, the conditions (13.17) and (13.19)
yield the conditions (12.22) and (12.29), where F, £y, and ¢; are defined by
(13.36). Consequently, the assumptions of Theorem 12.12 (see p. 207) are
fulfilled. O
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for solvability and unique solvability of the problem (10.1),
(10.2), where the boundary condition (10.2) is of an antiperiodic type, i.e.,
when the inequality (7.1) is satisfied. In Subsection 14.1, the main results
are formulated. Theorems 14.1-14.4 deal with the case |u| < |A|, while the
case |p| > || is considered in Theorems 14.5-14.8. The proofs of the main
results can be found in Subsection 14.2. Subsection 14.3 is devoted to the
examples verifying the optimality of the main results.

In the sequel, we will assume that the function ¢ € K ([a, b] X Ry; R+)
is nondecreasing in the second argument and satisfies (10.5), i.e.,

b

1
lim /q(s,:z:)dS:O.

r—+oco I
a

14.1. Existence and Uniqueness Theorems

In the case, where |u| < ||, the following statements hold.

Theorem 14.1. Let |u| < |A|, ¢ € R, the inequality (12.1) be fulfilled,
and let there exist o, 1 € Py such that on the set B}\#C([a, bl; R) the in-
equality (12.3) holds. If, moreover,

Wl < a(A, p), (14.1)
where
2
i

a(\p) = { =TIz i <1 -
’ 2 (1=l if o)l >1— (

then the problem (10.1), (10.2) has at least one solution.

5
B (14.2)
A

Remark 14.1. Note that the condition |[¢y(1)||z < 1 is necessary for op-
erators £y, {1 to satisfy the condition (14.1) with « given by (14.2).

Let |u| < |A|. Denote by U the set of pairs (z,y) € Ry x Ry satisfying
either

x<1—(§)2, y<—§+2\/ﬂ
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or

(see Fig. 14.1).

Fig. 14.1.

According to Theorem 14.1, if (12.1) holds, there exist £y, ¢1 € Py such
that the inequality (12.3) is satisfied on the set B}\uc([a, b); R), and

Q%umbwmnm)ea

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 14.1, see p. 280) that for every zo,yo € Ry, (zo,%0) ¢ U there
exist F' € Kgp, Lo,¢1 € P, and ¢y € R such that the conditions (12.1)
(with h = ¢g, ¢ = |co|) and (12.3) hold,

zo = [z, yo =[xz,

and the problem (10.1), (10.2) with A = ¢y has no solution. In particular,
the strict inequality (14.1) cannot be replaced by the nonstrict one.

Theorem 14.2. Let |u| < |A|, ¢ € Ry, the condition (12.8) be fulfilled, and
let there exist £y, 1 € Py such that on the set Biuc([a, bl; R) the inequality
(12.9) holds. If, moreover,

Iz + Sl < £ (14.3)
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then the problem (10.1), (10.2) has at least one solution.
Remark 14.2. Let |p| < |A| and

poop
S:{(x,y)eR+><R+: $+Xy<x}

(see Fig. 14.2).
Vi

1

i-iv

Fig. 14.2.

According to Theorem 14.2, if (12.8) holds, there exist £y, {1 € Py such

that the inequality (12.9) is satisfied on the set B?\#C([a, bl; R), and

(HfomuL, ||£1<1>||L) es,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 14.2, see p. 284) that for every xg,yo € R+ such that (zg,yo) & S
there exist F' € Ky, Lo, 41 € Pap, and ¢y € R such that (12.8) (with h = ¢,
¢ = |ep]) and (12.9) hold,

zo = [[€o(1)]| L, vo = [[61(V)| L,

and the problem (10.1), (10.2) with A = ¢y has no solution. In particular,
the strict inequality (14.3) cannot be replaced by the nonstrict one.
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In Theorems 14.3 and 14.4, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 14.3. Let |u| < |A|, the inequality (12.24) be fulfilled, and let
there exist Lo, {1 € Pap such that on the set B}\Mc([a, b]; R), where ¢ = |h(0)],
the inequality (12.25) holds. If, moreover, (14.1) is satisfied, where o is
defined by (14.2), then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.3. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (14.1) cannot be
replaced by the nonstrict one.

Theorem 14.4. Let |u| < |\|, the condition (12.26) be fulfilled, and let
there exist Lo, {1 € Pap such that on the set Bf\uc([a, b]; R), where ¢ = |h(0)],
the inequality (12.27) holds. If, moreover, the inequality (14.3) is satisfied,
then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.4. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (14.3) cannot be
replaced by the nonstrict one.

In the case, where |u| > |\, the following assertions hold.

Theorem 14.5. Let |u| > |A|, ¢ € Ry, the inequality (12.8) be fulfilled,
and let there exist o, l1 € Py such that on the set Biuc([a, bl; R) the in-
equality (12.9) holds. If, moreover,

oDz < B, w), (14.4)

where

2
/TGO i el <1 (

2

"y
£(1- ) Il z1-(2)
then the problem (10.1), (10.2) has at least one solution.

Theorem 14.6. Let |u| > |\, ¢ € Ry, the condition (12.1) be fulfilled, and
let there exist £y, €1 € Py such that on the set Biuc([a, bl; R) the inequality
(12.3) holds. If, moreover,

B p) = (14.5)

A A
(W + ;llﬁo(l)llL <L (14.6)

then the problem (10.1), (10.2) has at least one solution.
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In Theorems 14.7 and 14.8, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 14.7. Let |u| > |A|, the inequality (12.26) be fulfilled, and let
there exist Lo, {1 € Pyp such that on the set B/Q\“C([a, bl; R), where ¢ = |h(0)],
the inequality (12.27) holds. If, moreover, (14.4) is satisfied, where (3 is
defined by (14.5), then the problem (10.1), (10.2) is uniquely solvable.

Theorem 14.8. Let |u| > |A|, the condition (12.24) be fulfilled, and let
there exist g, {1 € Py such that on the set B}\MC([CL, bl; R), where ¢ = |h(0)],
the inequality (12.25) holds. If, moreover, the inequality (14.6) is satisfied,
then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.5. According to Remark 12.14 (see p. 211), Theorems 14.5-
14.8 can be immediately derived from Theorems 14.1-14.4. Moreover, by
virtue of Remarks 14.1-14.4, Theorems 14.5-14.8 are nonimprovable in an
appropriate sense.

14.2. Proofs

First we will prove two lemmas.

Lemma 14.1. Let |pu| < |\ and the operator ¢ admit the representation
0 =ty — U1, where by, l1 € Pyp. If, moreover, the condition (14.1) holds,
where o is defined by (14.2), then £ € A (X, ).

Proof. Let ¢* € L([a,b]; Ry), c € Ry, and u € 6’([@,()];]%) satisfy (11.13)
and (11.14) for i = 1. Define the number Ao by (12.45). We will show that
(11.15) holds with

Mo(l (Dl +114) - 2
<1l—(&
et (a @ E) it o)z (%)
T @iy - (147)
0 1 +14+5 . 2
=TGR if el >1- (%)

Obviously, u satisfies (12.47), where ¢ is defined by (12.48). It is also
evident that the inequalities (12.49) and (12.50) hold.

First suppose that u does not change its sign. According to (12.50),
(7.1), and the assumption § € ]0, 1], we obtain

lu(a)| < R (14.8)
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Choose ty € [a,b] such that
|u(to)| = llullc- (14.9)
Due to (12.2) and (12.49), (12.47) implies
lu@)]" < llullc Lo(1)(t) + ¢"(t) for t€ [a,b]. (14.10)
The integration of (14.10) from a to ty, on account of (12.2), (14.8), and
(14.9), results in

to

lulle = 57 < lulle = fu(@) < e / lo(1)(s)ds + / ¢ (s)ds <

a
< lulleMolz + g™z

Thus, in view of (12.45), the inequality

[ulle (1= [l€o(D)]lL) < ﬁ + gl < Aole +llg72)
holds and, consequently, on account of (14.1), (14.2), (14.7), and Re-
mark 14.1, the estimate (11.15) holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tps, ty, € [a,b] such that (12.60) is fulfilled. Obviously,
M >0, m > 0, and either (12.61) or (12.62) holds.

First suppose that (12.61) is satisfied. It is clear that there exists ag €
Jtm, tar[ such that

u(t) >0 for ag <t <ty, u(az) = 0. (14.11)
Let
ap = inf{t € [a,t;,] : u(s) <0 for t <s <tp,}.
Obviously,
u(t) <0 for o <t<tp, (14.12)
and
if a3 >a, then wu(a;)=0. (14.13)

It follows from (7.1), (12.50

~—

, (14.12), and the assumption & € ]0,1] that

u(ar) > —;[u(b)]Jr - ﬁ > —%M - ﬁ . (14.14)
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The integration of (12.47) from «ay to t,, and from s to tps, in view of
(12.2), (12.49), (12.59), (12.60), (14.11)—(14.14), yields

m—gM—ﬁﬁm—l-u(al)g
gM/fl ds+m/€o ds+/ *(s)ds,
il
tar tar tar

M<M/£0 ds—l—m/€1 ds+/ *(s)ds.

a2

From the last two inequalities we obtain

C
m(1—C1) < M (A +5) + gl + 5

Al (14.15)
M(1— D) <mBi+ "]z,
where
tm tyr
A= [ s / ((1)(s)ds,
al
tm tM

According to Remark 14.1, |[¢p(1)||z < 1, i.e,, C1 < 1 and D; < 1. By
virtue of (12.45), the inequalities (14.15) imply

0<m(l—C)1=D1) < (A1 +5) mBi+ llg*ll0) + 4"l .+

+ﬁ (A1+ A) Bi+o(llg"l|z +¢) <||£1(1)||L+1+%)’
(14.16)
O M=o SBl<M (Ar+5) + 'l + IAI)

gl < M (A1 +5) Bi+dollglle +) (la @l + 1+ 5).

A
Obviously,

(1 — Cl)(l — Dl) >1- (Cl + Dl) >1- HEO(l)HL > 0. (1417)
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If |bo(1)|| > 1 — (%)2, then, according to (14.1) and (14.2), we obtain
141(1)|lL < &. Hence, By < § and

u 1 1 1
= =A1B1+ -B1 < =(A1+ B1) < —|1tr(D)| -
(4+5)Bi=aBi+ 5B < LA+ B) < L)
By the last inequality, (14.1), (14.2), and (14.17), from (14.16) we get

m < rodo ([l +1+5) (e + "),

A (14.18)
M < rodo (1Dl + 1+ 5) (e + lla* 1),
where .
o= (1= Tl - §160IL) (14.19)

Therefore, on account of (12.59), (14.7), (14.18), and (14.19), the estimate
(11.15) holds.
If [[lo(V)]lL <1— (%)2, then by virtue of the inequality

(e 2yt (e 2)' < L o+ 2)'

(14.1), (14.2), and (14.17), (14.16) implies

m < v (|Gl +1+5) e+ lal).

A (14.20)
M <o (16l +1+5) e+ lla*l),
where .
2
n=(1- 16l 5 (la@le+5)) . a2

Therefore, on account of (12.59), (14.7), (14.20), and (14.21), the estimate
(11.15) is valid.

Now suppose that (12.62) is satisfied. It is clear that there exists ay €
|tar, tm] such that

u(t) <0 for ay <t <tp, u(aq) = 0. (14.22)

Let
ag = inf{t € [a,tp] s u(s) >0 for t < s <tp}.
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Obviously,
u(t) >0 for ag<t<ty (14.23)

and
if as>a, then wu(az)=0. (14.24)

From (7.1), (12.50), (14.23), and the assumption & € ]0, 1] we get

u(as) < g[u(b)]_ + ﬁ < gm + ﬁ . (14.25)

The integration of (12.47) from «g to tp; and from oy to ty,, in view of
(12.2), (12.49), (12.59), (12.60), (14.22)-(14.25), results in

1 c
— - < — <
M )\m S M — u(az) <

tar tamr

<M/€0 ds—i—m/ﬁl ds+/ *(s)ds,

a3

m<M/€1 ds—i—m/ﬂo ds—i—/ *(s)ds.

From the last two inequalities we obtain

M(1=Co) <m(Az+5) + la"lln +

A IAI

(14.26)
m(1 = Ds) < MBs + ¢ 1,

where

Agz/él(l)(s)ds, B2:/€1(1)(s)ds,
tar

Cy = /fo(l)(s)ds, Dy = /50(1)(5)d5.

a3 Qg
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Due to Remark 14.1, ||lo(1)]|z < 1, i.e., Co < 1 and Dy < 1. By virtue of
(12.45), the inequalities (14.26) imply

0 < M(1—Co)(1—D2) < (A2 +5) (MBa+ [lg"]12) + lla" o+

C 7 . u
- < = H
s <M (424 5) Bt 2ol + ) (a0l +1+5)
(14.27)
0<m(1_02)(1_D2) < Bo m<A2+B> —{—||q*HL-|-£ +
A B
gl <m (Az+4) Ba+ do(la’lle + o) (Il +1+ %)
Obviously,
(1-C2)(1 = D2) 21— (Co+ D2) > 1~ [[o(1)]| > 0. (14.28)

If |6o(1)||z > 1 — (%)2, then, according to (14.1) and (14.2), we obtain
[41(1)][z < &. Hence, By < § and

(42+5) B2 = 438y + £ By < £ (A4 By) < L1411
A A A A

By the last inequality, (14.1), (14.2), and (14.28), (14.27) implies (14.18),

where r( is defined by (14.19). Therefore, on account of (12.59), (14.7),

(14.18), and (14.19), the estimate (11.15) is valid.

If [lo(1)||L < 1— (%)2, then by virtue of the inequality

p 1 py? _ 1 %
At y) s g (rma5) < (100 + )
(A2+ %) Bo< (Aot Bt 5) < 7 (Il +5
(14.1), (14.2), and (14.28), (14.27) implies (14.20), where 7 is defined by
(14.21). Therefore, on account of (12.59), (14.7), (14.20), and (14.21), the
estimate (11.15) holds. O

Lemma 14.2. Let |pu| < |\ and the operator ¢ admit the representation
¢ =Ly — {1, where by, 01 € Puy. If, moreover, the condition (14.3) holds,
then £ € A*(A, ).

Proof. Let ¢* € L([a, b];R+), c€ Ry, and u € 6([@,6];]%) satisfy (11.13)
and (11.14) for i = 2. Put

1
140 :max{l,M} . (14.29)
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We will show that (11.15) holds, where

_mopllfo(Dll + A+ p)
il (Dl — Ao

Obviously, u satisfies (12.47), where ¢ is defined by (12.48). It is also
evident that the inequalities (12.96) and (12.97) hold.

First suppose that u does not change its sign. According to (7.1),
(12.97), and the assumption § € ]0,1], we obtain

(14.30)

C
<=
]

Choose tg € [a, b] such that (14.9) holds. Due to (12.2) and (12.96), (12.47)

implies

|u(b)] (14.31)

—[u@®)" < llulle (1)) +q°(t) for t € [a,b]. (14.32)

The integration of (14.32) from ¢y to b, on account of (12.2), (14.9), and
(14.31), results in

c

b b
[ulle = 7 < ulle = [u(®)] < Hu||c/£1(1)(s)ds + /q*(S)dS <
to to

< ullellaMllz + llg*l-

Thus, in view of (14.29), the inequality

[ulle (1= [l (D)]L) < %‘ + gl < pole +llg*lz)
holds and, consequently, on account of (7.1), (14.3), and (14.30), the esti-
mate (11.15) holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tps, ty, € [a,b] such that (12.60) is fulfilled. Obviously,
M >0, m > 0, and either (12.61) or (12.62) is valid.

First suppose that (12.62) holds. It is clear that there exists a; €
|tar, tim ] such that

u(t) >0 forty <t<ai, u(ag) = 0. (14.33)

Let
ag = sup{t € [tm,b] : u(s) <0 for t,, < s <t}.
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Obviously,
u(t) <0 for t, <t<as, (14.34)

and
if ag <b, then wu(az)=0. (14.35)

From (7.1), (12.97), (14.34), and the assumption § € ]0, 1] we obtain

u(az) > —2fu(a)]y — & > —2h - ©

B A Vg (14.36)
0 ] Ju |l

The integration of (12.47) from ¢); to a; and from ¢, to a9, in view of
(12.2), (12.59), (12.60), (12.96), (14.33)—(14.36), implies

M<M/£1 ds+m/€0 d5—|—/ *(s)ds,

tamr
A

m——M——§m+u(a2)<
peoo el

a2

<M/£0 ds—}—m/El ds+/ *(s)ds.

From the last two inequalities we get

M(1—A;) <mCr + |lg*|z

\ . (14.37)
m(l—By) <M <D1 + ) +l¢* |z + —,
0 ]
where
o a2
A= [am@ds,  Bi= a0
tar tm

ty tm
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Due to (7.1) and (14.3), A1 < 1, By < 1. By virtue of (14.29), the inequal-
ities (14.37) imply

A
0< M(1-A)(1-B) <Gy (M (D1 n M) il + C) .

]
X A A .
+lg*|lL € MCy <D1 + u) + 1o <H€o(1)HL + 1+ M) (llg*le +¢)
(14.38)
A
0<m(l—A)(1-By) < (D1 T M) (mCy + 412 + a2+
C A )‘ *
+— <mCy <D1 + > + Lo <||€0(1)HL +1+ ) (lg*llz + <) -
|1 I [
Obviously,
(1—A)1=B1)>1— (A +B) >1—]61(1)||z > 0. (14.39)

According to (7.1), (14.3), and the assumption § € ]0, 1], we get ||[{o(1)]|z <
%. Hence, C < ﬁ and

A

A A A
a <D1 ; ) — b+ 20 < 26+ D) < )L
M 7 7 M

By the last inequality, (14.3), and (14.39), from (14.38) we get

M < ropo (ulllo(Dllz + A+ ) (e + llg"IIL),

m < ropo (ull€o(Vllz + A+ p) (e +llg*[lz),

(14.40)

where
ro = (= plltr (Dl = AMlo(D)]2) 7 (14.41)

Therefore, on account of (12.59), (14.30), (14.40), and (14.41), the estimate
(11.15) holds.
Now suppose that (12.61) is valid. Obviously, there exists ag € |ty tar]
such that
u(t) <0 for t,<t<as, u(az) = 0. (14.42)

Let
ay = sup{t € [tar, b] : u(s) > 0 for tpy < s <t}

It is clear that
u(t) >0 for ty <t < ay, (14.43)
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and

if a4 <b, then wu(as)=0. (14.44)

It follows from (7.1), (12.97), (14.43), and the assumption & € ]0, 1] that

c A c
u(ay )<;[ (a)]_—i—mgpm-i-m. (14.45)

The integration of (12.47) from t,, to a3 and from ¢y to a4, in view of
(12.2), (12.59), (12.60), (12.96), (14.42)—(14.45), yields

m<M/€o d8+m/€1 der/q()ds,

M—ém—i <M —u(ay) <
po |ul
[o 71 Qq Qq
< M/El(l)(s)ds—i—m/éo(l)(s)ds—i-/q*(s)ds
ty iy 2%

From the last two inequalities we get

m(1 — As) < MCs + |l¢"]|1.,

A . c (14.46)
M(1 - By) §m<D2+> + ¢l + —,
1 ]
where
sz Q4
Ay = /51(1)(s)ds, By — /51(1)(5)ds,
m tv
e %} Qq
Co= [ws)ds, 2= [G)5)ds
tm tm

Due to (7.1) and (14.3), Ay < 1 and By < 1. By virtue of (14.29), the
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inequalities (14.46) imply

A
0 < m(1— As)(1— By) < O (m (DQ N ﬂ) gt + ,M,) n
A

A
It < mCs (172 i M) T o (nzo(l)uL 1y H) Ul + ).
(14.47)
A
0 < M(1— As)(1 - By) < <D2 T M) (MCs + 1l 1) + ¢*l| 1+

c A A
+— < MCs (Dz + ) + o <||£0(1)||L +1+ ) (lg*llz +¢)-
|l I I
Obviously,
(1 — Ag)(l — BQ) >1-— (A2 + Bg) >1- Hél(l)HL > 0. (1448)

According to (7.1), (14.3), and the assumption § € ]0, 1], we get ||[{o(1)]|r <
%. Hence, (5 < % and

C <D2 + )\) =Dy + éC'2 < i(02 + Ds) < éWo(l)HL-
u 7 I u
By the last inequality, (14.3), and (14.48), (14.47) implies (14.40), where
7o is defined by (14.41). Therefore, on account of (12.59), (14.30), (14.40),
and (14.41), the estimate (11.15) is valid. O

Theorem 14.1 follows from Lemma 11.3 (see p. 195) and Lemma 14.1
(see p. 270). Theorem 14.2 follows from Lemma 11.3 (see p. 195) and
Lemma 14.2 (see p. 275). Theorem 14.3 follows from Lemma 11.4 (see
p. 196) and Lemma 14.1 (see p. 270). Theorem 14.4 follows from Lemma 11.4
(see p. 196) and Lemma 14.2 (see p. 275).

14.3. Comments and Examples

On Remark 14.1. Let |u| < |A|. It is clear that if zg,yo € R4+ and
(zo,y0) € U, then (xg,yo) belongs at least to one of the following sets:

Uy ={(z,y) € R+ x Ry : 1<z},

2 A
U2:{(a:,y)eR+><R+ : 1—(%) <z<l, M(l_x)gy}’

2
ng{(x,y)€R+><R+ : $<1—<H> ,2v1—x—’l/<§y}.
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Let (zo,y0) € Uy and let € € ]0,§[be such that zg—e > 1. Put a =0,
b=4,ty :34-%_’_5,

0 for t € [0,1]
- fort e 1,2 to fortel0,3
p(t)={ rEEE =yt e
zg—1—¢ fortel2,3] 4 forte [3,4]
1+e¢ for t € [3,4]
_ p—Xe
o) = T pre v fortE[O,l[‘
0 for t € [1,4]

It is not difficult to verify that (12.204) holds and the problem (12.205) has
the nontrivial solution

—(p—=Xe)t+ for t € [0,1]
u(t) = ¢ e for t € [1,3] .
“AM1+4+e)(t—3)+ X forte[3,4]

Then, by Remark 1.1 (see p. 14), there exist g9 € L([a,b]; R) and ¢y € R
such that the problem (10.1), (10.2) with F' and & given by (12.206) has no
solution, while the conditions (12.1) and (12.3) are fulfilled, where £y, ¢1,
¢, and c are defined by (12.207).

Let (z0,y0) € Us. Put a =0, b =4,

0 for t € [0, 1] 0 fortcl0.9
B —%(1 — 1) for t € [1,2] _ or [0,2]
p(t) = , T(t)=<4 forte[2,3] .
x0 for t € [2,3] | forte3d
or ,
%(1 —x9) —yo fort e [3,4]

Obviously, (12.204) holds. Furthermore, define the operator G € K by

—v(t)|v(t)] for t €]0,1]
G(v)(t) = | qo(t) for t € [1,2[ ,
0 for ¢t € [2,4]

where qg € L([a, bl; R) is such that

2
A
/qo(s)ds > 14y — ;(1 — xp) . (14.49)
1
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We will show that the problem (10.1), (10.2) with F" and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
by, 01, q, and c are defined by (12.210).

Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F' and h given by (12.209), i.e., the equalities (1.29) and
(12.211) hold. From (12.211) we get

u(l) = % : (14.50)
2
u(2) =u(l) — 2(1 — x0)u(0) + /qo(s)ds, (14.51)
1
u(3) = u(2) + u(4)zo, (14.52)
u(4) =u(3) — <y0 ——(1—x0 > u (14.53)
The equalities (14.51)—(14.53), in view of (1.2¢) and (7.1), result in

/2QO(5)dS = (yo - 2(1 —z0) — 1) u(1).
1

Hence, the last equality, together with (14.50), implies

2
s = (g0 — 21—z —1) 40
1/Q0( )d <y0 M(l 0) 1> 1+ |u(0)’ <

A |u(0)] A
< <y0—u(1—$0)+1> W <1—|—y0—p(1—x0),

which contradicts (14.49).
Let (z9,y0) € Us. Put a =0, b =15,

(& — Tz for t € [0, 1]
0 for t € [1,2]
p(t) = 1—x for t € [2,3[ ,
xo for t € [3,4]
2y1—z9— 5 —yo fortel4,5]
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and
5 forte|0,2[U][3,4]

T(t) =<1 forte[23]
2 forte[4,5]

Obviously, (12.204) holds. Furthermore, define the operator G € K, by

0 for t € [0,1[ U [2,3[ U [4,5]
G)(t) = ¢ —v(t)|v(t)] fort e [1,2] ,
qo(t) for t € [3,4]

where qg € L([a, bl; R) is such that

2
/qo(s)ds >1+yo+ % —2vV1—x9. (14.54)
1

We will show that the problem (10.1), (10.2) with F" and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
Ly, 1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that w is a solution of the problem
(10.1), (10.2) with F' and h given by (12.209), i.e., the equalities (1.29) and
(12.211) hold. From (12.211) we get

u(1) = u(0) + (% - m) u(5), (14.55)
u(2) = % : (14.56)
u(3) = u(2) — u(1)v1 — 0, (14.57)
u(4) = u(3) + u(5)zo + /4 go(s)ds, (14.58)
u(5) = u(4) (yo + % —32\/@) u(2). (14.59)

The equalities (14.55) and (14.57)—(14.59), in view of (1.2p) and (7.1), result
in

4
/qo(S)ds = (yo + % —2y/1— 20 — 1) u(2).
3
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Hence, the last equality, together with (14.56), implies

u(1)
|

()] =

4
/qo = (w+ 5 —2vT-w-1)
3

(yo+*—2\/1f:co+1> [v |(1E|)| <1+yo+**2\/1—x0,

which contradicts (14.54).

On Remark 14.2. Let |u| < |A\|. It is clear that if zg,yo € R4+ and
(zo,y0) € S, then (x0,yo) belongs at least to one of the following sets:

51:{(x,y)ER+><R+ : %<x},
m A
Sy = (m,y)€R+><R+::c</\ —;x+1§y .

Let (xo,yo) € Sy and e € ]0, 1 be such that 29 — & > e. Put a = 0,
b=4,ty =

;H-/\E’
E4e for t € [0,1]
—Yo for t € [1,2]
p(t) = " ,
rg— 5§ —¢e fortel23]
0 for t € [3,4]
0 for t € [0, 3] 4 fortel0,1]
Z(t):{ 1< for t € [3,4] T(t):{ f '
ToangT forte[3,4] to fort € [1,4]

It is not difficult to verify that (12.204) holds and the problem (12.205) has
the nontrivial solution

(L4 Xe)t — for ¢ € [0, 1]
u(t) =< Ae for t € [1,3] .
AMl—g)(t—4)+ X forte[3,4]

Then, by Remark 1.1 (see p. 14), there exist gy € L([a, b];R) and cg € R
such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where £y, ¢1,
q, and ¢ are defined by (12.207).
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Let (z9,y0) € S2. Put a =0, b =4,

x0 for t € [0,1]

A

Ao —1 for t € [1,2 4 fortelo,1
o(t) = 5 0 or [ [’ (t) = orte| [

0 for t € [2,3] 0 fortell,4]

1—y0—%;1:0 for t € [3,4]

qo(t) for t € [0,1]
G)(t)=<0 for t € [1,2[ U [3,4] ,
v(t)|v(t)| fort e [2,3]

where gy € L([a,b]; R) is such that

1
/ qo(s)ds > 1. (14.60)
0

We will show that the problem (10.1), (10.2) with F" and h given by (12.209)
has no solution, while the conditions (12.8) and (12.9) are fulfilled, where
Ly, 1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.2y) and
(12.211) hold. From (12.211) we get

1
(1) = u(0) + u(4)zo + / do(s)ds (14.61)
0
w(2) = u(1) <1 _ 2:60) u(0) | (14.62)
u(2) = % (14.63)

The equalities (14.61) and (14.62), in view of (1.2¢) and (7.1), result in

1
/qo(s)ds = u(2).
0
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Hence, the last equality, together with (14.63), implies

1
/qo(s)ds u@)  __[uB)| <1
0

T 14 @) T 1+ [u@)

which contradicts (14.60).
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In this section, we will establish some consequences of the main results from
§14 for the equation with deviating arguments (10.1"). Here we will also
suppose that the inequality (7.1) is fulfilled.

In what follows we will use the notation

po(t) =Y pi(t), o) = g;(t) for teab
=1 i=1

and we will suppose that the function ¢ € K ([a, bl x R; R+) is nondecreas-
ing in the second argument and satisfies (10.5), i.e.,

b

1
lim /q(s,x)ds—O.

r——+oco I
a

15.1. Existence and Uniqueness Theorems

In the case, where |u| < |A|, the following statements hold.

Theorem 15.1. Let |u| < [N, pr,gr € L([a,b; Ry) (k=1,...,m), c €
Ry, the condition (12.1) be fulfilled, and let on the set [a,b] x R"T! the
inequality (13.1) hold. If, moreover,

g0l < v(A ), (15.1)

where

. 2
O = {ﬁf” L= Tpollzif llpollz < 1= (%) (15.)
I

123
A
. 2
1 — [|pol|z) if pollz >1— (%)
then the problem (10.1"), (10.2) has at least one solution.

Remark 15.1. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (15.1) cannot be
replaced by the nonstrict one.
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Theorem 15.2. Let |u| < [N, pr,gr € L([a,b; Ry) (k=1,...,m), c €
Ry, the condition (12.8) be fulfilled, and let on the set [a,b] x R™"! the
inequality (13.6) hold. If, moreover,

b

b
/po(s)ds + g /gg(s)ds < %, (15.3)

a

then the problem (10.1"), (10.2) has at least one solution.

Remark 15.2. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (15.3) cannot be
replaced by the nonstrict one.

In Theorems 15.3 and 15.4, the conditions guaranteeing the unique solv-
ability of the problem (10.1"), (10.2) are established.

Theorem 15.3. Let |u| < |A, pr,gr € L([a,b]; Ry) (k = 1,...,m), the
condition (12.24) be fulfilled, and let on the set [a,b] x R™*! the inequality
(13.18) hold. If, moreover, (15.1) is fulfilled, where v is defined by (15.2),
then the problem (10.1"), (10.2) is uniquely solvable.

Remark 15.3. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (15.1) cannot be
replaced by the nonstrict one.

Theorem 15.4. Let |u| < ||, pk, gk € L([a,b];R+) (k=1,...,m), the
condition (12.26) be fulfilled, and let on the set [a,b] x R™! the inequality
(13.19) hold. If, moreover, the inequality (15.3) is fulfilled, then the problem
(10.1"), (10.2) is uniquely solvable.

Remark 15.4. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (15.3) cannot be
replaced by the nonstrict one.

In the case, where |u| > |\, the following assertions hold.

Theorem 15.5. Let |u| > ||, pk, gk € L([a,b];R+) (k =1,...,m), the
condition (12.8) be fulfilled and let on the set [a,b] x R™*L the inequality
(13.6) hold. If, moreover,

Ipollz < 6(A, ), (15.4)
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2
\ . A
—2+2\/1—|lgollz f llgollz <1—1(%

5()\#‘) = ’ <H>2 ’ (15‘5)

£ (1~ llgoll) if lgoll =1~ (2)
then the problem (10.1"), (10.2) has at least one solution.

Theorem 15.6. Let || > |A|, p, gk € L([a,b; Ry) (k = 1,...,m), the
condition (12.1) be fulfilled, and let on the set [a,b] x R" ! the inequality
(13.1) hold. If, moreover,

b b
/go(s)ds + 2 /po(s)ds < 2, (15.6)

a

then the problem (10.1"), (10.2) has at least one solution.

In Theorems 15.7 and 15.8, the conditions guaranteeing the unique solv-
ability of the problem (10.1"), (10.2) are established.

Theorem 15.7. Let |u| > |\, pi,gx € L([a,b]; Ry) (k = 1,...,m), the
condition (12.26) be fulfilled, and let on the set [a,b] x R™ the inequality
(13.19) hold. If, moreover, (15.4) is fulfilled, where 0 is defined by (15.5),
then the problem (10.1"), (10.2) is uniquely solvable.

Theorem 15.8. Let |u| > ||, pk, gk € L([a,b];R+) (k=1,...,m), the
condition (12.24) be fulfilled, and let on the set [a,b] x R™*! the inequality
(13.18) hold. If, moreover, the inequality (15.6) is fulfilled, then the problem
(10.1"), (10.2) is uniquely solvable.

Remark 15.5. According to Remark 12.14 (see p. 211), Theorems 15.5—
15.8 can be derived from Theorems 15.1-15.4. Moreover, by virtue of Re-
marks 15.1-15.4, Theorems 15.5-15.8 are nonimprovable in an appropriate
sense.

15.2. Proofs

Proof of Theorem 15.1. Obviously, the conditions (13.1), (15.1), and
(15.2) yield the conditions (12.3), (14.1), and (14.2), where F, ¢y, and ¢;
are defined by (13.35). Consequently, the assumptions of Theorem 14.1
(see p. 266) are fulfilled. O
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Proof of Theorem 15.2. Similarly to the proof of Theorem 15.1 one can
show that the assumptions of Theorem 14.2 (see p. 267) are satisfied. [

Proof of Theorem 15.3. Obviously, the conditions (13.18), (15.1), and
(15.2) yield the conditions (12.25), (14.1), and (14.2), where F, ¢y, and ¢;
are defined by (13.35). Consequently, the assumptions of Theorem 14.3
(see p. 269) are fulfilled. O

Proof of Theorem 15.4. Similarly to the proof of Theorem 15.3 one can
show that the assumptions of Theorem 14.4 (see p. 269) are satisfied. [



Suplementary Remarks

The main ideas of the results presented in Chapter II can be found in
[23,25,28,29], where the special case of the boundary condition (10.2) with
A =1 is considered.

Theorems 12.1, 12.3, 12.7, and 12.9 are proved in [25], Theorems 12.4
and 12.10 are proved in [29], Theorems 12.5 and 12.11 are proved in [28],
and Theorems 14.1-14.4 one can find in [23].
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