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Introduction

Functional differential equations (FDE) have already appeared in the
18th century as mathematical formulations of certain problems in physics
and geometry. We can find them especially in the works of Euler and Con-
dorcet. However, until the end of the 19th century, FDE were investigated
only in connection with particular applications and we cannot speak about
their systematic study.

Only in the works of E. Schmidt, F. Schürer and E. Hilb (see [32,33,64–
70]) from the first quarter of the twentieth century, first attempts of a sys-
tematic study of special equations with delayed argument appeared. The
interest in this type of FDE grew in the 1930s, especially in connection with
extensive applications in mechanics, biology, and economy. At that time,
the basics of the qualitative theory of equations with delayed argument and
of the so–called integrodifferential equations were put in the works of A.
Myshkis and R. Bellman (see [55]). They and a number of other math-
ematicians (Elsgolc, Norkin, Hale, Halanay, Kolmanovskii, Razumikhin,
Azbelev, etc.) who followed this direction are to be credited for building
up the extensive qualitative theory of FDE that exists nowadays. This the-
ory is not only important in applications, but influences also wide areas of
pure mathematics (see, e.g., [1, 2, 30,55]).

In the 1970s, great deal of attention was devoted to the construction of
the theory of boundary value problems (BVP) for FDE. Various methods
were proposed to be used in these problems, e.g., the theory of Fredholm
operators, method of small parameters, topological methods, theory of in-
tegral manifolds and so on (detailed survey of these methods and corre-
sponding results is, e.g., in [1–3,30,55,58,62,63,71–87]). From the contem-
porary viewpoint, it can be said that the methods of functional analysis
and topological methods proved to be the most useful ones. By systematic
application of these methods, the foundations of the theory of BVP for a
large class of FDE were constructed (see [1, 2, 30,55,72], etc.).

However, until now, concrete BVP for FDE were studied only with
partial success. The difficulties arising in the study of FDE lie in the
nonlocal character of the equation and they appear even for the linear
equation. For example, the question of solvability of the simplest BVP, the
so–called initial value problem

u′(t) = p(t)u(τ(t)) + q(t), u(a) = 0,
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where p, q : [a, b] → R are Lebesgue integrable functions and τ : [a, b] →
[a, b] is a measurable function, is far from being so trivial as for the ordinary
differential equations (ODE), i.e., for the case when τ(t) = t for t ∈ [a, b].
Therefore we cannot be surprised by the fact that in the large monographs
[1,2,30,55,72], we cannot find detailed information on the solvability of the
initial value problem.

On the other hand, if the deviation τ(t)− t is “small”, i.e., if the equa-
tion is “close” to the ODE, we intuitively expect that the given problem
possesses a unique solution. In simple cases, the validity of such hypothesis
can be verified directly. With more complicated problems, where global
methods do not provide sufficient accuracy, natural need for finding a more
precise technique for the investigation of the FDE arose.

As for the ODE, a sufficiently complete theory of BVP was already built
up, using namely the methods whose basis is laid in mathematical analysis
(see [35, 38, 49]). Last, but not least, this fact corresponded to the efforts
to modify the methods of mathematical analysis for the investigation of
FDE. In the last couple of years, these efforts were successful in the case of
some BVP for FDE. Especially in the works of I. Kiguradze and B. Půža
(see [12, 36, 37, 39–48, 50–54]), sophisticated conditions for the solvability
and unique solvability of a quite wide class of BVP for FDE in both linear
and nonlinear cases were found (see also [9–11,13–29]).

Inspired by these results we decided to use the methods of mathemat-
ical analysis and investigation technique of BVP for ODE with appropri-
ate modifications for FDE. Mainly the method of a priori estimates and
technique of differential inequalities. The method of a priori estiamtes is
widely used in the theory of BVP both for ODE and FDE. The basis of
this method was laid down in the beginning of 20th century. Later this
method was succesfully developed in [35,38,49] even for singular ODE. Im-
portance of theorems on differential inequalities in connection with study
of Cauchy problem, resp. two–point BVP, was observed in the beginning
of 20th, as well (see [7, 8, 34, 59] and references therein). Further this
technique was extended and generalized for BVP of various other types
(see [1, 14,35,38,49,56,57]).
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The present work deals with the questions of solvability and unique
solvability of BVP

u′(t) = F (u)(t), (0.1)

λu(a) + µu(b) = h(u), (0.2)

where F : C
(
[a, b];R

) → L
(
[a, b];R

)
, h : C

(
[a, b];R

) → R are continuous
operators satisfying the Carathèodory conditions, λ, µ ∈ R and |λ|+ |µ| 6=
0. The particular cases of the boundary condition (0.2) are the initial
conditions

u(a) = c

and
u(b) = c,

the periodic condition
u(a) = u(b)

and the antiperiodic condition

u(a) = −u(b).

A special case of the equation (0.1) is, for example, the equation with
deviating arguments

u′(t) = f(t, u(t), u(τ1(t)), . . . , u(τn(t))),

where f : [a, b]×Rn+1 → R is a Carathèodory function and τk : [a, b] → [a, b]
(k = 1, . . . , n) are measurable functions.

The work is divided into two chapters. In Chapter I, the question of
the unique solvability of the linear problem, i.e., of the problem

u′(t) = `(u)(t) + q(t),

λu(a) + µu(b) = c,
(0.3)

where ` : C
(
[a, b];R

) → L
(
[a, b];R

)
is a linear bounded operator, q ∈

L
(
[a, b];R

)
, λ, µ, c ∈ R, and |λ| + |µ| 6= 0, is investigated. §§2, 4, and 7

contain the main results that are further expanded and detailed in §§3, 5,
6, 8, and 9 for the equation with deviating arguments of the form

u′(t) =
m∑

k=1

(
pk(t)u(τk(t))− gk(t)u(νk(t))

)
+ q(t),
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where pk, gk ∈ L
(
[a, b];R+

)
, q ∈ L

(
[a, b];R

)
, and τk, νk : [a, b] → [a, b]

(k = 1, . . . ,m) are measurable functions.
§2 is devoted to the question on the validity of a theorem on differential

inequalities. The results obtained here have an independent character since
they give the information on the sign of the solution of the problem (0.3)
(under certain natural sign assumptions imposed on the function q and the
number c). On the other hand, these results are used later for studying the
question on the solvability in both linear and nonlinear problems. In §§4
and 7, sufficient conditions for unique solvability of the BVP of periodic
(i.e., when λµ ≤ 0) and antiperiodic (i.e., when λµ > 0) type are estab-
lished. The presented results are optimal, which is demonstrated by the
appropriated examples.

Chapter II deals with the nonlinear problem and is arranged in a similar
way. On the basis of the technique developed in Chapter I, nonimprovable
sufficient conditions of the solvability and unique solvability of the problem
(0.1), (0.2) are established in §§12 and 14. In §§13 and 15, these results are
specified for an equation with deviating argument of the form

u′(t) =
m∑

k=1

(
pk(t)u(τk(t))− gk(t)u(νk(t))

)
+

+ f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

where f : [a, b]×Rn+1→ R is a Carathèodory function, pk, gk ∈L
(
[a, b];R+

)
,

and τk, νk, ζj : [a, b] → [a, b] (k = 1, . . . ,m; j = 1, . . . , n) are measurable
functions.



Notation

N is the set of all natural numbers;

R is the set of all real numbers;

R+ = [0,+∞[ , R− = ]−∞, 0] ;

A is the closure of the set A;

C
(
[a, b];R

)
is the Banach space of continuous functions v : [a, b] → R with

the norm
‖v‖C = max{|v(t)| : a ≤ t ≤ b};

C
(
[a, b];D

)
= {v ∈ C(

[a, b];R
)

: v : [a, b] → D}, where D ⊆ R;

Cλµ

(
[a, b];D

)
= {v ∈ C(

[a, b];D
)

: λv(a) + µv(b) = 0}, where D ⊆ R;

C̃
(
[a, b];D

)
, where D ⊆ R, is the set of absolutely continuous functions

v : [a, b] → D;

Bi
λµc

(
[a, b];R

)
, where λ, µ, c ∈ R and i ∈ {1, 2}, is the set of functions

v ∈ C(
[a, b];R

)
satisfying

[
λv(a) + µv(b)

]
sgn

(
(2− i)λv(a) + (i− 1)µv(b)

) ≤ c ;

L
(
[a, b];R

)
is the Banach space of Lebesgue integrable functions p : [a, b] →

R with the norm

‖p‖L =

b∫

a

|p(s)|ds;

L
(
[a, b];D

)
= {p ∈ L(

[a, b];R
)

: p : [a, b] → D}, where D ⊆ R;

Mab is the set of measurable functions τ : [a, b] → [a, b];

Lab is the set of linear bounded operators ` : C
(
[a, b];R

) → L
(
[a, b];R

)
for

each of them there exists η ∈ L(
[a, b];R+

)
such that

|`(v)(t)| ≤ η(t)‖v‖C for almost all t ∈ [a, b], v ∈ C(
[a, b];R

)
;
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Pab is the set of linear operators ` ∈ Lab transforming the set C
(
[a, b];R+

)
into the set L

(
[a, b];R+

)
;

Kab is the set of continuous operators F : C
(
[a, b];R

) → L
(
[a, b];R

)
satis-

fying the Carathèodory conditions, i.e., for every r > 0 there exists
qr ∈ L

(
[a, b];R+

)
such that

|F (v)(t)| ≤ qr(t) for almost all t ∈ [a, b], ‖v‖C ≤ r;

K([a, b] × A;B), where A ⊆ Rn, B ⊆ R, n ∈ N , is the set of functions
f : [a, b]×A→ B satisfying the Carathèodory conditions, i.e., f(·, x) :
[a, b] → B is a measurable function for all x ∈ A, f(t, ·) : A→ B is a
continuous function for almost all t ∈ [a, b], and for every r > 0 there
exists qr ∈ L

(
[a, b];R+

)
such that

|f(t, x)| ≤ qr(t) for almost all t ∈ [a, b], x ∈ A, ‖x‖ ≤ r;

[x]+ = 1
2(|x|+ x), [x]− = 1

2(|x| − x).

We will say that ` ∈ Lab is a t0−Volterra operator, where t0 ∈ [a, b], if
for arbitrary a1 ∈ [a, t0], b1 ∈ [t0, b], a1 6= b1, and v ∈ C(

[a, b];R
)

satisfying
the condition

v(t) = 0 for t ∈ [a1, b1],

we have
`(v)(t) = 0 for almost all t ∈ [a1, b1].

An operator ` ∈ Lab is said to be nontrivial, if `(1) 6≡ 0.



CHAPTER I

Linear Problem



§1. Statement of the Problem

Consider the problem on the existence and uniqueness of a solution of the
equation

u′(t) = `(u)(t) + q(t) (1.1)

satisfying the boundary condition

λu(a) + µu(b) = c, (1.2)

where ` ∈ Lab, q ∈ L
(
[a, b];R

)
, λ, µ, c ∈ R, and |λ|+ |µ| 6= 0. By a solution

of the equation (1.1) we understand a function u ∈ C̃
(
[a, b];R

)
satisfying

this equation almost everywhere in [a, b]. Note also that the equalities and
inequalities with integrable functions are understood almost everywhere.

Along with the problem (1.1), (1.2) we consider the corresponding ho-
mogeneous problem

u′(t) = `(u)(t), (1.10)
λu(a) + µu(b) = 0. (1.20)

All results will be concretized for the differential equation with deviating
arguments (EDA), i.e., for the case, when the equation (1.1) has the form

u′(t) =
m∑

k=1

(
pk(t)u(τk(t))− gk(t)u(νk(t))

)
+ q(t), (1.1′)

where pk, gk ∈ L
(
[a, b];R+

)
, q ∈ L

(
[a, b];R

)
, τk, νk ∈ Mab (k = 1, . . . ,m),

and m ∈ N .
The following result is well–known from the general theory of the bound-

ary value problems for functional differential equations (see, e.g., [1–3, 42,
72].

Theorem 1.1. The problem (1.1), (1.2) is uniquely solvable iff the corre-
sponding homogeneous problem (1.10), (1.20) has only the trivial solution.

Remark 1.1. It follows from the Riesz–Schauder theory that if the prob-
lem (1.10), (1.20) has a nontrivial solution, then there exist q ∈ L(

[a, b];R
)

and c ∈ R such that the problem (1.1), (1.2) has no solution.



§2. On Differential Inequalities

Throughout this section we will assume that |λ|+ |µ| 6= 0 and

λµ ≤ 0. (2.1)

Furthermore, if λ = −µ, then the operator ` ∈ Lab is supposed to be
nontrivial, i.e., `(1) 6≡ 0.

Definition 2.1. We will say that an operator ` ∈ Lab belongs to the set
V +

ab (λ, µ) (resp. V −ab (λ, µ)), if the homogeneous problem (1.10), (1.20) has
only the trivial solution and for every q ∈ L(

[a, b];R+

)
and c ∈ R satisfying

(
sgnλ− sgnµ

)
c ≥ 0, (2.2)

the solution of the problem (1.1), (1.2) is nonnegative (resp. nonpositive).

Remark 2.1. According to Theorem 1.1, it is clear that if ` ∈ V +
ab (λ, µ),

resp. ` ∈ V −ab (λ, µ), then the problem (1.1), (1.2) is uniquely solvable for
any c ∈ R and q ∈ L(

[a, b];R
)
.

Note also that if ` ∈ Pab and ` ∈ V +
ab (λ, µ), then |µ| < |λ|, and if

−` ∈ Pab and ` ∈ V −ab (λ, µ), then |µ| > |λ|.
Remark 2.2. Furthermore, V −ab (λ, 0) = Ø for every λ 6= 0. Indeed, sup-
pose on the contrary that ` ∈ V −ab (λ, 0) for some λ 6= 0. Then, according
to Remark 2.1, the problem (1.1), (1.2) with µ = 0 and c = 0 has a unique
solution for every q ∈ L(

[a, b];R
)
. Let Ω be an operator, which assigns to

every q ∈ L
(
[a, b];R

)
the solution of the problem (1.1), (1.2) with µ = 0

and c = 0. In view of Theorem 1.4 in [42], Ω : L
(
[a, b];R

) → C
(
[a, b];R

)
is

a linear bounded operator. Moreover, since ` ∈ Lab, there exists a function
η ∈ L(

[a, b];R+

)
such that

|`(v)(t)| ≤ η(t)‖v‖C for t ∈ [a, b], v ∈ C(
[a, b];R

)
. (2.3)

Choose t0 ∈ ]a, b[ satisfying

‖Ω‖
t0∫

a

η(s)ds < 1 (2.4)

and let q ∈ L(
[a, b];R+

)
be such that

q(t) = 0 for t ∈ [t0, b], q 6≡ 0. (2.5)
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Furthermore, let u be a solution of the problem (1.1), (1.2) with µ = 0 and
c = 0. Obviously, the inequality (2.2) is satisfied and

u(t) =

t∫

a

`(u)(s)ds+

t∫

a

q(s)ds for t ∈ [a, b]. (2.6)

On the other hand, according to the definition of the operator Ω, we
have

u(t) = Ω(q)(t) for t ∈ [a, b]

and thus,
‖u‖C ≤ ‖Ω‖‖q‖L. (2.7)

By virtue of (2.3) and (2.7), (2.6) yields

u(t) ≥
t∫

a

q(s)ds−
t∫

a

|`(u)(s)|ds ≥

≥
t∫

a

q(s)ds− ‖Ω‖‖q‖L

t∫

a

η(s)ds for t ∈ [a, b].

Hence, with respect to (2.4) and (2.5), we obtain

u(t0) ≥ ‖q‖L


1− ‖Ω‖

t0∫

a

η(s)ds


 > 0,

which, according to Definition 2.1, contradicts the assumption ` ∈ V −ab (λ, 0).
In a similar manner it can be shown that V +

ab (0, µ) = Ø for every µ 6= 0.

Remark 2.3. It follows from Definition 2.1 that ` ∈ V +
ab (λ, µ) (resp. ` ∈

V −ab (λ, µ)) iff for the problem (1.1), (1.2) a certain theorem on differential
inequalities holds, i.e., whenever u, v ∈ C̃(

[a, b];R
)

satisfy the inequalities

u′(t) ≤ `(u)(t) + q(t), v′(t) ≥ `(v)(t) + q(t) for t ∈ [a, b],

|λ|u(a)− |µ|u(b) ≤ |λ|v(a)− |µ|v(b),
then u(t) ≤ v(t) (resp. u(t) ≥ v(t)) for t ∈ [a, b].
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In this section, we will establish sufficient conditions for an operator
` to belong to the sets V +

ab (λ, µ) and V −ab (λ, µ). These results have an
independent character in the sense that they give us the information about
sign of the solution of the problem (1.1), (1.2) (under certain natural sign
assumptions imposed on the function q and the number c). On the other
hand, these results play an important role in the following investigation of
the solvability of considered problem both in linear and nonlinear cases.

2.1. On the Set V +
ab(λ, µ)

In this subsection, nonimprovable, in a certain sense, sufficient conditions
guaranteeing the inclusion ` ∈ V +

ab (λ, µ) are established. First, in Theo-
rems 2.1–2.5, we consider the case |µ| ≤ |λ|. Theorems 2.6–2.8 concern the
case |µ| ≥ |λ|.

In the case, where |µ| ≤ |λ|, the following assertions hold.

Proposition 2.1. Let |µ| < |λ| and

` ∈ Pab. (2.8)

Then ` ∈ V +
ab (λ, µ) iff the problem

u′(t) ≤ `(u)(t), λu(a) + µu(b) = 0 (2.9)

has no nontrivial nonnegative solution.

Theorem 2.1. Let |µ| < |λ| and ` ∈ Pab. Then the operator ` belongs to
the set V +

ab (λ, µ) iff there exists a function γ ∈ C̃(
[a, b]; ]0,+∞[

)
satisfying

the inequalities

γ′(t) ≥ `(γ)(t) for t ∈ [a, b], (2.10)

|λ|γ(a) > |µ|γ(b). (2.11)

Corollary 2.1. Let |µ| < |λ|, ` ∈ Pab, and let at least one of the following
items be fulfilled:

a) ` is an a−Volterra operator and

|µ| exp




b∫

a

`(1)(s)ds


 < |λ| ; (2.12)
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b) there exist m, k ∈ N and a constant α ∈ ]0, 1[ such that m > k and

ρm(t) ≤ αρk(t) for t ∈ [a, b], (2.13)

where ρ1 ≡ 1 and

ρi+1(t)
def=

|µ|
|λ| − |µ|

b∫

a

`(ρi)(s)ds+

t∫

a

`(ρi)(s)ds (2.14)

for t ∈ [a, b], i ∈ N ;

c) there exists ` ∈ Pab such that

|µ| exp




b∫

a

`(1)(s)ds


+

+|λ|
b∫

a

`(1)(s) exp




b∫

s

`(1)(ξ)dξ


 ds < |λ|,

(2.15)

and on the set Cλµ

(
[a, b];R+

)
the inequality

`(ϑ(v))(t)− `(1)(t)ϑ(v)(t) ≤ `(v)(t) for t ∈ [a, b] (2.16)

holds, where

ϑ(v)(t) def=
|µ|

|λ| − |µ|

b∫

a

`(v)(s)ds+

t∫

a

`(v)(s)ds for t ∈ [a, b]. (2.17)

Then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.4. Let |µ| < |λ|, ` ∈ Pab, ` be an a−Volterra operator, and the
problem (1.10), (1.20) has only the trivial solution. If, moreover, (instead
of (2.12)) the equality

|µ| exp




b∫

a

`(1)(s)ds


 = |λ| (2.18)

holds, then ` ∈ V +
ab (λ, µ) again (see On Remark 2.4, p. 50).
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On the other hand, for every ε > 0 there exists an a−Volterra operator
` ∈ Pab such that the problem (1.10), (1.20) has only the trivial solution,

|µ| exp




b∫

a

`(1)(s)ds


 = |λ|+ ε,

and ` 6∈ V +
ab (λ, µ) (see Example 2.1, p. 51).

Remark 2.5. It follows from Corollary 2.1 b) (for k = 1 and m = 2) that
if |µ| < |λ|, ` ∈ Pab, and

|λ|
b∫

a

`(1)(s)ds < |λ| − |µ|,

then ` ∈ V +
ab (λ, µ). Note that if the problem (1.10), (1.20) has only the

trivial solution and

|λ|
b∫

a

`(1)(s)ds = |λ| − |µ|, (2.19)

then ` ∈ V +
ab (λ, µ) again (see On Remark 2.5, p. 52).

On the other hand, for every ε > 0 there exists an operator ` ∈ Pab

such that the problem (1.10), (1.20) has only the trivial solution,

|λ|
b∫

a

`(1)(s)ds = |λ| − |µ|+ ε,

and ` 6∈ V +
ab (λ, µ) (see Example 2.2, p. 53).

Remark 2.6. Corollary 2.1 is nonimprovable in a certain sense. More
precisely, the assumption α ∈ ]0, 1[ cannot be replaced by the assumption
α ∈ ]0, 1], and the strict inequalities (2.12) and (2.15) cannot be replaced
by the nonstrict ones (see Examples 2.3 and 2.4, p. 54).

Theorem 2.2. Let |µ| ≤ |λ|, −` ∈ Pab, ` be an a−Volterra operator, and
let there exist a function γ ∈ C̃(

[a, b];R+

)
satisfying

γ′(t) ≤ `(γ)(t) for t ∈ [a, b], (2.20)

γ(t) > 0 for t ∈ [a, b[ . (2.21)

Then the operator ` belongs to the set V +
ab (λ, µ).
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Remark 2.7. Theorem 2.2 is nonimprovable in a certain sense. More pre-
cisely, the condition (2.21) cannot be replaced by the condition

γ(t) > 0 for t ∈ [a, b1[ , (2.22)

where b1 ∈ ]a, b[ is an arbitrarily fixed point (see Example 2.5, p. 55).

Theorem 2.3. Let |µ| ≤ |λ|, −` ∈ Pab, ` be an a−Volterra operator, and

b∫

a

|`(1)(s)|ds ≤ 1. (2.23)

Then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.8. Theorem 2.3 is nonimprovable in the sense that the inequal-
ity (2.23) cannot be replaced by the inequality

b∫

a

|`(1)(s)|ds ≤ 1 + ε, (2.24)

no matter how small ε > 0 would be (see Example 2.5, p. 55).

Corollary 2.2. Let |µ| ≤ |λ|, −` ∈ Pab, ` be an a−Volterra operator, and

b∫

a

∣∣˜̀(1)(s)
∣∣ exp




s∫

a

|`(1)(ξ)|dξ

 ds ≤ 1, (2.25)

where

˜̀(v)(t) def= `
(
θ̃(v)

)
(t)− `(1)(t)θ̃(v)(t) for t ∈ [a, b],

θ̃(v)(t) def=

t∫

a

`(ṽ)(s)ds for t ∈ [a, b],

ṽ(t) def= v(t) exp




t∫

a

`(1)(s)ds


 for t ∈ [a, b].

(2.26)

Then the operator ` belongs to the set V +
ab (λ, µ).
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Remark 2.9. Corollary 2.2 is nonimprovable in the sense that the inequal-
ity (2.25) cannot be replaced by the inequality

b∫

a

∣∣˜̀(1)(s)
∣∣ exp




s∫

a

|`(1)(ξ)|dξ

 ds ≤ 1 + ε,

no matter how small ε > 0 would be (see Example 2.5, p. 55).

Theorem 2.4. Let 0 6= |µ| ≤ |λ| and the operator ` admit the representa-
tion ` = `0 − `1, where

`0, `1 ∈ Pab. (2.27)

Let, moreover,

‖`0(1)‖L < 1, (2.28)

‖`0(1)‖L

1− ‖`0(1)‖L
− |λ| − |µ|

|µ| < ‖`1(1)‖L ≤
∣∣∣µ
λ

∣∣∣ . (2.29)

Then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.10. Let 0 6= |µ| ≤ |λ| and

A
def=

{
(x, y) ∈ R+ ×R+ : x < 1,

x

1− x
− |λ| − |µ|

|µ| < y ≤
∣∣∣µ
λ

∣∣∣
}

(see Fig. 2.1).
According to Theorem 2.4, if ` = `0 − `1, `0, `1 ∈ Pab, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ A,

then ` ∈ V +
ab (λ, µ). Below we will show (see On Remark 2.10, p. 56) that

for every x0, y0 ∈ R+, (x0, y0) 6∈ A there exists ` ∈ Lab such that ` = `0−`1,
`0, `1 ∈ Pab,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L, (2.30)

and ` 6∈ V +
ab (λ, µ). In particular, neither one of the inequalities in (2.28)

and (2.29) can be weakened.

Remark 2.11. In [6], there is proved that if −` ∈ Pab, then the condition
imposed on an operator ` to be of a−Volterra type is necessary for ` to
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x

y

|λ|−|µ|
|λ|

|µλ |

A

Fig. 2.1.

belong to the set V +
ab (1, 0). On the other hand, it follows from Theorem 2.4

that if µ 6= 0, −` ∈ Pab, and

|λ|
b∫

a

|`(1)(s)|ds ≤ |µ|,

then ` ∈ V +
ab (λ, µ). Therefore, the condition imposed on an operator ` to

be of a−Volterra type is not necessary for ` to belong to the set V +
ab (λ, µ)

with µ 6= 0.

Theorem 2.5. Let |µ| < |λ| and the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab. If, moreover,

`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ),

then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.12. Theorem 2.5 is nonimprovable in the sense that the as-
sumption

`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ)
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can be replaced neither by the assumption

(1− ε)`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ)

nor by the assumption

`0 ∈ V +
ab (λ, µ), −(1− ε)`1 ∈ V +

ab (λ, µ),

no matter how small ε > 0 would be (see Examples 2.6 and 2.7, p. 57).

In the case, where |µ| ≥ |λ|, the following statements hold.

Theorem 2.6. Let |µ| ≥ |λ| 6= 0, −` ∈ Pab, and let there exist a function
γ ∈ C̃(

[a, b];R+

)
satisfying the inequalities (2.10) and (2.11). If, moreover,

the inequality (2.23) holds, then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.13. Theorem 2.6 is nonimprovable in the sense that the in-
equality (2.23) cannot be replaced by the inequality (2.24), no matter how
small ε > 0 would be (see Example 2.8, p. 59).

Note also that if |µ| = |λ| and −` ∈ Pab, then there exists a function
γ ∈ C̃

(
[a, b];R+

)
satisfying (2.10) and (2.11). Indeed, in this case the

operator ` is considered to be nontrivial and thus, the function

γ(t) = 1 +

b∫

t

|`(1)(s)|ds for t ∈ [a, b]

satisfies (2.10) and (2.11).
Nevertheless, if |µ| > |λ| 6= 0, then the strict inequality (2.11) cannot

be replaced by the nonstrict inequality

|λ|γ(a) ≥ |µ|γ(b) (2.31)

(see Example 2.9, p. 59).

Theorem 2.7. Let |µ| ≥ |λ| 6= 0, −` ∈ Pab, ` be an a−Volterra operator,
and let there exist a function γ ∈ C̃

(
[a, b];R+

)
satisfying the inequalities

(2.10) and (2.11). If, moreover, there exists a function β ∈ C̃
(
[a, b];R+

)
satisfying the inequalities

β(t) > 0 for t ∈ [a, b[ , (2.32)

β′(t) ≤ `(β)(t) for t ∈ [a, b], (2.33)

then the operator ` belongs to the set V +
ab (λ, µ).
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Remark 2.14. Theorem 2.7 is nonimprovable in the sense that the as-
sumption (2.32) cannot be replaced by the assumption

β(t) > 0 for t ∈ [a, b1[ , (2.34)

where b1 ∈ ]a, b[ is an arbitrarily fixed point (see Example 2.10, p. 60).
Note also that if |µ| = |λ| and −` ∈ Pab, then there exists a function

γ ∈ C̃(
[a, b];R+

)
satisfying (2.10) and (2.11) (see Remark 2.13).

Nevertheless, if |µ| > |λ| 6= 0, then the inequality (2.11) cannot be
replaced by the inequality (2.31) (see Example 2.9, p. 59).

Theorem 2.8. Let |µ| ≥ |λ| 6= 0 and the operator ` admit the representa-
tion ` = `0 − `1, where `0, `1 ∈ Pab. Let, moreover,

‖`0(1)‖L <

∣∣∣∣
λ

µ

∣∣∣∣ , (2.35)

|µ|
|λ| − |µ|‖`0(1)‖L

− 1 < ‖`1(1)‖L ≤ 1. (2.36)

Then the operator ` belongs to the set V +
ab (λ, µ).

Remark 2.15. Let |µ| ≥ |λ| 6= 0 and

B
def=

{
(x, y) ∈ R+ ×R+ : x <

∣∣∣∣
λ

µ

∣∣∣∣ ,
|µ|

|λ| − |µ|x − 1 < y ≤ 1.
}

(see Fig. 2.2; note also that if |µ| ≥ 2|λ|, then B = Ø).
According to Theorem 2.8, if ` = `0 − `1, `0, `1 ∈ Pab, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ B,

then ` ∈ V +
ab (λ, µ). Below we will show (see On Remark 2.15, p. 61) that for

every x0, y0 ∈ R+, (x0, y0) 6∈ B there exists ` ∈ Lab such that ` = `0 − `1,
`0, `1 ∈ Pab, (2.30) holds, and ` 6∈ V +

ab (λ, µ). In particular, neither one of
the inequalities in (2.35) and (2.36) can be weakened.

2.2. On the Set V −
ab(λ, µ)

In this subsection, nonimprovable, in a certain sense, sufficient conditions
guaranteeing the inclusion ` ∈ V −ab (λ, µ) are established. First, in Theo-
rems 2.9–2.11, we consider the case |µ| ≤ |λ|. Theorems 2.12–2.16 concern
the case |µ| ≥ |λ|.
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Fig. 2.2.

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 2.9. Let 0 6= |µ| ≤ |λ|, ` ∈ Pab, and let there exist a function
γ ∈ C̃(

[a, b];R+

)
satisfying the inequalities (2.20) and

|λ|γ(a) < |µ|γ(b). (2.37)

If, moreover,
b∫

a

`(1)(s)ds ≤ 1, (2.38)

then the operator ` belongs to the set V −ab (λ, µ).

Theorem 2.10. Let 0 6= |µ| ≤ |λ|, ` ∈ Pab, ` be a b−Volterra operator,
and let there exist a function γ ∈ C̃

(
[a, b];R+

)
satisfying the inequalities

(2.20) and (2.37). If, moreover, there exists a function β ∈ C̃
(
[a, b];R+

)
satisfying

β(t) > 0 for t ∈ ]a, b], (2.39)

β′(t) ≥ `(β)(t) for t ∈ [a, b], (2.40)

then the operator ` belongs to the set V −ab (λ, µ).
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Theorem 2.11. Let 0 6= |µ| ≤ |λ| and the operator ` admit the represen-
tation ` = `0 − `1, where `0, `1 ∈ Pab. Let, moreover,

‖`1(1)‖L <
∣∣∣µ
λ

∣∣∣ ,

|λ|
|µ| − |λ|‖`1(1)‖L

− 1 < ‖`0(1)‖L ≤ 1.

Then the operator ` belongs to the set V −ab (λ, µ).

In the case, where |µ| ≥ |λ|, the following assertions hold.

Proposition 2.2. Let |µ| > |λ| and −` ∈ Pab. Then ` ∈ V −ab (λ, µ) iff the
problem

u′(t) ≥ `(u)(t), λu(a) + µu(b) = 0

has no nontrivial nonnegative solution.

Theorem 2.12. Let |µ| > |λ| and −` ∈ Pab. Then the operator ` belongs to
the set V −ab (λ, µ) iff there exists a function γ ∈ C̃(

[a, b]; ]0,+∞[
)

satisfying
the inequalities (2.20) and (2.37).

Corollary 2.3. Let |µ| > |λ|, −` ∈ Pab, and let at least one of the following
items be fulfilled:

a) ` is a b−Volterra operator and

|λ| exp




b∫

a

|`(1)(s)|ds

 < |µ| ;

b) there exist m, k ∈ N and a constant α ∈ ]0, 1[ such that m > k and
the inequality (2.13) is fulfilled, where ρ1 ≡ 1 and

ρi+1(t)
def= − |λ|

|µ| − |λ|

b∫

a

`(ρi)(s)ds−
b∫

t

`(ρi)(s)ds

for t ∈ [a, b], i ∈ N ;
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c) there exists ` ∈ Pab such that

|λ| exp




b∫

a

|`(1)(s)|ds

+

+|µ|
b∫

a

`(1)(s) exp




s∫

a

|`(1)(ξ)|dξ

 ds < |µ|,

and on the set Cλµ

(
[a, b];R+

)
the inequality

`(1)(t)ϑ(v)(t)− `(ϑ(v))(t) ≤ `(v)(t) for t ∈ [a, b]

holds, where

ϑ(v)(t) def= − |λ|
|µ| − |λ|

b∫

a

`(v)(s)ds−
b∫

t

`(v)(s)ds for t ∈ [a, b].

Then the operator ` belongs to the set V −ab (λ, µ).

Theorem 2.13. Let |µ| ≥ |λ|, ` ∈ Pab, ` be a b−Volterra operator, and let
there exist a function γ ∈ C̃(

[a, b];R+

)
satisfying (2.10) and

γ(t) > 0 for t ∈ ]a, b] . (2.41)

Then the operator ` belongs to the set V −ab (λ, µ).

Theorem 2.14. Let |µ| ≥ |λ|, ` ∈ Pab, ` be a b−Volterra operator, and
let the inequality (2.38) be satisfied. Then the operator ` belongs to the set
V −ab (λ, µ).

Corollary 2.4. Let |µ| ≥ |λ|, ` ∈ Pab, ` be a b−Volterra operator, and

b∫

a

˜̀(1)(s) exp




b∫

s

`(1)(ξ)dξ


 ds ≤ 1,
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where

˜̀(v)(t) def= `
(
θ̃(v)

)
(t)− `(1)(t)θ̃(v)(t) for t ∈ [a, b],

θ̃(v)(t) def= −
b∫

t

`(ṽ)(s)ds for t ∈ [a, b],

ṽ(t) def= v(t) exp


−

b∫

t

`(1)(s)ds


 for t ∈ [a, b].

Then the operator ` belongs to the set V −ab (λ, µ).

Theorem 2.15. Let |µ| ≥ |λ| 6= 0 and the operator ` admit the represen-
tation ` = `0 − `1, where `0, `1 ∈ Pab. Let, moreover,

‖`1(1)‖L < 1,

‖`1(1)‖L

1− ‖`1(1)‖L
− |µ| − |λ|

|λ| < ‖`0(1)‖L ≤
∣∣∣∣
λ

µ

∣∣∣∣ .

Then the operator ` belongs to the set V −ab (λ, µ).

Theorem 2.16. Let |µ| > |λ| and the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab. If, moreover,

`0 ∈ V −ab (λ, µ), −`1 ∈ V −ab (λ, µ),

then the operator ` belongs to the set V −ab (λ, µ).

Remark 2.16. Let ` ∈ Lab, q ∈ L
(
[a, b];R

)
, and c ∈ R. Define the

operator ψ : L
(
[a, b];R

) → L
(
[a, b];R

)
by

ψ(w)(t) def= w(a+ b− t) for t ∈ [a, b].

Let, moreover, ϕ be a restriction of ψ to the space C
(
[a, b];R

)
and

̂̀(w)(t) def= −ψ(`(ϕ(w)))(t), q̂(t) def= −ψ(q)(t) for t ∈ [a, b].

It is clear that if u is a solution of the problem (1.1), (1.2), then the function
v

def= ϕ(u) is a solution of the problem

v′(t) = ̂̀(v)(t) + q̂(t), µv(a) + λv(b) = c, (2.42)
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and vice versa, if v is a solution of the problem (2.42), then the function
u

def= ϕ(v) is a solution of the problem (1.1), (1.2).
Therefore, ` ∈ V −ab (λ, µ) (resp. ` ∈ V +

ab (λ, µ)) if and only if ̂̀∈ V +
ab (µ, λ)

(resp. ̂̀∈ V −ab (µ, λ)).
It is also evident that if α ∈ C̃(

[a, b];R
)

satisfies the inequality

α′(t) ≤ `(α)(t),
(
resp. α′(t) ≥ `(α)(t)

)
for t ∈ [a, b], (2.43)

then the function β def= ϕ(α) satisfies the inequality

β′(t) ≥ ̂̀(β)(t),
(
resp. β′(t) ≤ ̂̀(β)(t)

)
for t ∈ [a, b], (2.44)

and vice versa, if β ∈ C̃
(
[a, b];R

)
satisfies the inequality (2.44), then the

function α def= ϕ(β) satisfies the inequality (2.43).

Remark 2.17. According to Remark 2.16, Theorems 2.9–2.16, Proposi-
tion 2.2, and Corollaries 2.3 and 2.4 can be immediately derived from
Theorems 2.1–2.8, Proposition 2.1, and Corollaries 2.1 and 2.2. More-
over, by virtue of Remarks 2.4–2.15, the results guaranteeing the inclusion
` ∈ V −ab (λ, µ) are nonimprovable in an appropriate sense.

2.3. Proofs

Proof of Proposition 2.1. First suppose that ` ∈ V +
ab (λ, µ). If u is a

solution of the problem (2.9), then, according to (2.1), the assumption
` ∈ V +

ab (λ, µ), and Remark 2.3 (see p. 16), we obtain u(t) ≤ 0 for t ∈ [a, b].
Therefore, the problem (2.9) has no notrivial nonnegative solution.

Now suppose that the problem (2.9) has no nontrivial nonnegative so-
lution. Let u0 be a solution of the problem (1.10), (1.20). According to
(2.1) and (2.8), we obtain

|u0(t)|′ = `(u0)(t) sgnu0(t) ≤ `(|u0|)(t) for t ∈ [a, b],

λ|u0(a)|+ µ|u0(b)| = 0.

Therefore, |u0| is a solution of the problem (2.9). Hence, |u0| ≡ 0, i.e., the
homogeneous problem (1.10), (1.20) has only the trivial solution.

Let u be a solution of the problem (1.1), (1.2) with q ∈ L
(
[a, b];R+

)
and c ∈ R such that (2.2) is fulfilled. It easily follows from (2.2) that

c sgnλ
|λ| − |µ| ≥ 0. (2.45)
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Taking now into account (1.1), (2.8), (2.45), and the assumption q ∈
L

(
[a, b];R+

)
, we get that on [a, b] the inequality

[v(t)]′− ≤ `([v]−)(t) +
sgn v(t)− 1

2

(
q(t) +

c sgnλ
|λ| − |µ| `(1)(t)

)
≤ `([v]−)(t)

holds, where

v(t) = u(t)− c sgnλ
|λ| − |µ| for t ∈ [a, b]. (2.46)

On the other hand, by virtue of (1.2) and (2.1),

λv(a) + µv(b) = 0.

This equality, together with (2.1), yields

λ[v(a)]− + µ[v(b)]− = 0.

Thus, [v]− is a solution of the problem (2.9). Hence, [v]− ≡ 0. Taking
now into account (2.45) and (2.46), we get u(t) ≥ 0 for t ∈ [a, b] and so
` ∈ V +

ab (λ, µ).

Proof of Theorem 2.1. First suppose that there exists a function γ ∈
C̃

(
[a, b]; ]0,+∞[

)
satisfying the inequalities (2.10) and (2.11).

Let u be a solution of the problem (1.1), (1.2), where q ∈ L(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) is fulfilled. It easily follows from
(1.2), (2.1), and (2.2) that

|λ|u(a) ≥ |µ|u(b). (2.47)

We will show that
u(t) ≥ 0 for t ∈ [a, b]. (2.48)

Assume the contrary that (2.48) is not valid. Then there exists t0 ∈ [a, b]
such that

u(t0) < 0. (2.49)

Put

r = max
{
−u(t)
γ(t)

: t ∈ [a, b]
}

and
w(t) = rγ(t) + u(t) for t ∈ [a, b]. (2.50)
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According to (2.49),
r > 0. (2.51)

It is clear that
w(t) ≥ 0 for t ∈ [a, b] (2.52)

and there exists t∗ ∈ [a, b] such that

w(t∗) = 0. (2.53)

By virtue of (1.1), (2.8), (2.10), (2.51), (2.52), and the assumption q ∈
L

(
[a, b];R+

)
, we get

w′(t) ≥ `(w)(t) + q(t) ≥ 0 for t ∈ [a, b].

From the last inequality, (2.52), and (2.53), we obtain w(a) = 0 and, in
view of (2.11), (2.50), (2.51), and (2.52), we get

|λ|u(a) = −r|λ|γ(a) < −r|µ|γ(b) = |µ|(u(b)− w(b)) ≤ |µ|u(b),
which contradicts (2.47).

We have proved that if u is a solution of the problem (1.1), (1.2), where
q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, then

the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.10), (1.20) has only the trivial solution. Indeed, let u0 be a
solution of the problem (1.10), (1.20). Obviously, −u0 is a solution of the
problem (1.10), (1.20), as well, and, according to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b].

Therefore, u0 ≡ 0.
Now suppose that ` ∈ V +

ab (λ, µ). According to Definition 2.1 (see p. 15)
and Theorem 1.1 (see p. 14), the problem

γ′(t) = `(γ)(t), (2.54)

λγ(a) + µγ(b) = sgnλ (2.55)

has a unique solution γ and

γ(t) ≥ 0 for t ∈ [a, b]. (2.56)

By virtue of (2.1), (2.55), and (2.56), it is clear that (2.11) holds and

γ(a) > 0. (2.57)

On account of (2.8), (2.56), and (2.57), it follows from (2.54) that γ(t) > 0
for t ∈ [a, b].
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Proof of Corollary 2.1. a) Let ` be an a−Volterra operator. It is not
difficult to verify that the function

γ(t) = exp




t∫

a

`(1)(s)ds


 for t ∈ [a, b]

satisfies the inequality (2.10). On the other hand, on account of (2.12),
the condition (2.11) is fulfilled. Therefore, the assumptions of Theorem 2.1
(see p. 17) are satisfied.

b) It can be easily verified that the function

γ(t) def= (1− α)
k∑

j=1

ρj(t) +
m∑

j=k+1

ρj(t) for t ∈ [a, b]

satisfies the assumptions of Theorem 2.1 (see p. 17).
c) According to (2.15), there exists ε > 0 such that

εγ0 exp




b∫

a

`(1)(s)ds


+

+|λ|γ0

b∫

a

`(1)(s) exp




b∫

s

`(1)(ξ)dξ


 ds ≤ 1,

(2.58)

where

γ0 =
1

|λ| − |µ| exp

(
b∫
a
`(1)(s)ds

) .

Put

γ(t) = γ0


ε exp




t∫

a

`(1)(s)ds


 + |λ|

t∫

a

`(1)(s) exp




t∫

s

`(1)(ξ)dξ


 ds+

+|µ| exp




b∫

a

`(1)(ξ)dξ




b∫

t

`(1)(s) exp




t∫

s

`(1)(ξ)dξ


 ds


 for t ∈ [a, b].
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Obviously, γ ∈ C̃(
[a, b]; ]0,+∞[

)
and γ is a solution of the problem

γ′(t) = `(1)(t)γ(t) + `(1)(t), (2.59)

λγ(a) + µγ(b) = ε sgnλ. (2.60)

Since `, ` ∈ Pab and γ(t) > 0 for t ∈ [a, b], the inequality (2.59) yields
γ′(t) ≥ 0 for t ∈ [a, b] and, in view of (2.58), we have γ(t) ≤ 1 for t ∈ [a, b].
Therefore, from (2.1), (2.59), and (2.60) we obtain

γ′(t) ≥ `(1)(t)γ(t) + `(γ)(t) for t ∈ [a, b], |λ|γ(a) > |µ|γ(b).

Consequently, by Theorem 2.1 (see p. 17) we find

˜̀∈ V +
ab (λ, µ), (2.61)

where
˜̀(v)(t) def= `(1)(t)v(t) + `(v)(t) for t ∈ [a, b]. (2.62)

According to Proposition 2.1 (see p. 17), it is sufficient to show that the
problem (2.9) has no nontrivial nonnegative solution. Let u ∈ C̃(

[a, b];R+

)
satisfy (2.9). Put

w(t) = ϑ(u)(t) for t ∈ [a, b], (2.63)

where ϑ is defined by (2.17). Obviously,

w′(t) = `(u)(t) ≥ u′(t) for t ∈ [a, b]

and

0 ≤ u(t) ≤ w(t) for t ∈ [a, b], λw(a) + µw(b) = 0. (2.64)

On the other hand, in view of (2.16), (2.62)–(2.64), and the assumptions
`, ` ∈ Pab, we get

w′(t) = `(u)(t) ≤ `(1)(t)w(t) + `(w)(t)− `(1)(t)w(t) =

= `(1)(t)w(t) + `(ϑ(u))(t)− `(1)(t)ϑ(u)(t) ≤ `(1)(t)w(t) + `(u)(t) ≤

≤ `(1)(t)w(t) + `(w)(t) = ˜̀(w)(t) for t ∈ [a, b].

Now, by (2.61), (2.64), and Proposition 2.1 (see p. 17) we obtain w ≡ 0.
Consequently, u ≡ 0.
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To prove Theorems 2.2 and 2.3 we need the following lemma.

Lemma 2.1. Let |µ| ≤ |λ|, −` ∈ Pab, and ` be an a−Volterra operator.
Let, moreover, u be a nontrivial solution of the problem (1.1), (1.2), where
q ∈ L(

[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, satisfying

min{u(t) : t ∈ [a, b]} < 0. (2.65)

Then there exist t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that

u(t∗) = min{u(t) : t ∈ [a, b]},
u(t∗) = max{u(t) : t ∈ [a, t∗]} > 0.

(2.66)

Proof. Put

m = −min{u(t) : t ∈ [a, b]}, (2.67)

I = {t ∈ [a, b] : u(t) = −m}, t∗ = sup I.

Obviously, m > 0 and
u(t∗) = −m. (2.68)

In view of (1.2), (2.1) and (2.2), it is clear that

if a ∈ I, then |λ| = |µ|, c = 0, and t∗ = b. (2.69)

Therefore, t∗ ∈ ]a, b].
We will show that

max{u(t) : t ∈ [a, t∗]} > 0.

Assume the contrary that

u(t) ≤ 0 for t ∈ [a, t∗]. (2.70)

Since ` is an a−Volterra operator, the integration of (1.1) from a to t∗,
on account of (2.70) and the assumptions −` ∈ Pab and q ∈ L(

[a, b];R+

)
,

results in

u(t∗)− u(a) =

t∗∫

a

|`(u)(s)|ds+

t∗∫

a

q(s)ds ≥ 0. (2.71)
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From the last inequality, in view of (2.67) and (2.68), we obtain a ∈ I and
thus, it follows from (2.69) that |λ| = |µ|, c = 0, and t∗ = b. According to
(2.71) we find q ≡ 0 and `(u) ≡ 0, i.e.,

u(t) = u(a) = −m for t ∈ [a, b].

Hence, (2.71) implies
0 = m‖`(1)‖L.

Since we suppose that for |λ| = |µ| the operator ` is nontrivial, the last
equality yields m = 0, a contradiction.

Proof of Theorem 2.2. Let u be a nontrivial solution of the problem
(1.1), (1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality

(2.2) holds. We will show that (2.48) is fulfilled. Assume the contrary that
the inequality (2.65) holds. According to Lemma 2.1 (see p. 34), there exist
t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that (2.66) is valid. It is clear that there
exists t0 ∈ ]t∗, t∗[ such that

u(t0) = 0. (2.72)

Put
w(t) = rγ(t)− u(t) for t ∈ [a, b],

where

r = max
{
u(t)
γ(t)

: t ∈ [a, t0]
}
.

Obviously,
r > 0 (2.73)

and there exists t1 ∈ [a, t0[ such that

w(t1) = 0. (2.74)

It is also evident that

w(t) ≥ 0 for t ∈ [a, t0]. (2.75)

Due to (1.1), (2.20), and (2.73), we get

w′(t) ≤ `(w)(t)− q(t) for t ∈ [a, b].

Hence, by virtue of (2.75), the assumptions −` ∈ Pab and q ∈ L(
[a, b];R+

)
,

and the fact that ` is an a−Volterra operator, we obtain

w′(t) ≤ 0 for t ∈ [a, t0].
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Thus, in view of (2.74),

w(t) ≤ 0 for t ∈ [t1, t0],

whence, together with (2.21), (2.72), and (2.73), we find 0 < w(t0) ≤ 0, a
contradiction.

We have proved that if u is a nontrivial solution of the problem (1.1),
(1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2)

holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.10), (1.20) has a nontrivial solution u0. Obviously, −u0

is a nontrivial solution of the problem (1.10), (1.20), as well, and, according
to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b],

a contradiction.

Proof of Theorem 2.3. Let u be a nontrivial solution of the problem
(1.1), (1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality

(2.2) holds. We will show that (2.48) is fulfilled. Assume the contrary that
the inequality (2.65) holds. According to Lemma 2.1 (see p. 34), there exist
t∗ ∈ ]a, b] and t∗ ∈ [a, t∗[ such that (2.66) is valid. The integration of (1.1)
from t∗ to t∗ yields

u(t∗)− u(t∗) = −
t∗∫

t∗

`(u)(s)ds−
t∗∫

t∗

q(s)ds.

Hence, in view of (2.66), the assumptions −` ∈ Pab, q ∈ L
(
[a, b];R+

)
, and

the fact that ` is an a−Volterra operator, we find

u(t∗) < u(t∗) + |u(t∗)| ≤ u(t∗)

b∫

a

|`(1)(s)|ds.

The last inequality, together with (2.23), implies the contradiction u(t∗) <
u(t∗).

We have proved that if u is a nontrivial solution of the problem (1.1),
(1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2)

holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.10), (1.20) has a nontrivial solution u0. Obviously, −u0
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is a nontrivial solution of the problem (1.10), (1.20), as well, and, according
to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b],

a contradiction.

Proof of Corollary 2.2. Let u be a solution of the problem (1.1), (1.2),
where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) is

fulfilled. We will show that (2.48) holds. From (1.1) we get

u′(t) = `(1)(t)u(t) + `(u)(t)− `(1)(t)u(t) + q(t) for t ∈ [a, b]. (2.76)

On the other hand, the integration of (1.1) from a to t yields

u(t) = u(a) +

t∫

a

`(u)(s)ds+

t∫

a

q(s)ds for t ∈ [a, b]. (2.77)

By virtue of (2.77), from (2.76) we obtain

u′(t) = `(1)(t)u(t) + `(θ(u))(t)− `(1)(t)θ(u)(t)+

+q0(t) for t ∈ [a, b],
(2.78)

where

q0(t) = `(q∗)(t)− `(1)(t)q∗(t) + q(t) for t ∈ [a, b], (2.79)

θ(v)(t) =

t∫

a

`(v)(s)ds, q∗(t) =

t∫

a

q(s)ds for t ∈ [a, b].

In view of the conditions −` ∈ Pab, q ∈ L
(
[a, b];R+

)
, and the fact that ` is

an a−Volterra operator, we have

`(q∗)(t)− `(1)(t)q∗(t) ≥ 0 for t ∈ [a, b].

Thus, due to the condition q ∈ L(
[a, b];R+

)
, (2.79) yields

q0(t) ≥ 0 for t ∈ [a, b]. (2.80)

Put

w(t) = u(t) exp


−

t∫

a

`(1)(s)ds


 for t ∈ [a, b]. (2.81)



38 §2. ON DIFFERENTIAL INEQUALITIES

Then
λw(a) = λu(a) = c− µu(b) = c− µ̃w(b), (2.82)

where

µ̃ = µ exp




b∫

a

`(1)(s)ds


 ,

and since −` ∈ Pab, we have |µ̃| ≤ |µ|. Clearly, λµ̃ ≤ 0.
Due to (2.78), it is evident that

w′(t) = exp




t∫

a

|`(1)(s)|ds

 ˜̀(w)(t) + q̃(t) for t ∈ [a, b], (2.83)

where ˜̀ is defined by (2.26) and

q̃(t) = q0(t) exp


−

t∫

a

`(1)(s)ds


 for t ∈ [a, b]. (2.84)

It is easy to verify that −˜̀∈ Pab and ˜̀ is an a−Volterra operator. Thus,
in view of (2.25), the conditions λµ̃ ≤ 0 and |µ̃| ≤ |λ|, and Theorem 2.3
(see p. 20), the operator T defined by

T (v)(t) def= ˜̀(v)(t) exp




t∫

a

|`(1)(s)|ds

 for t ∈ [a, b],

belongs to the set V +
ab (λ, µ̃). Therefore, by virtue of (2.2), (2.80), (2.82)–

(2.84), and the condition λµ̃ ≤ 0, we have w(t) ≥ 0 for t ∈ [a, b]. Conse-
quently, in view of (2.81), the inequality (2.48) is satisfied.

We have proved that if u is a solution of the problem (1.1), (1.2), where
q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, then

the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.10), (1.20) has only the trivial solution. Indeed, let u0 be a
solution of the problem (1.10), (1.20). Obviously, −u0 is a solution of the
problem (1.10), (1.20), as well, and, according to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b].

Therefore, u0 ≡ 0.
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To prove Theorem 2.4 we need the following lemma.

Lemma 2.2. Let 0 6= |µ| ≤ |λ|, q ∈ L
(
[a, b];R−

)
, and c ∈ R be such that

the inequality
c sgnλ ≤ 0 (2.85)

holds. Further, let the operator ` admit the representation ` = `0 − `1,
where `0 and `1 satisfy the condition (2.27). If, moreover,

‖`0(1)‖L < 1,
‖`0(1)‖L

1− ‖`0(1)‖L
− |λ| − |µ|

|µ| < ‖`1(1)‖L, (2.86)

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality

u(t) ≥ 0 for t ∈ [a, b]. (2.87)

Proof. Assume the contrary that the problem (1.1), (1.2) has a nontrivial
solution u satisfying (2.87). Put

M = max{u(t) : t ∈ [a, b]}, m = min{u(t) : t ∈ [a, b]} (2.88)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = m. (2.89)

Obviously, M > 0, m ≥ 0, and either

tM < tm (2.90)

or
tM > tm. (2.91)

First suppose that (2.91) holds. The integration of (1.1) from tm to tM ,
on account of (2.27), (2.87)–(2.89), and the assumption q ∈ L

(
[a, b];R−

)
,

results in

M −m =

tM∫

tm

[`0(u)(s)− `1(u)(s) + q(s)]ds ≤M

tM∫

tm

`0(1)(s)ds ≤M‖`0(1)‖L.

Hence, by virtue of the first inequality in (2.86), we get

0 < M(1− ‖`0(1)‖L) ≤ m. (2.92)
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Now suppose that (2.90) is fulfilled. Clearly, the condition (1.2), in view
of (2.1), (2.85), (2.87), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], implies

u(b)− u(a) ≥
∣∣∣µ
λ

∣∣∣u(b)− u(a) = −c sgnλ
|λ| ≥ 0. (2.93)

The integration of (1.1) from a to tM and from tm to b, in view of (2.27),
(2.87)–(2.89), and the assumption q ∈ L(

[a, b];R−
)
, yields

M − u(a) ≤M

tM∫

a

`0(1)(s)ds, u(b)−m ≤M

b∫

tm

`0(1)(s)ds.

Summing the last two inequalities and taking into account (2.27), (2.86),
and (2.93), we find that the inequality (2.92) is satisfied.

Therefore, in both cases (2.90) and (2.91), the inequality (2.92) is valid.
On the other hand, the integration of (1.1) from a to b, in view of (2.27),

(2.88), and the assumption q ∈ L(
[a, b];R−

)
, implies

u(b)− u(a) =

b∫

a

[`0(u)(s)− `1(u)(s) + q(s)]ds ≤M‖`0(1)‖L −m‖`1(1)‖L.

Hence, by (1.2), (2.1), (2.85), (2.88), and the assumption 0 6= |µ| ≤ |λ|, we
have

m‖`1(1)‖L ≤M‖`0(1)‖L+u(a)
(

1 +
λ

µ

)
− c

µ
≤M‖`0(1)‖L+m

(
1−

∣∣∣∣
λ

µ

∣∣∣∣
)
.

Thus,

m

(
‖`1(1)‖L +

|λ| − |µ|
|µ|

)
≤M‖`0(1)‖L.

This inequality, together with (2.92), results in

‖`1(1)‖L ≤ ‖`0(1)‖L

1− ‖`0(1)‖L
− |λ| − |µ|

|µ| ,

which contradicts the second inequality in (2.86).

Proof of Theorem 2.4. Let u be a nontrivial solution of the problem
(1.1), (1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality

(2.2) is fulfilled. We will show that (2.48) is satisfied.
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Assume that u changes its sign. Put

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]} (2.94)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (2.95)

Obviously,
M > 0, m > 0, (2.96)

and either (2.90) or (2.91) is valid.
First suppose that (2.90) is fulfilled. The integration of (1.1) from tM to

tm, in view of (2.27), (2.94), (2.95), and the assumption q ∈ L(
[a, b];R+

)
,

results in

M +m =

tm∫

tM

`1(u)(s)ds−
tm∫

tM

`0(u)(s)ds−
tm∫

tM

q(s)ds ≤

≤M

tm∫

tM

`1(1)(s)ds+m

tm∫

tM

`0(1)(s)ds ≤M‖`1(1)‖L +m‖`0(1)‖L.

Hence, according to (2.28), (2.29), (2.96), and the assumption
∣∣µ
λ

∣∣ ≤ 1, we
get the contradiction M +m < M +m.

Now suppose that (2.91) holds. Clearly, the condition (1.2), in view of
(2.1) and (2.2), implies

u(a)−
∣∣∣µ
λ

∣∣∣u(b) =
c

λ
=

c

|λ| sgnλ ≥ 0. (2.97)

The integration of (1.1) from a to tm and from tM to b, on account of (2.27),
(2.94), (2.95), and the assumptions

∣∣µ
λ

∣∣ ∈ ]0, 1] and q ∈ L(
[a, b];R+

)
, yields

m+ u(a) ≤M

tm∫

a

`1(1)(s)ds+m

tm∫

a

`0(1)(s)ds,

∣∣∣µ
λ

∣∣∣
(
M − u(b)

) ≤M − u(b) ≤M

b∫

tM

`1(1)(s)ds+m

b∫

tM

`0(1)(s)ds.
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Summing these inequalities and taking into account (2.97), we obtain
∣∣∣µ
λ

∣∣∣M +m ≤M‖`1(1)‖L +m‖`0(1)‖L,

which, according to (2.28), (2.29), and (2.96), yields the contradiction∣∣µ
λ

∣∣M +m <
∣∣µ
λ

∣∣M +m.
Therefore, u does not change its sign, and, by virtue of Lemma 2.2 (see

p. 39), the inequality (2.48) is valid.
We have proved that if u is a nontrivial solution of the problem (1.1),

(1.2), where q ∈ L
(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2)

holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.10), (1.20) has a nontrivial solution u0. Obviously, −u0

is a nontrivial solution of the problem (1.10), (1.20), as well, and, according
to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b],

a contradiction.

Proof of Theorem 2.5. Let u be a solution of the problem (1.1), (1.2),
where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) is

fulfilled. Since −`1 ∈ V +
ab (λ, µ), the problem

α′(t) = −`1(α)(t)− `0([u]−)(t), (2.98)

λα(a) + µα(b) = 0 (2.99)

has a unique solution α and

α(t) ≤ 0 for t ∈ [a, b]. (2.100)

In view of (1.1), (2.98), and (2.99), we get

(
u(t)− α(t)

)′ = −`1(u− α) + `0([u]+) + q(t) for t ∈ [a, b],

λ
(
u(a)− α(a)

)
+ µ

(
u(b)− α(b)

)
= c.

According to (2.2) and the assumptions `0 ∈ Pab, q ∈ L
(
[a, b];R+

)
, and

−`1 ∈ V +
ab (λ, µ), it is obvious that

α(t) ≤ u(t) for t ∈ [a, b]. (2.101)
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Now, (2.100) and (2.101) imply

α(t) ≤ −[u(t)]− for t ∈ [a, b]. (2.102)

On the other hand, according to (2.98), (2.100), (2.102), and the assump-
tions `0, `1 ∈ Pab, we have

α′(t) ≥ `0(α)(t)− `1(α)(t) ≥ `0(α)(t) for t ∈ [a, b].

Hence, the inclusion `0 ∈ V +
ab (λ, µ), on account of (2.1), (2.99), and Re-

mark 2.3 (see p. 16), implies

α(t) ≥ 0 for t ∈ [a, b].

It follows from this inequality and (2.101) that (2.48) holds.
We have proved that if u is a solution of the problem (1.1), (1.2), where

q ∈ L
(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, then

the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.10), (1.20) has only the trivial solution. Indeed, let u0 be a
solution of the problem (1.10), (1.20). Obviously, −u0 is a solution of the
problem (1.10), (1.20), as well, and, according to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b].

Therefore, u0 ≡ 0.

Proof of Theorem 2.6. Let u be a solution of the problem (1.1), (1.2),
where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds.

We will show that (2.48) is fulfilled.
Suppose that u changes its sign. Define the numbers M and m by

(2.94) and choose tM , tm ∈ [a, b] such that (2.95) is fulfilled. Obviously,
(2.96) holds and either (2.90) or (2.91) is satisfied.

First assume that (2.90) is fulfilled. The integration of (1.1) from tM
to tm, in view of (2.94), (2.95), and the assumptions −` ∈ Pab and q ∈
L

(
[a, b];R+

)
, results in

M +m = −
tm∫

tM

`(u)(s)ds−
tm∫

tM

q(s)ds ≤M

b∫

a

|`(1)(s)|ds.

Hence, according to (2.23) and (2.96), we obtain M + m ≤ M , which
contradicts (2.96).
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Now suppose that (2.91) holds. The integration of (1.1) from a to
tm and from tM to b, on account of (2.94), (2.95), and the assumptions
−` ∈ Pab and q ∈ L(

[a, b];R+

)
, yields

u(a) +m = −
tm∫

a

`(u)(s)ds−
tm∫

a

q(s)ds ≤M

tm∫

a

|`(1)(s)|ds, (2.103)

M − u(b) = −
b∫

tM

`(u)(s)ds−
b∫

tM

q(s)ds ≤M

b∫

tM

|`(1)(s)|ds. (2.104)

Multiplying both sides of (2.103) by
∣∣∣λ
µ

∣∣∣ and taking into account the as-

sumptions
∣∣∣λ
µ

∣∣∣ ∈ ]0, 1] and M > 0, we get

∣∣∣∣
λ

µ

∣∣∣∣u(a) +
∣∣∣∣
λ

µ

∣∣∣∣m ≤M

tm∫

a

|`(1)(s)|ds.

Summing the last inequality and (2.104), on account of (1.2), (2.1), (2.2),
and the condition M > 0, we find

∣∣∣∣
λ

µ

∣∣∣∣m+M ≤
∣∣∣∣
λ

µ

∣∣∣∣m+M +
c

|µ| sgnλ ≤M

b∫

a

|`(1)(s)|ds.

Hence, according to (2.23) and (2.96), we reach the contradiction
∣∣∣λ
µ

∣∣∣m+
M ≤M .

Therefore, u does not change its sign. Now assume on the contrary that
(2.48) is not valid. Due to the above–proved we have

u(t) ≤ 0 for t ∈ [a, b], u 6≡ 0. (2.105)

It follows from (1.1), (2.105), and the assumptions −` ∈ Pab and q ∈
L

(
[a, b];R+

)
that

u′(t) ≥ `(u)(t) ≥ 0 for t ∈ [a, b]. (2.106)

Clearly, (2.105) and (2.106) imply u(a) < 0. Further, by virtue of (1.2),
(2.1), and (2.2), we have

|µ|u(b) = |λ|u(a) + c sgnµ ≤ |λ|u(a). (2.107)
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Hence, with respect to the condition u(a) < 0 and the assumptions λ 6= 0
and µ 6= 0, we get u(b) < 0. Thus, (2.106) implies

u(t) < 0 for t ∈ [a, b]. (2.108)

Put

r = max
{
−γ(t)
u(t)

: t ∈ [a, b]
}

and
v(t) = ru(t) + γ(t) for t ∈ [a, b]. (2.109)

According to (2.11), (2.108), and the assumptions γ ∈ C̃
(
[a, b];R+

)
and

λ 6= 0, we have
r > 0. (2.110)

It is clear that
v(t) ≤ 0 for t ∈ [a, b] (2.111)

and there exists t0 ∈ [a, b] such that

v(t0) = 0. (2.112)

By virtue of (1.1), (2.10), (2.110), (2.111), and the assumptions −` ∈ Pab

and q ∈ L(
[a, b];R+

)
, we get

v′(t) ≥ `(v)(t) + rq(t) ≥ 0 for t ∈ [a, b].

From the last inequality, (2.111), and (2.112), we obtain v(b) = 0 and, in
view of (2.11) and (2.109)–(2.111), we find

|µ|u(b) = −|µ|
r
γ(b) > −|λ|

r
γ(a) =

= |λ|
(
u(a)− v(a)

r

)
≥ |λ|u(a),

(2.113)

which contradicts (2.107).
We have proved that if u is a solution of the problem (1.1), (1.2), where

q ∈ L
(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, then

the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.10), (1.20) has only the trivial solution. Indeed, let u0 be a
solution of the problem (1.10), (1.20). Obviously, −u0 is a solution of the
problem (1.10), (1.20), as well, and, according to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b].

Therefore, u0 ≡ 0.
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Proof of Theorem 2.7. Let u be a solution of the problem (1.1), (1.2),
where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds.

We will show that (2.48) is fulfilled.
Suppose that u(b) < 0. Then there exists t0 ∈ ]a, b[ such that

u(t) < 0 for t ∈ [t0, b]. (2.114)

Since ` is an a−Volterra operator, the restriction of u to the interval [a, t0]
is a solution of the equation (1.1) with the condition u(t0) < 0. Moreover,
the restriction of β to the interval [a, t0] is a positive absolutely continuous
function satisfying

β′(t) ≤ `(β)(t) for t ∈ [a, t0].

According to Theorem 2.12 (for λ = 0, µ = 1, and b = t0, see p. 26), the
condition u(t0) < 0, and the assumptions −` ∈ Pab and q ∈ L

(
[a, b];R+

)
,

we get
u(t) < 0 for t ∈ [a, t0].

This inequality, together with (2.114), yields (2.108). By the same argu-
ments as in the proof of Theorem 2.6 it can be shown that the inequality
(2.113) holds. On the other hand, by virtue of (1.2), (2.1), and (2.2), we
get (2.107), which contradicts (2.113).

Therefore, u(b) ≥ 0. In view of (1.2), (2.1), and (2.2), the inequality

u(a) ≥ 0 (2.115)

holds. Since ` is an a−Volterra operator, with respect to (2.32), (2.33), and
Theorem 2.2 (see p. 19), we get ` ∈ V +

ab (1, 0), which, by virtue of (2.115)
and the assumption q ∈ L(

[a, b];R+

)
, implies (2.48).

We have proved that if u is a solution of the problem (1.1), (1.2), where
q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2) holds, then

the inequality (2.48) is satisfied. Now we will show that the homogeneous
problem (1.10), (1.20) has only the trivial solution. Indeed, let u0 be a
solution of the problem (1.10), (1.20). Obviously, −u0 is a solution of the
problem (1.10), (1.20), as well, and, according to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b].

Therefore, u0 ≡ 0.

To prove Theorem 2.8 we need the following lemma.
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Lemma 2.3. Let |µ| ≥ |λ| 6= 0, q ∈ L(
[a, b];R−

)
, c ∈ R be such that (2.85)

holds, and let the operator ` admit the representation ` = `0 − `1, where `0
and `1 satisfy the condition (2.27). If, moreover,

‖`0(1)‖L <

∣∣∣∣
λ

µ

∣∣∣∣ ,
|µ|

|λ| − |µ|‖`0(1)‖L
− 1 < ‖`1(1)‖L, (2.116)

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality (2.87).

Proof. Assume the contrary that the problem (1.1), (1.2) has a nontrivial
solution u satisfying the condition (2.87). Define the numbers M and m
by (2.88) and choose tM , tm ∈ [a, b] such that (2.89) is satisfied. Obviously,
M > 0, m ≥ 0, and either (2.90) or (2.91) is valid.

First suppose that (2.91) holds. The integration of (1.1) from tm to tM ,
on account of (2.27), (2.87)–(2.89), and the assumptions

∣∣∣λ
µ

∣∣∣ ∈ ]0, 1] and

q ∈ L(
[a, b];R−

)
, results in

∣∣∣∣
λ

µ

∣∣∣∣M −m ≤M −m =

tM∫

tm

[`0(u)(s)− `1(u)(s) + q(s)] ds ≤

≤M

tM∫

tm

`0(1)(s)ds ≤M‖`0(1)‖L.

Hence, by virtue of the first inequality in (2.116), we get

0 < M

(∣∣∣∣
λ

µ

∣∣∣∣− ‖`0(1)‖L

)
≤ m. (2.117)

Now suppose that (2.90) is fulfilled. Clearly, the condition (1.2), on
account of (2.1) and (2.85), implies

u(b)−
∣∣∣∣
λ

µ

∣∣∣∣u(a) =
c

µ
= − c

|µ| sgnλ ≥ 0. (2.118)

The integration of (1.1) from a to tM and from tm to b, in view of (2.27),
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(2.87)–(2.89), and the assumptions
∣∣∣λ
µ

∣∣∣ ∈ ]0, 1] and q ∈ L(
[a, b];R−

)
, yields

∣∣∣∣
λ

µ

∣∣∣∣
(
M − u(a)

) ≤M − u(a) ≤
tM∫

a

`0(u)(s)ds ≤M

tM∫

a

`0(1)(s)ds,

u(b)−m ≤
b∫

tm

`0(u)(s)ds ≤M

b∫

tm

`0(1)(s)ds.

Summing the last two inequalities and taking into account (2.118) and the
first inequality in (2.116), we find that the inequlity (2.117) is satisfied.

Therefore, in both cases (2.90) and (2.91), the inequality (2.117) is valid.
On the other hand, the integration of (1.1) from a to b, in view of (2.27),

(2.88), and the assumption q ∈ L(
[a, b];R−

)
, results in

u(b)− u(a) =

b∫

a

[
`0(u)(s)− `1(u)(s) + q(s)

]
ds ≤M‖`0(1)‖L −m‖`1(1)‖L.

Hence, by (1.2), (2.1), (2.2), (2.85), (2.88), and the assumption
∣∣∣λ
µ

∣∣∣ ∈ ]0, 1],
we have

m‖`1(1)‖L ≤M‖`0(1)‖L + u(a)
(

1−
∣∣∣∣
λ

µ

∣∣∣∣
)

+
c

|µ| sgnλ ≤

≤M‖`0(1)‖L +M

(
1−

∣∣∣∣
λ

µ

∣∣∣∣
)

= M

(
‖`0(1)‖L −

∣∣∣∣
λ

µ

∣∣∣∣ + 1
)
.

This inequality, together with (2.117), yields

‖`1(1)‖L ≤ |µ|
|λ| − |µ|‖`0(1)‖L

− 1,

which contradicts the second inequality in (2.116).

In a similar manner one can prove the following assertion (we will need
it in §4).

Lemma 2.4. Let 0 6= |µ| ≤ |λ|, q ∈ L(
[a, b];R+

)
, and c ∈ R be such that

c sgnλ ≥ 0.



2.3. PROOFS 49

Further, let the operator ` admit the representation ` = `0 − `1, where `0
and `1 satisfy the condition (2.27). If, moreover,

‖`1(1)‖L <
∣∣∣µ
λ

∣∣∣ , |λ|
|µ| − |λ|‖`1(1)‖L

− 1 < ‖`0(1)‖L,

then the problem (1.1), (1.2) has no nontrivial solution u satisfying the
inequality (2.87).

Proof of Theorem 2.8. Let u be a nontrivial solution of the problem
(1.1), (1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality

(2.2) is fulfilled. We will show that (2.48) is satisfied.
Assume that u changes its sign. Define the numbers M and m by (2.94)

and choose tM , tm ∈ [a, b] such that (2.95) is satisfied. Obviously, (2.96)
holds, and either (2.90) or (2.91) is fulfilled.

First suppose that (2.90) is valid. The integration of (1.1) from tM to
tm, in view of (2.27), (2.94), (2.95), and the assumption q ∈ L(

[a, b];R+

)
,

results in

M +m =

tm∫

tM

[
`1(u)(s)− `0(u)(s)ds− q(s)

]
ds ≤

≤M

tm∫

tM

`1(1)(s)ds+m

tm∫

tM

`0(1)(s)ds ≤M‖`1(1)‖L +m‖`0(1)‖L.

Hence, according to (2.35), (2.36), (2.96), and the assumption
∣∣∣λ
µ

∣∣∣ ≤ 1, we
get the contradiction M +m < M +m.

Now suppose that (2.91) holds. Clearly, the condition (1.2), in view of
(2.1) and (2.2), implies

∣∣∣∣
λ

µ

∣∣∣∣u(a)− u(b) = − c
µ

=
c

|µ| sgnλ ≥ 0. (2.119)

The integration of (1.1) from a to tm and from tM to b, on account of (2.27),
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(2.94), (2.95), and the assumptions
∣∣∣λ
µ

∣∣∣ ∈ ]0, 1] and q ∈ L(
[a, b];R+

)
, yields

∣∣∣∣
λ

µ

∣∣∣∣ (m+ u(a)) ≤ m+ u(a) ≤M

tm∫

a

`1(1)(s)ds+m

tm∫

a

`0(1)(s)ds,

M − u(b) ≤M

b∫

tM

`1(1)(s)ds+m

b∫

tM

`0(1)(s)ds.

Summing these inequalities and taking into account (2.119), we obtain

M +
∣∣∣∣
λ

µ

∣∣∣∣m ≤M‖`1(1)‖L +m‖`0(1)‖L,

which, according to (2.35), (2.36), and (2.96), yields the contradiction M +∣∣∣λ
µ

∣∣∣m < M +
∣∣∣λ
µ

∣∣∣m.

Therefore, u does not change its sign, and, by virtue of Lemma 2.3 (see
p. 47), the inequality (2.48) is valid.

We have proved that if u is a nontrivial solution of the problem (1.1),
(1.2), where q ∈ L

(
[a, b];R+

)
and c ∈ R is such that the inequality (2.2)

holds, then the inequality (2.48) is satisfied. Now suppose that the homo-
geneous problem (1.10), (1.20) has a nontrivial solution u0. Obviously, −u0

is a nontrivial solution of the problem (1.10), (1.20), as well, and, according
to the above–proved, we have

u0(t) ≥ 0, −u0(t) ≥ 0 for t ∈ [a, b],

a contradiction.

2.4. Comments and Examples

On Remark 2.4. Suppose that |µ| < |λ|, ` ∈ Pab, ` is an a−Volterra
operator, (2.18) holds, and the problem (1.10), (1.20) has only the trivial
solution. According to Theorem 1.1 (see p. 14), the equation (1.10) has
a unique solution u satisfying the condition

λu(a) + µu(b) = sgnλ. (2.120)
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Evidently, u 6≡ 0. According to Corollary 2.1 a) (see p. 17), we have

` ∈ V +
ab (1, 0).

Therefore,
u(a) 6= 0 (2.121)

and, moreover, on account of the assumption ` ∈ Pab, either

u(t) > 0 for t ∈ [a, b] (2.122)

or
u(t) < 0 for t ∈ [a, b].

Thus, from (1.10), (2.1), and (2.120) we have

|u(t)|′ = `(|u|)(t) for t ∈ [a, b], (2.123)

|λu(a)| − |µu(b)| = sgnu(a). (2.124)

It follows from (2.123) that |u(t)|′ ≥ 0 for t ∈ [a, b] and therefore, since ` is
an a−Volterra operator, we have

|u(t)|′ ≤ `(1)(t)|u(t)| for t ∈ [a, b].

The last inequality yields

|u(t)| ≤ |u(a)| exp




t∫

a

`(1)(s)ds


 for t ∈ [a, b],

whence, in view of (2.18), we get

|µu(b)| ≤ |λu(a)|.

This inequality, together with (2.121) and (2.124), implies u(a) > 0 and so
(2.122) holds. Therefore, u is a positive solution of (1.10) and |λ|u(a) >
|µ|u(b), thus, according to Theorem 2.1 (see p. 17), we have ` ∈ V +

ab (λ, µ).

Example 2.1. Let 0 6= |µ| < |λ|, ε > 0, and let p ∈ L(
[a, b];R+

)
be such

that

|µ| exp




b∫

a

p(s)ds


 = |λ|+ ε. (2.125)
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It is clear that the operator ` defined by

`(v)(t) def= p(t)v(t) for t ∈ [a, b] (2.126)

is an a−Volterra operator and satisfies

|µ| exp




b∫

a

`(1)(s)ds


 = |λ|+ ε.

According to (2.125), the homogeneous problem (1.10), (1.20) has only the
trivial solution. Obviously, the function

u(t) = − exp




t∫

a

p(s)ds


 for t ∈ [a, b]

is a solution of the problem

u′(t) = `(u)(t), λu(a) + µu(b) = ε sgnλ.

On the other hand, u(t) < 0 for t ∈ [a, b], and so ` 6∈ V +
ab (λ, µ).

On Remark 2.5. Suppose that |µ| < |λ|, ` ∈ Pab, (2.19) holds, and the
problem (1.10), (1.20) has only the trivial solution. According to Theo-
rem 1.1 (see p. 14), the problem (1.10), (2.120) has a unique solution u.
Assume that u admits negative values. Put

m = max{−u(t) : t ∈ [a, b]} (2.127)

and choose t0 ∈ [a, b] such that u(t0) = −m. The integration of (1.10)
from a to t0 and from t0 to b, in view of (2.8), (2.127) and the assumption
|µ| < |λ|, yields

m+ u(a) = −
t0∫

a

`(u)(s)ds ≤ m

t0∫

a

`(1)(s)ds,

−
∣∣∣µ
λ

∣∣∣u(b)−
∣∣∣µ
λ

∣∣∣m = −
∣∣∣µ
λ

∣∣∣
b∫

t0

`(u)(s)ds ≤ m

b∫

t0

`(1)(s)ds.
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Summing the last two inequalities and taking into account (2.1) and (2.120),
we obtain

m
(
1−

∣∣∣µ
λ

∣∣∣
)

+
1
|λ| ≤ m

b∫

a

`(1)(s)ds.

The last inequality, together with (2.19), yields the contradiction m < m.
Consequently, u(t) ≥ 0 for t ∈ [a, b] and, in view of (1.10) and (2.8),

u′(t) ≥ 0 for t ∈ [a, b]. On the other hand, since λ 6= 0, it follows from (2.1)
and (2.120) that

u(a) > 0, |λ|u(a) = 1 + |µ|u(b).
Hence, u(t) > 0 for t ∈ [a, b] and |λ|u(a) > |µ|u(b). Thus, according to
Theorem 2.1 (see p. 17), we have ` ∈ V +

ab (λ, µ).

Example 2.2. Let |µ| < |λ|, ε > 0, and let p ∈ L(
[a, b];R+

)
be such that

|λ|
b∫

a

p(s)ds = |λ| − |µ|+ ε.

It is clear that the operator ` defined by

`(v)(t) def= p(t)v(b) for t ∈ [a, b] (2.128)

satisfies

|λ|
b∫

a

`(1)(s)ds = |λ| − |µ|+ ε.

Moreover, the problem (1.10), (1.20) has only the trivial solution. Indeed,
the integration of (1.10) from a to b, in view of (1.20) and (2.1), implies
|λ|u(b) = u(b)(|λ|+ ε), i.e., u(b) = 0. Hence, by (1.10) we get u′(t) = 0 for
t ∈ [a, b] and so u ≡ 0.

On the other hand, the function

u(t) = ε− |µ| − |λ|
t∫

a

p(s)ds for t ∈ [a, b]

is a solution of the problem

u′(t) = `(u)(t), λu(a) + µu(b) = λε

with u(b) = −|λ|. Therefore, ` 6∈ V +
ab (λ, µ).
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Example 2.3. Let 0 6= |µ| < |λ| and let p ∈ L(
[a, b];R+

)
be such that

|µ| exp




b∫

a

p(s)ds


 = |λ|.

It is clear that the operator ` defined by (2.126) is an a−Volterra operator
and satisfies

|µ| exp




b∫

a

`(1)(s)ds


 = |λ|.

On the other hand, the function

u(t) = exp




t∫

a

p(s)ds


 for t ∈ [a, b]

is a nontrivial solution of the problem (1.10), (1.20), and so ` 6∈ V +
ab (λ, µ).

Example 2.4. Let |µ| < |λ|, and let p ∈ L(
[a, b];R+

)
be such that

|λ|
b∫

a

p(s)ds = |λ| − |µ|.

Obviously,

|µ| exp




b∫

a

`(1)(s)ds


 + |λ|

b∫

a

`(1)(s) exp




b∫

s

`(1)(ξ)dξ


 ds = |λ|,

where ` is defined by (2.128) and

`(v)(t) def= p(t)v(b)

b∫

t

p(s)ds for t ∈ [a, b].

It is also evident that the inequalities (2.13) (with α = 1, k = 2, and m = 3)
and (2.16) are fulfilled.

On the other hand, the function

u(t) = |µ|+ |λ|
t∫

a

p(s)ds for t ∈ [a, b]

is a nontrivial solution of the problem (1.10), (1.20) and so ` 6∈ V +
ab (λ, µ).
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Example 2.5. Let |µ| ≤ |λ|, b1 ∈ ]a, b[, and let ε ∈ ]0, 2[. Choose δ ∈ ]0, ε]
such that

δ

2
e

δ
2 +

δ

2
e1+ δ

2 + 1− e
δ
2 ≤ ε,

and let g ∈ L(
[a, b];R+

)
be such that g 6≡ 0 in [b1 − δ0, b1[ for some δ0 > 0,

and
b1∫

a

g(s)ds =
δ

2
,

b∫

b1

g(s)ds = 1 +
δ

2
.

Put

ν(t) =

{
a for t ∈ [a, b1[
b1 for t ∈ [b1, b]

, γ(t) =





δ
2 −

t∫
a
g(s)ds for t ∈ [a, b1[

0 for t ∈ [b1, b]
.

Obviously, the assumptions of Theorem 2.2 are fulfilled except of (2.21),
instead of which the condition (2.22) is satisfied, where ` is defined by

`(v)(t) def= −g(t)v(ν(t)) for t ∈ [a, b]. (2.129)

Evidently,
b∫

a

|`(1)(s)|ds = 1 + δ ≤ 1 + ε

and, moreover,
b∫

a

∣∣˜̀(1)(s)
∣∣ exp




s∫

a

|`(1)(ξ)|dξ

 ds = 1 +

δ

2
e

δ
2 +

δ

2
e1+ δ

2 + 1− e
δ
2 ≤ 1 + ε,

where ˜̀ is defined by (2.26).
On the other hand, the function

u(t) =





1−
t∫

a
g(s)ds for t ∈ [a, b1[

(
1− δ

2

)
(

1−
t∫

b1

g(s)ds

)
for t ∈ [b1, b]

is a solution of the problem

u′(t) = `(u)(t), λu(a) + µu(b) = λ− µδ

2

(
1− δ

2

)

with u(b) = − δ
2(1− δ

2) < 0. Therefore, ` 6∈ V +
ab (λ, µ).
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On Remark 2.10. Let 0 6= |µ| ≤ |λ|. Below, for every x0, y0 ∈ R+ such
that (x0, y0) 6∈ A the functions p ∈ L

(
[a, b];R

)
, q ∈ L

(
[a, b];R+

)
and

τ ∈Mab are constructed such that

x0 =

b∫

a

[p(s)]+ds, y0 =

b∫

a

[p(s)]−ds, (2.130)

and the problem

u′(t) = p(t)u(τ(t)) + q(t), λu(a) + µu(b) = 0 (2.131)

has a solution, which is not nonnegative. Thus, according to Definition 2.1
(see p. 15), we have ` 6∈ V +

ab (λ, µ), where ` = `0 − `1 with

`0(v)(t)
def= [p(t)]+v(τ(t)), `1(v)(t)

def= [p(t)]−v(τ(t)). (2.132)

It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ A, then (x0, y0) belongs at
least to one of the following sets:

A1 =
{

(x, y) ∈ R+ ×R+ :
∣∣∣µ
λ

∣∣∣ < y
}
,

A2 =
{

(x, y) ∈ R+ ×R+ : y ≤
∣∣∣µ
λ

∣∣∣ , 1− |µ|
|µ|y + |λ| ≤ x

}
.

Let (x0, y0) ∈ A1. Put a = 0, b = 3,

p(t) =





−y0 for t ∈ [0, 1[
0 for t ∈ [1, 2[
x0 for t ∈ [2, 3]

, τ(t) =

{
2 for t ∈ [0, 2[
1 for t ∈ [2, 3]

,

q(t) =





0 for t ∈ [0, 1[
|λ|(1 + y0)− |µ| for t ∈ [1, 2[
x0(|λ|y0 − |µ|) for t ∈ [2, 3]

.

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

u(t) =





|µ| − |λ|y0t for t ∈ [0, 1[(|λ|(1 + y0)− |µ|
)
(t− 2) + |λ| for t ∈ [1, 2[

|λ| for t ∈ [2, 3]
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with u(1) = −(|λ|y0 − |µ|) < 0.
Let (x0, y0) ∈ A2. Put a = 0, b = 3,

p(t) =





1− |µ|
|µ|y0+|λ| for t ∈ [0, 1[

x0 − 1 + |µ|
|µ|y0+|λ| for t ∈ [1, 2[

−y0 for t ∈ [2, 3]

, τ(t) =





1 for t ∈ [0, 1[
3 for t ∈ [1, 2[
0 for t ∈ [2, 3]

,

q(t) =

{
0 for t ∈ [0, 1[ ∪ [2, 3]

|λ|
(
x0 − 1 + |µ|

|µ|y0+|λ|
)

for t ∈ [1, 2[
.

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

u(t) =





−(|µ|y0 + |λ| − |µ|)t− |µ| for t ∈ [0, 1[
−(|µ|y0 + |λ|) for t ∈ [1, 2[
|µ|y0(t− 3)− |λ| for t ∈ [2, 3]

with u(3) = −|λ| < 0.

Example 2.6. Let |µ| < |λ|, ε ∈ ]0, 1[ , and let p, g ∈ L(
[a, b];R+

)
be such

that
b∫

a

p(s)ds = (1 + ε)
|λ| − |µ|
|λ| , (2.133)

b∫

a

g(s)ds < 1, |µ|
b∫

a

g(s)ds < ε (|λ| − |µ|). (2.134)

Let ` = `0 − `1, where

`0(v)(t)
def= p(t)v(b), `1(v)(t)

def= g(t)v(a) for t ∈ [a, b]. (2.135)

According to (2.133), (2.134), Remark 2.5 (see p. 19), and Theorem 2.3
(see p. 20), we find

(1− ε)`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ).

Note also that the problem (1.10), (1.20) has only the trivial solution. In-
deed, the integration of (1.10) from a to b, on account of (1.20), (2.1), and
(2.133), yields

u(b)
(
ε
|λ| − |µ|
|λ| − ‖g‖L

∣∣∣µ
λ

∣∣∣
)

= 0.
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Now, by (2.134) we get u(b) = 0. Consequently, u(a) = 0, u′(t) = 0 for
t ∈ [a, b] and so u ≡ 0. Therefore, the problem (1.10), (2.120) has a unique
solution u.

On the other hand, the integration of (1.10) from a to b, by virtue of
(2.133), implies

u(b)− u(a) = u(b)(1 + ε)
|λ| − |µ|
|λ| − u(a)‖g‖L,

whence, in view of (2.1) and (2.120), we get

u(b)
(
ε
|λ| − |µ|
|λ| − ‖g‖L

∣∣∣µ
λ

∣∣∣
)

=
1
|λ|

(‖g‖L − 1
)
.

By (2.134) we obtain u(b) < 0 and so ` 6∈ V +
ab (λ, µ).

Example 2.7. Let |µ| < |λ|, ε ∈ ]0, 1[ , and let p, g ∈ L(
[a, b];R+

)
be such

that
b∫

a

p(s)ds <
|λ| − |µ|
|λ| ,

b∫

a

g(s)ds = 1 + ε. (2.136)

Let ` = `0 − `1, where `0, `1 are defined by (2.135). According to (2.136),
Remark 2.5 (see p. 19), and Theorem 2.3 (see p. 20), we find

`0 ∈ V +
ab (λ, µ), −(1− ε)`1 ∈ V +

ab (λ, µ).

Note also that the problem (1.10), (1.20) has only the trivial solution. In-
deed, the integration of (1.10) from a to b, on account of (1.20), (2.1), and
(2.136), yields

u(b)
(
‖p‖L − 1− ε

∣∣∣µ
λ

∣∣∣
)

= 0

Now, by (2.136) we get u(b) = 0. Consequently, u(a) = 0, u′(t) = 0 for
t ∈ [a, b] and so u ≡ 0. Therefore, the problem (1.10), (2.120) has a unique
solution u.

On the other hand, the integration of (1.10) from a to b, by virtue of
(2.136), implies

u(b)− u(a) = u(b)‖p‖L − u(a)(1 + ε),

whence, in view of (2.1) and (2.120), we get
ε

|λ| = u(b)
(
‖p‖L − 1− ε

∣∣∣µ
λ

∣∣∣
)
.

By (2.136) we obtain u(b) < 0 and so ` 6∈ V +
ab (λ, µ).
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Example 2.8. Let |µ| ≥ |λ| 6= 0, ε > 0 and let g ∈ L
(
[a, b];R+

)
be such

that
b∫

a

g(s)ds = 1 + ε.

It is clear that the operator ` defined by

`(v)(t) def= −g(t)v(a) for t ∈ [a, b] (2.137)

satisfies
b∫

a

|`(1)(s)|ds = 1 + ε.

Put

u(t) = −ε+

b∫

t

g(s)ds for t ∈ [a, b].

Obviously, there exists t0 ∈ ]a, b[ such that u(t0) = 0. Define the function
γ ∈ C̃(

[a, b];R+

)
by

γ(t) =




−ε+

b∫
t

g(s)ds for t ∈ [a, t0[

0 for t ∈ [t0, b]
.

It is not difficult to verify that γ satisfies the inequalities (2.10) and (2.11).
On the other hand, u is a solution of the problem

u′(t) = `(u)(t), λu(a) + µu(b) = λ− µε

with (sgnλ − sgnµ)(λ − µε) ≥ 0. However, u(b) = −ε < 0 and therefore,
` 6∈ V +

ab (λ, µ).

Example 2.9. Let |µ| > |λ| 6= 0 and let g ∈ L(
[a, b];R+

)
be such that

|µ|
b∫

a

g(s)ds = |µ| − |λ|.

It is clear that the condition (2.23) is fulfilled, where ` is defined by (2.137).
Moreover, the function

β(t) = |λ|+ |µ|
b∫

t

g(s)ds for t ∈ [a, b]
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satisfies the inequalities (2.32) and (2.33) and the function γ ≡ β satisfies
the inequalities (2.10) and (2.31).

On the other hand, β is a nontrivial solution of the problem (1.10),
(1.20). Therefore, ` 6∈ V +

ab (λ, µ).

Example 2.10. Let |µ| ≥ |λ| 6= 0, ε > 0 and let b1 ∈ ]a, b[ be an arbitrarily
fixed point. Choose g, q ∈ L

(
[a, b];R+

)
and c ∈ R such that (2.2) holds,

g 6≡ 0 in [b1 − δ0, b1[ for some δ0 > 0, and

b1∫

a

g(s)ds = 1,

b∫

b1

g(s)ds > 1,

q(t) = 0 for t ∈ [b1, b],

b1∫

a

q(s)ds =
ε

b∫
b1

g(s)ds− 1
.

Put

β(t) =





b1∫
t

g(s)ds for t ∈ [a, b1[

0 for t ∈ [b1, b]
, ν(t) =

{
a for t ∈ [a, b1[
b1 for t ∈ [b1, b]

,

γ(t) =





b∫
b1

g(s)ds for t ∈ [a, b1[

b∫
t

g(s)ds for t ∈ [b1, b]
.

Let the operator ` be defined by (2.129). Obviously, the function γ satisfies
the inequalities (2.10) and (2.11). It is also evident that ` is an a−Volterra
operator and the function β satisfies the inequalities (2.33) and (2.34).

On the other hand, the function

u(t) =





ε
bR

b1

g(s)ds−1

+ c+µε
λ

b1∫
t

g(s)ds−
b1∫
t

q(s)ds for t ∈ [a, b1[

−ε+ ε
bR

b1

g(s)ds−1

b∫
t

g(s)ds for t ∈ [b1, b]

is a solution of the problem (1.1), (1.2) with u(b) = −ε < 0. Consequently,
` 6∈ V +

ab (λ, µ).
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On Remark 2.15. Let |µ| ≥ |λ| 6= 0. Below, for every x0, y0 ∈ R+ such
that (x0, y0) 6∈ B the functions p ∈ L

(
[a, b];R

)
, q ∈ L

(
[a, b];R+

)
, and

τ ∈ Mab are constructed such that (2.130) holds and the problem (2.131)
has a solution, which is not nonnegative. Thus, according to Definition 2.1
(see p. 15), we find ` 6∈ V +

ab (λ, µ), where ` = `0 − `1 with `0, `1 given by
(2.132).

It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ B, then (x0, y0) belongs at
least to one of the following sets:

B1 = {(x, y) ∈ R+ ×R+ : 1 < y} ,

B2 =
{

(x, y) ∈ R+ ×R+ :
∣∣∣∣
λ

µ

∣∣∣∣−
1

1 + y
≤ x,

|µ| − |λ|
|λ| < y ≤ 1

}
,

B3 =
{

(x, y) ∈ R+ ×R+ : y ≤ |µ| − |λ|
|λ|

}
.

Let (x0, y0) ∈ B1. Put a = 0, b = 3,

p(t) =





−y0 for t ∈ [0, 1[
0 for t ∈ [1, 2[
x0 for t ∈ [2, 3]

, τ(t) =

{
0 for t ∈ [0, 1[
1 for t ∈ [1, 3]

,

q(t) =





0 for t ∈ [0, 1[
|λ|+ |µ|(y0 − 1) for t ∈ [1, 2[
|µ|x0(y0 − 1) for t ∈ [2, 3]

.

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

u(t) =





|µ| − |µ|y0t for t ∈ [0, 1[(|λ|+ |µ|(y0 − 1)
)
(t− 2) + |λ| for t ∈ [1, 2[

|λ| for t ∈ [2, 3]

with u(1) = −|µ|(y0 − 1) < 0.
Let 2|λ| > |µ| ≥ |λ|, (x0, y0) ∈ B2. Put a = 0, b = 3,

p(t) =





−y0 for t ∈ [0, 1[∣∣∣λ
µ

∣∣∣− 1
1+y0

for t ∈ [1, 2[

x0 −
∣∣∣λ
µ

∣∣∣ + 1
1+y0

for t ∈ [2, 3]

, τ(t) =





1 for t ∈ [0, 1[
0 for t ∈ [1, 2[
2 for t ∈ [2, 3]

,
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q(t) =

{
0 for t ∈ [0, 2[

|λ|
(
x0 −

∣∣∣λ
µ

∣∣∣ + 1
1+y0

)
for t ∈ [2, 3[

.

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

u(t) =





|µ|y0

1+y0
t− |µ| for t ∈ [0, 1[(

|λ| − |µ|
1+y0

)
(2− t)− |λ| for t ∈ [1, 2[

−|λ| for t ∈ [2, 3]

with u(0) = −|µ| < 0.
Let (x0, y0) ∈ B3. Put a = 0, b = 2, τ ≡ 2,

p(t) =

{
−y0 for t ∈ [0, 1[
x0 for t ∈ [1, 2]

, q(t) =

{
|µ| − |λ| − |λ|y0 for t ∈ [0, 1[
|λ|x0 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (2.131) has
the solution

u(t) =

{
(|µ| − |λ|)t− |µ| for t ∈ [0, 1[
−|λ| for t ∈ [1, 2]

with u(0) = −|µ| < 0.



§3. Differential Inequalities for EDA

In this section, the results from §2 will be concretized for the case, when
the operator ` ∈ Lab has one of the following forms:

`(v)(t) def=
m∑

k=1

pk(t)v(τk(t)) for t ∈ [a, b], (3.1)

`(v)(t) def= −
m∑

k=1

gk(t)v(νk(t)) for t ∈ [a, b], (3.2)

`(v)(t) def=
m∑

k=1

(
pk(t)v(τk(t))− gk(t)v(νk(t))

)
for t ∈ [a, b], (3.3)

where pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈Mab (k = 1, . . . ,m), and m ∈ N .

We will also assume that the inequality (2.1) holds and |λ| + |µ| 6= 0.
Furthermore, if λ = −µ, then the operator ` ∈ Lab is supposed to be
nontrivial, i.e., `(1) 6≡ 0.

In what follows we will use the notation

p0(t) =
m∑

j=1

pj(t), g0(t) =
m∑

j=1

gj(t) for t ∈ [a, b].

3.1. On the Set V +
ab(λ, µ)

In the case, where |µ| ≤ |λ|, the following assertions hold.

Theorem 3.1. Let |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈Mab (k = 1, . . . ,m),

and let at least one of the following items be fulfilled:

a) τk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m) and

|µ| exp




b∫

a

p0(s)ds


 < |λ|; (3.4)

b) there exists α ∈ ]0, 1[ such that on [a, b] the inequality

|µ|
|λ| − |µ|

b∫

a

p̃(s)ds+

t∫

a

p̃(s)ds ≤ (α− p̃0)


p̃0 +

t∫

a

p0(s)ds


 (3.5)
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holds, where

p̃(t) =
m∑

k=1

pk(t)




τk(t)∫

a

p0(s)ds


 for t ∈ [a, b],

p̃0 =
|µ|

|λ| − |µ|

b∫

a

p0(s)ds;

c)

|µ| exp




b∫

a

p0(s)ds


+

+|λ|
b∫

a

m∑

k=1

pk(s)σk(s)




τk(s)∫

s

p0(ξ)dξ


 exp




b∫

s

p0(η)dη


 ds < |λ|,

(3.6)

where

σk(t) =
1
2
(1 + sgn(τk(t)− t)) for t ∈ [a, b] (k = 1, . . . ,m).

Then the operator ` defined by (3.1) belongs to the set V +
ab (λ, µ).

Remark 3.1. Examples 2.3 and 2.4 (see p. 54) also show that the assump-
tion α ∈ ]0, 1[ in Theorem 3.1 b) cannot be replaced by the assumption
α ∈ ]0, 1] and the strict inequalities (3.4) and (3.6) cannot be replaced by
the nonstrict ones.

Theorem 3.2. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), p0 6≡ 0, and let there exist x ∈
]
0, ln

∣∣∣λ
µ

∣∣∣
]

such that

ess sup





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




< η(x) (k = 1, . . . ,m), (3.7)

where

η(x) =

b∫
a
p0(s)ds

x


x+ ln

(|λ| − |µ|)x

|λ|(ex − 1)
b∫
a
p0(s)ds


 . (3.8)
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Then the operator ` defined by (3.1) belongs to the set V +
ab (λ, µ).

Corollary 3.1. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), p0 6≡ 0, and

ess sup





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




<

b∫
a
p0(s)ds

ln
∣∣∣λ
µ

∣∣∣
ln

ln
∣∣∣λ
µ

∣∣∣
b∫
a
p0(s)ds

for k = 1, . . . ,m. Then the operator ` defined by (3.1) belongs to the set
V +

ab (λ, µ).

Theorem 3.3. Let |µ| ≤ |λ|, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab, νk(t) ≤ t for

t ∈ [a, b] (k = 1, . . . ,m), and let at least one of the following items be
fulfilled:

a)
b∫

a

g0(s)ds ≤ 1; (3.9)

b)

b∫

a

m∑

k=1

gk(s)

s∫

νk(s)

m∑

i=1

gi(ξ) exp




s∫

νi(ξ)

g0(η)dη


 dξds ≤ 1; (3.10)

c) g0 6≡ 0 and

ess sup





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




< η∗ (k = 1, . . . ,m), (3.11)

where

η∗ = sup





1
x

ln



x+

x

exp

(
x

b∫
a
g0(s)ds

)
− 1




: x > 0




. (3.12)
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Then the operator ` defined by (3.2) belongs to the set V +
ab (λ, µ).

Remark 3.2. Example 2.5 (see p. 55) also shows that the inequalities (3.9)
and (3.10) in Theorem 3.3 cannot be replaced by the inequalities

b∫

a

g0(s)ds ≤ 1 + ε

and

b∫

a

m∑

k=1

gk(s)

s∫

νk(s)

m∑

i=1

gi(ξ) exp




s∫

νi(ξ)

g0(η)dη


 dξds ≤ 1 + ε,

no matter how small ε > 0 would be.

Theorem 3.4. Let 0 6= |µ| ≤ |λ| and pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m).

Let, moreover,

b∫

a

p0(s)ds < 1, (3.13)

b∫
a
p0(s)ds

1−
b∫
a
p0(s)ds

− |λ| − |µ|
|µ| <

b∫

a

g0(s)ds ≤
∣∣∣µ
λ

∣∣∣ . (3.14)

Then the operator ` defined by (3.3) belongs to the set V +
ab (λ, µ).

Remark 3.3. The examples constructed in Subsection 2.4 (see On Re-
mark 2.10, p. 56) also show that neither one of the inequalities in (3.13)
and (3.14) can be weakened.

Theorem 3.5. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk, νk ∈ Mab

(k = 1, . . . ,m). Let, moreover, the functions pk, τk (k = 1, . . . ,m) satisfy
at least one of the conditions a), b) or c) in Theorem 3.1 or the assumptions
of Theorem 3.2, while the functions gk, νk (k = 1, . . . ,m) satisfy νk(t) ≤ t
for t ∈ [a, b] (k = 1, . . . ,m) and at least one of the conditions a), b) or
c) in Theorem 3.3. Then the operator ` defined by (3.3) belongs to the set
V +

ab (λ, µ).
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Remark 3.4. According to the optimality of Theorems 2.5, 3.1, and 3.3,
Theorem 3.5 is also nonimprovable in a certain sense.

In the case, where |µ| ≥ |λ|, the following statements hold.

Theorem 3.6. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), g0 6≡ 0,
b∫

a

g0(s)ds ≤ 1, (3.15)

and let there exist x ∈ [
ln

∣∣µ
λ

∣∣ ,+∞[
such that

ess inf





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




> ω(x) (k = 1, . . . ,m), (3.16)

where

ω(x) =

b∫
a
g0(s)ds

x


x+ ln

(|µ| − |λ|)x

|µ|(ex − 1)
b∫
a
g0(s)ds


 . (3.17)

Then the operator ` defined by (3.2) belongs to the set V +
ab (λ, µ).

Corollary 3.2. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), g0 6≡ 0, the inequality (3.15) hold, and

ess inf





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




>

b∫
a
g0(s)ds

ln
∣∣µ
λ

∣∣ ln
ln

∣∣µ
λ

∣∣
b∫
a
g0(s)ds

for k = 1, . . . ,m. Then the operator ` defined by (3.2) belongs to the set
V +

ab (λ, µ).

Remark 3.5. Example 2.8 (see p. 59) also shows that the inequality (3.15)
in Theorem 3.6 and Corollary 3.2 cannot be replaced by the inequality

b∫

a

g0(s)ds ≤ 1 + ε,

no matter how small ε > 0 would be.
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Theorem 3.7. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈Mab,

νk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m), (3.18)

g0 6≡ 0, and let the condition (3.11) hold, where η∗ is defined by (3.12). If,
moreover,

|λ| exp




b∫

a

g0(s)ds


 > |µ| , (3.19)

then the operator ` defined by (3.2) belongs to the set V +
ab (λ, µ).

Corollary 3.3. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab, νk(t) ≤ t

for t ∈ [a, b] (k = 1, . . . ,m), g0 6≡ 0, the inequality (3.19) hold, and
t∫

νk(t)

g0(s)ds ≤ 1
e

for t ∈ [a, b] (k = 1, . . . ,m). (3.20)

Then the operator ` defined by (3.2) belongs to the set V +
ab (λ, µ).

Remark 3.6. It is clear that for the ordinary differential equations, i.e., if
` is defined by

`(v)(t) def= −
m∑

k=1

gk(t)v(t) for t ∈ [a, b], (3.21)

where gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the conditions (3.11) and (3.20)

are fulfilled, and the condition (3.19) is sufficient and necessary for the
operator ` given by (3.21) to belong to the set V +

ab (λ, µ) with |µ| ≥ |λ| 6= 0.
Thus, the inequality (3.19) in Theorem 3.7 and Corollary 3.3 cannot be
weakened.

Theorem 3.8. Let |µ| ≥ |λ| 6= 0 and pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m).

If, moreover,
b∫

a

p0(s)ds <
∣∣∣∣
λ

µ

∣∣∣∣ , (3.22)

|µ|

|λ| − |µ|
b∫
a
p0(s)ds

− 1 <

b∫

a

g0(s)ds ≤ 1, (3.23)

then the operator ` defined by (3.3) belongs to the set V +
ab (λ, µ).
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Remark 3.7. The examples constructed in Subsection 2.4 (see On Re-
mark 2.15, p. 61) also show that neither one of the inequalities in (3.22)
and (3.23) can be weakened.

3.2. On the Set V −
ab(λ, µ)

In the case, where |µ| ≤ |λ|, the following assertions hold.

Theorem 3.9. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), p0 6≡ 0,
b∫

a

p0(s)ds ≤ 1, (3.24)

and let there exist x ∈
[
ln

∣∣∣λ
µ

∣∣∣ ,+∞
[

such that

ess inf





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




> η(x) (k = 1, . . . ,m), (3.25)

where η is defined by (3.8). Then the operator ` defined by (3.1) belongs to
the set V −ab (λ, µ).

Corollary 3.4. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), p0 6≡ 0, the inequality (3.24) hold, and

ess inf





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




>

b∫
a
p0(s)ds

ln
∣∣∣λ
µ

∣∣∣
ln

ln
∣∣∣λ
µ

∣∣∣
b∫
a
p0(s)ds

for k = 1, . . . ,m. Then the operator ` defined by (3.1) belongs to the set
V −ab (λ, µ).

Theorem 3.10. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab, τk(t) ≥ t

for t ∈ [a, b] (k = 1, . . . ,m), p0 6≡ 0, and

ess sup





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




< ω∗ (k = 1, . . . ,m), (3.26)
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where

ω∗ = sup





1
x

ln



x+

x

exp

(
x

b∫
a
p0(s)ds

)
− 1




: x > 0




. (3.27)

If, moreover,

|µ| exp




b∫

a

p0(s)ds


 > |λ| , (3.28)

then the operator ` defined by (3.1) belongs to the set V −ab (λ, µ).

Corollary 3.5. Let 0 6= |µ| < |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab, τk(t) ≥ t

for t ∈ [a, b] (k = 1, . . . ,m), p0 6≡ 0, the inequality (3.28) hold, and

τk(t)∫

t

p0(s)ds ≤ 1
e

for t ∈ [a, b] (k = 1, . . . ,m).

Then the operator ` defined by (3.1) belongs to the set V −ab (λ, µ).

Theorem 3.11. Let 0 6= |µ| ≤ |λ| and let pk, gk ∈ L
(
[a, b];R+

)
(k =

1, . . . ,m). If, moreover,

b∫

a

g0(s)ds <
∣∣∣µ
λ

∣∣∣ ,

|λ|

|µ| − |λ|
b∫
a
g0(s)ds

− 1 <

b∫

a

p0(s)ds ≤ 1,

then the operator ` defined by (3.3) belongs to the set V −ab (λ, µ).

In the case, where |µ| ≥ |λ|, the following statements hold.

Theorem 3.12. Let |µ| > |λ|, gk ∈L
(
[a, b];R+

)
, νk ∈Mab (k = 1, . . . ,m),

and let at least one of the following items be fulfilled:
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a) νk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m) and

|λ| exp




b∫

a

g0(s)ds


 < |µ|;

b) there exists α ∈ ]0, 1[ such that on [a, b] the inequality

|λ|
|µ| − |λ|

b∫

a

g̃(s)ds+

b∫

t

g̃(s)ds ≤ (α− g̃0)


g̃0 +

b∫

t

g0(s)ds


 ,

holds, where

g̃(t) =
m∑

k=1

gk(t)




b∫

νk(t)

g0(s)ds


 for t ∈ [a, b],

g̃0 =
|λ|

|µ| − |λ|

b∫

a

g0(s)ds;

c)

|λ| exp




b∫

a

g0(s)ds


+

+|µ|
b∫

a

m∑

k=1

gk(s)σk(s)




s∫

νk(s)

g0(ξ)dξ


 exp




s∫

a

g0(η)dη


 ds < |µ|,

where

σk(t) =
1
2
(1 + sgn(t− νk(t))) for t ∈ [a, b] (k = 1, . . . ,m).

Then the operator ` defined by (3.2) belongs to the set V −ab (λ, µ).
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Theorem 3.13. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), g0 6≡ 0, and let there exist x ∈ ]
0, ln

∣∣µ
λ

∣∣] such that

ess sup





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




< ω(x) (k = 1, . . . ,m),

where ω is defined by (3.17). Then the operator ` defined by (3.2) belongs
to the set V −ab (λ, µ).

Corollary 3.6. Let |µ| > |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), g0 6≡ 0, and

ess sup





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




<

b∫
a
g0(s)ds

ln
∣∣µ
λ

∣∣ ln
ln

∣∣µ
λ

∣∣
b∫
a
g0(s)ds

for k = 1, . . . ,m. Then the operator ` defined by (3.2) belongs to the set
V −ab (λ, µ).

Theorem 3.14. Let |µ| ≥ |λ|, pk ∈ L
(
[a, b];R+

)
, τk ∈ Mab, τk(t) ≥ t

for t ∈ [a, b] (k = 1, . . . ,m), and let at least one of the following items be
fulfilled:

a)
b∫

a

p0(s)ds ≤ 1;

b)
b∫

a

m∑

k=1

pk(s)

τk(s)∫

s

m∑

i=1

pi(ξ) exp




τi(ξ)∫

s

p0(η)dη


 dξds ≤ 1;

c) p0 6≡ 0 and the condition (3.26) holds, where ω∗ is defined by (3.27).

Then the operator ` defined by (3.1) belongs to the set V −ab (λ, µ).
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Theorem 3.15. Let |µ| ≥ |λ| 6= 0 and let pk, gk ∈ L
(
[a, b];R+

)
(k =

1, . . . ,m). If, moreover,

b∫

a

g0(s)ds < 1,

b∫
a
g0(s)ds

1−
b∫
a
g0(s)ds

− |µ| − |λ|
|λ| <

b∫

a

p0(s)ds ≤
∣∣∣∣
λ

µ

∣∣∣∣ ,

then the operator ` defined by (3.3) belongs to the set V −ab (λ, µ).

Theorem 3.16. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk, νk ∈ Mab

(k = 1, . . . ,m). Let, moreover, the functions pk, τk (k = 1, . . . ,m) satisfy
τk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m) and at least one of the conditions
a), b) or c) in Theorem 3.14, while the functions gk, νk (k = 1, . . . ,m)
satisfy at least one of the conditions a), b) or c) in Theorem 3.12 or the
assumptions of Theorem 3.13. Then the operator ` defined by (3.3) belongs
to the set V −ab (λ, µ).

Remark 3.8. Similarly as in Subsection 3.1 one can show that Theo-
rems 3.9–3.12 and 3.14–3.16 and Corollaries 3.4 and 3.5 are also nonim-
provable in a certain sense.

3.3. Proofs

Proof of Theorem 3.1. a) The validity of the theorem immediately fol-
lows from Corollary 2.1 a) (see p. 17).

b) According to (3.5) we have

ρ3(t) ≤ αρ2(t) for t ∈ [a, b],

where ρ2, ρ3 are defined by (2.14) and ` is given by (3.1). Therefore, the
assumptions of Corollary 2.1 b) (see p. 17) are fulfilled for k = 2 and m = 3.

c) Let ` be an operator defined by

`(v)(t) def=
m∑

k=1

pk(t)σk(t)

τk(t)∫

t

m∑

i=1

pi(s)v(τi(s))ds for t ∈ [a, b],
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where σk(t) = 1
2(1 + sgn(τk(t)− t)) for t ∈ [a, b] (k = 1, . . . ,m). Obviously,

` ∈ Pab and

`(ϑ(v))(t)− `(1)(t)ϑ(v)(t) =
m∑

k=1

pk(t)

τk(t)∫

t

m∑

i=1

pi(s)v(τi(s))ds ≤

≤ `(v)(t) for t ∈ [a, b], v ∈ C(
[a, b];R+

)
,

where ϑ is defined by (2.17). On the other hand, according to (3.6), the
inequality (2.15) holds. Hence, the assumptions of Corollary 2.1 c) (see
p. 17) are fulfilled.

Proof of Theorem 3.2. According to (3.7), there exists ε ∈ ]0, 1[ such
that

τk(t)∫

t

p0(s)ds ≤

b∫
a
p0(s)ds

εx
ln

εxeεx

b∫
a
p0(s)ds

(
eεx − |λ|−|µ|ex

|λ|−|µ|
) (3.29)

for t ∈ [a, b] (k = 1, . . . ,m). Put

x0 =
εx

b∫
a
p0(s)ds

. (3.30)

Obviously, x0 > 0. By virtue of (3.29), (3.30), and the assumption x ∈]
0, ln

∣∣∣λ
µ

∣∣∣
]
, we obtain

x0 e
x0

tR
a

p0(s)ds
≥ e

x0

τk(t)R
a

p0(s)ds
− |λ| − |µ|ex

|λ| − |µ| (3.31)

for t ∈ [a, b] (k = 1, . . . ,m), and

x0

b∫

a

p0(s)ds < x. (3.32)

Put

γ(t) = e
x0

tR
a

p0(s)ds
− |λ| − |µ|ex

|λ| − |µ| for t ∈ [a, b].
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According to the assumption x ∈
]
0, ln

∣∣∣λ
µ

∣∣∣
]
, it is clear that γ(t) > 0 for

t ∈ [a, b] and, on account of (3.31), we obtain

`(γ)(t) =
m∑

k=1

pk(t)


e

x0

τk(t)R
a

p0(s)ds
− |λ| − |µ|ex

|λ| − |µ|


 ≤

≤ p0(t)x0 e
x0

tR
a

p0(s)ds
= γ′(t) for t ∈ [a, b],

where ` is defined by (3.1), i.e., the inequality (2.10) is fulfilled. On the
other hand, it follows from (3.32) that the inequality (2.11) holds. Thus,
the assumptions of Theorem 2.1 (see p. 17) are fulfilled.

Proof of Corollary 3.1. The validity of the corollary immediately fol-
lows from Theorem 3.2 for x = ln

∣∣∣λ
µ

∣∣∣.

Proof of Theorem 3.3. a) The validity of the theorem immediately fol-
lows from Theorem 2.3 (see p. 20).

b) If (3.10) holds, then the operator ` defined by (3.2) satisfies the
condition (2.25), where ˜̀ is given by (2.26), and thus, the assumptions of
Corollary 2.2 (see p. 20) are satisfied.

c) According to (3.11), there exists ε > 0 such that

t∫

νk(t)

g0(s)ds < η∗ − ε for t ∈ [a, b] (k = 1, . . . ,m). (3.33)

Choose x0 > 0 and δ ∈ ]0, 1[ such that

1
x0

ln



x0 +

x0(1− δ)

exp

(
x0

b∫
a
g0(s)ds

)
− (1− δ)



> η∗ − ε, (3.34)

and put

γ(t) = e
x0

bR
t

g0(s)ds
− (1− δ) for t ∈ [a, b].
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The inequalities (3.33) and (3.34) imply

x0 e
x0

bR
t

g0(s)ds
≥ e

x0

bR
νk(t)

g0(s)ds

− (1− δ) for t ∈ [a, b]. (3.35)

Hence, we obtain

`(γ)(t) = −
m∑

k=1

gk(t)


e

x0

bR
νk(t)

g0(s)ds

− (1− δ)


 ≥

≥ −g0(t)x0 e
x0

bR
t

g0(s)ds
= γ′(t) for t ∈ [a, b],

where ` is defined by (3.2), i.e., the inequality (2.20) is fulfilled. Obviously,
(2.21) holds and thus, the assumptions of Theorem 2.2 (see p. 19) are
satisfied.

Proof of Theorem 3.4. The validity of the theorem immediately follows
from Theorem 2.4 (see p. 21).

Proof of Theorem 3.5. The validity of the theorem follows from Theo-
rem 2.5 (see p. 22) and Theorems 3.1, 3.2, and 3.3.

Proof of Theorem 3.6. According to (3.16), there exists ε ∈ ]1,+∞[
such that

t∫

νk(t)

g0(s)ds ≥

b∫
a
g0(s)ds

εx
ln

εxeεx

b∫
a
g0(s)ds

(
eεx + |λ|ex−|µ|

|µ|−|λ|
) (3.36)

for t ∈ [a, b] (k = 1, . . . ,m). Put

x0 =
εx

b∫
a
g0(s)ds

. (3.37)

Obviously, x0 > 0. By (3.36), (3.37), and the assumption x ∈ [
ln

∣∣µ
λ

∣∣ ,+∞[
,

we obtain

x0 e
x0

bR
t

g0(s)ds
≤ e

x0

bR
νk(t)

g0(s)ds

+
|λ|ex − |µ|
|µ| − |λ| (3.38)
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for t ∈ [a, b] (k = 1, . . . ,m), and

x0

b∫

a

g0(s)ds > x. (3.39)

Define the function γ ∈ C̃(
[a, b];R

)
by

γ(t) = e
x0

bR
t

g0(s)ds
+
|λ|ex − |µ|
|µ| − |λ| for t ∈ [a, b]. (3.40)

Obviously, if ` is defined by (3.2), then (3.15) implies (2.23), and by virtue
of (3.39) and (3.40), the function γ satisfies (2.11). Moreover, in view of
(3.38), we obtain

`(γ)(t) = −
m∑

k=1

gk(t)


e

x0

bR
νk(t)

g0(s)ds

+
|λ|ex − |µ|
|µ| − |λ|


 ≤

≤ −g0(t)x0 e
x0

bR
t

g0(s)ds
= γ′(t) for t ∈ [a, b],

i.e., the inequality (2.10) is fulfilled. Therefore, according to Theorem 2.6
(see p. 23), ` ∈ V +

ab (λ, µ).

Proof of Corollary 3.2. The validity of the corollary immediately fol-
lows from Theorem 3.6 for x = ln

∣∣µ
λ

∣∣.
Proof of Theorem 3.7. According to (3.11), there exists ε > 0 such that
(3.33) holds. In view of (3.12), we can choose x0 > 0 and δ ∈ ]0, 1[ such
that (3.34) is fulfilled. Put

β(t) = e
x0

bR
t

g0(s)ds
− (1− δ) for t ∈ [a, b].

The inequalities (3.33) and (3.34) imply (3.35). Hence, we obtain

`(β)(t) = −
m∑

k=1

gk(t)


e

x0

bR
νk(t)

g0(s)ds

− (1− δ)


 ≥

≥ −g0(t)x0 e
x0

bR
t

g0(s)ds
= β′(t) for t ∈ [a, b],
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where ` is defined by (3.2), i.e., the inequality (2.33) is fulfilled. Obviously,
β(t) > 0 for t ∈ [a, b], i.e., the condition (2.32) holds.

It is not difficult to verify that, according to (3.18) and (3.19), the con-
dition (3.16) holds for x = ln

∣∣µ
λ

∣∣, where ω is defined by (3.17). Therefore,
analogously to the proof of Theorem 3.6 it can be shown that there ex-
ists a function γ ∈ C̃(

[a, b];R+

)
, which satisfies the inequalities (2.10) and

(2.11).
Consequently, the assumptions of Theorem 2.7 (see p. 23) are fulfilled.

Proof of Corollary 3.3. The validity of the corollary immediately fol-
lows from Theorem 3.7.

Proof of Theorem 3.8. The validity of the theorem immediately follows
from Theorem 2.8 (see p. 24).

Proof of Theorem 3.9. Similarly to the proof of Theorem 3.6 one can
show that there exists a function γ ∈ C̃

(
[a, b];R+

)
satisfying (2.20) and

(2.37), where ` is defined by (3.1), and thus, the assumptions of Theorem 2.9
(see p. 25) are satisfied.

Proof of Corollary 3.4. It follows immediately from Theorem 3.9 for
x = ln

∣∣∣λ
µ

∣∣∣.

Proof of Theorem 3.10. Similarly to the proof of Theorem 3.7 one can
show that there exists a function γ ∈ C̃

(
[a, b];R+

)
satisfying (2.20) and

(2.37), and that there exists a function β ∈ C̃
(
[a, b];R+

)
satisfying (2.39)

and (2.40), where ` is defined by (3.1). Thus, the assumptions of Theo-
rem 2.10 (see p. 25) are satisfied.

Proof of Corollary 3.5. The validity of the corollary immediately fol-
lows from Theorem 3.10.

Proof of Theorem 3.11. The validity of the theorem immediately fol-
lows from Theorem 2.11 (see p. 26).

Proof of Theorem 3.12. a) The validity of the theorem immediately fol-
lows from Corollary 2.3 a) (see p. 26).

b) Similarly to the proof of Theorem 3.1 b) one can show that the
assumptions of Corollary 2.3 b) (see p. 26) are satisfied.

c) Similarly to the proof of Theorem 3.1 c) one can show that the
assumptions of Corollary 2.3 c) (see p. 26) are satisfied.
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Proof of Theorem 3.13. Similarly to the proof of Theorem 3.2 one can
show that there exists a function γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying (2.20)

and (2.37), and thus, the assumptions of Theorem 2.12 (see p. 26) are
fulfilled.

Proof of Corollary 3.6. The validity of the corollary immediately fol-
lows from Theorem 3.13 for x = ln

∣∣µ
λ

∣∣.
Proof of Theorem 3.14. a) The validity of the theorem immediately fol-
lows from Theorem 2.14 (see p. 27).

b) Similarly to the proof of Theorem 3.3 b) one can show that the
assumptions of Corollary 2.4 (see p. 27) are satisfied.

c) Similarly to the proof of Theorem 3.3 c) one can show that there
exists a function γ ∈ C̃

(
[a, b];R+

)
satisfying (2.10) and (2.41) and thus,

the assumptions of Theorem 2.13 (see p. 27) are satisfied.

Proof of Theorem 3.15. The validity of the theorem immediately fol-
lows from Theorem 2.15 (see p. 28).

Proof of Theorem 3.16. The validity of the theorem follows from The-
orem 2.16 (see p. 28) and Theorems 3.12, 3.13, and 3.14.
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for unique solvability of the problem (1.1), (1.2), where
the boundary condition (1.2) is of a periodic type, i.e., when the inequal-
ity (2.1) is satisfied. In Subsection 4.1, the main results are formulated.
Theorems 4.1–4.5 deal with the case |µ| ≤ |λ|, while the case |µ| ≥ |λ| is
considered in Theorems 4.7–4.11. Moreover, Theorems 4.6 and 4.12 are
valid for the case λ 6= 0 and µ 6= 0, respectively. The proofs of the main
results can be found in Subsection 4.2. Subsection 4.3 is devoted to the
examples verifying the optimality of the main results.

As above, throughout this section, if λ = −µ, then the operator ` is
supposed to be nontrivial, i.e., `(1) 6≡ 0.

4.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 4.1. Let 0 6= |µ| ≤ |λ|, the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab, and let either

‖`0(1)‖L < 1, (4.1)

‖`0(1)‖L

1− ‖`0(1)‖L
− |λ| − |µ|

|µ| < ‖`1(1)‖L < 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1− ‖`0(1)‖L (4.2)

or

‖`1(1)‖L <
∣∣∣µ
λ

∣∣∣ , (4.3)

|λ|
|µ| − |λ|‖`1(1)‖L

− 1 < ‖`0(1)‖L < 2 + 2
√∣∣∣µ

λ

∣∣∣− ‖`1(1)‖L . (4.4)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.1. Let 0 6= |µ| ≤ |λ|. Denote by H+, resp. H− the set of pairs
(x, y) ∈ R+ ×R+ such that

x < 1,
x

1− x
− |λ| − |µ|

|µ| < y < 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1− x ,
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resp.

y <
∣∣∣µ
λ

∣∣∣ , |λ|
|µ| − |λ|y − 1 < x < 2 + 2

√∣∣∣µ
λ

∣∣∣− y

(see Fig. 4.1; note that if |λ| ≥ 4|µ|, then H− = Ø).

x

y

1|λ|−|µ|
|λ|

|λ|−|µ|
|µ| 2 + 2

√
|µλ |

3 + |µλ |

|µλ |

H+

H−

Fig. 4.1.

According to Theorem 4.1, if ` = `0 − `1, `0, `1 ∈ Pab, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ H+ ∪H−,

then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 4.1, p. 94) that for every x0, y0 ∈ R+, (x0, y0) 6∈ H+ ∪H−

there exist `0, `1 ∈ Pab, q ∈ L
(
[a, b];R

)
, and c ∈ R such that (2.30) holds,

and the problem (1.1), (1.2) with ` = `0− `1 has no solution. In particular,
neither one of the strict inequalities in (4.1)–(4.4) can be replaced by the
nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case µ = 0.
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Theorem 4.2. Let µ = 0, the operator ` admit the representation ` =
`0 − `1, where `0, `1 ∈ Pab, and let

‖`0(1)‖L < 1, (4.5)

‖`1(1)‖L < 1 + 2
√

1− ‖`0(1)‖L . (4.6)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.2. Let µ = 0. Denote by H the set of pairs (x, y) ∈ R+ × R+

such that
x < 1, y < 1 + 2

√
1− x

(see Fig. 4.2).

x

y

1

3

H

Fig. 4.2.

According to Theorem 4.2, if ` = `0 − `1, `0, `1 ∈ Pab, and
(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ H,

then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 4.2, p. 97) that for every x0, y0 ∈ R+, (x0, y0) 6∈ H there
exist `0, `1 ∈ Pab, q ∈ L

(
[a, b];R

)
, and c ∈ R such that (2.30) holds, and

the problem (1.1), (1.2) with ` = `0− `1 has no solution. In particular, the
strict inequalities (4.5) and (4.6) cannot be replaced by the nonstrict ones.
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Theorem 4.3. Let |µ| < |λ| and let there exist `0, `1 ∈ Pab such that on
the set Cλµ

(
[a, b];R

)
the inequality

|`(v)(t) + `1(v)(t)| ≤ `0(|v|)(t) for t ∈ [a, b] (4.7)

holds. If, moreover,

`0 ∈ V +
ab (λ, µ), −1

2
`1 ∈ V +

ab (λ, µ), (4.8)

then the problem (1.1), (1.2) has a unique solution.

Remark 4.3. The inequality (4.7) in Theorem 4.3 cannot be replaced by
the inequality

|`(v)(t) + `1(v)(t)| ≤ (1 + ε)`0(|v|)(t) for t ∈ [a, b], (4.9)

no matter how small ε > 0 would be (see Example 4.1, p. 98). Moreover,
the assumption (4.8) can be replaced neither by the assumption

(1− ε)`0 ∈ V +
ab (λ, µ), −1

2
`1 ∈ V +

ab (λ, µ) (4.10)

nor by the assumption

`0 ∈ V +
ab (λ, µ), − 1

2 + ε
`1 ∈ V +

ab (λ, µ),

no matter how small ε > 0 would be (see Examples 4.2 and 4.3, p. 98).

Theorem 4.4. Let |µ| < |λ|, the operator ` admit the representation ` =
`0− `1, where `0, `1 ∈ Pab, and let there exist γ ∈ C̃(

[a, b]; ]0,+∞[
)

satisfy-
ing

γ′(t) ≥ `0(γ)(t) + `1(1)(t) for t ∈ [a, b], (4.11)

|λ|γ(a) > |µ|γ(b), (4.12)

γ(b)− γ(a) < 3 +
∣∣∣µ
λ

∣∣∣ . (4.13)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.4. Theorem 4.4 is nonimprovable in the sense that the strict
inequality (4.13) cannot be replaced by the nonstrict one (see Example 4.4,
p. 100).
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Theorem 4.5. Let 0 6= |µ| ≤ |λ|, ` ∈ Pab, and let there exist a function
γ ∈ C̃(

[a, b];R+

)
such that

γ′(t) ≤ `(γ)(t) for t ∈ [a, b], (4.14)

|λ|γ(a) < |µ|γ(b). (4.15)

Let, moreover, at least one of the following items be fulfilled:

a)

‖`(1)‖L < 2 + 2
√∣∣∣µ

λ

∣∣∣ ; (4.16)

b)
` ∈ V +

ab (1, 0); (4.17)

c)
` ∈ V −ab (0, 1). (4.18)

Then the problem (1.1), (1.2) has a unique solution.

Remark 4.5. Theorem 4.5 is nonimprovable in the sense that the strict
inequality (4.16) cannot be replaced by the nonstrict one (see Example 4.5,
p. 101).

Note also that if |λ| = |µ| and ` ∈ Pab, then there exists a function
γ ∈ C̃

(
[a, b];R+

)
satisfying (4.14) and (4.15). Indeed, in this case the

operator ` is supposed to be nontrivial and thus, the function

γ(t) = 1 +

t∫

a

`(1)(s)ds for t ∈ [a, b]

satisfies (4.14) and (4.15).
Nevertheless, if 0 6= |µ| < |λ|, then the inequality (4.15) cannot be

replaced by the inequality

|λ|γ(a) ≤ |µ|γ(b) (4.19)

(see Example 4.6, p. 102).

The following theorem does not deal only with the case |µ| ≤ |λ|. On
the other hand, the assumption λ 6= 0 is necessary (see Remark 2.2, p. 15).
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Theorem 4.6. Let λ 6= 0 and let there exist an operator

`0 ∈ V +
ab (λ, µ) (4.20)

such that on the set Cλµ

(
[a, b];R

)
the inequality

`(v)(t) sgn v(t) ≤ `0(|v|)(t) for t ∈ [a, b] (4.21)

holds. Then the problem (1.1), (1.2) has a unique solution.

Remark 4.6. Examples 4.1 and 4.2 (see p. 98) also show that if |µ| <
|λ|, then the assumption (4.20) in Theorem 4.6 cannot be replaced by the
assumption

(1− ε)`0 ∈ V +
ab (λ, µ), (4.22)

and the inequality (4.21) cannot be replaced by the inequality

`(v)(t) sgn v(t) ≤ (1 + ε)`0(|v|)(t) for t ∈ [a, b], (4.23)

no matter how small ε > 0 would be.
Furthermore, if |µ| > |λ| 6= 0, then the inequality (4.21) in Theorem 4.6

cannot be replaced by the inequality

`(v)(t) sgn v(t) ≤ (1− ε)`0(|v|)(t) for t ∈ [a, b] (4.24)

and the condition (4.20) cannot be replaced by the condition

(1 + ε)`0 ∈ V +
ab (λ, µ), (4.25)

no matter how small ε > 0 would be (see Example 4.7, p. 103).

In the case, where |µ| ≥ |λ|, the following assertions hold.

Theorem 4.7. Let |µ| ≥ |λ| 6= 0, the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab, and let either

‖`1(1)‖L < 1,

‖`1(1)‖L

1− ‖`1(1)‖L
− |µ| − |λ|

|λ| < ‖`0(1)‖L < 1 +
∣∣∣∣
λ

µ

∣∣∣∣ + 2
√

1− ‖`1(1)‖L
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or

‖`0(1)‖L <

∣∣∣∣
λ

µ

∣∣∣∣ ,

|µ|
|λ| − |µ|‖`0(1)‖L

− 1 < ‖`1(1)‖L < 2 + 2

√∣∣∣∣
λ

µ

∣∣∣∣− ‖`0(1)‖L .

Then the problem (1.1), (1.2) has a unique solution.

The next theorem can be understood as a supplement of the previous
one for the case λ = 0.

Theorem 4.8. Let λ = 0, the operator ` admit the representation ` =
`0 − `1, where `0, `1 ∈ Pab, and let

‖`1(1)‖L < 1,

‖`0(1)‖L < 1 + 2
√

1− ‖`1(1)‖L .

Then the problem (1.1), (1.2) has a unique solution.

Theorem 4.9. Let |µ| > |λ| and let there exist `0, `1 ∈ Pab such that on
the set Cλµ

(
[a, b];R

)
the inequality

|`(v)(t)− `1(v)(t)| ≤ `0(|v|)(t) for t ∈ [a, b]

holds. If, moreover,

−`0 ∈ V −ab (λ, µ),
1
2
`1 ∈ V −ab (λ, µ),

then the problem (1.1), (1.2) has a unique solution.

Theorem 4.10. Let |µ| > |λ|, the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab, and let there exist γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying

−γ′(t) ≥ `1(γ)(t) + `0(1)(t) for t ∈ [a, b], (4.26)

|λ|γ(a) < |µ|γ(b), (4.27)

γ(a)− γ(b) < 3 +
∣∣∣∣
λ

µ

∣∣∣∣ . (4.28)

Then the problem (1.1), (1.2) has a unique solution.
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Theorem 4.11. Let |µ| ≥ |λ| 6= 0, −` ∈ Pab, and let there exist a function
γ ∈ C̃(

[a, b];R+

)
such that

γ′(t) ≥ `(γ)(t) for t ∈ [a, b],

|λ|γ(a) > |µ|γ(b).

Let, moreover, at least one of the following items be fulfilled:

a)

‖`(1)‖L < 2 + 2

√∣∣∣∣
λ

µ

∣∣∣∣ ;

b) the condition (4.18) is fulfilled;

c) the condition (4.17) is fulfilled.

Then the problem (1.1), (1.2) has a unique solution.

The last theorem does not deal only with the case |µ| ≥ |λ|. On the
other hand, the assumption µ 6= 0 is necessary (see Remark 2.2, p. 15).

Theorem 4.12. Let µ 6= 0 and let there exist an operator `0 ∈ V −ab (λ, µ)
such that on the set Cλµ

(
[a, b];R

)
the inequality

`(v)(t) sgn v(t) ≥ `0(|v|)(t) for t ∈ [a, b]

holds. Then the problem (1.1), (1.2) has a unique solution.

Remark 4.7. According to Remark 2.16 (see p. 28), Theorems 4.7–4.12
can be immediately derived from Theorems 4.1–4.6. Moreover, by virtue of
Remarks 4.1–4.6, Theorems 4.7–4.12 are nonimprovable in an appropriate
sense.

4.2. Proofs

According to Theorem 1.1 (see p. 14), it is sufficient to show that the
homogeneous problem (1.10), (1.20) has no nontrivial solution.
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Proof of Theorem 4.1. First suppose that (4.1) and (4.2) hold. Assume
that the problem (1.10), (1.20) has a nontrivial solution u. According to
Lemma 2.2 (see p. 39), u changes its sign. Define numbers M and m by
(2.94) and choose tM , tm ∈ [a, b] such that (2.95) is fulfilled. Obviously,
M > 0, m > 0, and without loss of generality we can assume that tm < tM .

The integration of (1.10) from a to tm, from tm to tM , and from tM to
b, by virtue of (2.94), (2.95), and the assumptions `0, `1 ∈ Pab, results in

u(a) +m ≤M

tm∫

a

`1(1)(s)ds+m

tm∫

a

`0(1)(s)ds, (4.29)

M +m ≤M

tM∫

tm

`0(1)(s)ds+m

tM∫

tm

`1(1)(s)ds, (4.30)

M − u(b) ≤M

b∫

tM

`1(1)(s)ds+m

b∫

tM

`0(1)(s)ds. (4.31)

Multiplying both sides of (4.31) by
∣∣µ
λ

∣∣ and taking into account (2.1), (2.94),
and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣M +
µ

λ
u(b) ≤M

b∫

tM

`1(1)(s)ds+m

b∫

tM

`0(1)(s)ds.

Summing the last inequality and (4.29), by virtue of (1.20), we obtain
∣∣∣µ
λ

∣∣∣M +m ≤M

∫

J

`1(1)(s)ds+m

∫

J

`0(1)(s)ds, (4.32)

where J = [a, tm] ∪ [tM , b]. It follows from (4.30) and (4.32) that

M(1−D) ≤ m(B − 1), m(1− C) ≤M
(
A−

∣∣∣µ
λ

∣∣∣
)
, (4.33)

where

A =
∫

J

`1(1)(s)ds, B =

tM∫

tm

`1(1)(s)ds,

C =
∫

J

`0(1)(s)ds, D =

tM∫

tm

`0(1)(s)ds.

(4.34)
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Due to (4.34) and (4.1), C < 1 and D < 1. Consequently, (4.33) implies
A >

∣∣µ
λ

∣∣, B > 1, and

0 < (1− C)(1−D) ≤
(
A−

∣∣∣µ
λ

∣∣∣
)

(B − 1). (4.35)

Obviously,

(1− C)(1−D) ≥ 1− (C +D) = 1− ‖`0(1)‖L > 0,

4
(
A−

∣∣∣µ
λ

∣∣∣
)

(B − 1) ≤
[
A+B − 1−

∣∣∣µ
λ

∣∣∣
]2

=
[
‖`1(1)‖L − 1−

∣∣∣µ
λ

∣∣∣
]2
.

By the last inequalities, (4.35) results in

0 < 4(1− ‖`0(1)‖L) ≤
[
‖`1(1)‖L −

(
1 +

∣∣∣µ
λ

∣∣∣
)]2

,

which contradicts the second inequality in (4.2).
Now suppose that (4.3) and (4.4) are fulfilled. Assume that the problem

(1.10), (1.20) has a nontrivial solution u. According to Lemma 2.4 (see
p. 48), u changes its sign. Define numbers M and m by (2.94) and choose
tM , tm ∈ [a, b] such that (2.95) is fulfilled. Obviously, M > 0, m > 0,
and without loss of generality we can assume that tm < tM . In a similar
manner as above, one can show that the inequalities (4.29)–(4.32) hold,
where J = [a, tm] ∪ [tM , b]. It follows from (4.30) and (4.32) that

m(1−B) ≤M(D − 1), M
(∣∣∣µ
λ

∣∣∣−A
)
≤ m(C − 1), (4.36)

where A, B, C, D are defined by (4.34). According to (4.3) and (4.34),
A <

∣∣µ
λ

∣∣ and B <
∣∣µ
λ

∣∣ ≤ 1. Consequently, (4.36) implies C > 1, D > 1, and

0 <
(∣∣∣µ
λ

∣∣∣−A
)

(1−B) ≤ (C − 1)(D − 1). (4.37)

Obviously,
(∣∣∣µ
λ

∣∣∣−A
)

(1−B) ≥
∣∣∣µ
λ

∣∣∣− (A+B) =
∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L > 0,

4(C − 1)(D − 1) ≤ (C +D − 2)2 = (‖`0(1)‖L − 2)2.

By the last inequalities, (4.37) results in

0 < 4
(∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L

)
≤ (‖`0(1)‖L − 2)2,

which contradicts the second inequality in (4.4).
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Proof of Theorem 4.2. It can be proved in a similar manner as Theo-
rem 4.1. Moreover, the proof of Theorem 4.2 can be found in [5].

Proof of Theorem 4.3. Let u be a solution of the problem (1.10), (1.20).
Then, in view of (1.10), u satisfies

u′(t) = −1
2
`1(u)(t) + `(u)(t) +

1
2
`1(u)(t) for t ∈ [a, b]. (4.38)

By virtue of the assumption −1
2`1 ∈ V +

ab (λ, µ) and Theorem 1.1 (see p. 14),
the problem

α′(t) = −1
2
`1(α)(t) + `0(|u|)(t) +

1
2
`1(|u|)(t), (4.39)

λα(a) + µα(b) = 0 (4.40)

has a unique solution α. Moreover, since `0, `1 ∈ Pab and −1
2`1 ∈ V +

ab (λ, µ),

α(t) ≥ 0 for t ∈ [a, b].

The equality (4.39), in view of (4.7) and the condition `1 ∈ Pab, yields

α′(t) ≥ −1
2
`1(α)(t) + `(u)(t) +

1
2
`1(u)(t) for t ∈ [a, b],

(−α(t))′ ≤ −1
2
`1(−α)(t) + `(u)(t) +

1
2
`1(u)(t) for t ∈ [a, b].

From the last two inequalities and (4.38), on account of (2.1), (4.40), the
assumption −1

2`1 ∈ V +
ab (λ, µ), and Remark 2.3 (see p. 16), we get

|u(t)| ≤ α(t) for t ∈ [a, b]. (4.41)

On the other hand, due to (4.41) and the conditions `0, `1 ∈ Pab, the
equality (4.39) results in

α′(t) ≤ `0(α)(t) for t ∈ [a, b].

Since `0 ∈ V +
ab (λ, µ), the last inequality, together with (4.40), yields α(t) ≤

0 for t ∈ [a, b]. Consequently, it follows from (4.41) that u ≡ 0.

Proof of Theorem 4.4. Assume that the problem (1.10), (1.20) possesses
a nontrivial solution u.

According to Theorem 2.1 (see p. 17) and the assumptions (4.11), (4.12),
and `0, `1 ∈ Pab, it is clear that `0 ∈ V +

ab (λ, µ). It follows easily from
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Definition 2.1 (see p. 15) and the assumptions `0, `1 ∈ Pab that u changes
its sign. Define numbers M and m by (2.94) and choose tM , tm ∈ [a, b] such
that (2.95) holds. Obviously,

M > 0, m > 0, (4.42)

and without loss of generality we can assume that tM < tm. From (1.10),
(1.20), (2.1), (4.11), and (4.12), with respect to (2.94) and (4.42), we find

(Mγ(t) + u(t))′ ≥ `0(Mγ + u)(t) + `1(M − u)(t) ≥
≥ `0(Mγ + u)(t) for t ∈ [a, b],

(4.43)

|λ|(Mγ(a) + u(a))− |µ|(Mγ(b) + u(b)) ≥ 0, (4.44)

and

(mγ(t)− u(t))′ ≥ `0(mγ − u)(t) + `1(m+ u)(t) ≥
≥ `0(mγ − u)(t) for t ∈ [a, b],

(4.45)

|λ|(mγ(a)− u(a))− |µ|(mγ(b)− u(b)) ≥ 0. (4.46)

Hence, according to the condition `0 ∈ V +
ab (λ, µ) and Remark 2.3 (p. 16),

we get

Mγ(t) + u(t) ≥ 0, mγ(t)− u(t) ≥ 0 for t ∈ [a, b].

By virtue of the last two inequalities and the assumption `0 ∈ Pab, it follows
from (4.43) and (4.45) that

(Mγ(t) + u(t))′ ≥ 0, (mγ(t)− u(t))′ ≥ 0 for t ∈ [a, b]. (4.47)

The integration of the first inequality in (4.47) from tM to tm, in view
of (2.95) and (4.42), results in

Mγ(tm)−m−Mγ(tM )−M ≥ 0,

i.e.,
γ(tm)− γ(tM ) ≥ 1 +

m

M
. (4.48)

On the other hand, the integration of the second inequality in (4.47) from
a to tM and from tm to b, on account of (2.95), yields

mγ(tM )−M −mγ(a) + u(a) ≥ 0,

mγ(b)− u(b)−mγ(tm)−m ≥ 0.
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Summing these two inequalities and taking into account (4.42) and

u(b)− u(a) = u(b)
(
1−

∣∣∣µ
λ

∣∣∣
)
≥ −m

(
1−

∣∣∣µ
λ

∣∣∣
)
,

we get

γ(tM )− γ(tm) + γ(b)− γ(a) ≥
∣∣∣µ
λ

∣∣∣ +
M

m
. (4.49)

Now, from (4.48) and (4.49) we have

γ(b)− γ(a) ≥ 1 +
∣∣∣µ
λ

∣∣∣ +
m

M
+
M

m
≥ 3 +

∣∣∣µ
λ

∣∣∣ ,

which contradicts (4.13).

Proof of Theorem 4.5. Let u be a solution of the problem (1.10), (1.20).
First we will show that each of the assumptions (4.16), (4.17) or (4.18)

ensure u not to assume both positive and negative values. Suppose on the
contrary that u changes its sign. Define numbers M and m by (2.94) and
choose tM , tm ∈ [a, b] such that (2.95) holds. Obviously, (2.96) is satisfied.

If (4.16) is fulfilled, then analogously to the proof of Theroem 4.1 (with
`0 ≡ ` and `1 ≡ 0), it can be shown that

0 < 4
∣∣∣µ
λ

∣∣∣ ≤
(‖`(1)‖L − 2

)2
,

which contradicts (4.16).
If (4.17) holds, then, in view of Definition 2.1 (see p. 15), the assumption

u(a) ≥ 0 (resp. u(a) < 0) implies u(t) ≥ 0 (resp. u(t) ≤ 0) for t ∈ [a, b],
which contradicts (2.96).

If (4.18) holds, then, in view of Definition 2.1 (see p. 15), the assumption
u(b) ≥ 0 (resp. u(b) < 0) implies u(t) ≥ 0 (resp. u(t) ≤ 0) for t ∈ [a, b],
which contradicts (2.96).

Therefore, u does not change its sign and without loss of generality we
can assume that

u(t) ≥ 0 for t ∈ [a, b]. (4.50)

It follows from (1.10), (4.50), and the assumption ` ∈ Pab that

u′(t) ≥ 0 for t ∈ [a, b]. (4.51)

Suppose that u(a) > 0. Then, in view of (4.51), we have

u(t) > 0 for t ∈ [a, b]. (4.52)
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Put

r = max
{
γ(t)
u(t)

: t ∈ [a, b]
}

(4.53)

and
v(t) = ru(t)− γ(t) for t ∈ [a, b]. (4.54)

According to (4.15), (4.52), (4.53), and the assumptions 0 6= |µ| ≤ |λ| and
γ ∈ C̃(

[a, b];R+

)
, we get

r > 0. (4.55)

It is clear that
v(t) ≥ 0 for t ∈ [a, b] (4.56)

and there exists t0 ∈ [a, b] such that

v(t0) = 0. (4.57)

By virtue of (1.10), (1.20), (2.1), (4.14), (4.15), (4.54)–(4.56), and the as-
sumption ` ∈ Pab, we have

v′(t) ≥ `(v)(t) ≥ 0 for t ∈ [a, b], |λ|v(a) > |µ|v(b).

From the last two inequalities, (4.56), and the assumption λ 6= 0, we get

v(t0) ≥ v(a) >
∣∣∣µ
λ

∣∣∣ v(b) ≥ 0,

which contradicts (4.57). Therefore, u(a) = 0 and, on account of (1.20),
(4.51), and the assumption µ 6= 0, we find u ≡ 0.

Proof of Theorem 4.6. Let u be a solution of the problem (1.10), (1.20).
Then, in view of (2.1) and (4.21), we get

|u(t)|′ = `(u)(t) sgnu(t) ≤ `0(|u|)(t) for t ∈ [a, b],

|λu(a)| − |µu(b)| = 0.

Now, according to (4.20) and Remark 2.3 (see p. 16), we obtain |u(t)| ≤ 0
for t ∈ [a, b], i.e., u ≡ 0.
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4.3. Comments and Examples

On Remark 4.1. Let 0 6= |µ| ≤ |λ|. Below, for every x0, y0 ∈ R+,
(x0, y0) 6∈ H+ ∪ H− the functions p ∈ L

(
[a, b];R

)
and τ ∈ Mab are con-

structed such that (2.130) holds, and the problem

u′(t) = p(t)u(τ(t)), λu(a) + µu(b) = 0 (4.58)

has a nontrivial solution. Then by Remark 1.1 (see p. 14), there exist q ∈
L

(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2), where ` = `0− `1

and `0, `1 are defined by (2.132), has no solution.
It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ H+ ∪ H−, then (x0, y0)

belongs at least to one of the following sets:

H1 =
{

(x, y) ∈ R+ ×R+ : 1 ≤ x,
∣∣∣µ
λ

∣∣∣ ≤ y
}
,

H2 =
{

(x, y) ∈ R+ ×R+ : x < 1, 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1− x ≤ y
}
,

H3 =
{

(x, y) ∈ R+ ×R+ : y <
∣∣∣µ
λ

∣∣∣ , 2 + 2
√∣∣∣µ

λ

∣∣∣− y ≤ x

}
,

H4 =
{

(x, y) ∈ R+ ×R+ : y <
∣∣∣µ
λ

∣∣∣ , y + 1−
∣∣∣µ
λ

∣∣∣ ≤

≤ x ≤ |λ|(y + 1)− |µ|
|µ| − |λ|y

}
,

H5 =
{

(x, y) ∈ R+ ×R+ : 1−
∣∣∣µ
λ

∣∣∣ < x < 1,
∣∣∣∣
λ

µ

∣∣∣∣ (x− 1) + 1 ≤

≤ y ≤ |λ|(x− 1) + |µ|
|µ|(1− x)

}
,

H6 =
{

(x, y) ∈ R+ ×R+ : 1−
∣∣∣µ
λ

∣∣∣ < x < 1, x− 1 +
∣∣∣µ
λ

∣∣∣ ≤

≤ y ≤
∣∣∣∣
λ

µ

∣∣∣∣ (x− 1) + 1
}
.

Let (x0, y0) ∈ H1. Put a = 0, b = 4,

p(t) =





− ∣∣µ
λ

∣∣ for t ∈ [0, 1[
x0 − 1 for t ∈ [1, 2[∣∣µ
λ

∣∣− y0 for t ∈ [2, 3[
1 for t ∈ [3, 4]

, τ(t) =

{
4 for t ∈ [0, 1[ ∪ [3, 4]
1 for t ∈ [1, 3[

.
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It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =





|µ|(1− t) for t ∈ [0, 1[
0 for t ∈ [1, 3[
|λ|(t− 3) for t ∈ [3, 4]

.

Let (x0, y0) ∈ H2. Put a = 0, b = 6, α =
√

1− x0, β = y0−1− ∣∣µ
λ

∣∣−2α,

p(t) =





− ∣∣µ
λ

∣∣ for t ∈ [0, 1[
−β for t ∈ [1, 2[
−α for t ∈ [2, 4[
−1 for t ∈ [4, 5[
x0 for t ∈ [5, 6]

, τ(t) =





6 for t ∈ [0, 1[ ∪ [2, 3[ ∪ [5, 6]
1 for t ∈ [1, 2[
3 for t ∈ [3, 5[

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =





∣∣µ
λ

∣∣ (1− t) for t ∈ [0, 1[
0 for t ∈ [1, 2[
α(2− t) for t ∈ [2, 3[
α2(t− 3)− α for t ∈ [3, 4[
α(t− 5) + α2 for t ∈ [4, 5[
x0(t− 6) + 1 for t ∈ [5, 6]

.

Let (x0, y0) ∈ H3. Put a = 0, b = 6, α =
√∣∣µ

λ

∣∣− y0, β = x0 − 2− 2α,

p(t) =





α for t ∈ [0, 1[
−y0 for t ∈ [1, 2[
β for t ∈ [2, 3[
1 for t ∈ [3, 4[
α for t ∈ [4, 5[
1 for t ∈ [5, 6]

, τ(t) =





4 for t ∈ [0, 1[ ∪ [3, 4[
6 for t ∈ [1, 2[ ∪ [4, 6]
2 for t ∈ [2, 3[

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
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the nontrivial solution

u(t) =





−α2t+
∣∣µ
λ

∣∣ for t ∈ [0, 1[
y0(2− t) for t ∈ [1, 2[
0 for t ∈ [2, 3[
α(3− t) for t ∈ [3, 4[
α(t− 5) for t ∈ [4, 5[
t− 5 for t ∈ [5, 6]

.

Let (x0, y0) ∈ H4. Put a = 0, b = 2, α = |λ|(1 + y0)− |µ|,

t0 =

{
2 if |λ| = |µ|, x0 = 0, y0 = 0
1
x0
− |λ|

α + 2 otherwise
,

p(t) =

{
−y0 for t ∈ [0, 1[
x0 for t ∈ [1, 2]

, τ(t) =

{
2 for t ∈ [0, 1[
t0 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
−y0|λ|t+ |µ| for t ∈ [0, 1[
α(t− 2) + |λ| for t ∈ [1, 2]

.

Let (x0, y0) ∈ H5. Put a = 0, b = 2, α = |µ|+|λ|(x0−1)
1−x0

, β = |µ|x0

1−x0
,

t0 =
(

α
y0
− |µ|

)
1
β ,

p(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ(t) =

{
1 for t ∈ [0, 1[
t0 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
βt+ |µ| for t ∈ [0, 1[
α(2− t) + |λ| for t ∈ [1, 2]

.

Let (x0, y0) ∈ H6. Put a = 0, b = 2, α = |µ|+|λ|(x0−1), t0 = α−y0|λ|
|λ|x0y0

+2,

p(t) =

{
−y0 for t ∈ [0, 1[
x0 for t ∈ [1, 2]

, τ(t) =

{
t0 for t ∈ [0, 1[
2 for t ∈ [1, 2]

.
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It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
−αt+ |µ| for t ∈ [0, 1[
x0|λ|(t− 2) + |λ| for t ∈ [1, 2]

.

On Remark 4.2. Let µ = 0. Below, for every x0, y0 ∈ R+, (x0, y0) 6∈ H
the functions p ∈ L

(
[a, b];R

)
and τ ∈ Mab are constructed such that

(2.130) holds, and the problem (4.58) has a nontrivial solution. Then by
Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that the
problem (1.1), (1.2), where ` = `0− `1 and `0, `1 are defined by (2.132), has
no solution.

It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ H, then (x0, y0) belongs at
least to one of the following sets:

H̃1 = {(x, y) ∈ R+ ×R+ : 1 ≤ x} ,
H̃2 =

{
(x, y) ∈ R+ ×R+ : x < 1, 1 + 2

√
1− x ≤ y

}
.

Let (x0, y0) ∈ H̃1. Put a = 0, b = 2, t0 = 1
x0

,

p(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ(t) =

{
t0 for t ∈ [0, 1[
0 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
t for t ∈ [0, 1[
1 for t ∈ [1, 2]

.

Let (x0, y0) ∈ H̃2. Put a = 0, b = 5, α =
√

1− x0, β = y0 − 1− 2α,

p(t) =





−β for t ∈ [0, 1[
−α for t ∈ [1, 2[ ∪ [3, 4[
−1 for t ∈ [2, 3[
x0 for t ∈ [4, 5]

, τ(t) =





0 for t ∈ [0, 1[
5 for t ∈ [1, 2[ ∪ [4, 5]
2 for t ∈ [2, 4[

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
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the nontrivial solution

u(t) =





0 for t ∈ [0, 1[
α(1− t) for t ∈ [1, 2[
α(t− 3) for t ∈ [2, 3[
α2(t− 3) for t ∈ [3, 4[
x0(t− 5) + 1 for t ∈ [4, 5]

.

Example 4.1. Let |µ| < |λ|, ε > 0, and let the operators `, `0, `1 ∈ Lab be
defined as follows:

`(v)(t) def= (1 + ε)p(t)v(b) for t ∈ [a, b],

`0(v)(t)
def= p(t)v(b) for t ∈ [a, b], `1 ≡ 0,

(4.59)

where p ∈ L(
[a, b];R+

)
is such that

b∫

a

p(s)ds =
|λ| − |µ|
(1 + ε)|λ| . (4.60)

According to Remark 2.5 (see p. 19), we have

`0 ∈ V +
ab (λ, µ), −1

2
`1 ∈ V +

ab (λ, µ).

Therefore, the assumptions of Theorem 4.3 are fulfilled except of the in-
equality (4.7), instead of which the inequality (4.9) is satisfied.

On the other hand, the problem (1.10), (1.20) has the nontrivial solution

u(t) = |µ|+ (1 + ε)|λ|
t∫

a

p(s)ds for t ∈ [a, b].

Therefore, according to Remark 1.1 (see p. 14), there exist q ∈ L(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2) has no solution.

Example 4.2. Let |µ| < |λ|, ε ∈ ]0, 1[ , and let ` ∈ Lab be defined by

`(v)(t) def= p(t)v(b) for t ∈ [a, b], (4.61)
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where p ∈ L(
[a, b];R+

)
is such that

b∫

a

p(s)ds =
|λ| − |µ|
|λ| . (4.62)

Put `0 ≡ `, `1 ≡ 0. Evidently, the inequality (4.7) is fulfilled and, according
to Remark 2.5 (see p. 19), we have

(1− ε)`0 ∈ V +
ab (λ, µ), −1

2
`1 ∈ V +

ab (λ, µ).

On the other hand, the problem (1.10), (1.20) has the nontrivial solution

u(t) = |µ|+ |λ|
t∫

a

p(s)ds for t ∈ [a, b].

Therefore, according to Remark 1.1 (see p. 14), there exist q ∈ L(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2) has no solution.

Example 4.3. Let |µ| < |λ|, a = 0, b = 3, ε > 0, δ = ε(|λ|−|µ|)
(1+ε)|λ| , and ` ∈ Lab

be an operator defined by

`(v)(t) def= p(t)v(τ(t)) for t ∈ [a, b], (4.63)

where

p(t) =





|λ|−|µ|
|λ| − δ for t ∈ [0, 1[

−2−δ
1−δ for t ∈ [1, 2[

−2 for t ∈ [2, 3]

, τ(t) =





3 for t ∈ [0, 1[
1 for t ∈ [1, 2[
2 for t ∈ [2, 3]

.

Let, moreover,

`0(v)(t)
def= [p(t)]+v(τ0(t)), `1(v)(t)

def= [p(t)]−v(τ1(t)) for t ∈ [a, b],
(4.64)

where τ0 ≡ 3 and

τ1(t) =





0 for t ∈ [0, 1[
1 for t ∈ [1, 2[
2 for t ∈ [2, 3]

.
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It is clear that `0, `1 ∈ Pab and the condition (4.7) is fulfilled. Moreover,

3∫

0

`0(1)(s)ds =

1∫

0

p0(s)ds =
|λ| − |µ|
|λ| − δ <

|λ| − |µ|
|λ| .

Consequently, according to Remark 2.5 (see p. 19), we have `0 ∈ V +
ab (λ, µ).

It is not difficult to verify that the homogeneous problem

u′(t) = − 1
2 + ε

`1(u)(t), λu(0) + µu(3) = 0

has only the trivial solution, and for arbitrary q ∈ L(
[0, 3];R+

)
and c ∈ R

satisfying (2.2) the solution of the problem

u′(t) = − 1
2 + ε

`1(u)(t) + q(t), λu(0) + µu(3) = c

is nonnegative. Therefore, by Definition 2.1 (see p. 15), we obtain

− 1
2 + ε

`1 ∈ V +
ab (λ, µ).

On the other hand, the function

u(t) =





( |λ|−|µ|
|λ| − δ

)
t+

∣∣µ
λ

∣∣ for t ∈ [0, 1[

(2− δ)(1− t) + 1− δ for t ∈ [1, 2[
2t− 5 for t ∈ [2, 3]

is a nontrivial solution of the problem (1.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (1.1), (1.2) has no solution.

Example 4.4. Let |µ| < |λ|, a = 0, b = 4, ε ≥ 0,

`0 ≡ 0, `1(v)(t)
def= g(t)v(ν(t)) for t ∈ [a, b], (4.65)

where

g(t) =





1 +
∣∣µ
λ

∣∣ for t ∈ [0, 1[
1 for t ∈ [1, 3[
ε for t ∈ [3, 4]

, ν(t) =





3 for t ∈ [0, 1[
1 for t ∈ [1, 3[
2 for t ∈ [3, 4]

.
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Put

γ(t) = δ +

t∫

a

g(s)ds for t ∈ [a, b]. (4.66)

where δ > |µ|
|λ|−|µ|

b∫
a
g(s)ds. It is clear that γ ∈ C̃(

[a, b]; ]0,+∞[
)
, the condi-

tions (4.11) and (4.12) hold, and

γ(b)− γ(a) = 3 +
∣∣∣µ
λ

∣∣∣ + ε.

On the other hand, the problem

u′(t) = −g(t)u(ν(t)), λu(a) + µu(b) = 0

has the nontrivial solution

u(t) =





|µ| − (|µ|+ |λ|)t for t ∈ [0, 1[
|λ|(t− 2) for t ∈ [1, 3[
|λ| for t ∈ [3, 4]

.

Therefore, according to Remark 1.1 (see p. 14), there exist q ∈ L(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2) with ` = `0 − `1 has no
solution.

Example 4.5. Let 0 6= |µ| ≤ |λ|, ε ≥ 0, a = 0, b = 5, and let ` ∈ Pab be
defined by (4.63), where

p(t) =





√∣∣µ
λ

∣∣ for t ∈ [0, 1[ ∪ [2, 3[

1 for t ∈ [1, 2[ ∪ [3, 4[
ε for t ∈ [4, 5]

, τ(t) =





2 for t ∈ [0, 2[
4 for t ∈ [2, 4[
3 for t ∈ [4, 5]

.

Let, moreover, the function γ ∈ C̃(
[a, b];R+

)
be defined by

γ(t) =





0 for t ∈ [0, 3[
t− 3 for t ∈ [3, 4[
1 for t ∈ [4, 5]

.

Obviously,
b∫

a

`(1)(s)ds =

5∫

0

p(s)ds = 2 + 2
√∣∣∣µ

λ

∣∣∣ + ε
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and the function γ satisfies (4.14) and (4.15).
On the other hand, the problem (1.10), (1.20) has a nontrivial solution

u(t) =





|µ|(1− t) for t ∈ [0, 1[√
|λµ|(1− t) for t ∈ [1, 2[√
|λµ|(t− 3) for t ∈ [2, 3[

|λ|(t− 3) for t ∈ [3, 4[
|λ| for t ∈ [4, 5]

.

Therefore, according to Remark 1.1 (see p. 14), there exist q ∈ L(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2) has no solution.

Example 4.6. Let 0 6= |µ| < |λ| and let ` ∈ Pab be defined by

`(v)(t) def= p(t)v(t) for t ∈ [a, b],

where p ∈ L(
[a, b];R+

)
is such that

b∫

a

p(s)ds = ln
∣∣∣∣
λ

µ

∣∣∣∣ .

Let, moreover, the function γ ∈ L(
[a, b];R+

)
be defined by

γ(t) = |µ| exp




t∫

a

p(s)ds


 for t ∈ [a, b].

Obviously, γ satisfies (4.14) and (4.19). Furthermore, if
∣∣µ
λ

∣∣ ∈ ]δ0, 1[ , where
δ0 ∈ ]0, 1[ is such that

ln
1
δ0

= 2 + 2
√
δ0 ,

then the condition (4.16) is fulfilled. Moreover, according to Theorem 3.1
a) (see p. 63) and Theorem 3.14 b) (see p. 72), we have ` ∈ V +

ab (1, 0) and
` ∈ V −ab (0, 1).

On the other hand, the function γ is a nontrivial solution of the problem
(1.10), (1.20). Therefore, according to Remark 1.1 (see p. 14), there exist
q ∈ L(

[a, b];R
)

and c ∈ R such that the problem (1.1), (1.2) has no solution.
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Example 4.7. Let |µ| > |λ| 6= 0. Below, the operator ` ∈ Lab is con-
structed in such a way that the homogeneous problem (1.10), (1.20) has
a nontrivial solution. Then, according to Remark 1.1 (see p. 14), there
exist q ∈ L

(
[a, b];R

)
and c ∈ R such that the problem (1.1), (1.2) has no

solution.
Let ε ∈ ]0, 1[ and `, `0 ∈ Lab be defined by

`(v)(t) def= −g(t)v(t), `0(v)(t)
def= − 1

1− ε
g(t)v(t),

where g ∈ L(
[a, b];R+

)
is such that

b∫

a

g(s)ds = ln
∣∣∣µ
λ

∣∣∣ . (4.67)

According to Corollary 3.3 (see p. 68), we have `0 ∈ V +
ab (λ, µ). Obviously,

the assumptions of Theorem 4.6 are fulfilled except of the condition (4.21),
instead of which the condition (4.24) is satisfied.

On the other hand, the problem (1.10), (1.20) has the nontrivial solution

u(t) = |λ| exp




b∫

t

g(s)ds


 for t ∈ [a, b]. (4.68)

Thus, the inequality (4.21) in Theorem 4.6 cannot be replaced by the in-
equality (4.24), no matter how small ε > 0 would be.

Let ε > 0 and ` ∈ Lab be defined by

`(v)(t) def= −g(t)v(t) for t ∈ [a, b],

where g ∈ L
(
[a, b];R+

)
is such that (4.67) holds. Put `0 ≡ `. Evidently,

the condition (4.21) is fulfilled and, according to Corollary 3.3 (see p. 68),
we have (1 + ε)`0 ∈ V +

ab (λ, µ).
On the other hand, the problem (1.10), (1.20) has the nontrivial solution

u given by (4.68). Thus, the assumption (4.20) in Theorem 4.6 cannot be
replaced by the assumption (4.25), no matter how small ε > 0 would be.



§5. Periodic Type BVP for EDA

In this section, we will establish some consequences of the main results
from §4 for the equation with deviating arguments (1.1′). Here we will also
suppose that the inequality (2.1) is fulfilled.

In what follows we will use the notation

p0(t) =
m∑

j=1

pj(t), g0(t) =
m∑

j=1

gj(t) for t ∈ [a, b]

and we will suppose that if λ = −µ, then p0 6≡ g0.

5.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 5.1. Let 0 6= |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

and let either

‖p0‖L < 1, (5.1)

‖p0‖L

1− ‖p0‖L
− |λ| − |µ|

|µ| < ‖g0‖L < 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1− ‖p0‖L (5.2)

or

‖g0‖L <
∣∣∣µ
λ

∣∣∣ , (5.3)

|λ|
|µ| − |λ|‖g0‖L

− 1 < ‖p0‖L < 2 + 2
√∣∣∣µ

λ

∣∣∣− ‖g0‖L . (5.4)

Then the problem (1.1′), (1.2) has a unique solution.

Remark 5.1. The examples constructed in Subsection 4.3 (see On Re-
mark 4.1, p. 94) also show that neither one of the strict inequalities in
(5.1)–(5.4) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case µ = 0.
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Theorem 5.2. Let µ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), and let

‖p0‖L < 1, (5.5)

‖g0‖L < 1 + 2
√

1− ‖p0‖L . (5.6)

Then the problem (1.1′), (1.2) has a unique solution.

Remark 5.2. The examples constructed in Subsection 4.3 (see On Re-
mark 4.2, p. 97) also show that the strict inequalities (5.5) and (5.6) cannot
be replaced by the nonstrict ones.

Theorem 5.3. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk, νk ∈ Mab

(k = 1, . . . ,m). Let, moreover, the functions pk, τk (k = 1, . . . ,m) satisfy
at least one of the conditions a), b) or c) in Theorem 3.1 (see p. 63) or
the assumptions of Theorem 3.2 (see p. 64), while the functions gk, νk (k =
1, . . . ,m) satisfy νk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m) and at least one of
the following items:

a)
b∫

a

g0(s)ds ≤ 2;

b)
b∫

a

m∑

k=1

gk(s)

s∫

νk(s)

m∑

i=1

gi(ξ) exp


1

2

s∫

νi(ξ)

g0(η)dη


 dξds ≤ 4;

c) g0 6≡ 0 and

ess sup





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




< 2η∗ (k = 1, . . . ,m),

where

η∗ = sup





1
x

ln



x+

x

exp

(
x
2

b∫
a
g0(s)ds

)
− 1




: x > 0




.



106 §5. PERIODIC TYPE BVP FOR EDA

Then the problem (1.1′), (1.2) has a unique solution.

Theorem 5.4. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk ∈ Mab (k =

1, . . . ,m) such that

|µ| exp




b∫

a

p0(s)ds


 < |λ|, (5.7)

τk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m), (5.8)

and

|λ| − |µ|

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)
b∫

a

g0(s) exp




b∫

s

p0(ξ)dξ


 ds < 3 +

∣∣∣µ
λ

∣∣∣ . (5.9)

Then the problem (1.1′), (1.2) has a unique solution.

Theorem 5.5. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk ∈ Mab (k =

1, . . . ,m) such that

|λ| − |µ|
|λ|




b∫

a

g0(s)ds+ α1


 +

(
3 +

∣∣∣µ
λ

∣∣∣
)
β1 < 3 +

∣∣∣µ
λ

∣∣∣ , (5.10)

where

α1 =

b∫

a

m∑

k=1

pk(s)




τk(s)∫

a

g0(ξ)dξ


 exp




b∫

s

p0(ξ)dξ


 ds, (5.11)

β1 =
∣∣∣µ
λ

∣∣∣ exp




b∫

a

p0(s)ds


+

+

b∫

a

m∑

k=1

pk(s)σk(s)




τk(s)∫

s

p0(ξ)dξ


 exp




b∫

s

p0(ξ)dξ


 ds,

(5.12)

σk(t) =
1
2

(1 + sgn(τk(t)− t)) for t ∈ [a, b] (k = 1, . . . ,m). (5.13)

Then the problem (1.1′), (1.2) has a unique solution.
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Remark 5.3. Example 4.4 also shows (see p. 100) that the strict inequality
(5.9) in Theorem 5.4 and the strict inequality (5.10) in Theorem 5.5 cannot
be replaced by the nonstrict ones.

Theorem 5.6. Let 0 6= |µ| ≤ |λ|, pk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), p0 6≡

0, and let there exist x ∈
[∣∣∣λ

µ

∣∣∣ ,+∞
[

such that the condition (3.25) holds,
where η is defined by (3.8). Let, moreover, at least one of the following
items be fulfilled:

a)
b∫

a

p0(s) < 2 + 2
√∣∣∣µ

λ

∣∣∣ ;

b) there exists α ∈ ]0, 1[ such that

t∫

a

m∑

k=1

pk(s)




τk(s)∫

a

p0(ξ)dξ


 ds ≤ α

t∫

a

p0(s)ds for t ∈ [a, b];

c)
b∫

a

m∑

k=1

pk(s)σk(s)




τk(s)∫

s

p0(ξ)dξ


 exp




b∫

s

p0(η)dη


 ds < 1,

where σk(t) = 1
2(1 + sgn(τk(t)− t)) for t ∈ [a, b] (k = 1, . . . ,m);

d)
τ∗∫
a
p0(s)ds 6= 0 and

ess sup





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




< η∗ (k = 1, . . . ,m), (5.14)

where

η∗ = sup





1
x

ln


x+

x

exp
(
x

τ∗∫
a
p0(s)ds

)
− 1


 : x > 0





(5.15)

with τ∗ = max
{

ess sup{τk(t) : t ∈ [a, b]} : k = 1, . . . ,m
}
;
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e) τk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m) and

b∫

a

m∑

k=1

pk(s)

τk(s)∫

s

m∑

i=1

pi(ξ) exp




τi(ξ)∫

s

p0(η)dη


 dξds ≤ 1 .

Then the problem (1.1′), (1.2) with gk ≡ 0 (k = 1, . . . ,m) has a unique
solution.

In the case, where |µ| ≥ |λ|, the following assertions hold.

Theorem 5.7. Let |µ| ≥ |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

and let either

‖g0‖L < 1,

‖g0‖L

1− ‖g0‖L
− |µ| − |λ|

|λ| < ‖p0‖L < 1 +
∣∣∣∣
λ

µ

∣∣∣∣ + 2
√

1− ‖g0‖L

or

‖p0‖L <

∣∣∣∣
λ

µ

∣∣∣∣ ,

|µ|
|λ| − |µ|‖p0‖L

− 1 < ‖g0‖L < 2 + 2

√∣∣∣∣
λ

µ

∣∣∣∣− ‖p0‖L .

Then the problem (1.1′), (1.2) has a unique solution.

The next theorem can be understood as a supplement of the previous
one for the case λ = 0.

Theorem 5.8. Let λ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), and

‖g0‖L < 1,

‖p0‖L < 1 + 2
√

1− ‖g0‖L .

Then the problem (1.1′), (1.2) has a unique solution.
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Theorem 5.9. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and τk, νk ∈ Mab

(k = 1, . . . ,m). Let, moreover, the functions gk, νk (k = 1, . . . ,m) satisfy
at least one of the conditions a), b) or c) in Theorem 3.12 (see p. 70) or
the assumptions of Theorem 3.13 (see p. 71), while the functions pk, τk
(k = 1, . . . ,m) satisfy τk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m), and at least
one of the following items:

a)
b∫

a

p0(s)ds ≤ 2;

b)
b∫

a

m∑

k=1

pk(s)

τk(s)∫

s

m∑

i=1

pi(ξ) exp


1

2

τi(ξ)∫

s

p0(η)dη


 dξds ≤ 4;

c) p0 6≡ 0 and

ess sup





τk(t)∫

t

p0(s)ds : t ∈ [a, b]




< 2ω∗ (k = 1, . . . ,m),

where

ω∗ = sup





1
x

ln



x+

x

exp

(
x
2

b∫
a
p0(s)ds

)
− 1




: x > 0




.

Then the problem (1.1′), (1.2) has a unique solution.

Theorem 5.10. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and νk ∈ Mab (k =

1, . . . ,m) such that

|λ| exp




b∫

a

g0(s)ds


 < |µ|,

νk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m),
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and

|µ| − |λ|

|µ| − |λ| exp

(
b∫
a
g0(s)ds

)
b∫

a

p0(s) exp




s∫

a

g0(ξ)dξ


 ds < 3 +

∣∣∣∣
λ

µ

∣∣∣∣ .

Then the problem (1.1′), (1.2) has a unique solution.

Theorem 5.11. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, and νk ∈ Mab (k =

1, . . . ,m) such that

|µ| − |λ|
|µ|




b∫

a

p0(s)ds+ α2


 +

(
3 +

∣∣∣∣
λ

µ

∣∣∣∣
)
β2 < 3 +

∣∣∣∣
λ

µ

∣∣∣∣ ,

where

α2 =

b∫

a

m∑

k=1

gk(s)




b∫

νk(s)

p0(ξ)dξ


 exp




s∫

a

g0(ξ)dξ


 ds,

β2 =
∣∣∣∣
λ

µ

∣∣∣∣ exp




b∫

a

g0(s)ds


+

+

b∫

a

m∑

k=1

gk(s)σk(s)




s∫

νk(s)

g0(ξ)dξ


 exp




s∫

a

g0(ξ)dξ


 ds,

σk(t) =
1
2

(1 + sgn(t− νk(t))) for t ∈ [a, b] (k = 1, . . . ,m).

Then the problem (1.1′), (1.2) has a unique solution.

Theorem 5.12. Let |µ| ≥ |λ| 6= 0, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

g0 6≡ 0, and let there exist x ∈ [∣∣µ
λ

∣∣ ,+∞[
such that the condition (3.16)

holds, where ω is defined by (3.17). Let, moreover, at least one of the
following items be fulfilled:

a)
b∫

a

g0(s) < 2 + 2

√∣∣∣∣
λ

µ

∣∣∣∣ ;
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b) there exists α ∈ ]0, 1[ such that

b∫

t

m∑

k=1

gk(s)




s∫

νk(s)

g0(ξ)dξ


 ds ≤ α

b∫

t

g0(s)ds for t ∈ [a, b];

c)
b∫

a

m∑

k=1

gk(s)σk(s)




t∫

νk(s)

g0(ξ)dξ


 exp




s∫

a

g0(η)dη


 ds < 1,

where σk(t) = 1
2(1 + sgn(t− νk(t))) for t ∈ [a, b] (k = 1, . . . ,m);

d)
b∫

ν∗
g0(s)ds 6= 0 and

ess sup





t∫

νk(t)

g0(s)ds : t ∈ [a, b]




< ω∗ (k = 1, . . . ,m),

where

ω∗ = sup





1
x

ln



x+

x

exp

(
x

b∫
ν∗
g0(s)ds

)
− 1




: x > 0





with ν∗ = min
{

ess inf{νk(t) : t ∈ [a, b]} : k = 1, . . . ,m
}
;

e) νk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m) and

b∫

a

m∑

k=1

gk(s)

s∫

νk(s)

m∑

i=1

gi(ξ) exp




s∫

νi(ξ)

g0(η)dη


 dξds ≤ 1 .

Then the problem (1.1′), (1.2) with pk ≡ 0 (k = 1, . . . ,m) has a unique
solution.

Remark 5.4. Similarly as in the case |µ| ≤ |λ| one can show that Theo-
rems 5.7, 5.10 and 5.11 are also nonimprovable in a certain sense.
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5.2. Proofs

Proof of Theorem 5.1. The validity of the theorem immediately follows
from Theorem 4.1 (see p. 80).

Proof of Theorem 5.2. The validity of the theorem immediately follows
from Theorem 4.2 (see p. 81).

Proof of Theorem 5.3. It is a consequence of Theorem 4.3 (see p. 83)
and Theorems 3.1–3.3 (see pp. 63–65).

Proof of Theorem 5.4. According to (5.9), there exists ε > 0 such that

ε

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)

exp




b∫

a

p0(s)ds


− 1


+

+
|λ| − |µ|

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)
b∫

a

g0(s) exp




b∫

s

p0(ξ)dξ


 ds < 3 +

∣∣∣µ
λ

∣∣∣ .

(5.16)

Put

γ(t) =
ε

|λ| − |µ| exp

(
b∫
a
p0(s)ds

) exp




t∫

a

p0(s)ds


+

+
|λ|

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)
t∫

a

g0(s) exp




t∫

s

p0(ξ)dξ


 ds+

+

|µ| exp

(
b∫
a
p0(s)ds

)

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)
b∫

t

g0(s) exp




t∫

s

p0(ξ)dξ


 ds for t ∈ [a, b].
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Then γ is a solution of the problem

γ′(t) = p0(t)γ(t) + g0(t), λγ(a) + µγ(b) = ε sgnλ. (5.17)

Since ε > 0, in view of (5.7), we have γ(t) > 0 for t ∈ [a, b]. Consequently,
(5.17) implies γ′(t) ≥ 0 for t ∈ [a, b], and thus, (5.8) yields

pk(t)γ(t) ≥ pk(t)γ(τk(t)) for t ∈ [a, b] (k = 1, . . . ,m). (5.18)

On account of (2.1) and (5.16)–(5.18), the function γ satisfies the inequal-
ities (4.11), (4.12), and (4.13) with

`0(v)(t)
def=

m∑

k=1

pk(t)v(τk(t)) for t ∈ [a, b],

`1(v)(t)
def=

m∑

k=1

gk(t)v(νk(t)) for t ∈ [a, b].

(5.19)

Therefore, the assumptions of Theorem 4.4 (see p. 83) are satisfied.

Proof of Theorem 5.5. Let the operators `0 and `1 be defined by (5.19).
From (5.10) we obtain β1 < 1. Consequently, the assumptions of Theo-
rem 3.1 c) (see p. 63) are fulfilled, and thus, `0 ∈ V +

ab (λ, µ). Choose δ > 0
and ε > 0 such that

|λ| − |µ|
|λ| (1− β1)−1


α1 +

b∫

a

g0(s)ds


 < 3 +

∣∣∣µ
λ

∣∣∣− δ, (5.20)

ε <
δ|λ|(1− β1)
|λ| − |µ| exp


−

b∫

a

p0(s)ds


 . (5.21)

According to the condition `0 ∈ V +
ab (λ, µ) and Remark 2.1 (see p. 15), the

problem

γ′(t) =
m∑

i=1

pi(t)γ(τi(t)) + g0(t), (5.22)

λγ(a) + µγ(b) = λε (5.23)

has a unique solution γ. It is clear that the conditions (4.11) and (4.12) are
fulfilled. Due to the conditions `0 ∈ V +

ab (λ, µ) and ε > 0, we get γ(t) ≥ 0
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for t ∈ [a, b]. Hence, the condition (4.12) implies γ(a) > 0. Taking now
into account (5.22), it is evident that γ(t) > 0 for t ∈ [a, b]. On the other
hand, γ is a solution of the equation

γ′(t) = p0(t)γ(t) +
m∑

k=1

pk(t)

τk(t)∫

t

m∑

i=1

pi(s)γ(τi(s))ds+

+
m∑

k=1

pk(t)

τk(t)∫

t

g0(s)ds+ g0(t).

Hence, the Cauchy formula implies

γ(b) ≤ β1γ(b) + α1 +

b∫

a

g0(s)ds+ ε exp




b∫

a

p0(s)ds


 .

The last inequality results in

γ(b) ≤ (1− β1)−1


α1 +

b∫

a

g0(s)ds


 + ε(1− β1)−1 exp




b∫

a

p0(s)ds


 ,

and thus, in view of (5.20), (5.21), and (5.23), we have

γ(b)− γ(a) ≤ |λ| − |µ|
|λ| γ(b) < 3 +

∣∣∣µ
λ

∣∣∣ .

Therefore, the assumptions of Theorem 4.4 (see p. 83) are fulfilled.

Proof of Theorem 5.6. To prove the corollary it is sufficient to show
that the assumptions of Theorem 4.5 (see p. 84) are satisfied.

Let ` ∈ Lab be defined by (3.1). Obviously, ` ∈ Pab. First we will show
that, on account of (3.25) with η given by (3.8), there exists a function
γ ∈ C̃(

[a, b];R+

)
satisfying (4.14) and (4.15). Indeed, according to (3.25),

there exists ε ∈ ]1,+∞[ such that

τk(t)∫

t

p0(s)ds ≥

b∫
a
p0(s)ds

εx
ln

εxeεx

b∫
a
p0(s)ds

(
eεx + |µ|ex−|λ|

|λ|−|µ|
) (5.24)
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for t ∈ [a, b] (k = 1, . . . ,m). Put

x0 =
εx

b∫
a
p0(s)ds

. (5.25)

Obviously, x0 > 0. By (5.24), (5.25), and the assumption x ∈
[
ln

∣∣∣λ
µ

∣∣∣ ,+∞
[
,

we obtain that for k = 1, . . . ,m the inequality

x0 e
x0

tR
a

p0(s)ds
≤ e

x0

τk(t)R
a

p0(s)ds
+
|µ|ex − |λ|
|λ| − |µ| for t ∈ [a, b] (5.26)

holds, and

x0

b∫

a

p0(s)ds > x. (5.27)

Define the function γ ∈ C̃(
[a, b];R+

)
by

γ(t) = e
x0

tR
a

p0(s)ds
+
|µ|ex − |λ|
|λ| − |µ| for t ∈ [a, b]. (5.28)

Obviously, by virtue of (5.27) and (5.28) the function γ satisfies (4.15).
Moreover, in view of (5.26), we obtain

`(γ)(t) =
m∑

k=1

pk(t)


e

x0

τk(t)R
a

p0(s)ds
+
|µ|ex − |λ|
|λ| − |µ|


 ≥

≥ p0(t)x0 e
x0

tR
a

p0(s)ds
= γ′(t) for t ∈ [a, b],

i.e., the inequality (4.14) is fulfilled.
It remains to show that each of the assumptions a), b), c), d) or e) in

Theorem 5.6 ensures that at least one of the assumptions a), b) or c) in
Theorem 4.5 (see p. 84) is satisfied.

It is clear that the assumption a) implies the condition (4.16). Moreover,
according to Theorem 3.1 b) and c) (with λ = 1 and µ = 0, see p. 63),
the assumptions b) and c) yield the condition (4.17). On the other hand,
on account of Theorem 3.14 b) (with λ = 0 and µ = 1, see p. 72), the
assumption e) implies the condition (4.18).
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Finally we will show that the condition d) yields the condition (4.17).
Indeed, according to (5.14), there exists ε > 0 such that

τk(t)∫

t

p0(s)ds < η∗ − ε for t ∈ [a, b] (k = 1, . . . ,m). (5.29)

Choose x1 > 0 and δ ∈ ]0, 1[ such that

1
x1

ln


x1 +

x1(1− δ)

exp
(
x1

τ∗∫
a
p0(s)ds

)
− (1− δ)


 > η∗ − ε (5.30)

and put

γ(t) = e
x1

tR
a

p0(s)ds
− (1− δ) for t ∈ [a, b].

Obviously, γ ∈ C̃
(
[a, b]; ]0,+∞[

)
. Moreover, the inequalities (5.29) and

(5.30) imply that for k = 1, . . . ,m the inequality

x1 e
x1

tR
a

p0(s)ds
≥ e

x1

τk(t)R
a

p0(s)ds
− (1− δ) for t ∈ [a, b]

holds. Hence, we obtain

`(γ)(t) =
m∑

k=1

pk(t)


e

x1

τk(t)R
a

p0(s)ds
− (1− δ)


 ≤

≤ p0(t)x1 e
x1

tR
a

p0(s)ds
= γ′(t) for t ∈ [a, b],

i.e., the inequality (2.10) is fulfilled. Thus, according to Theorem 2.1 (with
λ = 1 and µ = 0, see p. 17), the condition (4.17) is satisfied.

Proof of Theorem 5.7. The validity of the theorem immediately follows
from Theorem 4.7 (see p. 85).

Proof of Theorem 5.8. The validity of the theorem immediately follows
from Theorem 4.8 (see p. 86).
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Proof of Theorem 5.9. It is a consequence of Theorem 4.9 (see p. 86)
and Theorems 3.12–3.14 (see pp. 70–72).

Proof of Theorem 5.10. Similarly to the proof of Theorem 5.4 one can
show that there exists a function γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying (4.26),

(4.27), and (4.28), where `0 and `1 are defined by (5.19). Therefore, the
assumptions of Theorem 4.10 (see p. 86) are satisfied.

Proof of Theorem 5.11. Similarly to the proof of Theorem 5.5 one can
show that there exists a function γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying (4.26),

(4.27), and (4.28), where `0 and `1 are given by (5.19). Therefore, the
assumptions of Theorem 4.10 (see p. 86) are satisfied.

Proof of Theorem 5.12. In a similar manner as in the proof of Theo-
rem 5.6 one can show that the assumptions of Theorem 4.11 (see p. 87) are
satisfied.



§6. Periodic Type BVP for Two Terms EDA

This section deals with the special case of the equation (1.1′) with m = 1
and τ1 ≡ ν1. In that case the equation (1.1′) can be rewritten in the form

u′(t) = p(t)u
(
τ(t)

)
+ q(t), (6.1)

where p, q ∈ L(
[a, b];R

)
and τ ∈Mab. Throughout the section we will also

suppose that the inequality (2.1) is satisfied.
In §5, there were established effective sufficient conditions for unique

solvability of the problem (6.1), (1.2). Although those results are, in gen-
eral, nonimprovable, in the special case, when τ maps the segment [a, b]
into some subsegment [τ0, τ1] ⊆ [a, b], some of them can be improved in
a certain way.

Therefore, in the sequel we will assume that there exist τ0, τ1 ∈ [a, b],
τ0 ≤ τ1 such that τ(t) ∈ [τ0, τ1] for almost all t ∈ [a, b]. Thus, it will be
supposed that

τ0 = ess inf{τ(t) : t ∈ [a, b]}, τ1 = ess sup{τ(t) : t ∈ [a, b]}.

Note also that if τ0 = a and τ1 = b, then obtained results coincide with the
appropriate ones from §5.

In Subsection 6.1, the main results are formulated, Subsection 6.2 is
devoted to their proofs, and the examples verifying the optimality of the
main results can be found in Subsection 6.3.

6.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 6.1. Let |µ| ≤ |λ| and

A =

τ1∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]+ds . (6.2)
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If

A < 1 , (6.3)



τ0∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ0

[p(s)]−ds


×

×

1−

τ1∫

τ0

[p(s)]+ds


 >

∣∣∣µ
λ

∣∣∣− 1 +A ,

(6.4)

(
1−A

)

1 +

τ1∫

τ0

[p(s)]−ds


 >

∣∣∣µ
λ

∣∣∣−
τ0∫

a

[p(s)]−ds−
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]−ds , (6.5)

and either

τ0∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]−ds <
∣∣∣µ
λ

∣∣∣ +
√

1−A , (6.6)

τ1∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]−ds < 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1−A (6.7)

or

τ0∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]−ds ≥
∣∣∣µ
λ

∣∣∣ +
√

1−A , (6.8)

τ1∫

τ0

[p(s)]−ds < 1 +
1−A

τ0∫
a
[p(s)]−ds+

∣∣µ
λ

∣∣ b∫
τ1

[p(s)]−ds−
∣∣µ
λ

∣∣
, (6.9)

then the problem (6.1), (1.2) has a unique solution.

Remark 6.1. Theorem 6.1 is nonimprovable in the sense that neither one
of the strict inequalities (6.4), (6.5), (6.7), and (6.9) can be replaced by the
nonstrict one (see Examples 6.1–6.4, pp. 144–148).
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Theorem 6.2. Let 0 6= |µ| ≤ |λ| and

B =

τ1∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]−ds . (6.10)

If

B <
∣∣∣µ
λ

∣∣∣ , (6.11)

(∣∣∣µ
λ

∣∣∣−B
)


1 +

τ1∫

τ0

[p(s)]+ds


 >

> 1−
τ0∫

a

[p(s)]+ds−
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]+ds ,

(6.12)




τ0∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

τ0

[p(s)]+ds





1−

τ1∫

τ0

[p(s)]−ds


 >

> 1−
∣∣∣µ
λ

∣∣∣ +

τ0∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

τ0

[p(s)]−ds ,

(6.13)

and either
τ0∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]+ds < 1 +
√∣∣∣µ

λ

∣∣∣−B , (6.14)

τ1∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]+ds < 2 + 2
√∣∣∣µ

λ

∣∣∣−B (6.15)

or
τ0∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

τ1

[p(s)]+ds ≥ 1 +
√∣∣∣µ

λ

∣∣∣−B , (6.16)

τ1∫

τ0

[p(s)]+ds < 1 +

∣∣µ
λ

∣∣−B
τ0∫
a
[p(s)]+ds+

∣∣µ
λ

∣∣ b∫
τ1

[p(s)]+ds− 1
, (6.17)
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then the problem (6.1), (1.2) has a unique solution.

Remark 6.2. Theorem 6.2 is nonimprovable in the sense that neither one
of the strict inequalities (6.12), (6.13), (6.15), and (6.17) can be replaced
by the nonstrict one (see Examples 6.5–6.8, pp. 149–153).

Note also that if τ0 = a and τ1 = b, then the assumptions of Theo-
rems 6.1 and 6.2 coincide with the assumptions of Theorems 5.1 and 5.2
(see p. 104).

Theorem 6.3. Let |µ| ≤ |λ|,
τ1∫

τ0

[p(s)]+ds < 1 ,

τ1∫

τ0

[p(s)]−ds < 1 , (6.18)

and either

|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ1

[p(s)]+ds−

−

|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ0

[p(s)]−ds


(

1− T
)
< |λ| − |µ|

(6.19)

or

|λ|

τ0∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]+ds


(

1− T
)−

−|λ|
τ1∫

a

[p(s)]−ds− |µ|
b∫

τ1

[p(s)]−ds >
(|λ| − |µ|)(1− T

)
,

(6.20)

where

T = max





τ1∫

τ0

[p(s)]+ds,

τ1∫

τ0

[p(s)]−ds



 . (6.21)

Then the problem (6.1), (1.2) has a unique solution.

Remark 6.3. Theorem 6.3 is nonimprovable in the sense that the strict
inequalities (6.19) and (6.20) cannot be replaced by the nonstrict ones (see
Examples 6.9–6.11, pp. 154–156).
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Note also that if the segment [τ0, τ1] is degenerated to a point c ∈ [a, b],
i.e., τ(t) = c for t ∈ [a, b], then T = 0 and the inequalities (6.19) and (6.20)
can be rewritten as

λ

c∫

a

p(s)ds− µ

b∫

c

p(s)ds 6= λ+ µ ,

which is sufficient and necessary for the unique solvability of the problem
(6.1), (1.2) with τ(t) = c for t ∈ [a, b].

Theorem 6.4. Let |µ| < |λ| and let there exist γ ∈ C̃(
[a, b]; ]0,+∞[

)
such

that

γ′(t) ≥ [p(t)]+γ(τ(t)) + [p(t)]− for t ∈ [a, b] , (6.22)

|λ|γ(a) > |µ|γ(b) , (6.23)

and either

|λ|(γ(τ0)− γ(a)
)

+ |µ|(γ(b)− γ(τ1)
)
< |λ|+ |µ| , (6.24)

∣∣∣µ
λ

∣∣∣
(
γ(b)− γ(τ1)

)
+ γ(τ1)− γ(a) < 3 +

∣∣∣µ
λ

∣∣∣ (6.25)

or

|λ|(γ(τ0)− γ(a)
)

+ |µ|(γ(b)− γ(τ1)
) ≥ |λ|+ |µ| , (6.26)

γ(τ1)− γ(τ0) < 1 +
|λ|

|λ|(γ(τ0)− γ(a)
)

+ |µ|(γ(b)− γ(τ1)
)− |µ| . (6.27)

Then the problem (6.1), (1.2) has a unique solution.

Remark 6.4. Theorem 6.4 is nonimprovable in the sense that the strict
inequalities (6.25) and (6.27) cannot be replaced by the nonstrict ones (see
Examples 6.3 and 6.4, p. 146).

Note also that if τ0 = a and τ1 = b, then from Theorem 6.4 we obtain
Theorem 4.4 (see p. 83).

In the case, where |µ| ≥ |λ|, the following assertions hold.
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Theorem 6.5. Let |µ| ≥ |λ| and

B̃ =
∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]−ds+

b∫

τ0

[p(s)]−ds .

If

B̃ < 1 ,



∣∣∣∣
λ

µ

∣∣∣∣
τ1∫

a

[p(s)]+ds+

b∫

τ1

[p(s)]+ds





1−

τ1∫

τ0

[p(s)]−ds


 >

∣∣∣∣
λ

µ

∣∣∣∣− 1 + B̃ ,

(
1− B̃

)

1 +

τ1∫

τ0

[p(s)]+ds


 >

∣∣∣∣
λ

µ

∣∣∣∣−
∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]+ds−
b∫

τ1

[p(s)]+ds ,

and either

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]+ds+

b∫

τ1

[p(s)]+ds <
∣∣∣∣
λ

µ

∣∣∣∣ +
√

1− B̃ ,

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]+ds+

b∫

τ0

[p(s)]+ds < 1 +
∣∣∣∣
λ

µ

∣∣∣∣ + 2
√

1− B̃

or

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]+ds+

b∫

τ1

[p(s)]+ds ≥
∣∣∣∣
λ

µ

∣∣∣∣ +
√

1− B̃ ,

τ1∫

τ0

[p(s)]+ds < 1 +
1− B̃

∣∣∣λ
µ

∣∣∣
τ0∫
a

[p(s)]+ds+
b∫

τ1

[p(s)]+ds−
∣∣∣λ
µ

∣∣∣
,

then the problem (6.1), (1.2) has a unique solution.

Theorem 6.6. Let |µ| ≥ |λ| 6= 0 and

Ã =
∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]+ds+

b∫

τ0

[p(s)]+ds .
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If

Ã <

∣∣∣∣
λ

µ

∣∣∣∣ ,

(∣∣∣∣
λ

µ

∣∣∣∣− Ã

)
1 +

τ1∫

τ0

[p(s)]−ds


 > 1−

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]−ds−
b∫

τ1

[p(s)]−ds,




∣∣∣∣
λ

µ

∣∣∣∣
τ1∫

a

[p(s)]−ds+

b∫

τ1

[p(s)]−ds





1−

τ1∫

τ0

[p(s)]+ds


 >

> 1−
∣∣∣∣
λ

µ

∣∣∣∣ +
∣∣∣∣
λ

µ

∣∣∣∣
τ1∫

a

[p(s)]+ds+

b∫

τ1

[p(s)]+ds ,

and either

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]−ds+

b∫

τ1

[p(s)]−ds < 1 +

√∣∣∣∣
λ

µ

∣∣∣∣− Ã ,

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]−ds+

b∫

τ0

[p(s)]−ds < 2 + 2

√∣∣∣∣
λ

µ

∣∣∣∣− Ã

or

∣∣∣∣
λ

µ

∣∣∣∣
τ0∫

a

[p(s)]−ds+

b∫

τ1

[p(s)]−ds ≥ 1 +

√∣∣∣∣
λ

µ

∣∣∣∣− Ã ,

τ1∫

τ0

[p(s)]−ds < 1 +

∣∣∣λ
µ

∣∣∣− Ã

∣∣∣λ
µ

∣∣∣
τ0∫
a

[p(s)]−ds+
b∫

τ1

[p(s)]−ds− 1
,

then the problem (6.1), (1.2) has a unique solution.
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Theorem 6.7. Let |µ| ≥ |λ|, the condition (6.18) be fulfilled, and let either

|λ|
τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ0

[p(s)]−ds−

−

|λ|

τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ1

[p(s)]+ds


(

1− T
)
< |µ| − |λ|

or

|λ|

τ1∫

a

[p(s)]−ds+ |µ|
b∫

τ1

[p(s)]−ds


(

1− T
)−

−|λ|
τ0∫

a

[p(s)]+ds− |µ|
b∫

τ0

[p(s)]+ds >
(|µ| − |λ|)(1− T

)
,

where T is defined by (6.21). Then the problem (6.1), (1.2) has a unique
solution.

Theorem 6.8. Let |µ| > |λ| and let there exist γ ∈ C̃(
[a, b]; ]0,+∞[

)
such

that

−γ′(t) ≥ [p(t)]−γ(τ(t)) + [p(t)]+ for t ∈ [a, b] ,

|λ|γ(a) < |µ|γ(b) ,

and either

|λ|(γ(a)− γ(τ0)
)

+ |µ|(γ(τ1)− γ(b)
)
< |λ|+ |µ| ,

∣∣∣∣
λ

µ

∣∣∣∣
(
γ(a)− γ(τ0)

)
+ γ(τ0)− γ(b) < 3 +

∣∣∣∣
λ

µ

∣∣∣∣
or

|λ|(γ(a)− γ(τ0)
)

+ |µ|(γ(τ1)− γ(b)
) ≥ |λ|+ |µ| ,

γ(τ0)− γ(τ1) < 1 +
|µ|

|λ|(γ(a)− γ(τ0)
)

+ |µ|(γ(τ1)− γ(b)
)− |λ| .

Then the problem (6.1), (1.2) has a unique solution.
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Remark 6.5. Let p, q ∈ L(
[a, b];R

)
, τ ∈Mab, and c ∈ R. Put

p̃(t) def= −p(a+ b− t), τ̃(t) def= a+ b− τ(a+ b− t),

q̃(t) def= −q(a+ b− t) for t ∈ [a, b].

It is clear that if u is a solution of the problem (6.1), (1.2), then the function
v, defined by v(t) def= u(a+ b− t) for t ∈ [a, b], is a solution of the problem

v′(t) = p̃(t)v(τ̃(t)) + q̃(t), µv(a) + λv(b) = c , (6.28)

and vice versa, if v is a solution of the problem (6.28), then the function
u, defined by u(t) def= v(a+ b− t) for t ∈ [a, b], is a solution of the problem
(6.1), (1.2).

Remark 6.6. According to Remark 6.5, Theorems 6.5–6.8 can be immedi-
ately derived from Theorems 6.1–6.4. Moreover, by virtue of Remarks 6.1–
6.4, Theorems 6.5–6.8 are nonimprovable in an appropriate sense.

6.2. Proofs

According to Theorem 1.1 (see p. 14), to prove Theorems 6.1–6.4 it is
sufficient to show that the homogeneous problem

u′(t) = p(t)u
(
τ(t)

)
, (6.10)

λu(a) + µu(b) = 0

has only the trivial solution.
First introduce the following notation

A1 =

τ0∫

a

[p(s)]+ds, A2 =

τ1∫

τ0

[p(s)]+ds, A3 =

b∫

τ1

[p(s)]+ds,

B1 =

τ0∫

a

[p(s)]−ds, B2 =

τ1∫

τ0

[p(s)]−ds, B3 =

b∫

τ1

[p(s)]−ds.

(6.29)
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Proof of Theorem 6.1. Assume that the problem (6.10), (1.20) possesses
a nontrivial solution u.

First suppose that u does not change its sign in [τ0, τ1]. Without loss
of generality we can assume that

u(t) ≥ 0 for t ∈ [τ0, τ1]. (6.30)

Put

M = max{u(t) : t ∈ [τ0, τ1]}, m = min{u(t) : t ∈ [τ0, τ1]}, (6.31)

and choose tM , tm ∈ [τ0, τ1] such that

u(tM ) = M, u(tm) = m. (6.32)

Furthermore, let

α0 = min{tM , tm}, α1 = max{tM , tm}, (6.33)

A21 =

α0∫

τ0

[p(s)]+ds, A22 =

α1∫

α0

[p(s)]+ds, A23 =

τ1∫

α1

[p(s)]+ds,

B21 =

α0∫

τ0

[p(s)]−ds, B22 =

α1∫

α0

[p(s)]−ds, B23 =

τ1∫

α1

[p(s)]−ds.

(6.34)

It is clear that
m ≥ 0, M > 0, (6.35)

since if M = 0, then, in view of (6.10), (6.30), and (6.31), we obtain
u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. Obviously, either

tM < tm (6.36)

or
tM ≥ tm. (6.37)

First suppose that (6.36) holds. The integrations of (6.10) from a to
tM , from tM to tm, from tm to τ1, and from τ1 to b, on account of (6.29),
(6.31)–(6.34), and the assumption

∣∣µ
λ

∣∣ ∈ [0, 1], result in

M − u(a) =

tM∫

a

[p(s)]+u(τ(s))ds−
tM∫

a

[p(s)]−u(τ(s))ds ≤

≤M
(
A1 +A21

)−m
(
B1 +B21

)
,

(6.38)
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m−M =

tm∫

tM

[p(s)]+u(τ(s))ds−
tm∫

tM

[p(s)]−u(τ(s))ds ≤

≤MA22 −mB22,

(6.39)

∣∣∣µ
λ

∣∣∣
(
u(τ1)−m

) ≤ u(τ1)−m =

τ1∫

tm

[p(s)]+u(τ(s))ds−

−
τ1∫

tm

[p(s)]−u(τ(s))ds ≤MA23 −mB23,

(6.40)

u(b)− u(τ1) =

b∫

τ1

[p(s)]+u(τ(s))ds−
b∫

τ1

[p(s)]−u(τ(s))ds ≤

≤MA3 −mB3.

(6.41)

Multiplying both sides of (6.41) by
∣∣µ
λ

∣∣, summing with (6.38) and (6.40),
and taking into account (1.20) and (2.1), we get

M −
∣∣∣µ
λ

∣∣∣m ≤M
(
A1 +A21 +A23 +

∣∣∣µ
λ

∣∣∣A3

)
−

−m
(
B1 +B21 +B23 +

∣∣∣µ
λ

∣∣∣B3

)
.

Hence, by virtue of (6.2), (6.3), (6.29), (6.34), and (6.35), the last inequality
implies

0 < M

(
1−A1 −A21 −A23 −

∣∣∣µ
λ

∣∣∣A3

)
≤

≤ m

( ∣∣∣µ
λ

∣∣∣−B1 −B21 −B23 −
∣∣∣µ
λ

∣∣∣B3

)
.

(6.42)

On the other hand, with recpect to (6.34) and (6.35), (6.39) results in

0 ≤ m
(
1 +B22

) ≤M
(
1 +A22

)
. (6.43)

Thus, it follows from (6.42) and (6.43) that
(

1−A1 −A21 −A23 −
∣∣∣µ
λ

∣∣∣A3

)(
1 +B22

) ≤

≤
( ∣∣∣µ

λ

∣∣∣−B1 −B21 −B23 −
∣∣∣µ
λ

∣∣∣B3

)(
1 +A22

)
.

(6.44)
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Obviously, on account of (6.2), (6.29), (6.34), and the assumption
∣∣µ
λ

∣∣ ∈
[0, 1], we find

(
1−A1 −A21 −A23 −

∣∣∣µ
λ

∣∣∣A23

) (
1 +B22

)
=

=
(
1−A1 −A2 −

∣∣∣µ
λ

∣∣∣A3

) (
1 +B2

)−

−
(
1−A1 −A2 −

∣∣∣µ
λ

∣∣∣A3

) (
B21 +B23

)
+A22

(
1 +B22

) ≥

≥ (
1−A

)(
1 +B2

)− (
B21 +B23

)
+A22

and (∣∣∣µ
λ

∣∣∣−B1 −B21 −B23 −
∣∣∣µ
λ

∣∣∣B3

) (
1 +A22

)
=

=
∣∣∣µ
λ

∣∣∣ +
∣∣∣µ
λ

∣∣∣A22 −
(
B1 +

∣∣∣µ
λ

∣∣∣B3 +B21 +B23

) (
1 +A22

) ≤

≤
∣∣∣µ
λ

∣∣∣−B1 −
∣∣∣µ
λ

∣∣∣B3 +A22 −
(
B21 +B23

)
.

By virtue of the last two inequalities, (6.44) yields
(
1−A

)(
1 +B2

) ≤
∣∣∣µ
λ

∣∣∣−B1 −
∣∣∣µ
λ

∣∣∣B3,

which, in view of (6.29), contradicts (6.5).
Now suppose that (6.37) is fulfilled. The integrations of (6.10) from a to

tm, from tm to tM , and from tM to b, on account of (6.29) and (6.31)–(6.34),
result in

m− u(a) =

tm∫

a

[p(s)]+u(τ(s))ds−
tm∫

a

[p(s)]−u(τ(s))ds ≤

≤M
(
A1 +A21

)−m
(
B1 +B21

)
,

(6.45)

M −m =

tM∫

tm

[p(s)]+u(τ(s))ds−
tM∫

tm

[p(s)]−u(τ(s))ds ≤

≤MA22 −mB22,

(6.46)

u(b)−M =

b∫

tM

[p(s)]+u(τ(s))ds−
b∫

tM

[p(s)]−u(τ(s))ds ≤

≤M
(
A23 +A3

)−m
(
B23 +B3

)
.

(6.47)
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Multiplying both sides of (6.47) by
∣∣µ
λ

∣∣, summing with (6.45), and taking
into account (1.20) and (2.1), we get

m−
∣∣∣µ
λ

∣∣∣M ≤M
(
A1 +A21 +

∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

)
−

−m
(
B1 +B21 +

∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)
.

(6.48)

Hence, by virtue of (6.2), (6.3), (6.29), (6.34), and (6.35), it follows from
(6.46) and (6.48) that

0 < M
(
1−A22

) ≤ m
(
1−B22

)
,

0 ≤ m

(
1 +B1 +B21 +

∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)
≤

≤M

( ∣∣∣µ
λ

∣∣∣ +A1 +A21 +
∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

)
.

Thus,
(

1 +B1 +B21 +
∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)
(1−A22

) ≤

≤
( ∣∣∣µ

λ

∣∣∣ +A1 +A21 +
∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

)(
1−B22

)
.

(6.49)

Obviously, in view of (6.2), (6.3), (6.29), (6.34), and the assumption
∣∣µ
λ

∣∣ ∈
[0, 1], we obtain

(
1 +B1 +B21 +

∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)
(1−A22

)
= 1−A22+

+
(
B1 +B21 +

∣∣∣µ
λ

∣∣∣B22 +
∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)(
1−A22

)−
∣∣∣µ
λ

∣∣∣B22

(
1−A22

)≥

≥ 1−A22 +
(
B1 +

∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

) (
1−A2

)−
∣∣∣µ
λ

∣∣∣B22

and (∣∣∣µ
λ

∣∣∣ +A1 +A21 +
∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

) (
1−B22

)
=

=
∣∣∣µ
λ

∣∣∣−
∣∣∣µ
λ

∣∣∣B22 +
(
A1 +A21 +

∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

) (
1−B22

) ≤

≤
∣∣∣µ
λ

∣∣∣−
∣∣∣µ
λ

∣∣∣B22 +A1 +A21 +A22 +
∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3 −A22 ≤

≤
∣∣∣µ
λ

∣∣∣−
∣∣∣µ
λ

∣∣∣B22 +A−A22.
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By virtue of the last two inequalities, (6.49) implies
(
B1 +

∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

) (
1−A2

) ≤
∣∣∣µ
λ

∣∣∣− 1 +A,

which, in view of (6.29), contradicts (6.4).

Now suppose that u changes its sign in [τ0, τ1]. Put

m0 = −min{u(t) : t ∈ [τ0, τ1]}, M0 = max{u(t) : t ∈ [τ0, τ1]} (6.50)

and choose α0, α1 ∈ [τ0, τ1] such that

u(α0) = −m0, u(α1) = M0. (6.51)

It is clear that
M0 > 0, m0 > 0, (6.52)

and without loss of generality we can assume that α0 < α1. Furthermore,
define numbers A2i, B2i (i = 1, 2, 3) by (6.34) and put

g(x) def=
1−A

x+B1 +
∣∣µ
λ

∣∣B3 −
∣∣µ
λ

∣∣ + x for x >
∣∣∣µ
λ

∣∣∣−B1 −
∣∣∣µ
λ

∣∣∣B3, (6.53)

where A is given by (6.2).
The integrations of (6.10) from a to α0, from α0 to α1, and from α1 to

b, in view of (6.29), (6.34), (6.50), and (6.51), result in

u(a) +m0 =

α0∫

a

[p(s)]−u(τ(s))ds−
α0∫

a

[p(s)]+u(τ(s))ds ≤

≤M0

(
B1 +B21

)
+m0

(
A1 +A21

)
,

(6.54)

M0 +m0 =

α1∫

α0

[p(s)]+u(τ(s))ds−
α1∫

α0

[p(s)]−u(τ(s))ds ≤

≤M0A22 +m0B22,

(6.55)

M0 − u(b) =

b∫

α1

[p(s)]−u(τ(s))ds−
b∫

α1

[p(s)]+u(τ(s))ds ≤

≤M0

(
B23 +B3

)
+m0

(
A23 +A3

)
.

(6.56)
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Multiplying both sides of (6.56) by
∣∣µ
λ

∣∣, summing with (6.54), and taking
into account (1.20), (2.1), (6.52), and the assumption

∣∣µ
λ

∣∣ ∈ [0, 1], we get
∣∣∣µ
λ

∣∣∣M0 +m0 ≤M0

(
B1 +B21 +B23 +

∣∣∣µ
λ

∣∣∣B3

)
+

+m0

(
A1 +A21 +A23 +

∣∣∣µ
λ

∣∣∣A3

)
.

(6.57)

Due to (6.2), (6.3), (6.29), and (6.34), we have

A1 +A21 +A23 +
∣∣∣µ
λ

∣∣∣A3 < 1, A22 < 1.

Thus, it follows from (6.52), (6.55), and (6.57) that

B22 > 1, B1 +B21 +B23 +
∣∣∣µ
λ

∣∣∣B3 >
∣∣∣µ
λ

∣∣∣ , (6.58)

and

B22 ≥ 1 +
M0

m0

(
1−A22

)
, (6.59)

M0

m0
≥ 1−A1 −A21 −A23 −

∣∣µ
λ

∣∣A3

B1 +B21 +B23 +
∣∣µ
λ

∣∣B3 −
∣∣µ
λ

∣∣ . (6.60)

According to (6.58) and the fact that
(
1−A22

) (
1−A1 −A21 −A23 −

∣∣∣µ
λ

∣∣∣A3

)
≥

≥ 1−A1 −A21 −A22 −A23 −
∣∣∣µ
λ

∣∣∣A3 = 1−A,

from (6.59) and (6.60) we get

B22 ≥ 1 +
1−A

B1 +B21 +B23 +
∣∣µ
λ

∣∣B3 −
∣∣µ
λ

∣∣ . (6.61)

First suppose that (6.6) and (6.7) are satisfied. By virtue of (6.58),
from (6.61) we have

1−A ≤ (
B22 − 1

) (
B1 +B21 +B23 +

∣∣∣µ
λ

∣∣∣B3 −
∣∣∣µ
λ

∣∣∣
)
≤

≤ 1
4

(
B1 +B21 +B22 +B23 +

∣∣∣µ
λ

∣∣∣B3 − 1−
∣∣∣µ
λ

∣∣∣
)2

=

=
1
4

(
B1 +B2 +

∣∣∣µ
λ

∣∣∣B3 − 1−
∣∣∣µ
λ

∣∣∣
)2
,
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which, in view of (6.3), (6.29), (6.34), and (6.58), contradicts (6.7).
Now suppose that (6.8) and (6.9) are fulfilled. It is not difficult to

verify that, on account of (6.8) and (6.29), the function g defined by (6.53)
is nondecreasing in [0,+∞[ . Therefore, from (6.61) we obtain

B21 +B22 +B23 ≥ 1 +
1−A

B1 +B21 +B23 +
∣∣µ
λ

∣∣B3 −
∣∣µ
λ

∣∣ +B21 +B23 =

= 1 + g
(
B21 +B23

) ≥ 1 + g(0) = 1 +
1−A

B1 +
∣∣µ
λ

∣∣B3 −
∣∣µ
λ

∣∣ ,

which, in view of (6.29) and (6.34), contradicts (6.9).

Proof of Theorem 6.2. Assume that the problem (6.10), (1.20) has a
nontrivial solution u.

First suppose that u does not change its sign in [τ0, τ1]. Without loss
of generality we can assume that (6.30) is fulfilled. Define numbers M and
m by (6.31) and choose tM , tm ∈ [τ0, τ1] such that (6.32) holds. Further-
more, define numbers α0, α1 and A2i, B2i (i = 1, 2, 3) by (6.33) and (6.34),
respectively. It is clear that (6.35) is satisfied, since if M = 0, then, in view
of (6.10), (6.30), and (6.31), we obtain u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b],
i.e., u ≡ 0. It is also evident that either (6.36) or (6.37) is fulfilled.

First suppose that (6.36) holds. The integrations of (6.10) from tM to
tm, from a to τ0, and from τ0 to b, in view of (6.29)–(6.32), result in

M −m =

tm∫

tM

[p(s)]−u(τ(s))ds−
tm∫

tM

[p(s)]+u(τ(s))ds ≤MB2, (6.62)

u(a)− u(τ0) =

τ0∫

a

[p(s)]−u(τ(s))ds−
τ0∫

a

[p(s)]+u(τ(s))ds ≤

≤MB1 −mA1,

(6.63)

u(τ0)− u(b) =

b∫

τ0

[p(s)]−u(τ(s))ds−
b∫

τ0

[p(s)]+u(τ(s))ds ≤

≤M
(
B2 +B3

)−m
(
A2 +A3

)
.

(6.64)

Multiplying both sides of (6.64) by
∣∣µ
λ

∣∣, summing with (6.63), and taking
into account (1.20), (2.1), (6.31), (6.35), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1],
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we get

M
(∣∣∣µ
λ

∣∣∣− 1
)
≤ u(τ0)

(∣∣∣µ
λ

∣∣∣− 1
)
≤

M
(
B1 +

∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

)
−m

(
A1 +

∣∣∣µ
λ

∣∣∣A2 +
∣∣∣µ
λ

∣∣∣A3

)
,

i.e.,

0 ≤ m

(
A1 +

∣∣∣µ
λ

∣∣∣A2 +
∣∣∣µ
λ

∣∣∣A3

)
≤

≤M

(
1−

∣∣∣µ
λ

∣∣∣ +B1 +
∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

)
.

(6.65)

On the other hand, with respect to (6.10), (6.11), (6.29), (6.35), and
the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], (6.62) yields

0 < M
(
1−B2

) ≤ m. (6.66)

Thus, it follows from (6.65) and (6.66) that
(
A1 +

∣∣∣µ
λ

∣∣∣A2 +
∣∣∣µ
λ

∣∣∣A3

) (
1−B2

) ≤ 1−
∣∣∣µ
λ

∣∣∣ +B1 +
∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3,

which, on account of (6.29), contradicts (6.13).
Now suppose that (6.37) is fulfilled. The integrations of (6.10) from a to

tm, from tm to tM , and from tM to b, on account of (6.29) and (6.31)–(6.34),
yield

u(a)−m =

tm∫

a

[p(s)]−u(τ(s))ds−
tm∫

a

[p(s)]+u(τ(s))ds ≤

≤M
(
B1 +B21

)−m
(
A1 +A21

)
,

(6.67)

m−M =

tM∫

tm

[p(s)]−u(τ(s))ds−
tM∫

tm

[p(s)]+u(τ(s))ds ≤

≤MB22 −mA22,

(6.68)

M − u(b) =

b∫

tM

[p(s)]−u(τ(s))ds−
b∫

tM

[p(s)]+u(τ(s))ds ≤

≤M
(
B23 +B3

)−m
(
A23 +A3

)
.

(6.69)
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Multiplying both sides of (6.69) by
∣∣µ
λ

∣∣, summing with (6.67), and taking
into account (1.20) and (2.1), we get

∣∣∣µ
λ

∣∣∣M −m ≤M
(
B1 +B21 +

∣∣∣µ
λ

∣∣∣B23 +
∣∣∣µ
λ

∣∣∣B3

)
−

−m
(
A1 +A21 +

∣∣∣µ
λ

∣∣∣A23 +
∣∣∣µ
λ

∣∣∣A3

)
.

Hence, by virtue of (6.10), (6.11), (6.29), (6.34), (6.35), and the assumption∣∣µ
λ

∣∣ ∈ ]0, 1], the last inequality results in

0 < M

( ∣∣∣µ
λ

∣∣∣−B1 −B21 −
∣∣∣µ
λ

∣∣∣B23 −
∣∣∣µ
λ

∣∣∣B3

)
≤

≤ m

(
1−A1 −A21 −

∣∣∣µ
λ

∣∣∣A23 −
∣∣∣µ
λ

∣∣∣A3

)
.

(6.70)

On the other hand, with respect to (6.34) and (6.35), (6.68) implies

0 ≤ m
(
1 +A22

) ≤M
(
1 +B22

)
. (6.71)

Thus, it follows from (6.70) and (6.71) that

( ∣∣∣µ
λ

∣∣∣−B1 −B21 −
∣∣∣µ
λ

∣∣∣B23 −
∣∣∣µ
λ

∣∣∣B3

)(
1 +A22

) ≤

≤
(

1−A1 −A21 −
∣∣∣µ
λ

∣∣∣A23 −
∣∣∣µ
λ

∣∣∣A3

)(
1 +B22

)
.

(6.72)

Obviously, on account of (6.10), (6.29), (6.34), and the assumption
∣∣µ
λ

∣∣ ∈
]0, 1], we obtain

(∣∣∣µ
λ

∣∣∣−B1 −B21 −
∣∣∣µ
λ

∣∣∣B23 −
∣∣∣µ
λ

∣∣∣B3

) (
1 +A22

)
=

=
(∣∣∣µ
λ

∣∣∣−B1 −B21 −B22 −
∣∣∣µ
λ

∣∣∣B23 −
∣∣∣µ
λ

∣∣∣B3

) (
1 +A2

)
+B22

(
1 +A2

)−

−
(∣∣∣µ
λ

∣∣∣−B1 −B21 −
∣∣∣µ
λ

∣∣∣B23 −
∣∣∣µ
λ

∣∣∣B3

) (
A21 +A23

) ≥

≥
(∣∣∣µ
λ

∣∣∣−B
) (

1 +A2

)
+B22 −

∣∣∣µ
λ

∣∣∣
(
A21 +A23

)
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and
(
1−A1 −A21 −

∣∣∣µ
λ

∣∣∣A23 −
∣∣∣µ
λ

∣∣∣A3

) (
1 +B22

)
= 1−A1−

−
∣∣∣µ
λ

∣∣∣A3 −
(
A21 +

∣∣∣µ
λ

∣∣∣A23

)
+

(
1−A1 −A21 −

∣∣∣µ
λ

∣∣∣A23 −
∣∣∣µ
λ

∣∣∣A3

)
B22 ≤

≤ 1−A1 −
∣∣∣µ
λ

∣∣∣A3 −
∣∣∣µ
λ

∣∣∣
(
A21 +A23

)
+B22.

By virtue of the last two inequalities, (6.72) yields
(∣∣∣µ
λ

∣∣∣−B
) (

1 +A2

) ≤ 1−A1 −
∣∣∣µ
λ

∣∣∣A3,

which, in view of (6.29), contradicts (6.12).

Now suppose that u changes its sign in [τ0, τ1]. Define numbers m0 and
M0 by (6.50) and choose α0, α1 ∈ [τ0, τ1] such that (6.51) holds. It is clear
that (6.52) is satisfied and without loss of generality we can assume that
α0 < α1. Moreover, define numbers A2i, B2i (i = 1, 2, 3) by (6.34) and put

g(x) def=

∣∣µ
λ

∣∣−B

x+A1 +
∣∣µ
λ

∣∣A3 − 1
+ x for x > 1−A1 −

∣∣∣µ
λ

∣∣∣A3, (6.73)

where B is given by (6.10).
In a similar manner as in the second part of the proof of Theorem 6.1,

it can be shown that the inequalities (6.55) and (6.57) hold. Due to (6.10),
(6.11), (6.29), (6.34), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we have

B1 +B21 +B23 +
∣∣∣µ
λ

∣∣∣B3 <
∣∣∣µ
λ

∣∣∣ , B22 < 1.

Thus, by virtue of (6.52), it follows from (6.55) and (6.57) that

A22 > 1, A1 +A21 +A23 +
∣∣∣µ
λ

∣∣∣A3 > 1, (6.74)

and

A22 ≥ 1 +
m0

M0

(
1−B22

)
, (6.75)

m0

M0
≥

∣∣µ
λ

∣∣−B1 −B21 −B23 −
∣∣µ
λ

∣∣B3

A1 +A21 +A23 +
∣∣µ
λ

∣∣A3 − 1
. (6.76)
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According to (6.74), the assumption
∣∣µ
λ

∣∣ ∈ ]0, 1], and the fact that

(
1−B22

) (∣∣∣µ
λ

∣∣∣−B1 −B21 −B23 −
∣∣∣µ
λ

∣∣∣B3

)
≥

≥
∣∣∣µ
λ

∣∣∣−B1 −B21 −
∣∣∣µ
λ

∣∣∣B22 −B23 −
∣∣∣µ
λ

∣∣∣B3 ≥
∣∣∣µ
λ

∣∣∣−B,

from (6.75) and (6.76) we get

A22 ≥ 1 +

∣∣µ
λ

∣∣−B

A1 +A21 +A23 +
∣∣µ
λ

∣∣A3 − 1
. (6.77)

First suppose that (6.14) and (6.15) are satisfied. By virtue of (6.74),
from (6.77) we have

∣∣∣µ
λ

∣∣∣−B ≤ (
A22 − 1

) (
A1 +A21 +A23 +

∣∣∣µ
λ

∣∣∣A3 − 1
)
≤

≤ 1
4

(
A1 +A21 +A22 +A23 +

∣∣∣µ
λ

∣∣∣A3 − 2
)2

=

=
1
4

(
A1 +A2 +

∣∣∣µ
λ

∣∣∣A3 − 2
)2
,

which, in view of (6.11), (6.29), (6.34), and (6.74), contradicts (6.15).
Now suppose that (6.16) and (6.17) are fulfilled. It is not difficult to

verify that, on account of (6.16) and (6.29), the function g defined by (6.73)
is nondecreasing in [0,+∞[ . Therefore, from (6.77) we obtain

A21 +A22 +A23 ≥ 1 +

∣∣µ
λ

∣∣−B

A1 +A21 +A23 +
∣∣µ
λ

∣∣A3 − 1
+A21 +A23 =

= 1 + g
(
A21 +A23

) ≥ 1 + g(0) = 1 +

∣∣µ
λ

∣∣−B

A1 +
∣∣µ
λ

∣∣A3 − 1
,

which, in view of (6.29) and (6.34), contradicts (6.17).

Proof of Theorem 6.3. Assume that the problem (6.10), (1.20) has a
nontrivial solution u.

First suppose that u has a zero in [τ0, τ1]. Define numbers m0 and M0

by (6.50) and choose α0, α1 ∈ [τ0, τ1] such that (6.51) holds. Obviously,

m0 ≥ 0, M0 ≥ 0, m0 +M0 > 0, (6.78)
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since if m0 = 0 and M0 = 0, then, in view of (6.10) and (6.50), we obtain
u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. It is also evident that
without loss of generality we can assume that α0 < α1.

The integration of (6.10) from α0 to α1, on account of (6.50), (6.51),
and (6.78), yields

M0 +m0 =

α1∫

α0

[p(s)]+u(τ(s))ds−
α1∫

α0

[p(s)]−u(τ(s))ds ≤

≤M0

τ1∫

τ0

[p(s)]+ds+m0

τ1∫

τ0

[p(s)]−ds,

(6.79)

which, by virtue of (6.18) and (6.78), results in M0 + m0 < M0 + m0, a
contradiction.

Now suppose that u has no zero in [τ0, τ1]. Without loss of generality
we can assume that u(t) > 0 for t ∈ [τ0, τ1]. Define numbers M and m
by (6.31) and choose tM , tm ∈ [τ0, τ1] such that (6.32) holds. Furthermore,
denote

f+(t) def=

t∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

t

[p(s)]+ds for t ∈ [a, b],

f−(t) def=

t∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

t

[p(s)]−ds for t ∈ [a, b].

(6.80)

It is obvious that
M > 0, m > 0, (6.81)

and either (6.36) or (6.37) is satisfied.
If (6.36) holds, then the integration of (6.10) from tM to tm, on account

of (6.31), (6.32), and (6.81), results in

M −m =

tm∫

tM

[p(s)]−u(τ(s))ds−
tm∫

tM

[p(s)]+u(τ(s))ds ≤M

τ1∫

τ0

[p(s)]−ds.

If (6.37) holds, then the integration of (6.10) from tm to tM , in view of
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(6.31), (6.32), and (6.81), results in

M −m =

tM∫

tm

[p(s)]+u(τ(s))ds−
tM∫

tm

[p(s)]−u(τ(s))ds ≤M

τ1∫

τ0

[p(s)]+ds.

Therefore, with respect to (6.18) and (6.81), in both cases (6.36) and (6.37)
we have

0 < M
(
1− T

) ≤ m, (6.82)

where T is defined by (6.21).
First suppose that (6.19) holds with T given by (6.21). The integrations

of (6.10) from a to tM and from tM to b, on account of (6.31) and (6.32),
imply

M − u(a) =

tM∫

a

[p(s)]+u(τ(s))ds−
tM∫

a

[p(s)]−u(τ(s))ds ≤

≤M

tM∫

a

[p(s)]+ds−m

tM∫

a

[p(s)]−ds,

(6.83)

u(b)−M =

b∫

tM

[p(s)]+u(τ(s))ds−
b∫

tM

[p(s)]−u(τ(s))ds ≤

≤M

b∫

tM

[p(s)]+ds−m

b∫

tM

[p(s)]−ds.

(6.84)

Multiplying both sides of (6.84) by
∣∣µ
λ

∣∣, summing with (6.83), and taking
into account (1.20), (2.1), and (6.80), we get

M
(
1−

∣∣∣µ
λ

∣∣∣
)
≤M




tM∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

tM

[p(s)]+ds


−

−m



tM∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

tM

[p(s)]−ds


 = Mf+(tM )−mf−(tM ).

(6.85)

It is easy to verify that, in view of the assumption
∣∣µ
λ

∣∣ ∈ [0, 1], the functions
f+ and f− defined by (6.80) are nondecreasing in [a, b] and thus, with
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respect to (6.29) and (6.80), it follows from (6.85) that

M
(
1−

∣∣∣µ
λ

∣∣∣
)
≤Mf+(tM )−mf−(tM ) ≤Mf+(τ1)−mf−(τ0) =

= M
(
A1 +A2 +

∣∣∣µ
λ

∣∣∣A3

)
−m

(
B1 +

∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

)
.

(6.86)

By virtue of (6.82), (6.86) yields

M
(
1−

∣∣∣µ
λ

∣∣∣
)
≤M

(
A1 +A2 +

∣∣∣µ
λ

∣∣∣A3

)
−

−M
(
B1 +

∣∣∣µ
λ

∣∣∣B2 +
∣∣∣µ
λ

∣∣∣B3

) (
1− T

)
,

which, in view of (6.29) and (6.81), contradicts (6.19).
Now suppose that (6.20) holds with T given by (6.21). The integrations

of (6.10) from a to tm and from tm to b, on account of (6.31) and (6.32),
imply

m− u(a) =

tm∫

a

[p(s)]+u(τ(s))ds−
tm∫

a

[p(s)]−u(τ(s))ds ≥

≥ m

tm∫

a

[p(s)]+ds−M

tm∫

a

[p(s)]−ds,

(6.87)

u(b)−m =

b∫

tm

[p(s)]+u(τ(s))ds−
b∫

tm

[p(s)]−u(τ(s))ds ≥

≥ m

b∫

tm

[p(s)]+ds−M

b∫

tm

[p(s)]−ds.

(6.88)

Multiplying both sides of (6.88) by
∣∣µ
λ

∣∣, summing with (6.87), and taking
into account (1.20), (2.1), and (6.80), we obtain

m
(
1−

∣∣∣µ
λ

∣∣∣
)
≥ m




tm∫

a

[p(s)]+ds+
∣∣∣µ
λ

∣∣∣
b∫

tm

[p(s)]+ds


−

−M



tm∫

a

[p(s)]−ds+
∣∣∣µ
λ

∣∣∣
b∫

tm

[p(s)]−ds


 = mf+(tm)−Mf−(tm).

(6.89)
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As above, in view of the assumption
∣∣µ
λ

∣∣ ∈ [0, 1], the functions f+ and f−
defined by (6.80) are nondecreasing in [a, b] and thus, with respect to (6.29)
and (6.80), it follows from (6.89) that

m
(
1−

∣∣∣µ
λ

∣∣∣
)
≥ mf+(tm)−Mf−(tm) ≥ mf+(τ0)−Mf−(τ1) =

= m
(
A1 +

∣∣∣µ
λ

∣∣∣A2 +
∣∣∣µ
λ

∣∣∣A3

)
−M

(
B1 +B2 +

∣∣∣µ
λ

∣∣∣B3

)
.

(6.90)

By virtue of (6.18), (6.21), and (6.82), (6.90) implies

m
(
1−

∣∣∣µ
λ

∣∣∣
)

(1− T ) ≥ m
(
A1 +

∣∣∣µ
λ

∣∣∣A2 +
∣∣∣µ
λ

∣∣∣A3

) (
1− T

)−

−m
(
B1 +B2 +

∣∣∣µ
λ

∣∣∣B3

)
,

which, in view of (6.29) and (6.81), contradicts (6.20).

Proof of Theorem 6.4. Assume that the problem (6.10), (1.20) has a
nontrivial solution u.

According to Theorem 2.1 (see p. 17) and the assumptions (6.22) and
(6.23), it is clear that G ∈ V +

ab (λ, µ), where

G(v)(t) def= [p(t)]+v(τ(t)) for t ∈ [a, b].

Now it follows easily from Definition 2.1 (see p. 15) that u changes its sign
in [τ0, τ1]. Define numbers m0 and M0 by (6.50) and choose α0, α1 ∈ [τ0, τ1]
such that (6.51) holds. Obviously, (6.52) is satisfied and without loss of
generality we can assume that α1 < α0. From (6.10), (1.20), (6.22), and
(6.23), with respect to (2.1), (6.50), and (6.52), we obtain

(
M0γ(t) + u(t)

)′ ≥
≥ [p(t)]+

(
M0γ(τ(t)) + u(τ(t))

)
+ [p(t)]−

(
M0 − u(τ(t))

) ≥
≥ G(M0γ + u)(t) for t ∈ [a, b],

(6.91)

|λ|(M0γ(a) + u(a)
)− |µ|(M0γ(b) + u(b)

)
> 0,
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and
(
m0γ(t)− u(t)

)′ ≥
≥ [p(t)]+

(
m0γ(τ(t))− u(τ(t))

)
+ [p(t)]−

(
m0 + u(τ(t))

) ≥
≥ G(m0γ − u)(t) for t ∈ [a, b],

(6.92)

|λ|(m0γ(a)− u(a)
)− |µ|(m0γ(b)− u(b)

)
> 0.

Hence, according to the condition G ∈ V +
ab (λ, µ) and Remark 2.3 (see p. 16),

we get

M0γ(t) + u(t) ≥ 0, m0γ(t)− u(t) ≥ 0 for t ∈ [a, b].

By virtue of the last inequalities, it follows from (6.91) and (6.92) that
(
M0γ(t) + u(t)

)′ ≥ 0,
(
m0γ(t)− u(t)

)′ ≥ 0 for t ∈ [a, b]. (6.93)

The integration of the first inequality in (6.93) from α1 to α0, in view
of (6.51) and (6.52), yields

M0γ(α0)−m0 −M0γ(α1)−M0 ≥ 0,

i.e.,
γ(α0)− γ(α1) ≥ 1 +

m0

M0
. (6.94)

On the other hand, the integrations of the second inequality in (6.93)
from a to α1 and from α0 to b, on account of (6.51), imply

m0γ(α1)−M0 −m0γ(a) + u(a) ≥ 0, (6.95)

m0γ(b)− u(b)−m0γ(α0)−m0 ≥ 0. (6.96)

Multiplying both sides of (6.96) by
∣∣µ
λ

∣∣, summing with (6.95), and taking
into account (1.20), (2.1), and (6.52), we get

γ(α1)− γ(a) +
∣∣∣µ
λ

∣∣∣
(
γ(b)− γ(α0)

) ≥
∣∣∣µ
λ

∣∣∣ +
M0

m0
. (6.97)

First suppose that (6.24) and (6.25) are fulfilled. Summing (6.94) and
(6.97) and taking into account (6.52), we obtain

γ(α0)− γ(a) +
∣∣∣µ
λ

∣∣∣
(
γ(b)− γ(α0)

) ≥

≥ 1 +
∣∣∣µ
λ

∣∣∣ +
M0

m0
+
m0

M0
≥ 3 +

∣∣∣µ
λ

∣∣∣ .
(6.98)
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On the other hand, by virtue of the fact that the function γ is nondecreasing
in [a, b], and the assumption

∣∣µ
λ

∣∣ ∈ [0, 1[ , we get
∣∣∣µ
λ

∣∣∣ γ(b) +
(
1−

∣∣∣µ
λ

∣∣∣
)
γ(τ1)− γ(a) ≥

∣∣∣µ
λ

∣∣∣ γ(b) +
(
1−

∣∣∣µ
λ

∣∣∣
)
γ(α0)− γ(a),

which, together with (6.98), contradicts (6.25).
Now suppose that (6.26) and (6.27) are satisfied. According to (6.26),

(6.52), and the fact that the function γ is nondecreasing in [a, b], it follows
from (6.97) that

m0

M0
≥ |λ|
|λ|(γ(α1)− γ(a)

)
+ |µ|(γ(b)− γ(α0)

)− |µ|
and thus, (6.94) implies

γ(α0)− γ(α1) ≥ 1 +
|λ|

|λ|(γ(α1)− γ(a)
)

+ |µ|(γ(b)− γ(α0)
)− |µ| . (6.99)

Let
g(x) def=

|λ|
x− |µ| +

x

|λ| for x > |µ|. (6.100)

By virtue of (6.99), (6.100), the assumption
∣∣µ
λ

∣∣ ∈ [0, 1[ , and the fact that
the function γ is nondecreasing in [a, b], we get

γ(τ1)− γ(τ0) =

= γ(α0)− γ(α1) + γ(τ1)− γ(α0) + γ(α1)− γ(τ0) ≥

≥ 1 +
|λ|

|λ|(γ(α1)− γ(a)
)

+ |µ|(γ(b)− γ(α0)
)− |µ| +

+
∣∣∣µ
λ

∣∣∣
(
γ(τ1)− γ(α0)

)
+ γ(α1)− γ(τ0) =

= 1 + g
(|λ|(γ(α1)− γ(a)

)
+ |µ|(γ(b)− γ(α0)

))
+

+γ(a)− γ(τ0) +
∣∣∣µ
λ

∣∣∣
(
γ(τ1)− γ(b)

)
.

(6.101)

It is easy to verify that the function g is nondecreasing in [|λ|+|µ|,+∞[ and
thus, according to (6.26) and the fact that the function γ is nondecreasing
in [a, b], we find

g
(|λ|(γ(α1)− γ(a)

)
+ |µ|(γ(b)− γ(α0)

)) ≥
≥ g

(|λ|(γ(τ0)− γ(a)
)

+ |µ|(γ(b)− γ(τ1)
))
.
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Therefore, (6.101) yields

γ(τ1)− γ(τ0) ≥ 1 + g
(|λ|(γ(τ0)− γ(a)

)
+ |µ|(γ(b)− γ(τ1)

))
+

+ γ(a)− γ(τ0) +
∣∣∣µ
λ

∣∣∣
(
γ(τ1)− γ(b)

)
=

= 1 +
|λ|

|λ|(γ(τ0)− γ(a)
)

+ |µ|(γ(b)− γ(τ1)
)− |µ| ,

which contradicts (6.27).

6.3. Comments and Examples

Example 6.1. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

x1 + x2 +
∣∣∣µ
λ

∣∣∣x3 < 1 (6.102)

and
(
y1 +

∣∣∣µ
λ

∣∣∣ y2 +
∣∣∣µ
λ

∣∣∣ y3

) (
1− x2

)
=

∣∣∣µ
λ

∣∣∣− 1 + x1 + x2 +
∣∣∣µ
λ

∣∣∣x3.

Let, moreover, a = 0, b = 7,

p(t) =





−y1 for t ∈ [0, 1[
x1 for t ∈ [1, 2[
x2 for t ∈ [2, 3[
−y2 for t ∈ [3, 4[
0 for t ∈ [4, 5[
x3 for t ∈ [5, 6[
−y3 for t ∈ [6, 7]

, (6.103)

and

τ(t) =





2 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]
3 for t ∈ [1, 3[ ∪ [5, 6[
4 for t ∈ [4, 5[

.
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Obviously, τ0 = 2, τ1 = 4, and

τ0∫

a

[p(s)]+ds = x1,

τ1∫

τ0

[p(s)]+ds = x2,

b∫

τ1

[p(s)]+ds = x3,

τ0∫

a

[p(s)]−ds = y1,

τ1∫

τ0

[p(s)]−ds = y2,

b∫

τ1

[p(s)]−ds = y3.

(6.104)

On the other hand, the function

u(t) =





y1(1− x2)(1− t) + 1− x1 − x2 for t ∈ [0, 1[
x1(t− 2) + 1− x2 for t ∈ [1, 2[
x2(t− 3) + 1 for t ∈ [2, 3[
y2(1− x2)(3− t) + 1 for t ∈ [3, 4[
1− y2(1− x2) for t ∈ [4, 5[
x3(t− 5) + 1− y2(1− x2) for t ∈ [5, 6[
y3(1− x2)(7− t) + 1 + x3 − (y2 + y3)(1− x2) for t ∈ [6, 7]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.4)
cannot be replaced by the nonstrict one.

Example 6.2. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(6.102) holds and

(
1− x1 − x2 −

∣∣∣µ
λ

∣∣∣x3

) (
1 + y2

)
=

∣∣∣µ
λ

∣∣∣− y1 −
∣∣∣µ
λ

∣∣∣ y3.

Let, moreover, a = 0, b = 7, p ∈ L(
[a, b];R

)
be defined by (6.103), and

τ(t) =





2 for t ∈ [4, 5[
3 for t ∈ [1, 3[ ∪ [5, 6[
4 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]

.

Obviously, τ0 = 2, τ1 = 4, and (6.104) is fulfilled.
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On the other hand, the function

u(t) =





y1(1− t) + 1 + y2 − (x1 + x2)(1 + y2) for t ∈ [0, 1[
x1(1 + y2)(t− 2) + 1 + y2 − x2(1 + y2) for t ∈ [1, 2[
x2(1 + y2)(t− 3) + 1 + y2 for t ∈ [2, 3[
y2(4− t) + 1 for t ∈ [3, 4[
1 for t ∈ [4, 5[
x3(1 + y2)(t− 5) + 1 for t ∈ [5, 6[
y3(7− t) + 1− y3 + x3(1 + y2) for t ∈ [6, 7]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.5)
cannot be replaced by the nonstrict one.

Example 6.3. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(6.102) holds and

y1 +
∣∣∣µ
λ

∣∣∣ y3 <
∣∣∣µ
λ

∣∣∣ +
√

1− x1 − x2 −
∣∣∣µ
λ

∣∣∣x3 ,

y1 + y2 +
∣∣∣µ
λ

∣∣∣ y3 ≥ 1 +
∣∣∣µ
λ

∣∣∣ + 2
√

1− x1 − x2 −
∣∣∣µ
λ

∣∣∣x3 .

Put α =
√

1− x1 − x2 −
∣∣µ
λ

∣∣x3 and k =
∣∣µ
λ

∣∣ + α − y1 −
∣∣µ
λ

∣∣ y3. Obviously,
k > 0 and y2 ≥ 1 + α+ k. Let, moreover, a = 0, b = 10,

p(t) =





−y1 for t ∈ [0, 1[
x1 for t ∈ [1, 2[
x2 for t ∈ [2, 3[
−k for t ∈ [3, 4[
−1 for t ∈ [4, 5[
−(
y2 − 1− α− k

)
for t ∈ [5, 6[

−α for t ∈ [6, 7[
0 for t ∈ [7, 8[
x3 for t ∈ [8, 9[
−y3 for t ∈ [9, 10]

, (6.105)
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and

τ(t) =





7 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [9, 10]
4 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [8, 9[
5 for t ∈ [5, 6[
2 for t ∈ [7, 8[

. (6.106)

Obviously, τ0 = 2, τ1 = 7, and (6.104) is satisfied.
On the other hand, the function

u(t) =





αy1(1− t) + αk + x1 + x2 − 1 for t ∈ [0, 1[
x1(2− t) + αk + x2 − 1 for t ∈ [1, 2[
x2(3− t) + αk − 1 for t ∈ [2, 3[
αk(4− t)− 1 for t ∈ [3, 4[
t− 5 for t ∈ [4, 5[
0 for t ∈ [5, 6[
α(t− 6) for t ∈ [6, 7[
α for t ∈ [7, 8[
x3(8− t) + α for t ∈ [8, 9[
αy3(10− t) + α− x3 − αy3 for t ∈ [9, 10]

(6.107)

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.7)
cannot be replaced by the nonstrict one.

Further, in addition, let |µ| < |λ| and xi = 0 (i = 1, 2, 3). Put

γ(t) = δ +

t∫

a

[p(s)]−ds for t ∈ [a, b], (6.108)

where δ > |µ|
|λ|−|µ|(y1 + y2 + y3) and p ∈ L

(
[a, b];R

)
is defined by (6.105).

Obviously, γ satisfies (6.22) with τ ∈Mab given by (6.106), (6.23), and

γ(τ0)− γ(a) = y1, γ(τ1)− γ(τ0) = y2, γ(b)− γ(τ1) = y3. (6.109)

Thus, (6.24) is fulfilled and
∣∣∣µ
λ

∣∣∣
(
γ(b)− γ(τ1)

)
+ γ(τ1)− γ(a) = y1 + y2 +

∣∣∣µ
λ

∣∣∣ y3 ≥ 3 +
∣∣∣µ
λ

∣∣∣ .
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On the other hand, as we have shown, the problem (6.10), (1.20) has
a nontrivial solution u given by (6.107). Therefore, according to Remark 1.1
(see p. 14), there exist q ∈ L

(
[a, b];R

)
and c ∈ R such that the problem

(6.1), (1.2) has no solution.
Consequently, this example also shows that in Theorem 6.4 the strict

inequality (6.25) cannot be replaced by the nonstrict one.

Example 6.4. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(6.102) holds and

y1 +
∣∣∣µ
λ

∣∣∣ y3 ≥
∣∣∣µ
λ

∣∣∣ +
√

1− x1 − x2 −
∣∣∣µ
λ

∣∣∣x3 ,

y2 ≥ 1 +
1− x1 − x2 −

∣∣µ
λ

∣∣x3

y1 +
∣∣µ
λ

∣∣ y3 −
∣∣µ
λ

∣∣ .

Put α = 1− x1 − x2 −
∣∣µ
λ

∣∣x3 and β = y1 +
∣∣µ
λ

∣∣ y3 −
∣∣µ
λ

∣∣. Obviously, α > 0,
β > 0, and y2 ≥ 1 + α

β . Let, moreover, a = 0, b = 9,

p(t) =





x1 for t ∈ [0, 1[
−y1 for t ∈ [1, 2[
x2 for t ∈ [2, 3[
−1 for t ∈ [3, 4[
−(
y2 − 1− α

β

)
for t ∈ [4, 5[

−α
β for t ∈ [5, 6[

0 for t ∈ [6, 7[
−y3 for t ∈ [7, 8[
x3 for t ∈ [8, 9]

, (6.110)

and

τ(t) =





3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [8, 9]
6 for t ∈ [1, 2[ ∪ [7, 8[
4 for t ∈ [4, 5[
2 for t ∈ [6, 7[

. (6.111)

Obviously, τ0 = 2, τ1 = 6, and (6.104) is satisfied.
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On the other hand, the function

u(t) =





βx1(1− t) + y1α− (1− x2)β for t ∈ [0, 1[
αy1(2− t)− (1− x2)β for t ∈ [1, 2[
βx2(3− t)− β for t ∈ [2, 3[
β(t− 4) for t ∈ [3, 4[
0 for t ∈ [4, 5[
α(t− 5) for t ∈ [5, 6[
α for t ∈ [6, 7[
αy3(7− t) + α for t ∈ [7, 8[
βx3(9− t) + α(1− y3)− βx3 for t ∈ [8, 9]

(6.112)

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.1 the strict inequality (6.9)
cannot be replaced by the nonstrict one.

Further, in addition, let |µ| < |λ| and xi = 0 (i = 1, 2, 3). Define the
function γ ∈ C̃

(
[a, b]; ]0,+∞[

)
by (6.108), where δ > |µ|

|λ|−|µ|(y1 + y2 + y3)
and p ∈ L

(
[a, b];R

)
is given by (6.110). Obviously, γ satisfies (6.22) with

τ ∈Mab given by (6.111), (6.23), and (6.109). Thus, (6.26) is fulfilled and

γ(τ1)− γ(τ0) = y2 ≥ 1 +
α

β
= 1 +

1
γ(τ0)− γ(a) +

∣∣µ
λ

∣∣ (
γ(b)− γ(τ1)

)− ∣∣µ
λ

∣∣ .

On the other hand, as we have shown, the problem (6.10), (1.20) has
a nontrivial solution u given by (6.112). Therefore, according to Remark 1.1
(see p. 14), there exist q ∈ L

(
[a, b];R

)
and c ∈ R such that the problem

(6.1), (1.2) has no solution.
Consequently, this example also shows that in Theorem 6.4 the strict

inequality (6.27) cannot be replaced by the nonstrict one.

Example 6.5. Let 0 6= |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that

y1 + y2 +
∣∣∣µ
λ

∣∣∣ y3 <
∣∣∣µ
λ

∣∣∣ (6.113)

and (∣∣∣µ
λ

∣∣∣− y1 − y2 −
∣∣∣µ
λ

∣∣∣ y3

) (
1 + x2

)
= 1− x1 −

∣∣∣µ
λ

∣∣∣x3.
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Let, moreover, a = 0, b = 7,

p(t) =





−y1 for t ∈ [0, 1[
x1 for t ∈ [1, 2[
0 for t ∈ [2, 3[
−y2 for t ∈ [3, 4[
x2 for t ∈ [4, 5[
x3 for t ∈ [5, 6[
−y3 for t ∈ [6, 7]

, (6.114)

and

τ(t) =





5 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]
4 for t ∈ [1, 2[ ∪ [4, 6[
3 for t ∈ [2, 3[

.

Obviously, τ0 = 3, τ1 = 5, and (6.104) is fulfilled.
On the other hand, the function

u(t) =





y1(1 + x2)(1− t) + 1− x1 + y2(1 + x2) for t ∈ [0, 1[
x1(t− 2) + 1 + y2(1 + x2) for t ∈ [1, 2[
1 + y2(1 + x2) for t ∈ [2, 3[
y2(1 + x2)(4− t) + 1 for t ∈ [3, 4[
x2(t− 5) + 1 + x2 for t ∈ [4, 5[
x3(t− 5) + 1 + x2 for t ∈ [5, 6[
y3(1 + x2)(7− t) + 1 + x2 + x3 − y3(1 + x2) for t ∈ [6, 7]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.12)
cannot be replaced by the nonstrict one.

Example 6.6. Let 0 6= |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that (6.113) holds and

(
x1 +

∣∣∣µ
λ

∣∣∣x2 +
∣∣∣µ
λ

∣∣∣x3

) (
1− y2

)
= 1−

∣∣∣µ
λ

∣∣∣ + y1 +
∣∣∣µ
λ

∣∣∣
(
y2 + y3

)
.
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Let, moreover, a = 0, b = 7, p ∈ L(
[a, b];R

)
be defined by (6.114), and

τ(t) =





3 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [6, 7]
4 for t ∈ [1, 2[ ∪ [4, 6[
5 for t ∈ [2, 3[

.

Obviously, τ0 = 3, τ1 = 5, and (6.104) is fulfilled.

On the other hand, the function

u(t) =





y1(1− t) + 1− x1(1− y2) for t ∈ [0, 1[
x1(1− y2)(t− 2) + 1 for t ∈ [1, 2[
1 for t ∈ [2, 3[
y2(3− t) + 1 for t ∈ [3, 4[
x2(1− y2)(t− 4) + 1− y2 for t ∈ [4, 5[
x3(1− y2)(t− 5) + 1− y2 + x2(1− y2) for t ∈ [5, 6[
y3(7− t) + 1− y2 − y3 + (x2 + x3)(1− y2) for t ∈ [6, 7]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.13)
cannot be replaced by the nonstrict one.

Example 6.7. Let 0 6= |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that (6.113) holds and

x1 +
∣∣∣µ
λ

∣∣∣x3 < 1 +
√∣∣∣µ

λ

∣∣∣− y1 − y2 −
∣∣∣µ
λ

∣∣∣ y3 ,

x1 + x2 +
∣∣∣µ
λ

∣∣∣x3 ≥ 2 + 2
√∣∣∣µ

λ

∣∣∣− y1 − y2 −
∣∣∣µ
λ

∣∣∣ y3 .

Put α =
√∣∣µ

λ

∣∣− y1 − y2 −
∣∣µ
λ

∣∣ y3 and k = 1 + α − x1 −
∣∣µ
λ

∣∣x3. Obviously,
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k > 0 and x2 ≥ 1 + α+ k. Let, moreover, a = 0, b = 10,

p(t) =





x1 for t ∈ [0, 1[
−y1 for t ∈ [1, 2[
−y2 for t ∈ [2, 3[
k for t ∈ [3, 4[
α for t ∈ [4, 5[
x2 − 1− α− k for t ∈ [5, 6[
1 for t ∈ [6, 7[
0 for t ∈ [7, 8[
x3 for t ∈ [8, 9[
−y3 for t ∈ [9, 10]

,

and

τ(t) =





4 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [8, 9[
7 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [9, 10]
5 for t ∈ [5, 6[
2 for t ∈ [7, 8[

.

Obviously, τ0 = 2, τ1 = 7, and (6.104) is satisfied.
On the other hand, the function

u(t) =





αx1(1− t) + y1 + y2 + α(k − 1) for t ∈ [0, 1[
y1(2− t) + y2 + α(k − 1) for t ∈ [1, 2[
y2(3− t) + α(k − 1) for t ∈ [2, 3[
αk(4− t)− α for t ∈ [3, 4[
α(t− 5) for t ∈ [4, 5[
0 for t ∈ [5, 6[
t− 6 for t ∈ [6, 7[
1 for t ∈ [7, 8[
αx3(8− t) + 1 for t ∈ [8, 9[
y3(10− t) + 1− y3 − αx3 for t ∈ [9, 10]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.
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This example shows that in Theorem 6.2 the strict inequality (6.15)
cannot be replaced by the nonstrict one.

Example 6.8. Let 0 6= |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such
that (6.113) holds and

x1 +
∣∣∣µ
λ

∣∣∣x3 ≥ 1 +
√∣∣∣µ

λ

∣∣∣− y1 − y2 −
∣∣∣µ
λ

∣∣∣ y3 ,

x2 ≥ 1 +

∣∣µ
λ

∣∣− y1 − y2 −
∣∣µ
λ

∣∣ y3

x1 +
∣∣µ
λ

∣∣x3 − 1
.

Put α =
∣∣µ
λ

∣∣− y1 − y2 −
∣∣µ
λ

∣∣ y3 and β = x1 +
∣∣µ
λ

∣∣x3 − 1. Obviously, α > 0,
β > 0, and x2 ≥ 1 + α

β . Let, moreover, a = 0, b = 9,

p(t) =





x1 for t ∈ [0, 1[
−y1 for t ∈ [1, 2[
−y2 for t ∈ [2, 3[
α
β for t ∈ [3, 4[

x2 − 1− α
β for t ∈ [4, 5[

1 for t ∈ [5, 6[
0 for t ∈ [6, 7[
−y3 for t ∈ [7, 8[
x3 for t ∈ [8, 9]

,

and

τ(t) =





3 for t ∈ [0, 1[ ∪ [8, 9]
6 for t ∈ [1, 4[ ∪ [5, 6[ ∪ [7, 8[
4 for t ∈ [4, 5[
2 for t ∈ [6, 7[

.

Obviously, τ0 = 2, τ1 = 6, and (6.104) is satisfied.
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On the other hand, the function

u(t) =





αx1(1− t) + β(y1 + y2)− α for t ∈ [0, 1[
βy1(2− t) + βy2 − α for t ∈ [1, 2[
βy2(3− t)− α for t ∈ [2, 3[
α(t− 4) for t ∈ [3, 4[
0 for t ∈ [4, 5[
β(t− 5) for t ∈ [5, 6[
β for t ∈ [6, 7[
βy3(7− t) + β for t ∈ [7, 8[
αx3(9− t) + β(1− y3)− αx3 for t ∈ [8, 9]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

This example shows that in Theorem 6.2 the strict inequality (6.17)
cannot be replaced by the nonstrict one.

Example 6.9. Let 0 6= |µ| ≤ |λ| (for the case µ = 0 see Example 6.10),
k ∈ ]0, 1[ , and ε ≥ 0. Choose m > 0 such that

m ≤ min
{∣∣∣µ
λ

∣∣∣ , |µ|(1− k)k
|µ|(1− k) + εk

}

and put a = 0, b = 3, and

p(t) =





− |µ|−|λ|m
|λ|m for t ∈ [0, 1[

k−m
k for t ∈ [1, 2[

|µ|(1−k)+εk
|µ|k for t ∈ [2, 3]

, τ(t) =





1 for t ∈ [0, 1[
2 for t ∈ [1, 2[
t∗ for t ∈ [2, 3]

,

where

t∗ =

{
1 + 1

k−m

( |µ|(1−k)k
|µ|(1−k)+εk −m

)
if m 6= k

2 if m = k
.
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It is not difficult to verify that τ0 = 1, τ1 = 2, and

τ1∫

a

[p(s)]+ds =

τ1∫

τ0

[p(s)]+ds =
k −m

k
,

b∫

τ1

[p(s)]+ds =
|µ|(1− k) + εk

|µ|k ,

τ0∫

a

[p(s)]−ds =
|µ| − |λ|m
|λ|m ,

b∫

τ0

[p(s)]−ds =

τ1∫

τ0

[p(s)]−ds = 0 .

Thus, the conditon (6.18) holds, T = k−m
k , and instead of (6.19) we have

|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ1

[p(s)]+ds−

−

|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ0

[p(s)]−ds


(

1− T
)

= |λ| − |µ|+ ε .

On the other hand, the function

u(t) =





|µ| − (|µ| − |λ|m)t for t ∈ [0, 1[
|λ|(k −m)(t− 1) + |λ|m for t ∈ [1, 2[
|λ|(1− k)(t− 3) + |λ| for t ∈ [2, 3]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 6.10. Let µ = 0, k > 1, and ε ≥ 0. Choose m > 0 such that

m ≤ k|λ|
|λ|+ ε

and put a = 0, b = 2, and

p(t) =

{ |λ|+ε
|λ| for t ∈ [0, 1[

−k−m
k for t ∈ [1, 2]

, τ(t) =

{
t∗ for t ∈ [0, 1[
1 for t ∈ [1, 2]

,

where

t∗ =

{
2− 1

k−m

(
k|λ|
|λ|+ε −m

)
if m 6= k

1 if m = k
.
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It is not difficult to verify that τ0 = 1, τ1 = t∗, and

τ1∫

a

[p(s)]+ds =
|λ|+ ε

|λ| ,

τ1∫

τ0

[p(s)]+ds = 0 ,

τ0∫

a

[p(s)]−ds = 0 ,

τ1∫

τ0

[p(s)]−ds =
(k −m)(t∗ − 1)

k
.

Thus, the conditon (6.18) holds, T = (k−m)(t∗−1)
k , and instead of (6.19) we

have

|λ|
τ1∫

a

[p(s)]+ds− |λ|
(
1− T

) τ0∫

a

[p(s)]−ds = |λ|+ ε .

On the other hand, the function

u(t) =

{
|λ|kt for t ∈ [0, 1[
|λ|(k −m)(2− t) + |λ|m for t ∈ [1, 2]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 6.11. Let |µ| ≤ |λ|, k > 1, and ε ∈ [0, |λ|[ . Choose M ≥ |µ|+|λ|k
|λ|−ε

and put a = 0, b = 4,

p(t) =





|λ|M−|µ|−εM
|λ|k for t ∈ [0, 1[

−M−k
M for t ∈ [1, 2[

−k−1
M for t ∈ [2, 3[

0 for t ∈ [3, 4]

, τ(t) =





t∗ for t ∈ [0, 1[
1 for t ∈ [1, 3[
2 for t ∈ [3, 4]

,

where

t∗ =

{
2− εMk

(M−k)(|λ|M−|µ|−εM) if M 6= k

2 if M = k
.
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It is not difficult to verify that τ0 = 1, τ1 = 2, and

τ0∫

a

[p(s)]+ds =
|λ|M − |µ| − εM

|λ|k ,

b∫

τ0

[p(s)]+ds =

τ1∫

τ0

[p(s)]+ds = 0 ,

τ1∫

a

[p(s)]−ds =

τ1∫

τ0

[p(s)]−ds =
M − k

M
,

b∫

τ1

[p(s)]−ds =
k − 1
M

.

Thus, the conditon (6.18) holds, T = M−k
M , and instead of (6.20) we have


|λ|

τ0∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]+ds


(

1− T
)−

−|λ|
τ1∫

a

[p(s)]−ds− |µ|
b∫

τ1

[p(s)]−ds =
(|λ| − |µ|)(1− T

)− ε .

On the other hand, the function

u(t) =





|µ|+ (|λ|M − |µ|)t for t ∈ [0, 1[
|λ|(M − k)(2− t) + |λ|k for t ∈ [1, 2[
|λ|(k − 1)(3− t) + |λ| for t ∈ [2, 3[
|λ| for t ∈ [3, 4]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for unique solvability of the problem (1.1), (1.2), where the
boundary condition (1.2) is of an antiperiodic type, i.e., when the inequality

λµ > 0 (7.1)

holds. In Subsection 7.1, the main results are formulated. Theorem 7.1
deals with the case |µ| ≤ |λ|, while the case |µ| ≥ |λ| is considered in
Theorem 7.2. The proof of Theorem 7.1 can be found in Subsection 7.2.
Subsection 7.3 is devoted to the examples verifying the optimality of the
main results.

7.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following assertion holds.

Theorem 7.1. Let |µ| ≤ |λ|, the operator ` admit the representation ` =
`0 − `1, where `0, `1 ∈ Pab, and let either

‖`0(1)‖L < 1−
(µ
λ

)2
, (7.2)

‖`1(1)‖L < 1− µ

λ
+ 2

√
1− ‖`0(1)‖L (7.3)

or

1−
(µ
λ

)2
≤ ‖`0(1)‖L, (7.4)

‖`0(1)‖L +
µ

λ
‖`1(1)‖L < 1 +

µ

λ
. (7.5)

Then the problem (1.1), (1.2) has a unique solution.

Remark 7.1. Let |µ| ≤ |λ|. Denote by G the set of pairs (x, y) ∈ R+×R+

satisfying either

x < 1−
(µ
λ

)2
, y < 1− µ

λ
+ 2

√
1− x
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x

y

1− (µλ )2 1 + µ
λ

1 + µ
λ

3− µ
λ

G

Fig. 7.1.

or

1−
(µ
λ

)2
≤ x,

µ

λ
y < 1 +

µ

λ
− x

(see Fig. 7.1).
According to Theorem 7.1, if ` = `0 − `1, `0, `1 ∈ Pab, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ G,

then the problem (1.1), (1.2) has a unique solution. Below we will show
(see On Remark 7.1, p. 163) that for every x0, y0 ∈ R+, (x0, y0) 6∈ G there
exist `0, `1 ∈ Pab, q ∈ L

(
[a, b];R

)
, and c ∈ R such that (2.30) holds, and

the problem (1.1), (1.2) with ` = `0 − `1 has no solution. In particular,
neither one of the strict inequalities (7.3) and (7.5) can be replaced by the
nonstrict one.

In the case, where |µ| ≥ |λ|, the following statement holds.

Theorem 7.2. Let |µ| ≥ |λ|, the operator ` admit the representation ` =
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`0 − `1, where `0, `1 ∈ Pab, and let either

‖`1(1)‖L < 1−
(
λ

µ

)2

, ‖`0(1)‖L < 1− λ

µ
+ 2

√
1− ‖`1(1)‖L

or

1−
(
λ

µ

)2

≤ ‖`1(1)‖L, ‖`1(1)‖L +
λ

µ
‖`0(1)‖L < 1 +

λ

µ
.

Then the problem (1.1), (1.2) has a unique solution.

Remark 7.2. According to Remark 2.16 (see p. 28), Theorem 7.2 imme-
diately follows from Theorem 7.1. Moreover, by virtue of Remark 7.1,
Theorem 7.2 is nonimprovable in an appropriate sense.

7.2. Proofs

According to Theorem 1.1 (see p. 14), it is sufficient to show that the
homogeneous problem (1.10), (1.20) has no nontrivial solution.

Proof of Theorem 7.1. Assume that the problem (1.10), (1.20) has a
nontrivial solution u. It follows from (1.20) and (7.1) that u has a zero.
Define numbers M and m by (2.94) and choose tM , tm ∈ [a, b] such that
(2.95) is fulfilled. Obviously,

M ≥ 0, m ≥ 0, M +m > 0. (7.6)

Without loss of generality we can assume that tM < tm.
The integration of (1.10) from a to tM and from tm to b, in view of

(2.94), (2.95), and the assumptions `0, `1 ∈ Pab, results in

M − u(a) =

tM∫

a

[`0(u)(s)− `1(u)(s)]ds ≤M

tM∫

a

`0(1)(s)ds+m

tM∫

a

`1(1)(s)ds,

u(b) +m =

b∫

tm

[`0(u)(s)− `1(u)(s)]ds ≤M

b∫

tm

`0(1)(s)ds+m

b∫

tm

`1(1)(s)ds.
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Summing the last two inequalities and taking into account (1.20), (7.1),
and (2.94), we obtain

M +m−m
(
1 +

µ

λ

)
≤M +m+ u(b)

(
1 +

µ

λ

)
≤

≤M

∫

J

`0(1)(s)ds+m

∫

J

`1(1)(s)ds

and

M +m−M

(
1 +

λ

µ

)
≤M +m− u(a)

(
1 +

λ

µ

)
≤

≤M

∫

J

`0(1)(s)ds+m

∫

J

`1(1)(s)ds,

where J = [a, tM ] ∪ [tm, b]. Thus,

M − µ

λ
m ≤MC +mA (7.7)

and
m− λ

µ
M ≤MC +mA, (7.8)

where
A =

∫

J

`1(1)(s)ds, C =
∫

J

`0(1)(s)ds. (7.9)

On the other hand, the integration of (1.10) from tM to tm, on account
of (2.94), (2.95), and the assumptions `0, `1 ∈ Pab, implies

M +m =

tm∫

tM

[`1(u)(s)− `0(u)(s)]ds ≤M

tm∫

tM

`1(1)(s)ds+m

tm∫

tM

`0(1)(s)ds.

Hence,
M +m ≤MB +mD, (7.10)

where

B =

tm∫

tM

`1(1)(s)ds, D =

tm∫

tM

`0(1)(s)ds. (7.11)
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First suppose that ‖`0(1)‖L ≥ 1 holds, i.e., the conditions (7.4) and
(7.5) are fulfilled. According to (7.5), ‖`1(1)‖L < 1 and thus, A < 1 and
B < 1. Therefore, it follows from (7.6), (7.8), and (7.10) that

0 ≤ m(1−A) ≤M

(
C +

λ

µ

)
, 0 ≤M(1−B) ≤ m(D − 1).

Consequently, M > 0, m > 0, D > 1, and

0 < (1−A)(1−B) ≤
(
C +

λ

µ

)
(D − 1). (7.12)

Obviously,

(1−A)(1−B) ≥ 1− (A+B) = 1− ‖`1(1)‖L. (7.13)

According to (7.5) and the condition µ
λ ∈ ]0, 1], we have ‖`0(1)‖L < 1 + λ

µ .
Hence, D − 1 < λ

µ and thus
(
C +

λ

µ

)
(D−1) =

λ

µ
D− λ

µ
+C(D−1) ≤ λ

µ
(C+D)− λ

µ
=
λ

µ
‖`0(1)‖L− λ

µ
.

By the last inequality and (7.13), it follows from (7.12) that

1− ‖`1(1)‖L ≤ λ

µ
‖`0(1)‖L − λ

µ
,

which contradicts the inequality (7.5).
Now suppose that ‖`0(1)‖L < 1. Obviously, C < 1, D < 1, and by

(7.6), (7.7), and (7.10) we get

0 ≤M(1− C) ≤ m
(
A+

µ

λ

)
, 0 ≤ m(1−D) ≤M(B − 1).

Consequently, M > 0, m > 0, B > 1, and

0 < (1− C)(1−D) ≤
(
A+

µ

λ

)
(B − 1). (7.14)

It is clear that

(1− C)(1−D) ≥ 1− (C +D) = 1− ‖`0(1)‖L. (7.15)

First assume that (7.4) and (7.5) hold. Then we have ‖`1(1)‖L < 1+ µ
λ .

Hence, B − 1 < µ
λ and

(
A+

µ

λ

)
(B−1) =

µ

λ
B− µ

λ
+A(B−1) ≤ µ

λ
(A+B)− µ

λ
=
µ

λ
‖`1(1)‖L− µ

λ
.
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By the last inequality and (7.15), it follows from (7.14) that

1− ‖`0(1)‖L ≤ µ

λ
‖`1(1)‖L − µ

λ
,

which contradicts the inequality (7.5).
Now assume that (7.2) and (7.3) are satisfied. According to (7.15) and

the fact that

4
(
A+

µ

λ

)
(B − 1) ≤

(
A+B − 1 +

µ

λ

)2
=

(
‖`1(1)‖L − 1 +

µ

λ

)2

,

the inequality (7.14) implies

0 < 4(1− ‖`0(1)‖L) ≤
(
‖`1(1)‖L −

(
1− µ

λ

))2

. (7.16)

On the other hand, since B > 1, we have

‖`1(1)‖L > 1,

which, together with (7.16), contradicts the inequality (7.3).

7.3. Comments and Examples

On Remark 7.1. Let |µ| ≤ |λ|. Below, for every x0, y0 ∈ R+, (x0, y0) 6∈ G
the functions p ∈ L

(
[a, b];R

)
and τ ∈ Mab are constructed such that

(2.130) holds, and the problem (4.58) has a nontrivial solution. Then, by
Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that the
problem (1.1), (1.2), where ` = `0− `1, `0, `1 are defined by (2.132), has no
solution.

It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈ G, then (x0, y0) belongs at
least to one of the following sets:

G1 =
{

(x, y) ∈ R+ ×R+ : y < 1,
µ

λ
(1− y) + 1 ≤ x

}
,

G2 = {(x, y) ∈ R+ ×R+ : 1 ≤ x, 1 ≤ y} ,

G3 =
{

(x, y) ∈ R+ ×R+ : 1−
(µ
λ

)2
≤ x < 1, 1− x+

µ

λ
≤ µ

λ
y

}
,

G4 =
{

(x, y) ∈ R+ ×R+ : x ≤ 1−
(µ
λ

)2
, 1− µ

λ
+ 2

√
1− x ≤ y

}
.
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Let (x0, y0) ∈ G1. Put a = 0, b = 2, α = µ(1−y0)+λ
1−y0

, β = λy0

1−y0
,

t0 = µ
α + 1

x0
,

p(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ(t) =

{
t0 for t ∈ [0, 1[
1 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
−αt+ µ for t ∈ [0, 1[
β(t− 2)− λ for t ∈ [1, 2]

.

Let (x0, y0) ∈ G2. Put a = 0, b = 4,

p(t) =





x0 − 1 for t ∈ [0, 1[
1− y0 for t ∈ [1, 2[
1 for t ∈ [2, 3[
−1 for t ∈ [3, 4]

, τ(t) =

{
0 for t ∈ [0, 2[
3 for t ∈ [2, 4]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =





0 for t ∈ [0, 2[
t− 2 for t ∈ [2, 3[
4− t for t ∈ [3, 4]

.

Let (x0, y0) ∈ G3. Put a = 0, b = 2, α = µx0

1−x0
, β = λ(1−x0)+µ

1−x0
,

t0 = 2− 1
y0
− λ

β ,

p(t) =

{
x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2]

, τ(t) =

{
1 for t ∈ [0, 1[
t0 for t ∈ [1, 2]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =

{
αt+ µ for t ∈ [0, 1[
β(2− t)− λ for t ∈ [1, 2]

.
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Let (x0, y0) ∈ G4. Put a = 0, b = 5, α =
√

1− x0, β = 1− y0 + 2α− µ
λ ,

t0 = 3− α,

p(t) =





µ
λ − α for t ∈ [0, 1[
−α for t ∈ [1, 2[
−1 for t ∈ [2, 3[
β for t ∈ [3, 4[
x0 for t ∈ [4, 5]

, τ(t) =





5 for t ∈ [0, 1[
1 for t ∈ [1, 3[
t0 for t ∈ [3, 4[
5 for t ∈ [4, 5]

.

It is not difficult to verify that (2.130) holds, and the problem (4.58) has
the nontrivial solution

u(t) =





(α− µ
λ)t+ µ

λ for t ∈ [0, 1[
α2(1− t) + α for t ∈ [1, 2[
α(3− t)− α2 for t ∈ [2, 3[
−α2 for t ∈ [3, 4[
x0(5− t)− 1 for t ∈ [4, 5]

.
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In this section, we will establish consequences of Theorems 7.1 and 7.2 from
§7 for the equation with deviating arguments (1.1′).

In what follows we will use the notation

p0(t) =
m∑

j=1

pj(t), g0(t) =
m∑

j=1

gj(t) for t ∈ [a, b].

and we will suppose that the inequality (7.1) is fulfilled.
From Theorems 7.1 and 7.2 immediately follows the following state-

ments. The first of them deals with the case |µ| ≤ |λ| and the second one
with the case |µ| ≥ |λ|.
Theorem 8.1. Let |µ| ≤ |λ|, pk, gk ∈ L

(
[a, b];R+

)
(k = 1, . . . ,m), and let

either

b∫

a

p0(s)ds < 1−
(µ
λ

)2
,

b∫

a

g0(s)ds < 1− µ

λ
+ 2

√√√√√1−
b∫

a

p0(s)ds (8.1)

or

1−
(µ
λ

)2
≤

b∫

a

p0(s)ds,

b∫

a

p0(s)ds+
µ

λ

b∫

a

g0(s)ds < 1 +
µ

λ
. (8.2)

Then the problem (1.1′), (1.2) has a unique solution.

Remark 8.1. The examples constructed in Subsection 7.3 (see On Re-
mark 7.1, p. 163) also show that the strict inequalities (8.1) and (8.2)
cannot be replaced by the nonstrict ones.
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Theorem 8.2. Let |µ| ≥ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), and let

either

b∫

a

g0(s)ds < 1−
(
λ

µ

)2

,

b∫

a

p0(s)ds < 1− λ

µ
+ 2

√√√√√1−
b∫

a

g0(s)ds

or

1−
(
λ

µ

)2

≤
b∫

a

g0(s)ds,

b∫

a

g0(s)ds+
λ

µ

b∫

a

p0(s)ds < 1 +
λ

µ
.

Then the problem (1.1′), (1.2) has a unique solution.

Remark 8.2. Similarly as in the case |µ| ≤ |λ| one can show that Theo-
rem 8.2 is also nonimprovable in a certain sense.
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This section deals with the special case of the equation (1.1′) with m = 1
and τ1 ≡ ν1. In that case the equation (1.1′) can be rewritten in the form
(6.1). Throughout the section we will also suppose that the inequality (7.1)
is satisfied.

In §8, there were established effective sufficient conditions for unique
solvability of the problem (6.1), (1.2). Although those results are, in gen-
eral, nonimprovable, in the special case, where τ maps the segment [a, b]
into some subsegment [τ0, τ1] ⊆ [a, b], those results can be improved in
a certain way.

Therefore, in the sequel we will assume that there exist τ0, τ1 ∈ [a, b],
τ0 ≤ τ1 such that τ(t) ∈ [τ0, τ1] for almost all t ∈ [a, b]. Thus, it will be
supposed that

τ0 = ess inf{τ(t) : t ∈ [a, b]}, τ1 = ess sup{τ(t) : t ∈ [a, b]}.

Note also that if τ0 = a and τ1 = b, then obtained results coincide with the
appropriate ones from §8.

In Subsection 9.1, the main results are formulated, Subsection 9.2 is
devoted to their proofs, and the examples verifying the optimality of the
main results can be found in Subsection 9.3.

9.1. Existence and Uniqueness Theorems

Theorem 9.1. Let the condition (6.18) be fulfilled and let either

|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]−ds−

−

|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ1

[p(s)]+ds


(

1− T
)
< |λ|+ |µ|

(9.1)
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or 
|λ|

τ0∫

a

[p(s)]+ds+ |µ|
b∫

τ1

[p(s)]−ds


(

1− T
)−

−|λ|
τ1∫

a

[p(s)]−ds− |µ|
b∫

τ0

[p(s)]+ds >
(|λ|+ |µ|)(1− T

)
,

(9.2)

where T is defined by (6.21). Then the problem (6.1), (1.2) has a unique
solution.

Remark 9.1. Theorem 9.1 is nonimprovable in the sense that the strict
inequalities (9.1) and (9.2) cannot be replaced by the nonstrict ones (see
Examples 9.1 and 9.2, p. 181).

Note also that if the segment [τ0, τ1] is degenerated to a point c ∈ [a, b],
i.e., τ(t) = c for t ∈ [a, b], then T = 0 and the inequalities (9.1) and (9.2)
can be rewritten as

λ

c∫

a

p(s)ds− µ

b∫

c

p(s)ds 6= λ+ µ ,

which is sufficient and necessary for the unique solvability of the problem
(6.1), (1.2) with τ(t) = c for t ∈ [a, b].

The following theorems can be understood as a supplement of the pre-
vious one for the case T ≥ 1, where T is given by (6.21). The first of them
deals with the case |µ| ≤ |λ| and the second one with the case |µ| ≥ |λ|.

Theorem 9.2. Let |µ| ≤ |λ|,

H =

τ1∫

a

[p(s)]+ds+
µ

λ

b∫

τ1

[p(s)]−ds , (9.3)

and let one of the following items be fulfilled:

a)
τ1∫

τ0

[p(s)]+ds ≥ 1 , (9.4)
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
|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ1

[p(s)]+ds







τ1∫

τ0

[p(s)]+ds− 1


+

+|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]−ds < |λ|+ |µ| ;
(9.5)

b)
τ1∫

τ0

[p(s)]−ds ≥ 1 , (9.6)

H ≥ 1−
(µ
λ

)2
, (9.7)


|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ1

[p(s)]+ds







τ1∫

τ0

[p(s)]−ds− 1


+

+|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]−ds < |λ|+ |µ| ;
(9.8)

c) the condition (9.6) holds,

H < 1−
(µ
λ

)2
, (9.9)

and either

τ0∫

a

[p(s)]−ds+
µ

λ

b∫

τ1

[p(s)]+ds < −µ
λ

+
√

1−H , (9.10)

τ1∫

a

[p(s)]−ds+
µ

λ

b∫

τ1

[p(s)]+ds < 1− µ

λ
+ 2

√
1−H (9.11)

or
τ0∫

a

[p(s)]−ds+
µ

λ

b∫

τ1

[p(s)]+ds ≥ −µ
λ

+
√

1−H (9.12)

and the condition (9.8) holds.
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Then the problem (6.1), (1.2) has a unique solution.

Remark 9.2. Theorem 9.2 is nonimprovable in the sense that neither one
of the strict inequalities (9.5), (9.8), and (9.11) can be replaced by the
nonstrict one (see Examples 9.3–9.6, pp. 183–186).

Note also that if τ0 = a and τ1 = b, then from Theorems 9.1 and 9.2 we
obtain Theorem 8.1 (see p. 166).

Theorem 9.3. Let |µ| ≥ |λ|,

H̃ =
λ

µ

τ0∫

a

[p(s)]+ds+

b∫

τ0

[p(s)]−ds ,

and let one of the following items be fulfilled:

a)
τ1∫

τ0

[p(s)]−ds ≥ 1

and the condition (9.8) holds;

b)
τ1∫

τ0

[p(s)]+ds ≥ 1 , H̃ ≥ 1−
(
λ

µ

)2

,

and the condition (9.5) holds;

c)
τ1∫

τ0

[p(s)]+ds ≥ 1 , H̃ < 1−
(
λ

µ

)2

,

and either

λ

µ

τ0∫

a

[p(s)]−ds+

b∫

τ1

[p(s)]+ds < −λ
µ

+
√

1− H̃ ,

λ

µ

τ0∫

a

[p(s)]−ds+

b∫

τ0

[p(s)]+ds < 1− λ

µ
+ 2

√
1− H̃
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or

λ

µ

τ0∫

a

[p(s)]−ds+

b∫

τ1

[p(s)]+ds ≥ −λ
µ

+
√

1− H̃

and the condition (9.5) holds.

Then the problem (6.1), (1.2) has a unique solution.

Remark 9.3. According to Remark 6.5 (see p. 126), Theorem 9.3 can be
immediately derived from Theorem 9.2. Moreover, by virtue of Remark 9.2,
Theorem 9.3 is nonimprovable in an appropriate sense.

9.2. Proofs

According to Theorem 1.1 (see p. 14), to prove Theorems 9.1 and 9.2 it is
sufficient to show that the homogeneous problem (6.10), (1.20) (see p. 126)
has only the trivial solution.

In the sequel, numbers Ai, Bi (i = 1, 2, 3) are defined by (6.29).

Proof of Theorem 9.1. Assume that the problem (6.10), (1.20) possesses
a nontrivial solution u.

First suppose that u has a zero in [τ0, τ1]. Define numbers m0 and M0

by (6.50) and choose α0, α1 ∈ [τ0, τ1] such that (6.51) holds. Obviously,
(6.78) is satisfied, since if m0 = 0 and M0 = 0, then, in view of (6.10) and
(6.50), we obtain u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0. It is also
evident that without loss of generality we can assume that α0 < α1.

The integration of (6.10) from α0 to α1, by virtue of (6.50), (6.51), and
(6.78), yields the inequality (6.79), which, on account of (6.18) and (6.78),
results in M0 +m0 < M0 +m0, a contradiction.

Now suppose that u has no zero in [τ0, τ1]. Without loss of generality
we can assume that u(t) > 0 for t ∈ [τ0, τ1]. Define numbers M and m
by (6.31) and choose tM , tm ∈ [τ0, τ1] such that (6.32) holds. It is obvious
that (6.81) is fulfilled and either (6.36) or (6.37) is satisfied. Analogously
as in the proof of Theorem 6.3 one can show that, in both cases (6.36) and
(6.37), the inequality (6.82) holds, where T is defined by (6.21).

On the other hand, the integrations of (6.10) from a to tM , from tM to
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b, from a to tm, and from tm to b, in view of (6.31) and (6.32), yield

M − u(a) =

tM∫

a

[p(s)]+u(τ(s))ds−
tM∫

a

[p(s)]−u(τ(s))ds ≤

≤M

tM∫

a

[p(s)]+ds−m

tM∫

a

[p(s)]−ds,

(9.13)

M − u(b) =

b∫

tM

[p(s)]−u(τ(s))ds−
b∫

tM

[p(s)]+u(τ(s))ds ≤

≤M

b∫

tM

[p(s)]−ds−m

b∫

tM

[p(s)]+ds,

(9.14)

m− u(a) =

tm∫

a

[p(s)]+u(τ(s))ds−
tm∫

a

[p(s)]−u(τ(s))ds ≥

≥ m

tm∫

a

[p(s)]+ds−M

tm∫

a

[p(s)]−ds,

(9.15)

m− u(b) =

b∫

tm

[p(s)]−u(τ(s))ds−
b∫

tm

[p(s)]+u(τ(s))ds ≥

≥ m

b∫

tm

[p(s)]−ds−M

b∫

tm

[p(s)]+ds.

(9.16)

Put

f1(t)
def= M

t∫

a

[p(s)]+ds− µ

λ
m

b∫

t

[p(s)]+ds for t ∈ [a, b],

f2(t)
def= m

t∫

a

[p(s)]−ds− µ

λ
M

b∫

t

[p(s)]−ds for t ∈ [a, b],

(9.17)
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f3(t)
def= m

t∫

a

[p(s)]+ds− µ

λ
M

b∫

t

[p(s)]+ds for t ∈ [a, b],

f4(t)
def= M

t∫

a

[p(s)]−ds− µ

λ
m

b∫

t

[p(s)]−ds for t ∈ [a, b].

(9.18)

First suppose that (9.1) holds, where T is defined by (6.21). Multiplying
both sides of (9.14) by µ

λ , summing with (9.13), and taking into account
(1.20), (7.1), and (9.17), we get

M
(
1 +

µ

λ

)
≤M

tM∫

a

[p(s)]+ds− µ

λ
m

b∫

tM

[p(s)]+ds−

−

m

tM∫

a

[p(s)]−ds− µ

λ
M

b∫

tM

[p(s)]−ds


 = f1(tM )− f2(tM ).

(9.19)

It is easy to verify that the functions f1 and f2 defined by (9.17) are nonde-
creasing in [a, b] and therefore, with respect to (6.29) and (9.17), it follows
from (9.19) that

M
(
1 +

µ

λ

)
≤ f1(tM )− f2(tM ) ≤ f1(τ1)− f2(τ0) =

= M
(
A1 +A2 +

µ

λ
B2 +

µ

λ
B3

)
−m

(
B1 +

µ

λ
A3

)
.

(9.20)

Thus, (6.82) and (9.20) imply

M
(
1 +

µ

λ

)
≤M

(
A1 +A2 +

µ

λ
B2 +

µ

λ
B3

)
−M

(
B1 +

µ

λ
A3

) (
1− T

)
,

which, in view of (6.29) and (6.81), contradicts (9.1).
Now suppose that (9.2) is satisfied, where T is defined by (6.21). Mul-

tiplying both sides of (9.16) by µ
λ , summing with (9.15), and taking into

account (1.20), (7.1), and (9.18), we obtain

m
(
1 +

µ

λ

)
≥ m

tm∫

a

[p(s)]+ds− µ

λ
M

b∫

tm

[p(s)]+ds−

−

M

tm∫

a

[p(s)]−ds− µ

λ
m

b∫

tm

[p(s)]−ds


 = f3(tm)− f4(tm).

(9.21)
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It is easy to verify that the functions f3 and f4 defined by (9.18) are non-
decreasing in [a, b] and thus, with respect to (6.29) and (9.18), it follows
from (9.21) that

m
(
1 +

µ

λ

)
≥ f3(tm)− f4(tm) ≥ f3(τ0)− f4(τ1) =

= m
(
A1 +

µ

λ
B3

)
−M

(
B1 +B2 +

µ

λ
A2 +

µ

λ
A3

)
.

(9.22)

By virtue of (6.18) and (6.21), (6.82) and (9.22) yield

m
(
1 +

µ

λ

)
(1− T ) ≥ m

(
A1 +

µ

λ
B3

) (
1− T

)−

−m
(
B1 +B2 +

µ

λ
A2 +

µ

λ
A3

)
,

which, in view of (6.29) and (6.81), contradicts (9.2).

Proof of Theorem 9.2. Assume that the problem (6.10), (1.20) possesses
a nontrivial solution u.

First suppose that u changes its sign in [τ0, τ1]. Define numbers m0 and
M0 by (6.50) and choose α0, α1 ∈ [τ0, τ1] such that (6.51) holds. It is clear
that (6.52) is satisfied and without loss of generality we can assume that
α0 < α1. Furthermore, define numbers A2i, B2i (i = 1, 2, 3) by (6.34).

The integrations of (6.10) from a to α0, from α0 to α1, from α1 to b,
and from τ1 to b, in view of (6.29), (6.34), (6.50), and (6.51), result in

−m0 − u(a) =

α0∫

a

[p(s)]+u(τ(s))ds−
α0∫

a

[p(s)]−u(τ(s))ds ≤

≤M0

(
A1 +A21

)
+m0

(
B1 +B21

)
,

(9.23)

u(a) +m0 =

α0∫

a

[p(s)]−u(τ(s))ds−
α0∫

a

[p(s)]+u(τ(s))ds ≤

≤M0

(
B1 +B21

)
+m0

(
A1 +A21

)
,

(9.24)

M0 +m0 =

α1∫

α0

[p(s)]+u(τ(s))ds−
α1∫

α0

[p(s)]−u(τ(s))ds ≤

≤M0A22 +m0B22,

(9.25)
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M0 − u(b) =

b∫

α1

[p(s)]−u(τ(s))ds−
b∫

α1

[p(s)]+u(τ(s))ds ≤

≤M0

(
B23 +B3

)
+m0

(
A23 +A3

)
,

(9.26)

u(b)−M0 ≤ u(b)− u(τ1) =

b∫

τ1

[p(s)]+u(τ(s))ds−

−
b∫

τ1

[p(s)]−u(τ(s))ds ≤M0A3 +m0B3.

(9.27)

Multiplying both sides of (9.26) by µ
λ , summing with (9.23), and taking

into account (1.20) and (7.1), we get

µ

λ
M0 −m0 ≤M0

(
A1 +A21 +

µ

λ
B23 +

µ

λ
B3

)
+

+m0

(
B1 +B21 +

µ

λ
A23 +

µ

λ
A3

)
.

(9.28)

Analogously, (9.24) and (9.27) imply

m0 − µ

λ
M0 ≤M0

(
B1 +B21 +

µ

λ
A3

)
+m0

(
A1 +A21 +

µ

λ
B3

)
. (9.29)

First suppose that the assumption a) holds. According to (6.34), (9.4),
and (9.5), we have B22 < 1. Consequently, in view of (6.52), (9.25) yields

0 < m0

(
1−B22

) ≤M0

(
A22 − 1

)
. (9.30)

Moreover, by virtue of (7.1) and (9.4), it follows from (9.5) that

A22 < 1 +
µ

λ
. (9.31)

From (9.28) we get

M0

(
µ

λ
−A1 −A21 − µ

λ
B23 − µ

λ
B3

)
≤

≤ m0

(
B1 +B21 +

µ

λ
A23 +

µ

λ
A3 + 1

)
,
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which, together with (9.30), implies
(
µ

λ
−A1 −A21 − µ

λ
B23 − µ

λ
B3

)(
1−B22

) ≤

≤
(
B1 +B21 +

µ

λ
A23 +

µ

λ
A3 + 1

)(
A22 − 1

)
.

(9.32)

Obviously,
(
µ

λ
−A1 −A21 − µ

λ
B23 − µ

λ
B3

)(
1−B22

) ≥

≥ µ

λ
−A1 −A21 − µ

λ

(
B22 +B23 +B3

)
.

(9.33)

On the other hand, by virtue of (9.31) and the assumption µ
λ ∈ ]0, 1],

we obtain
(
B1 +B21 +

µ

λ
A23 +

µ

λ
A3 + 1

) (
A22 − 1

)
=

=
(
B1 +

µ

λ
A3

) (
A22 − 1

)
+B21

(
A22 − 1

)
+
µ

λ
A23

(
A22 − 1

)
+

+A22 − 1 ≤
(
B1 +

µ

λ
A3

) (
A2 − 1

)
+
µ

λ
B21 +A22 +A23 − 1.

(9.34)

Using (6.29), (6.34), (9.33), and (9.34), (9.32) results in

A1 +A2 +
µ

λ

(
B2 +B3

)
+

(
B1 +

µ

λ
A3

) (
A2 − 1

) ≥ 1 +
µ

λ
,

which, in view of (6.29) and (7.1), contradicts (9.5).
Now suppose that the assumption b) holds. According to (6.34), (9.6),

and (9.8), we have A22 < 1. Consequently, on account of (6.52), (9.25)
implies

0 < M0

(
1−A22

) ≤ m0

(
B22 − 1

)
. (9.35)

Moreover, it follows from (7.1), (9.3), and (9.6)–(9.8) that

B22 < 1 +
µ

λ
. (9.36)

From (9.29) we obtain

m0

(
1−A1 −A21 − µ

λ
B3

)
≤M0

(
B1 +B21 +

µ

λ
A3 +

µ

λ

)
,
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which, together with (9.35), yields
(

1−A1 −A21 − µ

λ
B3

)(
1−A22

) ≤

≤
(
B1 +B21 +

µ

λ
A3 +

µ

λ

) (
B22 − 1

)
.

(9.37)

Clearly, (
1−A1 −A21 − µ

λ
B3

)(
1−A22

) ≥

≥ 1−A1 −A21 −A22 − µ

λ
B3 .

(9.38)

On the other hand, by virtue of (9.36) and the assumption µ
λ ∈ ]0, 1],

we get
(
B1 +B21 +

µ

λ
A3 +

µ

λ

) (
B22 − 1

)
=

=
(
B1 +

µ

λ
A3

) (
B22 − 1

)
+B21

(
B22 − 1

)
+
µ

λ
B22 − µ

λ
≤

≤
(
B1 +

µ

λ
A3

) (
B2 − 1

)
+
µ

λ

(
B21 +B22

)− µ

λ
.

(9.39)

Using (6.29), (6.34), (9.38), and (9.39), (9.37) implies

A1 +A2 +
µ

λ

(
B2 +B3

)
+

(
B1 +

µ

λ
A3

) (
B2 − 1

) ≥ 1 +
µ

λ
,

which, in view of (6.29) and (7.1), contradicts (9.8).
Finally suppose that the assumption c) holds. According to (6.29),

(6.34), (9.3), and (9.9), we have

A22 < 1, A1 +A21 +
µ

λ
B3 < 1.

Thus, it follows from (6.52), (9.25), and (9.29) that

B22 > 1, B1 +B21 +
µ

λ
A3 +

µ

λ
> 0, (9.40)

and
(

1−A1 −A21 − µ

λ
B3

)(
1−A22

) ≤

≤
(
B1 +B21 +

µ

λ
A3 +

µ

λ

)(
B22 − 1

)
.

(9.41)
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According to (9.3), (9.40), and the fact that
(
1−A1 −A21 − µ

λ
B3

) (
1−A22

) ≥

≥ 1−A1 −A21 −A22 − µ

λ
B3 ≥ 1−H,

from (9.41) we get

B22 ≥ 1 +
1−H

B1 +B21 + µ
λ A3 + µ

λ

. (9.42)

First suppose that (9.10) and (9.11) are satisfied. By virtue of (9.40),
from (9.42) we obtain

1−H ≤
(
B1 +B21 +

µ

λ
A3 +

µ

λ

) (
B22 − 1

) ≤

≤ 1
4

(
B1 +B21 +B22 +

µ

λ
A3 − 1 +

µ

λ

)2
≤

≤ 1
4

(
B1 +B2 +

µ

λ
A3 − 1 +

µ

λ

)2
,

which, in view of (6.29), (9.9), and (9.40), contradicts (9.11).
Now suppose that (9.8) and (9.12) are fulfilled. Let

g(x) def=
1−H

x+B1 + µ
λ A3 + µ

λ

+ x for x > −B1 − µ

λ
A3 − µ

λ
,

where H is given by (9.3). It is not difficult to verify that, on account of
(6.29) and (9.12), the function g is nondecreasing in [0,+∞[ . Therefore,
from (9.42) we obtain

B21 +B22 +B23 ≥ 1 +
1−H

B1 +B21 + µ
λ A3 + µ

λ

+B21 =

= 1 + g
(
B21

) ≥ 1 + g(0) = 1 +
1−H

B1 + µ
λ A3 + µ

λ

,

which, in view of (6.29), (6.34), (7.1), and (9.3), contradicts (9.8).

Now suppose that u does not change its sign in [τ0, τ1]. Without loss of
generality we can assume that (6.30) is satisfied. Define numbers M and
m by (6.31) and choose tM , tm ∈ [τ0, τ1] such that (6.32) holds. It is clear



180 §9. ANTIPERIODIC TYPE BVP FOR TWO TERMS EDA

that (6.35) is satisfied, since if M = 0, then, in view of (6.10), (6.30), and
(6.31), we obtain u(τ0) = 0 and u′(t) = 0 for t ∈ [a, b], i.e., u ≡ 0.

The integrations of (6.10) from a to tM , from tM to b, from a to τ0, and
from τ1 to b, in view of (6.29)–(6.32), result in (9.13), (9.14),

−u(a) ≤ u(τ0)− u(a) =

=

τ0∫

a

[p(s)]+u(τ(s))ds−
τ0∫

a

[p(s)]−u(τ(s))ds ≤MA1,
(9.43)

−u(b) ≤ u(τ1)− u(b) =

=

b∫

τ1

[p(s)]−u(τ(s))ds−
b∫

τ1

[p(s)]+u(τ(s))ds ≤MB3.
(9.44)

Moreover, from (9.13) and (9.14), in view of (6.29) and (6.35), we find

M − u(a) ≤M
(
A1 +A2

)
, (9.45)

M − u(b) ≤M
(
B2 +B3

)
. (9.46)

Multiplying both sides of (9.44) by µ
λ , summing with (9.45), and taking

into account (1.20), (7.1), and (6.35), we get

A1 +A2 +
µ

λ
B3 ≥ 1. (9.47)

Analogously, (9.43) and (9.46) yield

A1 +
µ

λ
B2 +

µ

λ
B3 ≥ µ

λ
. (9.48)

First suppose that the assumption a) holds. By virtue of (6.29), (7.1),
(9.4), and (9.48), (9.5) results in

1 +
µ

λ
> A1 +A2 +

µ

λ

(
B2 +B3

) ≥ 1 +
µ

λ
, (9.49)

a contradiction.
Now suppose that the assumption b) holds. With respect to (6.29),

(7.1), (9.6), and (9.47), (9.8) implies (9.49), a contradiction.
Finally suppose that the assumption c) holds. On account of (6.29) and

(9.3), (9.47) contradicts (9.9).
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9.3. Comments and Examples

Example 9.1. Let k > 1, and ε ≥ 0. Choose m > 0 such that

m ≤ min
{

1,
k(|λ|k + |µ|)

(|λ|+ ε)k + |µ|
}

and put a = 0, b = 3, and

p(t) =





(|λ|+ε)k+|µ|
|λ|k for t ∈ [0, 1[

−k−m
k for t ∈ [1, 2[

1−m
m for t ∈ [2, 3]

, τ(t) =





t∗ for t ∈ [0, 1[
1 for t ∈ [1, 2[
2 for t ∈ [2, 3]

,

where

t∗ =

{
2− 1

k−m

(
k(|λ|k+|µ|)

(|λ|+ε)k+|µ| −m
)

if m 6= k

1 if m = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and

τ1∫

a

[p(s)]+ds =
(|λ|+ ε)k + |µ|

|λ|k ,

b∫

τ1

[p(s)]+ds =
1−m

m
,

τ1∫

τ0

[p(s)]+ds = 0 ,

τ0∫

a

[p(s)]−ds = 0 ,

b∫

τ0

[p(s)]−ds =

τ1∫

τ0

[p(s)]−ds =
k −m

k
.

Thus, the conditon (6.18) holds, T = k−m
k , and

|λ|
τ1∫

a

[p(s)]+ds+ |µ|
b∫

τ0

[p(s)]−ds−

−

|λ|

τ0∫

a

[p(s)]−ds+ |µ|
b∫

τ1

[p(s)]+ds


(

1− T
)

= |λ|+ |µ|+ ε .

On the other hand, the function

u(t) =





(|λ|k + |µ|)t− |µ| for t ∈ [0, 1[
|λ|(k −m)(2− t) + |λ|m for t ∈ [1, 2[
|λ|(1−m)(t− 3) + |λ| for t ∈ [2, 3]
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is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 9.2. Let k ∈ ]
0, µ

λ

[
, and ε ∈

[
0, |µ|−|λ|kk

[
. Choose

M ≥ k(|µ| − |λ|k)
|µ| − |λ|k − εk

and put a = 0, b = 3, and

p(t) =





− |µ|−|λ|k+εM
|λ|M for t ∈ [0, 1[

M−k
M for t ∈ [1, 2[

−M+1
k for t ∈ [2, 3]

, τ(t) =





t∗ for t ∈ [0, 1[
2 for t ∈ [1, 2[
1 for t ∈ [2, 3]

,

where

t∗ =

{
1 + 1

M−k

(
M(|µ|−|λ|k)
|µ|−|λ|k+εM − k

)
if M 6= k

2 if M = k
.

It is not difficult to verify that τ0 = 1, τ1 = 2, and
τ0∫

a

[p(s)]+ds = 0 ,

b∫

τ0

[p(s)]+ds =

τ1∫

τ0

[p(s)]+ds =
M − k

M
,

τ1∫

a

[p(s)]−ds =
|µ| − |λ|k + εM

|λ|M ,

τ1∫

τ0

[p(s)]−ds = 0 ,

b∫

τ1

[p(s)]−ds =
M + 1
k

.

Thus, the conditon (6.18) holds, T = M−k
M , and


|λ|

τ0∫

a

[p(s)]+ds+ |µ|
b∫

τ1

[p(s)]−ds


(

1− T
)−

−|λ|
τ1∫

a

[p(s)]−ds− |µ|
b∫

τ0

[p(s)]+ds =
(|λ|+ |µ|)(1− T

)− ε .

On the other hand, the function

u(t) =





|µ| − (|µ| − |λ|k)t for t ∈ [0, 1[
|λ|(M − k)(t− 1) + |λ|k for t ∈ [1, 2[
|λ|(M + 1)(3− t)− |λ| for t ∈ [2, 3]
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is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 9.3. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

x2 ≥ 1

and

|λ|(x1 + x2

)
+ |µ|(y2 + y3

)
+

(|λ|y1 + |µ|x3

)(
x2 − 1

)
= |λ|+ |µ|.

Let, moreover, a = 0, b = 8,

p(t) =





−y1 for t ∈ [0, 1[
x1 for t ∈ [1, 2[
x2 − 1 for t ∈ [2, 3[
0 for t ∈ [3, 4[
1 for t ∈ [4, 5[
−y2 for t ∈ [5, 6[
−y3 for t ∈ [6, 7[
x3 for t ∈ [7, 8]

,

and

τ(t) =





2 for t ∈ [0, 1[ ∪ [7, 8]
5 for t ∈ [1, 3[ ∪ [4, 7[
6 for t ∈ [3, 4[

.

Obviously, τ0 = 2, τ1 = 6, and (6.104) is satisfied.
On the other hand, the function

u(t) =





y1(x2 − 1)(t− 1) + 1− x2 − x1 for t ∈ [0, 1[
x1(t− 2) + 1− x2 for t ∈ [1, 2[
(x2 − 1)(t− 3) for t ∈ [2, 3[
0 for t ∈ [3, 4[
t− 4 for t ∈ [4, 5[
y2(5− t) + 1 for t ∈ [5, 6[
y3(6− t) + 1− y2 for t ∈ [6, 7[
x3(x2 − 1)(7− t) + 1− y2 − y3 for t ∈ [7, 8]
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is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 9.4. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

y2 ≥ 1 , x1 + x2 +
µ

λ
y3 ≥ 1−

(µ
λ

)2
,

and

|λ|(x1 + x2

)
+ |µ|(y2 + y3

)
+

(|λ|y1 + |µ|x3

)(
y2 − 1

)
= |λ|+ |µ|.

Let, moreover, a = 0, b = 8,

p(t) =





x1 for t ∈ [0, 1[
−y1 for t ∈ [1, 2[
x2 for t ∈ [2, 3[
−1 for t ∈ [3, 4[
0 for t ∈ [4, 5[
−(y2 − 1) for t ∈ [5, 6[
x3 for t ∈ [6, 7[
−y3 for t ∈ [7, 8]

,

and

τ(t) =





3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [7, 8]
6 for t ∈ [1, 2[ ∪ [6, 7[
2 for t ∈ [4, 5[

.

Obviously, τ0 = 2, τ1 = 6, and (6.104) is satisfied.
On the other hand, the function

u(t) =





x1(t− 1) + 1− x2 − y1(y2 − 1) for t ∈ [0, 1[
y1(y2 − 1)(t− 2) + 1− x2 for t ∈ [1, 2[
x2(t− 3) + 1 for t ∈ [2, 3[
4− t for t ∈ [3, 4[
0 for t ∈ [4, 5[
(y2 − 1)(6− t) + 1− y2 for t ∈ [5, 6[
x3(y2 − 1)(7− t) + 1− y2 − x3(y2 − 1) for t ∈ [6, 7[
y3(8− t) + 1− y2 − x3(y2 − 1)− y3 for t ∈ [7, 8]
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is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.

Example 9.5. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that

y2 ≥ 1 , x1 + x2 +
µ

λ
y3 < 1−

(µ
λ

)2
, (9.50)

y1 +
µ

λ
x3 < −µ

λ
+

√
1− x1 − x2 − µ

λ
y3 ,

y1 + y2 +
µ

λ
x3 ≥ 1− µ

λ
+ 2

√
1− x1 − x2 − µ

λ
y3 .

Put α =
√

1− x1 − x2 − µ
λ y3 and k = α− µ

λ − y1− µ
λ x3. Obviously, k > 0

and y2 ≥ 1+α+k. Let, moreover, a = 0, b = 10, p ∈ L(
[a, b];R

)
be defined

by (6.105), and

τ(t) =





8 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [8, 9[
4 for t ∈ [1, 3[ ∪ [4, 5[ ∪ [6, 7[ ∪ [9, 10]
5 for t ∈ [5, 6[
2 for t ∈ [7, 8[

.

Obviously, τ0 = 2, τ1 = 8, and (6.104) is satisfied.
On the other hand, the function

u(t) =





αy1(1− t) + x1 + x2 + kα− 1 for t ∈ [0, 1[
x1(2− t) + x2 + kα− 1 for t ∈ [1, 2[
x2(3− t) + kα− 1 for t ∈ [2, 3[
kα(4− t)− 1 for t ∈ [3, 4[
t− 5 for t ∈ [4, 5[
0 for t ∈ [5, 6[
α(t− 6) for t ∈ [6, 7[
α for t ∈ [7, 8[
αx3(t− 8) + α for t ∈ [8, 9[
y3(t− 9) + α+ αx3 for t ∈ [9, 10]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.
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Example 9.6. Let |µ| ≤ |λ| and let xi, yi ∈ R+ (i = 1, 2, 3) be such that
(9.50) holds and

y1 +
µ

λ
x3 ≥ −µ

λ
+

√
1− x1 − x2 − µ

λ
y3 ,

|λ|(x1 + x2

)
+ |µ|(y2 + y3

)
+

(|λ|y1 + |µ|x3

)(
y2 − 1

) ≥ |λ|+ |µ|.

Put α = 1−x1−x2− µ
λ y3 and β = y1 + µ

λ x3 + µ
λ . Obviously, α > 0, β > 0,

and y2 ≥ 1 + α
β . Let, moreover, a = 0, b = 9, p ∈ L(

[a, b];R
)

be defined by
(6.110), and

τ(t) =





3 for t ∈ [0, 1[ ∪ [2, 4[ ∪ [5, 6[ ∪ [7, 8[
7 for t ∈ [1, 2[ ∪ [8, 9]
4 for t ∈ [4, 5[
2 for t ∈ [6, 7[

.

Obviously, τ0 = 2, τ1 = 7, and (6.104) is satisfied.
On the other hand, the function

u(t) =





x1β(1− t) + y1α+ x2β − β for t ∈ [0, 1[
y1α(2− t) + x2β − β for t ∈ [1, 2[
x2β(3− t)− β for t ∈ [2, 3[
β(t− 4) for t ∈ [3, 4[
0 for t ∈ [4, 5[
α(t− 5) for t ∈ [5, 6[
α for t ∈ [6, 7[
y3β(t− 7) + α for t ∈ [7, 8[
x3α(t− 8) + α+ y3β for t ∈ [8, 9]

is a nontrivial solution of the problem (6.10), (1.20). Therefore, according
to Remark 1.1 (see p. 14), there exist q ∈ L(

[a, b];R
)

and c ∈ R such that
the problem (6.1), (1.2) has no solution.



Suplementary Remarks

The main ideas of the results presented in Chapter I can be found in [22,24,
26–29], where the special case of the boundary condition (1.2) with λ = 1
is considered.

Theorems 2.1–2.3 and 2.5 are proved in [27], Theorems 2.9 and 2.10 are
proved in [26], Theorems 2.4, 2.11, and 4.1 are proved in [24], Theorems 4.3
and 4.6 are proved in [29], Theorem 4.4 is proved in [29], and Theorem 7.1
one can find in [28].





CHAPTER II

Nonlinear Problem



§10. Statement of the Problem

In this chapter, we will consider the problem on the existence and unique-
ness of a solution of the equation

u′(t) = F (u)(t) (10.1)

satisfying the boundary condition

λu(a) + µu(b) = h(u), (10.2)

where F ∈ Kab, λ, µ ∈ R, |λ| + |µ| 6= 0, and h : C
(
[a, b];R

) → R is
a continuous functional satisfying that for every r > 0 there exists Mr ∈ R+

such that
|h(v)| ≤Mr for ‖v‖C ≤ r.

By a solution of the equation (10.1) is understood a function u∈ C̃(
[a, b];R

)
satisfying this equation almost everywhere in [a, b]. Note also that as in
Chapter I, the equalities and inequalities with integrable functions are un-
derstood almost everywhere.

The following result is well–known from the general theory of boundary
value problems for functional differential equations (see, e.g., [39]).

Proposition 10.1. Let there exist ` ∈ Lab such that the problem

u′(t) = `(u)(t), λu(a) + µu(b) = 0

has only the trivial solution and on the set C
(
[a, b];R

)
the inequalities

|F (v)(t)− `(v)(t)| ≤ q(t, ‖v‖C) for t ∈ [a, b], (10.3)

|h(v)| ≤ c (10.4)

hold, where c ∈ R+ and q ∈ K
(
[a, b] × R+;R+

)
is nondecreasing in the

second argument and satisfies

lim
x→+∞

1
x

b∫

a

q(s, x)ds = 0. (10.5)

Then the problem (10.1), (10.2) has at least one solution.
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According to Proposition 10.1 and the results from Chapter I, effective
sufficient conditions for solvability of the problem (10.1), (10.2) can be
immediately established. Although these results are nonimprovable (since
they are nonimprovable for the special case of the problem (10.1), (10.2),
for the linear problem (1.1), (1.2)), we will show that, in some cases, the
assumptions (10.3) and (10.4) can be weakened to the one–side restrictions.

All results will be concretized for the differential equation with deviating
arguments (EDA) of the form

u′(t) =
m∑

k=1

(
pk(t)u(τk(t))− gk(t)u(νk(t))

)
+

+ f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

(10.1′)

where f ∈ K([a, b] × Rn+1;R), pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), ζj ∈Mab (j = 1, . . . , n), m,n ∈ N .



§11. Auxiliary Propositions

In this section, we will establish some auxiliary results for solvability and
unique solvability of the problem (10.1), (10.2).

Lemma 11.1. Let `0 ∈ Lab and let the homogeneous problem

v′(t) = `0(v)(t), λv(a) + µv(b) = 0

have only the trivial solution. Then there exists a positive number r0 such
that for any q ∈ L(

[a, b];R
)

and c ∈ R the solution v of the problem

v′(t) = `0(v)(t) + q(t), λv(a) + µv(b) = c (11.1)

admits the estimate
‖v‖C ≤ r0

(|c|+ ‖q‖L

)
. (11.2)

Proof. Let

R× L
(
[a, b];R

)
=

{
(c, q) : c ∈ R, q ∈ L(

[a, b];R
)}

be the Banach space with the norm

‖(c, q)‖R×L = |c|+ ‖q‖L,

and let Ω be an operator, which assigns to every (c, q) ∈ R × L
(
[a, b];R

)
the solution v of the problem (11.1). According to Theorem 1.4 in [42],
Ω : R × L

(
[a, b];R

) → C
(
[a, b];R

)
is a linear bounded operator. Denote

by r0 the norm of Ω. Then, clearly, for any (c, q) ∈ R × L
(
[a, b];R

)
the

inequality
‖Ω(c, q)‖C ≤ r0

(|c|+ ‖q‖L

)

holds. Consequently, the solution v = Ω(c, q) of the problem (11.1) admits
the estimate (11.2).

Now let us formulate the result from [41, Theorem 1] in a suitable for
us form.

Lemma 11.2. Let there exist a positive number ρ and an operator ` ∈
Lab such that the homogeneous problem (1.10), (1.20) has only the trivial
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solution, and let for every δ ∈ ]0, 1[ and for an arbitrary function u ∈
C̃

(
[a, b];R

)
satisfying

u′(t) = `(u)(t) + δ
[
F (u)(t)− `(u)(t)

]
for t ∈ [a, b], (11.3)

λu(a) + µu(b) = δh(u), (11.4)

the estimate
‖u‖C ≤ ρ (11.5)

hold. Then the problem (10.1), (10.2) has at least one solution.

Proof. Since ` ∈ Lab and F ∈ Kab, there exist η, ω ∈ L
(
[a, b];R+

)
such

that

|`(v)(t)| ≤ η(t)‖v‖C for t ∈ [a, b], v ∈ C(
[a, b];R

)
,

|F (v)(t)| ≤ ω(t) for t ∈ [a, b], ‖v‖C ≤ 2ρ.

Moreover, there exists α ∈ R+ such that

|h(v)| ≤ α for ‖v‖C ≤ 2ρ

(see §10). Put

γ(t) def= ω(t) + 2ρη(t) for t ∈ [a, b],

σ(s) def=





1 for 0 ≤ s ≤ ρ

2− s
ρ for ρ < s < 2ρ

0 for s ≥ 2ρ

, (11.6)

q0(v)(t)
def= σ

(‖v‖C

)[
F (v)(t)− `(v)(t)

]
for t ∈ [a, b],

c0(v)
def= σ

(‖v‖C

)
h(v).

(11.7)

Then for every v ∈ C(
[a, b];R

)
and almost all t ∈ [a, b], the inequalities

|q0(v)(t)| ≤ γ(t), |c0(v)| ≤ α

hold.
For arbitrarily fixed u ∈ C(

[a, b];R
)
, let us consider the problem

v′(t) = `(v)(t) + q0(u)(t), λv(a) + µv(b) = c0(u). (11.8)
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According to Theorem 1.1 (see p. 14), the problem (11.8) has a unique
solution v and, moreover, by virtue of Lemma 11.1, there exists β > 0 such
that

‖v‖C ≤ β
(|c0(u)|+ ‖q0(u)‖L

)
.

Therefore, for arbirarily fixed u ∈ C(
[a, b];R

)
, the solution v of the problem

(11.8) admits the estimates

‖v‖C ≤ ρ0, |v′(t)| ≤ γ∗(t) for t ∈ [a, b], (11.9)

where ρ0 = β
(‖γ‖L + α

)
and γ∗(t) = ρ0η(t) + γ(t) for t ∈ [a, b].

Let Ω : C
(
[a, b];R

) → C
(
[a, b];R

)
be an operator which to every

u ∈ C(
[a, b];R

)
assigns the solution v of the problem (11.8). Due to The-

orem 1.4 from [42], the operator Ω is continuous. On the other hand, by
virtue of (11.9), for every u ∈ C(

[a, b];R
)

we have

‖Ω(u)‖C ≤ ρ0,
∣∣Ω(u)(t)− Ω(u)(s)

∣∣ ≤
∣∣∣∣∣∣

t∫

s

γ∗(ξ)dξ

∣∣∣∣∣∣
for s, t ∈ [a, b].

Thus the operator Ω continuously maps the Banach space C
(
[a, b];R

)
into

its relatively compact subset. Therefore, using the Schauder’s principle,
there exists u ∈ C(

[a, b];R
)

such that

Ω(u)(t) = u(t) for t ∈ [a, b].

By the equalities (11.7), u is obviously a solution of the problem (11.3),
(11.4) with

δ = σ
(‖u‖C

)
. (11.10)

Now we will show that u admits the estimate (11.5). Suppose the contrary.
Then either

ρ < ‖u‖C < 2ρ (11.11)

or
‖u‖C ≥ 2ρ. (11.12)

If we assume that the inequalities (11.11) are fulfilled, then, on account
of (11.6) and (11.10), we have δ ∈ ]0, 1[ . However, by the conditions of the
lemma, in this case we have the estimate (11.5), which contradicts (11.11).

Suppose now that (11.12) is satisfied. Then by (11.6) and (11.10), we
have δ = 0. Hence u is a solution of the problem (1.10), (1.20). But
this is imposible because the problem (1.10), (1.20) has only the trivial
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solution. Thus, above–obtained contradiction proves the validity of the
estimate (11.5).

By virtue of (11.5), (11.6), and (11.10), it is clear that δ = 1 and thus,
u is a solution of the problem (10.1), (10.2).

Definition 11.1. We will say that an operator ` ∈ Lab belongs to the set
Ai

(
λ, µ

)
, i ∈ {1, 2}, if there exists a positive number r such that for any

q∗ ∈ L(
[a, b];R+

)
and c ∈ R+ every function u ∈ C̃(

[a, b];R
)

satisfying the
inequalities

[
λu(a) + µu(b)

]
sgn

(
(2− i)λu(a) + (i− 1)µu(b)

) ≤ c, (11.13)

(−1)i+1
[
u′(t)− `(u)(t)

]
sgnu(t) ≤ q∗(t) for t ∈ [a, b] (11.14)

admits the estimate
‖u‖C ≤ r

(
c+ ‖q∗‖L

)
. (11.15)

Lemma 11.3. Let i ∈ {1, 2}, c ∈ R+,

h(v) sgn
(
(2− i)λv(a) + (i− 1)µv(b)

) ≤ c for v ∈ C(
[a, b];R

)
, (11.16)

and let there exist ` ∈ Ai
(
λ, µ

)
such that on the set Bi

λµc

(
[a, b];R

)
the

inequality

(−1)i+1
[
F (v)(t)− `(v)(t)

]
sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b] (11.17)

is fulfilled, where q ∈ K
(
[a, b] × R+;R+

)
is nondecreasing in the second

argument and satisfies (10.5). Then the problem (10.1), (10.2) has at least
one solution.

Proof. First note that due to the condition ` ∈ Ai
(
λ, µ

)
the homogeneous

problem (1.10), (1.20) has only the trivial solution.
Let r be the number appearing in Definition 11.1. According to (10.5),

there exists ρ > 2rc such that

1
x

b∫

a

q(s, x)ds <
1
2r

for x > ρ. (11.18)

Now assume that a function u ∈ C̃(
[a, b];R

)
satisfies (11.3) and (11.4)

for some δ ∈ ]0, 1[ . Then, according to (11.16), u satisfies the inequality
(11.13), i.e., u ∈ Bi

λµc

(
[a, b];R

)
. By (11.17) we obtain that the inequality
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(11.14) is fulfilled with q∗(t) = q(t, ‖u‖C) for t ∈ [a, b]. Hence, by the con-
dition ` ∈ Ai

(
λ, µ

)
and the definition of the number ρ we get the estimate

(11.5).
Since ρ depends neither on u nor on δ, it follows from Lemma 11.2 that

the problem (10.1), (10.2) has at least one solution.

Lemma 11.4. Let i ∈ {1, 2},
[
h(v)− h(w)

]
sgn

(
(2− i)λ(v(a)− w(a))+

(i− 1)µ(v(b)− w(b))
) ≤ 0 for v, w ∈ C(

[a, b];R
)
,

(11.19)

and let there exist ` ∈ Ai
(
λ, µ

)
such that on the set Bi

λµc

(
[a, b];R

)
, where

c = |h(0)|, the inequality

(−1)i+1
[
F (v)(t)− F (w)(t)−

−`(v − w)(t)
]
sgn

(
v(t)− w(t)

) ≤ 0 for t ∈ [a, b]
(11.20)

holds. Then the problem (10.1), (10.2) is uniquely solvable.

Proof. It follows from (11.19) that the condition (11.16) is fulfilled, where
c = |h(0)|. By (11.20) we see that on the set Bi

λµc

(
[a, b];R

)
the inequal-

ity (11.17) holds, where q ≡ |F (0)|. Consequently, the assumptions of
Lemma 11.3 are fulfilled and so the problem (10.1), (10.2) has at least one
solution. It remains to show that the problem (10.1), (10.2) has at most
one solution.

Let u1, u2 be arbitrary solutions of the problem (10.1), (10.2). Put

u(t) = u1(t)− u2(t) for t ∈ [a, b].

Then, by (11.19) and (11.20) we get
[
λu(a) + µu(b)

]
sgn

(
(2− i)λu(a) + (i− 1)µu(b)

) ≤ 0,

(−1)i+1[u′(t)− `(u)(t)] sgnu(t) ≤ 0 for t ∈ [a, b].

This, together with the condition ` ∈ Ai
(
λ, µ

)
, results in u ≡ 0. Conse-

quently, u1 ≡ u2.

Definition 11.2. We will say that a pair (`0, `1) ∈ Pab × Lab belongs
to the set B(λ, µ) if there exists a positive number r such that for any
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q∗ ∈ L(
[a, b];R+

)
and c ∈ R+ every function u ∈ C̃(

[a, b];R
)

satisfying the
inequalities

[
λu(a) + µu(b)

]
sgn

(
λu(a)

) ≤ c, (11.21)
[
u′(t) + `1(u)(t)

]
sgnu(t) ≤ `0(|u|)(t) + q∗(t) for t ∈ [a, b] (11.22)

admits the estimate (11.15).

Lemma 11.5. Let c ∈ R+,

h(v) sgn
(
λv(a)

) ≤ c for v ∈ C(
[a, b];R

)
, (11.23)

and let there exist (`0, `1) ∈ B(λ, µ) such that on the set B1
λµc

(
[a, b];R

)
the

inequality [
F (v)(t) + `1(v)(t)

]
sgn v(t) ≤ `0(|v|)(t)+

+q(t, ‖v‖C) for t ∈ [a, b]
(11.24)

holds, where q ∈ K
(
[a, b] × R+;R+

)
is nondecreasing in the second argu-

ment and satisfies (10.5). Then the problem (10.1), (10.2) has at least one
solution.

Proof. First note that due to the condition (`0, `1) ∈ B(λ, µ) the homoge-
neous problem (1.10), (1.20) with ` ≡ −`1 has only the trivial solution.

Let r be the number appearing in Definition 11.2. According to (10.5),
there exists ρ > 2rc such that (11.18) holds.

Now assume that a function u ∈ C̃(
[a, b];R

)
satisfies (11.3) and (11.4)

for some δ ∈ ]0, 1[ with ` ≡ −`1, i.e.,

u′(t) + `1(u)(t) = δ
[
F (u)(t) + `1(u)(t)

]
for t ∈ [a, b], (11.25)

λu(a) + µu(b) = δh(u).

According to (11.23), the function u satisfies the inequality (11.21), i.e.,
u ∈ B1

λµc

(
[a, b];R

)
. By virtue of (11.24) and (11.25), we obtain that the

inequality (11.22) is fulfilled with q∗(t) = q(t, ‖u‖C) for t ∈ [a, b]. Hence,
by the condition (`0, `1) ∈ B(λ, µ) and the definition of the number ρ we
get the estimate (11.5).

Since ρ depends neither on u nor on δ, it follows from Lemma 11.2 that
the problem (10.1), (10.2) has at least one solution.
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Lemma 11.6. Let
[
h(v)− h(w)

]
sgn

(
λ(v(a)− w(a))

) ≤ 0 for v, w ∈ C(
[a, b];R

)
(11.26)

and let there exist (`0, `1) ∈ B(λ, µ) such that on the set B1
λµc

(
[a, b];R

)
,

where c = |h(0)|, the inequality
[
F (v)(t)− F (w)(t) + `1(v − w)(t)

]
sgn

(
v(t)− w(t)

) ≤
≤ `0(|v − w|)(t) for t ∈ [a, b]

(11.27)

holds. Then the problem (10.1), (10.2) is uniquely solvable.

Proof. It follows from (11.26) that the condition (11.23) is fulfilled, where
c = |h(0)|. By (11.27) we see that on the set B1

λµc

(
[a, b];R

)
the inequal-

ity (11.24) holds, where q ≡ |F (0)|. Consequently, the assumptions of
Lemma 11.5 are fulfilled and so the problem (10.1), (10.2) has at least one
solution. It remains to show that the problem (10.1), (10.2) has at most
one solution.

Let u1, u2 be arbitrary solutions of the problem (10.1), (10.2). Put

u(t) = u1(t)− u2(t) for t ∈ [a, b].

Then, by (11.26) and (11.27) we get
[
λu(a) + µu(b)

]
sgn

(
λu(a)

) ≤ 0,

[u′(t) + `1(u)(t)] sgnu(t) ≤ `0(|u|)(t) for t ∈ [a, b].

This, together with the condition (`0, `1) ∈ B(λ, µ), results in u ≡ 0. Con-
sequently, u1 ≡ u2.



§12. Periodic Type BVP

In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for solvability and unique solvability of the problem (10.1),
(10.2), where the boundary condition (10.2) is of a periodic type, i.e., when
the inequality (2.1) is satisfied. In Subsection 12.1, the main results are
formulated. Theorems 12.1–12.12 deal with the case |µ| ≤ |λ|, while the
case |µ| ≥ |λ| is considered in Theorems 12.13–12.24. The proofs of the
main results can be found in Subsection 12.2. Subsection 12.3 is devoted
to the examples verifying the optimality of the main results.

In the sequel, we will assume that the function q ∈ K(
[a, b]×R+;R+

)
is nondecreasing in the second argument and satisfies (10.5), i.e.,

lim
x→+∞

1
x

b∫

a

q(s, x)ds = 0.

12.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 12.1. Let 0 6= |µ| ≤ |λ|, c ∈ R+,

h(v) sgn
(
λv(a)

) ≤ c for v ∈ C(
[a, b];R

)
, (12.1)

and let there exist
`0, `1 ∈ Pab (12.2)

such that on the set B1
λµc

(
[a, b];R

)
the inequality

[
F (v)(t)− `0(v)(t) + `1(v)(t)

]
sgn v(t) ≤ q(t, ‖v‖C) for t ∈ [a, b] (12.3)

holds. If, moreover,
‖`0(1)‖L < 1 (12.4)

and

‖`0(1)‖L

1− ‖`0(1)‖L
− |λ| − |µ|

|µ| < ‖`1(1)‖L < 2
√

1− ‖`0(1)‖L , (12.5)

then the problem (10.1), (10.2) has at least one solution.
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Remark 12.1. Let 0 6= |µ| ≤ |λ|. Denote by D the set of pairs (x, y) ∈
R+ ×R+ such that

x < 1,
x

1− x
− |λ| − |µ|

|µ| < y < 2
√

1− x

(see Fig. 12.1, p. 201).
According to Theorem 12.1, if (12.1) holds, there exist `0, `1 ∈ Pab such

that the inequality (12.3) is satisfied on the set B1
λµc

(
[a, b];R

)
, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ D,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.1, p. 240) that for every x0, y0 ∈ R+, (x0, y0) 6∈ D there exist
F ∈ Kab, `0, `1 ∈ Pab, and c0 ∈ R such that (12.1) (with h ≡ c0, c = |c0|)
and (12.3) hold,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L,

and the problem (10.1), (10.2) with h ≡ c0 has no solution. In particular,
neither one of the strict inequalities in (12.4) and (12.5) can be replaced by
the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case µ = 0.

Theorem 12.2. Let µ = 0, c ∈ R+, the condition (12.1) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the inequality

(12.3) holds. If, moreover,

‖`0(1)‖L < 1 (12.6)

and
‖`1(1)‖L < 2

√
1− ‖`0(1)‖L , (12.7)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.2. Let µ = 0. Denote by E the set of pairs (x, y) ∈ R+ ×R+

such that
x < 1, y < 2

√
1− x

(see Fig. 12.2).
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x

y

1|λ|−|µ|
|λ|

2

D

Fig. 12.1.

x

y

1

2

E

Fig. 12.2.

According to Theorem 12.2, if (12.1) holds, there exist `0, `1 ∈ Pab such
that the inequality (12.3) is satisfied on the set B1

λµc

(
[a, b];R

)
, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ E,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.2, p. 243) that for every x0, y0 ∈ R+, (x0, y0) 6∈ E there exist
F ∈ Kab, `0, `1 ∈ Pab, and c0 ∈ R such that (12.1) (with h ≡ c0, c = |c0|)
and (12.3) hold,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L,

and the problem (10.1), (10.2) with h ≡ c0 has no solution. In particular,
the strict inequalities (12.6) and (12.7) cannot be replaced by the nonstrict
ones.

Theorem 12.3. Let 0 6= |µ| ≤ |λ|, c ∈ R+,

h(v) sgn
(
µv(b)

) ≤ c for v ∈ C(
[a, b];R

)
, (12.8)

and let there exist `0, `1 ∈ Pab such that on the set B2
λµc

(
[a, b];R

)
the in-
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equality [
F (v)(t)− `0(v)(t) + `1(v)(t)

]
sgn v(t) ≥

≥ −q(t, ‖v‖C) for t ∈ [a, b]
(12.9)

holds. If, moreover,

‖`1(1)‖L <
∣∣∣µ
λ

∣∣∣ (12.10)

and

|λ|
|µ| − |λ|‖`1(1)‖L

− 1 < ‖`0(1)‖L < 2
√∣∣∣µ

λ

∣∣∣− ‖`1(1)‖L , (12.11)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.3. Let 0 6= |µ| ≤ |λ|. Denote by W the set of pairs (x, y) ∈
R+ ×R+ such that

y <
∣∣∣µ
λ

∣∣∣ , |λ|
|µ| − |λ|y − 1 < x < 2

√∣∣∣µ
λ

∣∣∣− y

(see Fig. 12.3).

x

y

|λ|−|µ|
|µ| 2

√
|µλ |

|µλ |

W

Fig. 12.3.

According to Theorem 12.3, if (12.8) holds, there exist `0, `1 ∈ Pab such
that the inequality (12.9) is satisfied on the set B2

λµc

(
[a, b];R

)
, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈W,
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then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 12.3, p. 245) that for every x0, y0 ∈ R+, (x0, y0) 6∈ W there exist
F ∈ Kab, `0, `1 ∈ Pab, and c0 ∈ R such that (12.8) (with h ≡ c0, c = |c0|)
and (12.9) hold,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L,

and the problem (10.1), (10.2) with h ≡ c0 has no solution. In particular,
neither one of the strict inequalities in (12.10) and (12.11) can be replaced
by the nonstrict one.

Theorem 12.4. Let |µ| < |λ|, c ∈ R+, the inequality (12.1) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the in-

equality [
F (v)(t) + `1(v)(t)

]
sgn v(t) ≤ `0(|v|)(t)+

+q(t, ‖v‖C) for t ∈ [a, b]
(12.12)

holds. If, moreover,

`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ), (12.13)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.4. Theorem 12.4 is nonimprovable. More precisely, the in-
equality (12.12) cannot be replaced by the inequality

[
F (v)(t) + `1(v)(t)

]
sgn v(t) ≤ (1 + ε)`0(|v|)(t) + q(t, ‖v‖C), (12.14)

no matter how small ε > 0 would be. Moreover, the assumption (12.13)
can be replaced neither by the assumption

(1− ε)`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ), (12.15)

nor by the assumption

`0 ∈ V +
ab (λ, µ), −(1− ε)`1 ∈ V +

ab (λ, µ), (12.16)

no matter how small ε > 0 would be (see On Remark 12.4 and Exam-
ple 12.1, p. 247).

Remark 12.5. By the last theorem and the results from §2, one can ob-
tain several effective sufficient solvability conditions for the problem (10.1),
(10.2).
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Theorem 12.5. Let |µ| < |λ|, c ∈ R+, the inequality (12.1) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the in-

equality (12.3) holds. If, moreover, there exists γ ∈ C̃
(
[a, b]; ]0,+∞[

)
sat-

isfying

γ′(t) ≥ `0(γ)(t) + `1(1)(t) for t ∈ [a, b], (12.17)

|λ|γ(a) > |µ|γ(b), (12.18)

γ(b)− γ(a) < 2, (12.19)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.6. Theorem 12.5 is nonimprovable in the sense that the in-
equality (12.19) cannot be replaced by the nonstrict one (see Example 12.2,
p. 249).

In the next theorem if |µ| = |λ|, then the operator `0 ∈ Pab is supposed
to be nontrivial.

Theorem 12.6. Let 0 6= |µ| ≤ |λ|, c ∈ R+, the inequality (12.8) be ful-
filled, and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the

inequality [
F (v)(t)− `0(v)(t)− `1(v)(t)

]
sgn v(t) ≥

≥ −q(t, ‖v‖C) for t ∈ [a, b]
(12.20)

holds. If, moreover,
`0 ∈ V −ab (λ, µ) (12.21)

and
b∫

a

(
`0(1)(s) + `1(1)(s)

)
ds < 2

√∣∣∣µ
λ

∣∣∣, (12.22)

then the problem (10.1), (10.2) has at least one solution.

Remark 12.7. Theorem 12.6 is nonimprovable in the sense that, in gen-
eral, the strict inequality (12.22) cannot be replaced by the nonstrict one
(see Example 12.3, p. 251).

Note also, that if |λ| = |µ| and the conditions (12.20) and (12.22) are
fulfilled for some `0, `1 ∈ Pab, then, without loss of generality, the operator
`0 can be chosen such that the condition (12.21) is satisfied. Indeed, in this
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case the operator `0 is supposed to be nontrivial and thus, it can be chosen
such that

0 <

b∫

a

`0(1)(s)ds ≤ 1,

which guarantees that the condition (12.21) is fulfilled (see Theorem 2.11
with `1 ≡ 0, p. 26).

Nevertheless, if 0 6= |µ| < |λ|, then, in general, the assumption (12.21)
cannot be replaced by the assumption

(1 + ε)`0 ∈ V −ab (λ, µ) , (12.23)

no matter how small ε > 0 would be (see On Remark 12.7, p. 253).

In Theorems 12.7–12.12, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 12.7. Let 0 6= |µ| ≤ |λ|,
[
h(v)− h(w)

]
sgn

(
λ
(
v(a)−w(a)

)) ≤ 0 for v, w ∈ C(
[a, b];R

)
, (12.24)

and let there exist `0, `1 ∈ Pab such that on the set B1
λµc

(
[a, b];R

)
, where

c = |h(0)|, the inequality
[
F (v)(t)− F (w)(t)− `0(v − w)(t)+

+`1(v − w)(t)
]
sgn

(
v(t)− w(t)

) ≤ 0 for t ∈ [a, b]
(12.25)

holds. If, moreover, the conditions (12.4) and (12.5) are fulfilled, then the
problem (10.1), (10.2) is uniquely solvable.

Remark 12.8. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(12.4) and (12.5) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case µ = 0.

Theorem 12.8. Let µ = 0, the condition (12.24) be fulfilled, and let there
exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c = |h(0)|, the

inequality (12.25) holds. If, moreover, the conditions (12.6) and (12.7) are
fulfilled, then the problem (10.1), (10.2) is uniquely solvable.
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Remark 12.9. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (12.6) and (12.7)
cannot be replaced by the nonstrict ones.

Theorem 12.9. Let 0 6= |µ| ≤ |λ|,

[h(v)− h(w)] sgn
(
µ
(
v(b)− w(b)

)) ≤ 0 for v, w ∈ C(
[a, b];R

)
, (12.26)

and let there exist `0, `1 ∈ Pab such that on the set B2
λµc

(
[a, b];R

)
, where

c = |h(0)|, the inequality
[
F (v)(t)− F (w)(t)− `0(v − w)(t)+

+`1(v − w)(t)
]
sgn

(
v(t)− w(t)

) ≥ 0 for t ∈ [a, b]
(12.27)

holds. If, moreover, the conditions (12.10) and (12.11) are fulfilled, then
the problem (10.1), (10.2) is uniquely solvable.

Remark 12.10. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(12.10) and (12.11) can be replaced by the nonstrict one.

Theorem 12.10. Let |µ| < |λ|, the condition (12.24) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality
[
F (v)(t)− F (w)(t) + `1(v − w)(t)

]
sgn

(
v(t)− w(t)

) ≤
≤ `0(|v − w|)(t) for t ∈ [a, b]

(12.28)

holds. If, moreover, the condition (12.13) is satisfied, then the problem
(10.1), (10.2) has a unique solution.

Remark 12.11. The examples constructed in Subsection 12.3 (see On Re-
mark 12.4 and Example 12.1, p. 247) also show that the the inequality
(12.28) cannot be replaced by the inequality

[
F (v)(t)− F (w)(t) + `1(v − w)(t)

]
sgn

(
v(t)− w(t)

) ≤
≤ (1 + ε)`0(|v − w|)(t) for t ∈ [a, b]

and the assumption (12.13) can be replaced neither by the assumption
(12.15) nor by the assumption (12.16), no matter how small ε > 0 would
be.
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Theorem 12.11. Let |µ| < |λ|, the inequality (12.24) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c =

|h(0)|, the inequality (12.25) holds. If, moreover, there exists a function
γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying the inequalities (12.17)–(12.19), then the

problem (10.1), (10.2) is uniquely solvable.

Remark 12.12. The examples constructed in Subsection 12.3 (see Exam-
ple 12.2, p. 249) also show that the strict inequality (12.19) cannot be
replaced by the nonstrict one.

In the next theorem if |µ| = |λ|, then the operator `0 ∈ Pab is supposed
to be nontrivial.

Theorem 12.12. Let 0 6= |µ| ≤ |λ|, the inequality (12.26) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where

c = |h(0)|, the inequality
[
F (v)(t)− F (w)(t)− `0(v − w)(t)−

−`1(v − w)(t)
]
sgn

(
v(t)− w(t)

) ≥ 0 for t ∈ [a, b]
(12.29)

holds. If, moreover, the conditions (12.21) and (12.22) are satisfied, then
the problem (10.1), (10.2) has a unique solution.

Remark 12.13. The examples constructed in Subsection 12.3 (see Exam-
ple 12.3 and On Remark 12.7, pp. 251 and 253) also show that, in general,
the assumption (12.21) in Theorem 12.12 cannot be replaced by the as-
sumption (12.23), no matter how small ε > 0 would be, and the strict
inequality (12.22) cannot be replaced by the nonstrict one.

In the case, where |µ| ≥ |λ|, the following assertions hold.

Theorem 12.13. Let |µ| ≥ |λ| 6= 0, c ∈ R+, the inequality (12.8) be
fulfilled, and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the inequality (12.9) holds. If, moreover,

‖`1(1)‖L < 1 (12.30)

and

‖`1(1)‖L

1− ‖`1(1)‖L
− |µ| − |λ|

|λ| < ‖`0(1)‖L < 2
√

1− ‖`1(1)‖L , (12.31)

then the problem (10.1), (10.2) has at least one solution.
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The next theorem can be understood as a supplement of the previous
one for the case λ = 0.

Theorem 12.14. Let λ = 0, c ∈ R+, the inequality (12.8) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the inequality

(12.9) holds. If, moreover,

‖`1(1)‖L < 1 (12.32)

and
‖`0(1)‖L < 2

√
1− ‖`1(1)‖L , (12.33)

then the problem (10.1), (10.2) has at least one solution.

Theorem 12.15. Let |µ| ≥ |λ| 6= 0, c ∈ R+, the inequality (12.1) be
fulfilled, and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the inequality (12.3) holds. If, moreover,

‖`0(1)‖L <

∣∣∣∣
λ

µ

∣∣∣∣ (12.34)

and

|µ|
|λ| − |µ|‖`0(1)‖L

− 1 < ‖`1(1)‖L < 2

√∣∣∣∣
λ

µ

∣∣∣∣− ‖`0(1)‖L , (12.35)

then the problem (10.1), (10.2) has at least one solution.

Theorem 12.16. Let |µ| > |λ|, c ∈ R+, the inequality (12.8) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the in-

equality [
F (v)(t)− `1(v)(t)

]
sgn v(t) ≥ −`0(|v|)(t)−

−q(t, ‖v‖C) for t ∈ [a, b]

holds. If, moreover,

−`0 ∈ V −ab (λ, µ), `1 ∈ V −ab (λ, µ), (12.36)

then the problem (10.1), (10.2) has at least one solution.
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Theorem 12.17. Let |µ| > |λ|, c ∈ R+, the inequality (12.8) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the in-

equality (12.9) holds. If, moreover, there exists γ ∈ C̃
(
[a, b]; ]0,+∞[

)
sat-

isfying

−γ′(t) ≥ `1(γ)(t) + `0(1)(t) for t ∈ [a, b], (12.37)

|λ|γ(a) < |µ|γ(b), (12.38)

γ(a)− γ(b) < 2, (12.39)

then the problem (10.1), (10.2) has at least one solution.

In the next theorem if |µ| = |λ|, then the operator `0 ∈ Pab is supposed
to be nontrivial.

Theorem 12.18. Let |µ| ≥ |λ| 6= 0, c ∈ R+, the inequality (12.1) be
fulfilled, and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the inequality

[
F (v)(t) + `0(v)(t) + `1(v)(t)

]
sgn v(t) ≤

≤ q(t, ‖v‖C) for t ∈ [a, b]
(12.40)

holds. If, moreover,
−`0 ∈ V +

ab (λ, µ) (12.41)

and
b∫

a

(
`0(1)(s) + `1(1)(s)

)
ds < 2

√∣∣∣∣
λ

µ

∣∣∣∣, (12.42)

then the problem (10.1), (10.2) has at least one solution.

In Theorems 12.19–12.24, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 12.19. Let |µ| ≥ |λ| 6= 0, the condition (12.26) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c =

|h(0)|, the inequality (12.27) holds. If, moreover, the conditions (12.30) and
(12.31) are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

The next theorem can be understood as a supplement of the previous
one for the case λ = 0.
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Theorem 12.20. Let λ = 0, the condition (12.26) be fulfilled, and let there
exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c = |h(0)|, the

inequality (12.27) holds. If, moreover, the conditions (12.32) and (12.33)
are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

Theorem 12.21. Let |µ| ≥ |λ| 6= 0, the condition (12.24) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c =

|h(0)|, the inequality (12.25) holds. If, moreover, the conditions (12.34) and
(12.35) are satisfied, then the problem (10.1), (10.2) is uniquely solvable.

Theorem 12.22. Let |µ| > |λ|, the inequality (12.26) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality

[
F (v)(t)− F (w)(t)− `1(v − w)(t)

]
sgn

(
v(t)− w(t)

) ≥
≥ −`0(|v − w|)(t) for t ∈ [a, b]

holds. If, moreover, the condition (12.36) is satisfied, then the problem
(10.1), (10.2) has a unique solution.

Theorem 12.23. Let |µ| > |λ|, the inequality (12.26) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c =

|h(0)|, the inequality (12.27) holds. If, moreover, there exists a function
γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying (12.37)–(12.39), then the problem (10.1),

(10.2) is uniquely solvable.

In the next theorem if |µ| = |λ|, then the operator `0 ∈ Pab is supposed
to be nontrivial.

Theorem 12.24. Let |µ| ≥ |λ| 6= 0, the inequality (12.24) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where

c = |h(0)|, the inequality

[
F (v)(t)− F (w)(t) + `0(v − w)(t)+

+`1(v − w)(t)
]
sgn

(
v(t)− w(t)

) ≤ 0 for t ∈ [a, b]
(12.43)

holds. If, moreover, the conditions (12.41) and (12.42) are satisfied, then
the problem (10.1), (10.2) has a unique solution.
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Remark 12.14. Let ψ and ϕ be operators defined in Remark 2.16 (see
p. 28). Put

F̂ (w)(t) def= −ψ(F (ϕ(w)))(t) for t ∈ [a, b], ĥ(w) def= h(ϕ(w)).

It is clear that if u is a solution of the problem (10.1), (10.2), then the
function v def= ϕ(u) is a solution of the problem

v′(t) = F̂ (v)(t), µv(a) + λv(b) = ĥ(v), (12.44)

and vice versa, if v is a solution of the problem (12.44), then the function
u

def= ϕ(v) is a solution of the problem (10.1), (10.2).

Remark 12.15. According to Remark 12.14 and Remark 2.16 (see p. 28),
Theorems 12.13–12.24 can be immediately derived from Theorems 12.1–
12.12. Moreover, by virtue of Remarks 12.1–12.4 and 12.6–12.13, Theo-
rems 12.13–12.24 are nonimprovable in an appropriate sense.

12.2. Proofs

First we will prove several lemmas.

Lemma 12.1. Let 0 6= |µ| ≤ |λ| and let the operator ` admit the represen-
tation ` = `0 − `1, where `0, `1 ∈ Pab. If, moreover, the conditions (12.4)
and (12.5) hold, then ` ∈ A1

(
λ, µ

)
.

Proof. Let q∗ ∈ L(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃(

[a, b];R
)

satisfy (11.13)
and (11.14) for i = 1. Put

µ0 = max {1, |µ|} , λ0 = max
{

1,
1
|λ|

}
. (12.45)

We will show that (11.15) holds with

r =
µ0 + λ0(|µ|‖`1(1)‖L + |λ| − |µ|)

(1− ‖`0(1)‖L)(|µ|‖`1(1)‖L + |λ| − |µ|)− |µ|‖`0(1)‖L
+

+
λ0(‖`1(1)‖L + 1)

1− ‖`0(1)‖L − 1
4‖`1(1)‖2

L

.

(12.46)

It is clear that

u′(t) = `0(u)(t)− `1(u)(t) + q̃(t) for t ∈ [a, b], (12.47)
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where
q̃(t) = u′(t)− `(u)(t) for t ∈ [a, b]. (12.48)

Obviously,
q̃(t) sgnu(t) ≤ q∗(t) for t ∈ [a, b], (12.49)

and
[λu(a) + µu(b)] sgn

(
λu(a)

) ≤ c. (12.50)

First suppose that u does not change its sign. According to (2.1),
(12.50), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we obtain

|u(a)| − |u(b)| ≤ c

|λ| (12.51)

and
|u(a)| − |u(b)| ≤ |u(a)| |µ| − |λ||µ| +

c

|µ| . (12.52)

Put

M = max{|u(t)| : t ∈ [a, b]}, m = min{|u(t)| : t ∈ [a, b]} (12.53)

and choose t1, t2 ∈ [a, b] such that t1 6= t2 and

|u(t1)| = M, |u(t2)| = m. (12.54)

Obviously, M ≥ 0, m ≥ 0, and either

t1 < t2 (12.55)

or
t1 > t2. (12.56)

Due to (12.2), (12.49), and (12.53), (12.47) implies

|u(t)|′ ≤M`0(1)(t)−m`1(1)(t) + q∗(t) for t ∈ [a, b]. (12.57)

If (12.55) holds, then the integration of (12.57) from a to t1 and from t2 to
b, in view of (12.2), m ≥ 0, and (12.54), results in

M − |u(a)| ≤M

t1∫

a

`0(1)(s)ds+

t1∫

a

q∗(s)ds,

|u(b)| −m ≤M

b∫

t2

`0(1)(s)ds+

b∫

t2

q∗(s)ds.
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Summing the last two inequalities and taking into account (12.2) and
(12.51), we obtain

M −m− c

|λ| ≤M −m+ |u(b)| − |u(a)| ≤M‖`0(1)‖L + ‖q∗‖L.

If (12.56) is fulfilled, then the integration of (12.57) from t2 to t1, on account
of (12.2), m ≥ 0, and (12.54), yields

M−m− c

|λ| ≤M−m ≤M

t1∫

t2

`0(1)(s)ds+

t1∫

t2

q∗(s)ds ≤M‖`0(1)‖L+‖q∗‖L.

Therefore, in both cases (12.55) and (12.56), the inequality

M −m− c

|λ| ≤M‖`0(1)‖L + ‖q∗‖L (12.58)

holds.
On the other hand, the integration of (12.57) from a to b yields

|u(b)| − |u(a)| ≤M‖`0(1)‖L −m‖`1(1)‖L + ‖q∗‖L.

Hence, by (12.52), (12.53), and the assumption |µ| ≤ |λ|, we get

m‖`1(1)‖L ≤M‖`0(1)‖L + |u(a)| |µ| − |λ||µ| +
c

|µ| + ‖q∗‖L ≤

≤M‖`0(1)‖L +m
|µ| − |λ|
|µ| + ‖q∗‖L +

c

|µ| .

From the last inequality and (12.58), in view of (12.4) and the assumption∣∣µ
λ

∣∣ ∈ ]0, 1], it follows that

0 ≤ m

(
‖`1(1)‖L +

|λ| − |µ|
|µ|

)
≤M‖`0(1)‖L + ‖q∗‖L +

c

|µ| ,

0 ≤M(1− ‖`0(1)‖L) ≤ m+ ‖q∗‖L +
c

|λ| .

Thus, on account of (12.5) and (12.45),

‖u‖C = M ≤ r0
(
µ0 + λ0(|µ|‖`1(1)‖L + |λ| − |µ|))(c+ ‖q∗‖L),

where r0 =
[
(1−‖`0(1)‖L)(|µ|‖`1(1)‖L + |λ|− |µ|)−|µ|‖`0(1)‖L

]−1. There-
fore, the estimate (11.15) holds.
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Now suppose that u changes its sign. Put

M = max{u(t) : t ∈ [a, b]}, m = −min{u(t) : t ∈ [a, b]}, (12.59)

and choose tM , tm ∈ [a, b] such that

u(tM ) = M, u(tm) = −m. (12.60)

Obviously, M > 0, m > 0, and either

tm < tM (12.61)

or
tm > tM . (12.62)

First suppose that (12.61) is fulfilled. It is clear that there exists α2 ∈
]tm, tM [ such that

u(t) > 0 for α2 < t ≤ tM , u(α2) = 0. (12.63)

Let
α1 = inf{t ∈ [a, tm] : u(s) < 0 for t ≤ s ≤ tm}. (12.64)

Obviously,
u(t) < 0 for α1 < t ≤ tm (12.65)

and
if α1 > a, then u(α1) = 0. (12.66)

Put

α3 =

{
b if u(b) ≥ 0
inf{t ∈ ]tM , b] : u(s) < 0 for t ≤ s ≤ b} if u(b) < 0

. (12.67)

It is clear that

if α3 < b, then u(t) < 0 for α3 < t ≤ b, u(α3) = 0. (12.68)

The integration of (12.47) from α1 to tm, from α2 to tM , and from α3 to
b, in view of (12.2), (12.49), (12.59), (12.60), (12.63), (12.65), and (12.68),
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yields

u(α1) +m ≤M

tm∫

α1

`1(1)(s)ds+m

tm∫

α1

`0(1)(s)ds+

tm∫

α1

q∗(s)ds, (12.69)

M ≤M

tM∫

α2

`0(1)(s)ds+m

tM∫

α2

`1(1)(s)ds+

tM∫

α2

q∗(s)ds, (12.70)

u(α3)− u(b) ≤M

b∫

α3

`1(1)(s)ds+m

b∫

α3

`0(1)(s)ds+

b∫

α3

q∗(s)ds. (12.71)

Evidently, either
u(b) ≥ 0 (12.72)

or
u(b) < 0. (12.73)

If (12.72) holds, then, according to (2.1), (12.50), (12.64), and (12.66), we
obtain u(α1) ≥ − c

|λ| . Thus, it follows from (12.69) that

− c

|λ| +m ≤M

∫

I

`1(1)(s)ds+m

∫

I

`0(1)(s)ds+
∫

I

q∗(s)ds, (12.74)

where I = [α1, tm].
Now let (12.73) hold. According to (2.1) and (12.50), it is clear that

u(a)−
∣∣∣µ
λ

∣∣∣u(b) ≥ − 1
|λ|

[
λu(a) + µu(b)

]
sgn

(
λu(a)

) ≥ − c

|λ| .

By virtue of (12.64) and (12.66), we find

u(α1)−
∣∣∣µ
λ

∣∣∣u(b) ≥ − c

|λ| . (12.75)

Multiplying both sides of (12.71) by
∣∣µ
λ

∣∣ and taking into account (12.67),
(12.68), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

−
∣∣∣µ
λ

∣∣∣u(b) ≤M

b∫

α3

`1(1)(s)ds+m

b∫

α3

`0(1)(s)ds+

b∫

α3

q∗(s)ds.
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Summing the last inequality and (12.69), by (12.75) we obtain that the
inequality (12.74) holds, where I = [α1, tm] ∪ [α3, b].

Thus, in both cases (12.72) and (12.73), the inequality (12.74) is ful-
filled, where I = [α1, tm] ∪ [α3, b].

It follows from (12.70) and (12.74) that

M(1− C1) ≤ mA1 + ‖q∗‖L +
c

|λ| ,

m(1−D1) ≤MB1 + ‖q∗‖L +
c

|λ| ,
(12.76)

where

A1 =

tM∫

α2

`1(1)(s)ds, B1 =
∫

I

`1(1)(s)ds,

C1 =

tM∫

α2

`0(1)(s)ds, D1 =
∫

I

`0(1)(s)ds.

Due to (12.4), C1 < 1, D1 < 1. Consequently, (12.45) and (12.76) imply

0 < M(1− C1)(1−D1) ≤ A1

(
MB1 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤MA1B1 + λ0 (‖q∗‖L + c) (‖`1(1)‖L + 1),

0 < m(1− C1)(1−D1) ≤ B1

(
mA1 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤ mA1B1 + λ0 (‖q∗‖L + c) (‖`1(1)‖L + 1).

(12.77)

Obviously,

(1− C1)(1−D1) ≥ 1− (C1 +D1) ≥ 1− ‖`0(1)‖L > 0,

4A1B1 ≤ (A1 +B1)2 ≤ ‖`1(1)‖2
L.

By the last inequalities and (12.5), from (12.77) we get

M ≤ r1λ0(‖`1(1)‖L + 1)(c+ ‖q∗‖L),

m ≤ r1λ0(‖`1(1)‖L + 1)(c+ ‖q∗‖L),
(12.78)
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where

r1 =
(

1− ‖`0(1)‖L − 1
4
‖`1(1)‖2

L

)−1

. (12.79)

The inequalities (12.78), on account of (12.46), (12.59), and (12.79), imply
that the estimate (11.15) holds.

Now suppose that (12.62) is fulfilled. It is clear that there exists α5 ∈
]tM , tm[ such that

u(t) < 0 for α5 < t ≤ tm, u(α5) = 0. (12.80)

Let
α4 = inf{t ∈ [a, tM ] : u(s) > 0 for t ≤ s ≤ tM}. (12.81)

Obviously,
u(t) > 0 for α4 < t ≤ tM , (12.82)

and
if α4 > a, then u(α4) = 0. (12.83)

Put

α6 =

{
b if u(b) ≤ 0
inf{t ∈ ]tm, b] : u(s) > 0 for t ≤ s ≤ b} if u(b) > 0

. (12.84)

It is clear that

if α6 < b, then u(t) > 0 for α6 < t ≤ b, u(α6) = 0. (12.85)

The integration of (12.47) from α4 to tM , from α5 to tm, and from α6 to
b, in view of (12.2), (12.49), (12.59), (12.60), (12.80), (12.82), and (12.85),
results in

M − u(α4) ≤M

tM∫

α4

`0(1)(s)ds+m

tM∫

α4

`1(1)(s)ds+

tM∫

α4

q∗(s)ds, (12.86)

m ≤M

tm∫

α5

`1(1)(s)ds+m

tm∫

α5

`0(1)(s)ds+

tm∫

α5

q∗(s)ds, (12.87)

u(b)− u(α6) ≤M

b∫

α6

`0(1)(s)ds+m

b∫

α6

`1(1)(s)ds+

b∫

α6

q∗(s)ds. (12.88)
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Evidently, either
u(b) ≤ 0 (12.89)

or
u(b) > 0. (12.90)

If (12.89) holds, then, according to (2.1), (12.50), (12.81), and (12.83), we
obtain u(α4) ≤ c

|λ| . Thus, it follows from (12.86) that

− c

|λ| +M ≤M

∫

J

`0(1)(s)ds+m

∫

J

`1(1)(s)ds+
∫

J

q∗(s)ds, (12.91)

where J = [α4, tM ].
Now let (12.90) hold. According to (2.1) and (12.50), it is clear that

∣∣∣µ
λ

∣∣∣u(b)− u(a) ≥ − 1
|λ|

[
λu(a) + µu(b)

]
sgn

(
λu(a)

) ≥ − c

|λ| .

By virtue of (12.81) and (12.83), we find

∣∣∣µ
λ

∣∣∣u(b)− u(α4) ≥ − c

|λ| . (12.92)

Multiplying both sides of (12.88) by
∣∣µ
λ

∣∣ and taking into account (12.84),
(12.85) and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣u(b) ≤M

b∫

α6

`0(1)(s)ds+m

b∫

α6

`1(1)(s)ds+

b∫

α6

q∗(s)ds.

Summing the last inequality and (12.86), by (12.92), we obtain that the
inequality (12.91) holds, where J = [α4, tM ] ∪ [α6, b].

Thus, in both cases (12.89) and (12.90), the inequality (12.91) is ful-
filled, where J = [α4, tM ] ∪ [α6, b].

It follows from (12.87) and (12.91) that

m(1− C2) ≤MA2 + ‖q∗‖L +
c

|λ| ,

M(1−D2) ≤ mB2 + ‖q∗‖L +
c

|λ| ,
(12.93)
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where

A2 =

tm∫

α5

`1(1)(s)ds, B2 =
∫

J

`1(1)(s)ds,

C2 =

tm∫

α5

`0(1)(s)ds, D2 =
∫

J

`0(1)(s)ds.

Due to (12.4), C2 < 1, D2 < 1. Consequently, (12.45) and (12.93) imply

0 < m(1− C2)(1−D2) ≤ A2

(
mB2 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤ mA2B2 + λ0(‖q∗‖L + c)(‖`1(1)‖L + 1),

0 < M(1− C2)(1−D2) ≤ B2

(
MA2 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤MA2B2 + λ0(‖q∗‖L + c)(‖`1(1)‖L + 1).

(12.94)

Obviously,

(1− C2)(1−D2) ≥ 1− (C2 +D2) ≥ 1− ‖`0(1)‖L > 0,

4A2B2 ≤ (A2 +B2)2 ≤ ‖`1(1)‖2
L.

By the last inequalities and (12.5), (12.94) implies (12.78), where r1 is
defined by (12.79). The inequalities (12.78), on account of (12.46), (12.59)
and (12.79), imply that the estimate (11.15) holds.

Lemma 12.2. Let 0 6= |µ| ≤ |λ| and let the operator ` admit the represen-
tation ` = `0 − `1, where `0, `1 ∈ Pab. If, moreover, the conditions (12.10)
and (12.11) hold, then ` ∈ A2

(
λ, µ

)
.

Proof. Let q∗ ∈ L(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃(

[a, b];R
)

satisfy (11.13)
and (11.14) for i = 2. Define the number λ0 by (12.45). We will show that
(11.15) holds with

r =
λ0|λ|(‖`0(1)‖L + 1)

(|µ| − |λ|‖`1(1)‖L)‖`0(1)‖L − |λ|‖`1(1)‖L − |λ|+ |µ|+

+
λ0(‖`0(1)‖L + 1)∣∣µ

λ

∣∣− ‖`1(1)‖L − 1
4‖`0(1)‖2

L

.

(12.95)



220 §12. PERIODIC TYPE BVP

Obviously, u satisfies (12.47), where q̃ is defined by (12.48). Clearly,

−q̃(t) sgnu(t) ≤ q∗(t) for t ∈ [a, b] (12.96)

and
[λu(a) + µu(b)] sgn

(
µu(b)

) ≤ c. (12.97)

First suppose that u does not change its sign. According to (2.1),
(12.97), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we obtain
∣∣∣µ
λ

∣∣∣ |u(b)| − |u(a)| ≤ c

|λ| (12.98)

and
|u(b)| − |u(a)| ≤ |u(b)| |λ| − |µ||λ| +

c

|λ| . (12.99)

Define the numbers M and m by (12.53) and choose t1, t2 ∈ [a, b] such that
t1 6= t2 and (12.54) is fulfilled. Obviously, M ≥ 0, m ≥ 0, and either (12.55)
or (12.56) holds. Due to (12.2), (12.53), and (12.96), (12.47) implies

−|u(t)|′ ≤M`1(1)(t)−m`0(1)(t) + q∗(t) for t ∈ [a, b]. (12.100)

If (12.56) holds, then the integration of (12.100) from a to t2 and from t1
to b, in view of (12.2), m ≥ 0, and (12.54), results in

|u(a)| −m ≤M

t2∫

a

`1(1)(s)ds+

t2∫

a

q∗(s)ds, (12.101)

M − |u(b)| ≤M

b∫

t1

`1(1)(s)ds+

b∫

t1

q∗(s)ds. (12.102)

Multiplying both sides of (12.102) by
∣∣µ
λ

∣∣ and taking into accout (12.2) and
the condition

∣∣µ
λ

∣∣ ∈ ]0, 1], we obtain

∣∣∣µ
λ

∣∣∣M −
∣∣∣µ
λ

∣∣∣ |u(b)| ≤M

b∫

t1

`1(1)(s)ds+

b∫

t1

q∗(s)ds.

Summing the last inequality and (12.101), in view of (12.98), we get
∣∣∣µ
λ

∣∣∣M −m− c

|λ| ≤
∣∣∣µ
λ

∣∣∣M −m+ |u(a)| −
∣∣∣µ
λ

∣∣∣ |u(b)| ≤M‖`1(1)‖L + ‖q∗‖L.



12.2. PROOFS 221

If (12.55) is fulfilled, then the integration of (12.100) from t1 to t2, on
account of (12.2), m ≥ 0, (12.54), and the assumption

∣∣µ
λ

∣∣ ∈ ]0, 1], yields

∣∣∣µ
λ

∣∣∣M −m− c

|λ| ≤M −m ≤M

t2∫

t1

`1(1)(s)ds+

t2∫

t1

q∗(s)ds ≤

≤M‖`1(1)‖L + ‖q∗‖L.

Therefore, in both cases (12.55) and (12.56), in view of (12.10), the in-
equality

0 ≤M
(∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L

)
≤ m+ ‖q∗‖L +

c

|λ| (12.103)

holds.
On the other hand, the integration of (12.100) from a to b implies

|u(a)| − |u(b)| ≤M‖`1(1)‖L −m‖`0(1)‖L + ‖q∗‖L.

Hence, by (12.99), (12.53), and the assumption |µ| ≤ |λ|, we get

m‖`0(1)‖L ≤M‖`1(1)‖L + |u(b)| |λ| − |µ||λ| +
c

|λ| + ‖q∗‖L ≤

≤M‖`1(1)‖L +M
|λ| − |µ|
|λ| + ‖q∗‖L +

c

|λ| =

= M

(
‖`1(1)‖L +

|λ| − |µ|
|λ|

)
+ ‖q∗‖L +

c

|λ| .

The last inequality and (12.103), in view of (12.11), (12.45), and (12.53),
result in

‖u‖C = M ≤ r0λ0|λ|(‖`0(1)‖L + 1)(c+ ‖q∗‖L),

where r0 =
[
(|µ|− |λ|‖`1(1)‖L)‖`0(1)‖L−|λ|‖`1(1)‖L−|λ|+ |µ|

]−1. There-
fore, the estimate (11.15) holds.

Now suppose that u changes its sign. Define the numbers M and m by
(12.59) and choose tM , tm ∈ [a, b] such that (12.60) is fulfilled. Obviously,
M > 0, m > 0, and either (12.61) or (12.62) holds.

First suppose that (12.61) is fulfilled. It is clear that there exists α1 ∈
]tm, tM [ such that

u(t) < 0 for tm ≤ t < α1, u(α1) = 0. (12.104)
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Let
α2 = sup{t ∈ [tM , b] : u(s) > 0 for tM ≤ s ≤ t}. (12.105)

Obviously,
u(t) > 0 for tM ≤ t < α2 (12.106)

and
if α2 < b, then u(α2) = 0. (12.107)

Put

α3 =

{
a if u(a) ≤ 0
sup{t ∈ [a, tm[ : u(s) > 0 for a ≤ s ≤ t} if u(a) > 0

. (12.108)

It is clear that

if α3 > a, then u(t) > 0 for a ≤ t < α3, u(α3) = 0. (12.109)

The integration of (12.47) from tm to α1, from tM to α2, and from a to α3,
in view of (12.2), (12.59), (12.60), (12.96), (12.104), (12.106), and (12.109),
yields

m ≤M

α1∫

tm

`0(1)(s)ds+m

α1∫

tm

`1(1)(s)ds+

α1∫

tm

q∗(s)ds, (12.110)

M − u(α2) ≤M

α2∫

tM

`1(1)(s)ds+m

α2∫

tM

`0(1)(s)ds+

α2∫

tM

q∗(s)ds, (12.111)

u(a)− u(α3) ≤M

α3∫

a

`1(1)(s)ds+m

α3∫

a

`0(1)(s)ds+

α3∫

a

q∗(s)ds. (12.112)

Evidently, either
u(a) ≤ 0 (12.113)

or
u(a) > 0. (12.114)

If (12.113) holds, then, in view of (2.1), (12.97), (12.105), and (12.107),
we obtain u(α2) ≤ c

|µ| . Thus, from (12.111), on account of
∣∣µ
λ

∣∣ ∈ ]0, 1], it
follows that

∣∣∣µ
λ

∣∣∣M − c

|λ| ≤M

∫

I

`1(1)(s)ds+m

∫

I

`0(1)(s)ds+
∫

I

q∗(s)ds, (12.115)
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where I = [tM , α2].
Now let (12.114) hold. According to (2.1) and (12.97), it is clear that

u(a)−
∣∣∣µ
λ

∣∣∣u(b) ≥ − 1
|λ| [λu(a) + µu(b)] sgn

(
µu(b)

) ≥ − c

|λ| .

By virtue of (12.105) and (12.107), we find

u(a)−
∣∣∣µ
λ

∣∣∣u(α2) ≥ − c

|λ| . (12.116)

Multiplying both sides of (12.111) by
∣∣µ
λ

∣∣ and taking into account the as-
sumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣M −
∣∣∣µ
λ

∣∣∣u(α2) ≤M

α2∫

tM

`1(1)(s)ds+m

α2∫

tM

`0(1)(s)ds+

α2∫

tM

q∗(s)ds.

Summing the last inequality and (12.112), according to (12.108), (12.109),
and (12.116), we obtain that the inequality (12.115) holds, where I =
[a, α3] ∪ [tM , α2].

Thus, in both cases (12.113) and (12.114), the inequality (12.115) is
fulfilled, where I = [a, α3] ∪ [tM , α2].

It follows from (12.110) and (12.115) that

m(1−A1) ≤MC1 + ‖q∗‖L +
c

|λ| ,

M
(∣∣∣µ
λ

∣∣∣−B1

)
≤ mD1 + ‖q∗‖L +

c

|λ| ,
(12.117)

where

A1 =

α1∫

tm

`1(1)(s)ds, B1 =
∫

I

`1(1)(s)ds,

C1 =

α1∫

tm

`0(1)(s)ds, D1 =
∫

I

`0(1)(s)ds.

Due to (12.10), A1 <
∣∣µ
λ

∣∣, B1 <
∣∣µ
λ

∣∣. Consequently, (12.45) and (12.117)
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imply

0 < m(1−A1)
(∣∣∣µ
λ

∣∣∣−B1

)
≤ C1

(
mD1 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤ mC1D1 + λ0(‖q∗‖L + c)(‖`0(1)‖L + 1),

0 < M(1−A1)
(∣∣∣µ
λ

∣∣∣−B1

)
≤ D1

(
MC1 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤MC1D1 + λ0(‖q∗‖L + c)(‖`0(1)‖L + 1).

(12.118)

Obviously, in view of the assumption
∣∣µ
λ

∣∣ ∈ ]0, 1],

(1−A1)
(∣∣∣µ
λ

∣∣∣−B1

)
≥

∣∣∣µ
λ

∣∣∣−
∣∣∣µ
λ

∣∣∣A1 −B1 ≥
∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L > 0,

4C1D1 ≤ (C1 +D1)2 ≤ ‖`0(1)‖2
L.

By the last inequalities and (12.11), from (12.118) we get

M ≤ r1λ0(‖`0(1)‖L + 1)(c+ ‖q∗‖L),

m ≤ r1λ0(‖`0(1)‖L + 1)(c+ ‖q∗‖L),
(12.119)

where

r1 =
(∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L − 1
4
‖`0(1)‖2

L

)−1

. (12.120)

The inequalities (12.119), on account of (12.59), (12.95), and (12.120),
imply that the estimate (11.15) holds.

Now suppose that (12.62) is fulfilled. It is clear that there exists α4 ∈
]tM , tm[ such that

u(t) > 0 for tM ≤ t < α4, u(α4) = 0. (12.121)

Let
α5 = sup{t ∈ [tm, b] : u(s) < 0 for tm ≤ s ≤ t}. (12.122)

Obviously,
u(t) < 0 for tm ≤ t < α5 (12.123)

and
if α5 < b, then u(α5) = 0. (12.124)
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Put

α6 =

{
a if u(a) ≥ 0
sup{t ∈ [a, tM [ : u(s) < 0 for a ≤ s ≤ t} if u(a) < 0

. (12.125)

It is clear that

if α6 > a, then u(t) < 0 for a ≤ t < α6, u(α6) = 0. (12.126)

The integration of (12.47) from tM to α4, from tm to α5, and from a to α6,
in view of (12.2), (12.59), (12.60), (12.96), (12.121), (12.123), and (12.126),
yields

M ≤M

α4∫

tM

`1(1)(s)ds+m

α4∫

tM

`0(1)(s)ds+

α4∫

tM

q∗(s)ds, (12.127)

u(α5) +m ≤M

α5∫

tm

`0(1)(s)ds+m

α5∫

tm

`1(1)(s)ds+

α5∫

tm

q∗(s)ds, (12.128)

u(α6)− u(a) ≤M

α6∫

a

`0(1)(s)ds+m

α6∫

a

`1(1)(s)ds+

α6∫

a

q∗(s)ds. (12.129)

Evidently, either
u(a) ≥ 0 (12.130)

or
u(a) < 0. (12.131)

If (12.130) holds, then, in view of (2.1), (12.97), (12.122), and (12.124),
we obtain u(α5) ≥ − c

|µ| . Thus, from (12.128), on account of
∣∣µ
λ

∣∣ ∈ ]0, 1], it
follows that

∣∣∣µ
λ

∣∣∣m− c

|λ| ≤M

∫

J

`0(1)(s)ds+m

∫

J

`1(1)(s)ds+
∫

J

q∗(s)ds, (12.132)

where J = [tm, α5].
Now let (12.131) be satisfied. According to (2.1) and (12.97), it is clear

that
∣∣∣µ
λ

∣∣∣u(b)− u(a) ≥ − 1
|λ| [λu(a) + µu(b)] sgn

(
µu(b)

) ≥ − c

|λ| .
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By virtue of (12.122) and (12.124), we find∣∣∣µ
λ

∣∣∣u(α5)− u(a) ≥ − c

|λ| . (12.133)

Multiplying both sides of (12.128) by
∣∣µ
λ

∣∣ and taking into account the as-
sumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣u(α5) +
∣∣∣µ
λ

∣∣∣m ≤M

α5∫

tm

`0(1)(s)ds+m

α5∫

tm

`1(1)(s)ds+

α5∫

tm

q∗(s)ds.

Summing the last inequality and (12.129), according to (12.125), (12.126),
and (12.133), we obtain that the inequality (12.132) holds, where J =
[a, α6] ∪ [tm, α5].

Thus, in both cases (12.130) and (12.131), the inequality (12.132) is
fulfilled, where J = [a, α6] ∪ [tm, α5]

It follows from (12.127) and (12.132) that

M(1−A2) ≤ mC2 + ‖q∗‖L +
c

|λ| ,

m
(∣∣∣µ
λ

∣∣∣−B2

)
≤MD2 + ‖q∗‖L +

c

|λ| ,
(12.134)

where

A2 =

α4∫

tM

`1(1)(s)ds, B2 =
∫

J

`1(1)(s)ds,

C2 =

α4∫

tM

`0(1)(s)ds, D2 =
∫

J

`0(1)(s)ds.

Due to (12.10), A2 <
∣∣µ
λ

∣∣, B2 <
∣∣µ
λ

∣∣. Consequently, (12.45) and (12.134)
yield

0 < M(1−A2)
(∣∣∣µ
λ

∣∣∣−B2

)
≤ C2

(
MD2 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤MC2D2 + λ0(‖q∗‖L + c)(‖`0(1)‖L + 1),

0 < m(1−A2)
(∣∣∣µ
λ

∣∣∣−B2

)
≤ D2

(
mC2 + ‖q∗‖L +

c

|λ|
)

+

+ ‖q∗‖L +
c

|λ| ≤ mC2D2 + λ0(‖q∗‖L + c)(‖`0(1)‖L + 1).

(12.135)
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Obviously, in view of the assumption
∣∣µ
λ

∣∣ ∈ ]0, 1],

(1−A2)
(∣∣∣µ
λ

∣∣∣−B2

)
≥

∣∣∣µ
λ

∣∣∣−
∣∣∣µ
λ

∣∣∣A2 −B2 ≥
∣∣∣µ
λ

∣∣∣− ‖`1(1)‖L > 0,

4C2D2 ≤ (C2 +D2)2 ≤ ‖`0(1)‖2
L.

By the last inequalities and (12.11), (12.135) implies (12.119), where r1
is defined by (12.120). The inequalities (12.119), on account of (12.59),
(12.95), and (12.120), imply that the estimate (11.15) holds.

Lemma 12.3. Let |µ| < |λ|, `0, `1 ∈ Pab, and

`0 ∈ V +
ab (λ, µ), −`1 ∈ V +

ab (λ, µ).

Then (`0, `1) ∈ B(λ, µ).

Proof. Let q∗ ∈ L
(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃

(
[a, b];R

)
satisfy the

inequalities (11.21) and (11.22). In view of the condition `0 ∈ V +
ab (λ, µ),

the assumptions of Lemma 11.1 (see p. 192) are satisfied. We will show
that (11.15) holds, where r = r0 is the number appearing in Lemma 11.1
(see p. 192).

It is clear that

u′(t) = −`1(u)(t) + q̃(t) for t ∈ [a, b], (12.136)

where
q̃(t) = u′(t) + `1(u)(t) for t ∈ [a, b].

According to (11.22), evidently

q̃(t) sgnu(t) ≤ `0(|u|)(t) + q∗(t) for t ∈ [a, b]. (12.137)

From (12.136), in view of the assumption `1 ∈ Pab and the inequality
(12.137), we get

[u(t)]′+ ≤ `1([u]−)(t) + `0(|u|)(t) + q∗(t) =

= −`1([u]+)(t) + `1(|u|)(t) + `0(|u|)(t) + q∗(t) for t ∈ [a, b],
(12.138)

and

[u(t)]′− ≤ `1([u]+)(t) + `0(|u|)(t) + q∗(t) =

= −`1([u]−)(t) + `1(|u|)(t) + `0(|u|)(t) + q∗(t) for t ∈ [a, b].
(12.139)
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Since −`1 ∈ V +
ab (λ, µ), by virtue of Theorem 1.1 (see p. 14), the problem

α′(t) = −`1(α)(t) + `1(|u|)(t) + `0(|u|)(t) + q∗(t),

λα(a) + µα(b) = c sgnλ
(12.140)

has a unique solution α. According to (2.1) and (11.21), we find

|λ|[u(a)]+ − |µ|[u(b)]+ ≤ c, |λ|[u(a)]− − |µ|[u(b)]− ≤ c. (12.141)

From (2.1), (12.138)–(12.141), on account of the condition −`1 ∈ V +
ab (λ, µ)

and Remark 2.3 (see p. 16), it follows that

[u(t)]+ ≤ α(t), [u(t)]− ≤ α(t) for t ∈ [a, b],

consequently,
|u(t)| ≤ α(t) for t ∈ [a, b]. (12.142)

By (12.142) and the conditions `0, `1 ∈ Pab, (12.140) results in

α′(t) ≤ `0(α)(t) + q∗(t) for t ∈ [a, b].

By virtue of `0 ∈ V +
ab (λ, µ) and the boundary condition in (12.140), the

latter inequality yields

α(t) ≤ v(t) for t ∈ [a, b], (12.143)

where v is a solution of the problem (11.1) with q ≡ q∗ and c = c sgnλ.
Now it follows from (12.142) and (12.143), according to Lemma 11.1 (see
p. 192), that the estimate (11.15) holds with r = r0.

Lemma 12.4. Let |µ| < |λ| and the operator ` admit the representa-
tion ` = `0 − `1, where `0, `1 ∈ Pab. If, moreover, there exists a func-
tion γ ∈ C̃

(
[a, b]; ]0,+∞[

)
satisfying the inequalities (12.17)–(12.19), then

` ∈ A1
(
λ, µ

)
.

Proof. Let q∗ ∈ L
(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃

(
[a, b];R

)
satisfy the

inequalities (11.13) and (11.14) for i = 1. Obviously, u satisfies (12.47),
where q̃ is defined by (12.48). It is also evident that the inequalities (12.49)
and (12.50) hold.

According to Theorem 2.1 (see p. 17), the conditions `0, `1 ∈ Pab, and
the inequalities (12.17) and (12.18) yield `0 ∈ V +

ab (λ, µ). Therefore, the
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assumptions of Lemma 11.1 (see p. 192) are fulfilled. Let r0 be the number
appearing in Lemma 11.1 and put

r = r0

(
1 + 4

(
1 + γ(b)− γ(a)

)(
4− (γ(b)− γ(a))2

)−1
)
. (12.144)

We will show that (11.15) holds, where r is defined by (12.144).
First suppose that u does not change its sign. Then from (12.47), in

view of (12.49) and the assumptions `0, `1 ∈ Pab, we have

|u(t)|′ ≤ `0(|u|)(t) + q∗(t) for t ∈ [a, b],

and from (2.1) and (12.50) we get

|λu(a)| − |µu(b)| ≤ c.

Therefore, by Remark 2.3 (see p. 16), in view of the condition `0 ∈ V +
ab (λ, µ),

we have
|u(t)| ≤ v(t) for t ∈ [a, b],

where v is a solution of the problem (11.1) with q ≡ q∗ and c = c sgnλ.
Due to Lemma 11.1 (see p. 192), the function v admits the estimate (11.2),
and thus, in view of (12.144), the estimate (11.15) holds.

Now assume that u changes its sign. Define the numbers M and m by
(12.59) and choose tM , tm ∈ [a, b] such that (12.60) holds. It is clear that

M > 0, m > 0,

and either (12.61) or (12.62) is fulfilled.
Let v be a solution of the problem (11.1) with q ≡ q∗ and c = c sgnλ.

According to (2.1), (12.17), (12.18), (12.59), (11.1), and the assumptions
`0, `1 ∈ Pab, we have

(Mγ(t) + v(t))′ ≥ `0(Mγ + v)(t) +M`1(1)(t) + q∗(t) ≥
≥ `0(Mγ + v)(t) + `1([u]+)(t) + q∗(t) for t ∈ [a, b],

|λ|(Mγ(a) + v(a))− |µ|(Mγ(b) + v(b)) ≥ c,

(12.145)

and

(mγ(t) + v(t))′ ≥ `0(mγ + v)(t) +m`1(1)(t) + q∗(t) ≥
≥ `0(mγ + v)(t) + `1([u]−)(t) + q∗(t) for t ∈ [a, b],

|λ|(mγ(a) + v(a))− |µ|(mγ(b) + v(b)) ≥ c.

(12.146)



230 §12. PERIODIC TYPE BVP

On the other hand, from (12.47) and (12.50), on account of (2.1) and
(12.49), we obtain

[u(t)]′+ ≤ `0([u]+)(t) + `1([u]−)(t) + q∗(t) for t ∈ [a, b],

|λ|[u(a)]+ − |µ|[u(b)]+ ≤ c,
(12.147)

and

[u(t)]′− ≤ `0([u]−)(t) + `1([u]+)(t) + q∗(t) for t ∈ [a, b],

|λ|[u(a)]− − |µ|[u(b)]− ≤ c.
(12.148)

Since `0 ∈ V +
ab (λ, µ), from (12.145), (12.148) and from (12.146), (12.147),

on account of Remark 2.3 (see p. 16), we get

Mγ(t) + v(t) ≥ [u(t)]− for t ∈ [a, b],

mγ(t) + v(t) ≥ [u(t)]+ for t ∈ [a, b].
(12.149)

Inequalities (12.145)–(12.148), by virtue of (12.149) and the assumption
`0 ∈ Pab, imply

[u(t)]′− ≤
(
Mγ(t) + v(t)

)′ for t ∈ [a, b], (12.150)

[u(t)]′+ ≤
(
mγ(t) + v(t)

)′ for t ∈ [a, b]. (12.151)

Note also that, in view of the condition `0 ∈ V +
ab (λ, µ),

v(t) ≥ 0 for t ∈ [a, b]. (12.152)

First suppose that (12.62) is fulfilled. The integration of (12.150) from
tM to tm, on account of (12.59), (12.60), and (12.152), results in

m ≤Mγ(tm) + v(tm)−Mγ(tM )− v(tM ) ≤
≤M(γ(tm)− γ(tM )) + ‖v‖C .

(12.153)

On the other hand, the integration of (12.151) from a to tM and from tm
to b, in view of (12.59), (12.60), and (12.152), yields

M − [u(a)]+ ≤ mγ(tM ) + v(tM )−mγ(a)− v(a) ≤
≤ m

(
γ(tM )− γ(a)

)− v(a) + ‖v‖C ,
(12.154)

[u(b)]+ ≤ mγ(b) + v(b)−mγ(tm)− v(tm) ≤
≤ m

(
γ(b)− γ(tm)

)
+ v(b).

(12.155)
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Multiplying both sides of (12.155) by
∣∣µ
λ

∣∣ and taking into account the facts
that m > 0, γ is a nondecreasing function, and

∣∣µ
λ

∣∣ ∈ [0, 1[ , we obtain
∣∣∣µ
λ

∣∣∣ [u(b)]+ ≤ m(γ(b)− γ(tm)) +
∣∣∣µ
λ

∣∣∣ v(b).
Summing the last inequality and (12.154) and taking into account (2.1),
and the boundary conditions in (11.1) and (12.147), we get

M ≤ m(γ(tM )− γ(tm) + γ(b)− γ(a)) + ‖v‖C . (12.156)

From (12.153) and (12.156), with respect to (12.59), (12.62), and the con-
dition γ′(t) ≥ 0 for t ∈ [a, b], it follows that

‖u‖C ≤ ‖u‖C

(
γ(tm)− γ(tM )

)(
γ(tM )− γ(tm) + γ(b)− γ(a)

)
+

+
(
1 + γ(b)− γ(a)

)‖v‖C .

Consequently, by virtue of the inequality

AB ≤ 1
4
(A+B)2, (12.157)

the inequality

‖u‖C ≤ ‖u‖C

4
(
γ(b)− γ(a)

)2 +
(
1 + γ(b)− γ(a)

)‖v‖C

holds. Hence, by virtue of (12.19) we find

‖u‖C ≤ 4
(
1 + γ(b)− γ(a)

)(
4− (γ(b)− γ(a))2

)−1‖v‖C . (12.158)

Therefore, according to (11.2) and (12.144), the estimate (11.15) holds.
Now suppose that (12.61) is fulfilled. The integration of (12.151) from

tm to tM , on account of (12.59), (12.60), and (12.152), results in

M ≤ mγ(tM ) + v(tM )−mγ(tm)− v(tm) ≤
≤ m(γ(tM )− γ(tm)) + ‖v‖C .

(12.159)

On the other hand, the integration of (12.150) from a to tm and from tM
to b, in view of (12.59), (12.60), and (12.152), yields

m− [u(a)]− ≤Mγ(tm) + v(tm)−Mγ(a)− v(a) ≤
≤M

(
γ(tm)− γ(a)

)− v(a) + ‖v‖C ,
(12.160)

[u(b)]− ≤Mγ(b) + v(b)−Mγ(tM )− v(tM ) ≤
≤M

(
γ(b)− γ(tM )

)
+ v(b).

(12.161)
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Multiplying both sides of (12.161) by
∣∣µ
λ

∣∣ and taking into account the facts
that M > 0, γ is a nondecreasing function, and

∣∣µ
λ

∣∣ ∈ [0, 1[ , we obtain
∣∣∣µ
λ

∣∣∣ [u(b)]− ≤M
(
γ(b)− γ(tM )

)
+

∣∣∣µ
λ

∣∣∣ v(b).

Summing the last inequality and (12.160) and taking into account (2.1) and
the boundary conditions in (11.1) and (12.148), we get

m ≤M
(
γ(tm)− γ(tM ) + γ(b)− γ(a)

)
+ ‖v‖C . (12.162)

From (12.159) and (12.162), with respect to (12.59), (12.61), and the con-
dition γ′(t) ≥ 0 for t ∈ [a, b], it follows that

‖u‖C ≤ ‖u‖C

(
γ(tM )− γ(tm)

)(
γ(tm)− γ(tM ) + γ(b)− γ(a)

)
+

+
(
1 + γ(b)− γ(a)

)‖v‖C .

Consequently, by virtue of (12.19) and (12.157), the inequality (12.158) is
fulfilled. Therefore, according to (11.2) and (12.144), the estimate (11.15)
holds.

Lemma 12.5. Let 0 < |µ| ≤ |λ| and ` = `0 + `1, where `0, `1 ∈ Pab.
If, moreover, the conditions (12.21) and (12.22) are fulfilled, then ` ∈
A2

(
λ, µ

)
.

Proof. Let q∗ ∈ L
(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃

(
[a, b];R

)
satisfy the

inequalities (11.13) and (11.14) for i = 2. Obviously, u satisfies

u′(t) = `(u)(t) + q̃(t) for t ∈ [a, b], (12.163)

where q̃ is defined by (12.48). It is also evident that the inequalities (12.96)
and (12.97) hold.

Since the inclusion `0 ∈ V −ab (λ, µ) holds, the assumptions of Lemma 11.1
(see p. 192) are fulfilled. Let r0 be the number appearing in Lemma 11.1
and put

r = r0 +
λ0

(‖`(1)‖L + 1
)

∣∣µ
λ

∣∣− 1
4‖`(1)‖2

L

, (12.164)

where λ0 is given by (12.45). We will show that (11.15) holds, where r is
defined by (12.164).

First suppose that u does not change its sign. It is evident that either
there exists t0 ∈ [a, b] such that u(t0) = 0 or |u(t)| > 0 for t ∈ [a, b].
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Let there exists t0 ∈ [a, b] such that

u(t0) = 0. (12.165)

According to (12.163), (12.96), and the assumption ` ∈ Pab, we have

|u(t)|′ ≥ −q∗(t) for t ∈ [a, b] (12.166)

and from (2.1) and (12.97) we get

|λu(a)| − |µu(b)| ≥ −c. (12.167)

Put
M = max{|u(t)| : t ∈ [a, b]} (12.168)

and choose t1 ∈ [a, b] such that

|u(t1)| = M. (12.169)

If t1 < t0, then the integration of (12.166) from t1 to t0, in view of of
(12.165) and (12.169), results in

M ≤
t0∫

t1

q∗(s)ds ≤ ‖q∗‖L + c.

Thus, on account of (12.45), (12.164), and (12.168), we find that the esti-
mate (11.15) holds.

If t1 ≥ t0, then the integration of (12.166) from a to t0 and from t1 to
b, in view of (12.165) and (12.169), yields

|u(a)| ≤
t0∫

a

q∗(s)ds,

M − |u(b)| ≤
b∫

t1

q∗(s)ds.

From the last two inequalities, using (12.45), (12.167), and the assumption∣∣µ
λ

∣∣ ∈ ]0, 1], we get

M ≤
b∫

t1

q∗(s)ds+
∣∣∣∣
λ

µ

∣∣∣∣ |u(a)|+
c

|µ| ≤
∣∣∣∣
λ

µ

∣∣∣∣λ0

(‖q∗‖L + c
)
.
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Thus, on account of (12.164) and (12.168), we find that the estimate (11.15)
holds.

Now let
|u(t)| > 0 for t ∈ [a, b]. (12.170)

According to (12.163), (12.96), (12.170), and the assumption ` = `0 + `1
with `0, `1 ∈ Pab, we have

|u(t)|′ ≥ `0(|u|)(t) + `1(|u|)(t)− q∗(t) ≥ `0(|u|)(t)− q∗(t) for t ∈ [a, b].

Moreover, (2.1) and (12.97) yield (12.167). Therefore, by Remark 2.3 (see
p. 16), the condition `0 ∈ V −ab (λ, µ) implies

|u(t)| ≤ v(t) for t ∈ [a, b], (12.171)

where v is a solution of the problem (11.1) with q ≡ −q∗ and c = −c sgnλ.
According to Lemma 11.1 (see p. 192), the function v admits the estimate
(11.2) and thus, on account of (12.164) and (12.171), the estimate (11.15)
holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tM , tm ∈ [a, b] such that (12.60) holds. Obviously, M >
0, m > 0, and either (12.61) or (12.62) is satisfied.

First suppose that (12.61) is fulfilled. It is clear that there exists α1 ∈
]tm, tM [ such that

u(t) < 0 for tm ≤ t < α1, u(α1) = 0. (12.172)

Let
α2 = sup {t ∈ [tM , b] : u(s) > 0 for tM ≤ s ≤ t} . (12.173)

Obviously,
u(t) > 0 for tM ≤ t < α2 (12.174)

and
if α2 < b then u(α2) = 0. (12.175)

Put

α3 =

{
a if u(a) ≤ 0
sup {t ∈ [a, tm[ : u(s) > 0 for a ≤ s ≤ t} if u(a) > 0

. (12.176)

It is clear that

if α3 > a, then u(t) > 0 for a ≤ t < α3, u(α3) = 0. (12.177)
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The integration of (12.163) from tm to α1, from tM to α2, and from a to
α3, in view of (12.59), (12.60), (12.96), (12.172), (12.174), (12.177), and
the assumption ` ∈ Pab, yields

m ≤M

α1∫

tm

`(1)(s)ds+

α1∫

tm

q∗(s)ds, (12.178)

M − u(α2) ≤ m

α2∫

tM

`(1)(s)ds+

α2∫

tM

q∗(s)ds, (12.179)

u(a)− u(α3) ≤ m

α3∫

a

`(1)(s)ds+

α3∫

a

q∗(s)ds. (12.180)

Evidently, either
u(a) ≤ 0 (12.181)

or
u(a) > 0. (12.182)

If (12.181) holds, then, in view of (2.1), (12.97), (12.173), and (12.175),
we obtain u(α2) ≤ c

|µ| . Thus, from (12.179), on account of the assumption∣∣µ
λ

∣∣ ∈ ]0, 1], it follows that
∣∣∣µ
λ

∣∣∣M − c

|λ| ≤ m

∫

I

`(1)(s)ds+
∫

I

q∗(s)ds, (12.183)

where I = [tM , α2].
Now let (12.182) hold. According to (2.1) and (12.97), it is clear that

u(a)−
∣∣∣µ
λ

∣∣∣u(b) ≥ − 1
|λ|

[
λu(a) + µu(b)

]
sgn

(
µu(b)

) ≥ − c

|λ| .

Hence, by virtue of (12.173), (12.175), and (12.182), we find

u(a)−
∣∣∣µ
λ

∣∣∣u(α2) ≥ − c

|λ| . (12.184)

Multiplying both sides of (12.179) by
∣∣µ
λ

∣∣ and taking into account the as-
sumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣M −
∣∣∣µ
λ

∣∣∣u(α2) ≤ m

α2∫

tM

`(1)(s)ds+

α2∫

tM

q∗(s)ds.
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Summing the last inequality and (12.180), according to (12.176), (12.177),
and (12.184), we obtain that the inequality (12.183) holds, where I =
[a, α3] ∪ [tM , α2].

Thus, in both cases (12.181) and (12.182), the inequality (12.183) is
fulfilled, where I = [a, α3] ∪ [tM , α2].

It follows from (12.178) and (12.183) that

m ≤MA1 + ‖q∗‖L,

∣∣∣µ
λ

∣∣∣M ≤ mB1 + ‖q∗‖L +
c

|λ| ,
(12.185)

where

A1 =

α1∫

tm

`(1)(s)ds, B1 =
∫

I

`(1)(s)ds.

Consequently, on account of (12.45) and the assumption |µ| ≤ |λ|, the
inequalities (12.185) imply

∣∣∣µ
λ

∣∣∣m ≤ A1

(
mB1 + ‖q∗‖L +

c

|λ|
)

+ ‖q∗‖L ≤

≤ mA1B1 + λ0(‖q∗‖L + c)(‖`(1)‖L + 1),
∣∣∣µ
λ

∣∣∣M ≤ B1

(
MA1 + ‖q∗‖L

)
+ ‖q∗‖L +

c

|λ| ≤

≤MA1B1 + λ0(‖q∗‖L + c)(‖`(1)‖L + 1).

(12.186)

Obviously,
4A1B1 ≤ (A1 +B1)2 ≤ ‖`(1)‖2

L.

By the last inequality and (12.22), from (12.186) we get

m ≤ r1λ0(‖`(1)‖L + 1)(c+ ‖q∗‖L),

M ≤ r1λ0(‖`(1)‖L + 1)(c+ ‖q∗‖L),
(12.187)

where

r1 =
( ∣∣∣µ

λ

∣∣∣− 1
4
‖`(1)‖2

L

)−1

. (12.188)

Inequalities (12.187), on account of (12.59), (12.164), and (12.188), imply
that the estimate (11.15) holds.
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Now suppose that (12.62) is fulfilled. It is clear that there exists α4 ∈
]tM , tm[ such that

u(t) > 0 for tM ≤ t < α4, u(α4) = 0. (12.189)

Let
α5 = sup {t ∈ [tm, b] : u(s) < 0 for tm ≤ s ≤ t} . (12.190)

Obviously,
u(t) < 0 for tm ≤ t < α5 (12.191)

and
if α5 < b then u(α5) = 0. (12.192)

Put

α6 =

{
a if u(a) ≥ 0
sup {t ∈ [a, tM [ : u(s) < 0 for a ≤ s ≤ t} if u(a) < 0

. (12.193)

It is clear that

if α6 > a, then u(t) < 0 for a ≤ t < α6, u(α6) = 0. (12.194)

The integration of (12.163) from tM to α4, from tm to α5, and from a
to α6, in view of (12.59), (12.60), (12.96), (12.189), (12.191), (12.194), and
the assumption ` ∈ Pab, yields

M ≤ m

α4∫

tM

`(1)(s)ds+

α4∫

tM

q∗(s)ds, (12.195)

u(α5) +m ≤M

α5∫

tm

`(1)(s)ds+

α5∫

tm

q∗(s)ds, (12.196)

u(α6)− u(a) ≤M

α6∫

a

`(1)(s)ds+

α6∫

a

q∗(s)ds. (12.197)

Evidently, either
u(a) ≥ 0 (12.198)

or
u(a) < 0. (12.199)
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If (12.198) holds, then, in view of (2.1), (12.97), (12.190), and (12.192),
we obtain u(α5) ≥ − c

|µ| . Thus, from (12.196), on account
∣∣µ
λ

∣∣ ∈ ]0, 1], it
follows that

∣∣∣µ
λ

∣∣∣m− c

|λ| ≤M

∫

J

`(1)(s)ds+
∫

J

q∗(s)ds, (12.200)

where J = [tm, α5].
Now let (12.199) hold. According to (2.1) and (12.97), it is clear that

∣∣∣µ
λ

∣∣∣u(b)− u(a) ≥ − 1
|λ|

[
λu(a) + µu(b)

]
sgn

(
µu(b)

) ≥ − c

|λ| .

Hence, by virtue of (12.190), (12.192), and (12.199), we find
∣∣∣µ
λ

∣∣∣u(α5)− u(a) ≥ − c

|λ| . (12.201)

Multiplying both sides of (12.196) by
∣∣µ
λ

∣∣ and taking into account the as-
sumption

∣∣µ
λ

∣∣ ∈ ]0, 1], we get

∣∣∣µ
λ

∣∣∣u(α5) +
∣∣∣µ
λ

∣∣∣m ≤M

α5∫

tm

`(1)(s)ds+

α5∫

tm

q∗(s)ds.

Summing the last inequality and (12.197), according to (12.193), (12.194),
and (12.201), we obtain that the inequality (12.200) holds, where J =
[a, α6] ∪ [tm, α5].

Thus, in both cases (12.198) and (12.199), the inequality (12.200) is
fulfilled, where J = [a, α6] ∪ [tm, α5].

It follows from (12.195) and (12.200) that

M ≤ mA2 + ‖q∗‖L,

∣∣∣µ
λ

∣∣∣m ≤MB2 + ‖q∗‖L +
c

|λ| ,
(12.202)

where

A2 =

α4∫

tM

`(1)(s)ds, B2 =
∫

J

`(1)(s)ds.
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Consequently, in view of (12.45) and the assumption |µ| ≤ |λ|, the inequal-
ities (12.202) imply

∣∣∣µ
λ

∣∣∣M ≤ A2

(
MB2 + ‖q∗‖L +

c

|λ|
)

+ ‖q∗‖L ≤

≤MA2B2 + λ0(‖q∗‖L + c)(‖`(1)‖L + 1),
∣∣∣µ
λ

∣∣∣m ≤ B2

(
mA2 + ‖q∗‖L

)
+ ‖q∗‖L +

c

|λ| ≤

≤ mA2B2 + λ0(‖q∗‖L + c)(‖`(1)‖L + 1).

(12.203)

Obviously,

4A2B2 ≤ (A2 +B2)2 ≤ ‖`(1)‖2
L.

By the last inequality and (12.22), (12.203) implies (12.187), where r1 is
defined by (12.188). Inequalities (12.187), on account of (12.59), (12.164),
and (12.188), imply that the estimate (11.15) holds.

Theorem 12.1 follows from Lemma 11.3 (see p. 195) and Lemma 12.1
(see p. 211).

Proof of Theorem 12.2. It can be proved in a similar manner as Theo-
rem 12.1. Moreover, the proof of Theorem 12.2 can be found in [4].

Theorem 12.3 follows from Lemma 11.3 (see p. 195) and Lemma 12.2
(see p. 219). Theorem 12.4 follows from Lemma 11.5 (see p. 197) and
Lemma 12.3 (see p. 227). Theorem 12.5 follows from Lemma 11.3 (see
p. 195) and Lemma 12.4 (see p. 228). Theorem 12.6 follows from Lemma 11.3
(see p. 195) and Lemma 12.5 (see p. 232). Theorem 12.7 follows from
Lemma 11.4 (see p. 196) and Lemma 12.1 (see p. 211). Theorem 12.9 follows
from Lemma 11.4 (see p. 196) and Lemma 12.2 (see p. 219). Theorem 12.10
follows from Lemma 11.6 (see p. 198) and Lemma 12.3 (see p. 227). The-
orem 12.11 follows from Lemma 11.4 (see p. 196) and Lemma 12.4 (see
p. 228). Theorem 12.12 follows from Lemma 11.4 (see p. 196) and Lemma
12.5 (see p. 232).
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12.3. Comments and Examples

On Remark 12.1. Let 0 6= |µ| ≤ |λ|. It is clear that if x0, y0 ∈ R+ and
(x0, y0) 6∈ D, then (x0, y0) belongs at least to one of the following sets:

D1 = {(x, y) ∈ R+ ×R+ : 1 ≤ x} ,

D2 =
{

(x, y) ∈ R+ ×R+ :
|λ| − |µ|
|λ| ≤ x < 1, y ≤ x

1− x
− |λ| − |µ|

|µ|
}
,

D3 =
{
(x, y) ∈ R+ ×R+ : x < 1, 2

√
1− x ≤ y

}
.

Let (x0, y0) ∈ D1. Put a = 0, b = 3, ε = |µ|
|λ|(1+y0) ,

p(t) =





−y0 for t ∈ [0, 1[
x0 for t ∈ [1, 2[
0 for t ∈ [2, 3]

, z(t) =

{
0 for t ∈ [0, 2[
− x0+ε−1

1−(x0+ε−1)(t−3) for t ∈ [2, 3]
,

τ(t) =

{
1 for t ∈ [0, 1[
3 for t ∈ [1, 3]

.

It is not difficult to verify that

x0 =

b∫

a

[p(s)]+ds, y0 =

b∫

a

[p(s)]−ds, (12.204)

and the problem

u′(t) = p(t)u(τ(t)) + z(t)u(t), λu(a) + µu(b) = 0 (12.205)

has the nontrivial solution

u(t) =





(|µ| − |λ|ε)t− |µ| for t ∈ [0, 1[
−x0|λ|(t− 1)− |λ|ε for t ∈ [1, 2[
|λ|(x0 + ε− 1)(t− 3)− |λ| for t ∈ [2, 3]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with

F (v)(t) def= p(t)v(τ(t)) + z(t)v(t) + q0(t), h(v) def= c0 (12.206)
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has no solution, while the conditions (12.1) and (12.3) are fulfilled, where

`0(v)(t)
def= [p(t)]+v(τ(t)), `1(v)(t)

def= [p(t)]−v(τ(t)),

q ≡ |q0|, c = |c0|.
(12.207)

Let (x0, y0) ∈ D2. Put a = 0, b = 3,

p(t) =





x0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2[
0 for t ∈ [2, 3]

, τ(t) =

{
1 for t ∈ [0, 1[
0 for t ∈ [1, 3]

,

z(t) =

{
0 for t ∈ [0, 2[
− |µ|−|λ|(1−x0)−|µ|y0(1−x0)
|λ|(1−x0)−(|µ|−|λ|(1−x0)−|µ|y0(1−x0))(t−3) for t ∈ [2, 3]

.

It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

u(t) =





− |µ|x0

1−x0
t− |µ| for t ∈ [0, 1[

|µ|y0(t− 1)− |µ|
1−x0

for t ∈ [1, 2[( |µ|−|λ|(1−x0)
1−x0

− |µ|y0

)
(t− 3)− |λ| for t ∈ [2, 3]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.1) and (12.3) are fulfilled, where `0, `1,
q, and c are defined by (12.207).

Let (x0, y0) ∈ D3. Put a = 0, b = 6,

p(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[
−√1− x0 for t ∈ [1, 2[ ∪ [3, 4[
x0 for t ∈ [4, 5[
2
√

1− x0 − y0 for t ∈ [5, 6]

,

τ(t) =





6 for t ∈ [0, 3[ ∪ [4, 5[
2 for t ∈ [3, 4[
1 for t ∈ [5, 6]

.

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





−v(t)|v(t)| for t ∈ [0, 1[ ∪ [2, 3[
0 for t ∈ [1, 2[ ∪ [3, 5[
q0(t) for t ∈ [5, 6]

,
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where q0 ∈ L
(
[a, b];R

)
is such that

6∫

5

q0(s)ds ≥ 1 + y0 −
√

1− x0 . (12.208)

We will show that the problem (10.1), (10.2) with

F (v)(t) def= p(t)v(τ(t)) +G(v)(t), h(v) def= 0 (12.209)

has no solution, while the conditions (12.1) and (12.3) are fulfilled, where

`0(v)(t)
def= [p(t)]+v(τ(t)), `1(v)(t)

def= [p(t)]−v(τ(t)),

q ≡ |q0|, c = 0.
(12.210)

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equality (1.20) holds
and

u′(t) = p(t)u(τ(t)) +G(u)(t) for t ∈ [a, b]. (12.211)

From (12.211) we get

u(1) =
u(0)

1 + |u(0)| , (12.212)

u(2) = u(1)− u(6)
√

1− x0 , (12.213)

u(3) =
u(2)

1 + |u(2)| , (12.214)

u(4) = u(3)− u(2)
√

1− x0 , (12.215)

u(5) = u(4) + u(6)x0 , (12.216)

u(6) = u(5)−
(
y0 − 2

√
1− x0

)
u(1) +

6∫

5

q0(s)ds. (12.217)

The equalities (12.213) and (12.215)–(12.217) imply

u(3) =
(
y0 −

√
1− x0

)
u(1)−

6∫

5

q0(s)ds. (12.218)
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Hence, by virtue of (12.212), (12.214) and (12.218) yield

6∫

5

q0(s)ds =
(
y0 −

√
1− x0

)
u(0)

1 + |u(0)| −
u(2)

1 + |u(2)| ≤

≤
(
y0 −

√
1− x0

) |u(0)|
1 + |u(0)| +

|u(2)|
1 + |u(2)| < 1 + y0 −

√
1− x0 ,

which contradicts (12.208).

On Remark 12.2. Let µ = 0. It is clear that if x0, y0 ∈ R+ and (x0, y0) 6∈
E, then (x0, y0) belongs at least to one of the following sets:

E1 = {(x, y) ∈ R+ ×R+ : 1 ≤ x} ,
E2 =

{
(x, y) ∈ R+ ×R+ : x < 1, 2

√
1− x ≤ y

}
.

Let (x0, y0) ∈ E1. In the example appearing in On Remark 4.2 (see the
case (x0, y0) ∈ H̃1, p. 97), the functions p and τ are constructed such that
(12.204) holds, and the problem

u′(t) = p(t)u(τ(t)), λu(a) + µu(b) = 0

has a nontrivial solution. Then, by Remark 1.1 (see p. 14), there exist
q0 ∈ L

(
[a, b];R

)
and c0 ∈ R such that the problem (10.1), (10.2) with

F (v)(t) def= p(t)v(τ(t)) + q0(t), h(v) def= c0

has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
`0, `1, q, and c are defined by (12.207).

Let (x0, y0) ∈ E2. Put a = 0, b = 5,

p(t) =





−√1− x0 for t ∈ [0, 1[ ∪ [2, 3[
0 for t ∈ [1, 2[
x0 for t ∈ [3, 4[
2
√

1− x0 − y0 for t ∈ [4, 5]

,

τ(t) =

{
4 for t ∈ [0, 2[ ∪ [3, 5]
1 for t ∈ [2, 3[

.



244 §12. PERIODIC TYPE BVP

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[ ∪ [4, 5]
−v(t)|v(t)| for t ∈ [1, 2[
q0(t) for t ∈ [3, 4[

,

where q0 ∈ L
(
[a, b];R

)
is such that

4∫

3

q0(s)ds ≥ 1 . (12.219)

We will show that the problem (10.1), (10.2) with F and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
`0, `1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.20) and
(12.211) hold. From (12.211), in view of (1.20), we get

u(1) = −u(4)
√

1− x0 , (12.220)

u(2) =
u(1)

1 + |u(1)| , (12.221)

u(3) = u(2)− u(1)
√

1− x0 , (12.222)

u(4) = u(3) + u(4)x0 +

4∫

3

q0(s)ds . (12.223)

The equalities (12.220), (12.222), and (12.223) imply

4∫

3

q0(s)ds = −u(2).

Hence, the last equality, by virtue of (12.221), yields

4∫

3

q0(s)ds = − u(1)
1 + |u(1)| ≤

|u(1)|
1 + |u(1)| < 1,

which contradicts (12.219).
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On Remark 12.3. Let 0 6= |µ| ≤ |λ|. It is clear that if x0, y0 ∈ R+ and
(x0, y0) 6∈W , then (x0, y0) belongs at least to one of the following sets:

W1 =
{

(x, y) ∈ R×R :
∣∣∣µ
λ

∣∣∣ ≤ y
}
,

W2 =
{

(x, y) ∈ R×R : y <
∣∣∣µ
λ

∣∣∣ , x ≤ |λ|
|µ| − |λ|y − 1

}
,

W3 =
{

(x, y) ∈ R×R : y <
∣∣∣µ
λ

∣∣∣ , 2
√∣∣∣µ

λ

∣∣∣− y ≤ x

}
.

Let (x0, y0) ∈W1. Put a = 0, b = 3, ε = 1
1+x0

,

p(t) =





0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2[
x0 for t ∈ [2, 3]

, τ(t) =

{
3 for t ∈ [0, 2[
2 for t ∈ [2, 3]

,

z(t) =

{ |λ|(y0+ε)−|µ|
(|λ|(y0+ε)−|µ|)t+|µ| for t ∈ [0, 1[

0 for t ∈ [1, 3]
.

It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

u(t) =





(|λ|(y0 + ε)− |µ|)t+ |µ| for t ∈ [0, 1[
y0|λ|(2− t) + |λ|ε for t ∈ [1, 2[
|λ|(1− ε)(t− 3) + |λ| for t ∈ [2, 3]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where `0, `1,
q, and c are defined by (12.207).

Let (x0, y0) ∈W2. Put a = 0, b = 3,

p(t) =





−y0 for t ∈ [0, 1[
x0 for t ∈ [1, 2[
0 for t ∈ [2, 3]

, τ(t) =

{
3 for t ∈ [0, 1[
1 for t ∈ [1, 3]

,

z(t) =

{
0 for t ∈ [0, 2[

|λ|−(|µ|−|λ|y0)(1+x0)
(|λ|−(|µ|−|λ|y0)(1+x0))(t−3)+|λ| for t ∈ [2, 3]

.
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It is not difficult to verify that (12.204) holds, and the problem (12.205)
has the nontrivial solution

u(t) =





−y0|λ|t+ |µ| for t ∈ [0, 1[
x0(|µ| − |λ|y0)(t− 1) + |µ| − |λ|y0 for t ∈ [1, 2[
(|λ| − (|µ| − |λ|y0)(1 + x0))(t− 3) + |λ| for t ∈ [2, 3]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where `0, `1,
q, and c are defined by (12.207).

Let (x0, y0) ∈W3. Put a = 0, b = 6,

p(t) =





−y0 for t ∈ [0, 1[√∣∣µ
λ

∣∣− y0 for t ∈ [1, 2[ ∪ [3, 4[

0 for t ∈ [2, 3[ ∪ [4, 5[

x0 − 2
√∣∣µ

λ

∣∣− y0 for t ∈ [5, 6]

,

and

τ(t) =

{
6 for t ∈ [0, 1[ ∪ [3, 6]
3 for t ∈ [1, 3[

.

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





0 for t ∈ [0, 1[ ∪ [3, 4[ ∪ [5, 6]
q0(t) for t ∈ [1, 2[
v(t)|v(t)| for t ∈ [2, 3[ ∪ [4, 5[

,

where q0 ∈ L
(
[a, b];R

)
is such that

2∫

1

q0(s)ds ≥ 1 +
√∣∣∣µ

λ

∣∣∣− y0 . (12.224)

We will show that the problem (10.1), (10.2) with F and h given by (12.209)
has no solution, while the conditions (12.8) and (12.9) are fulfilled, where
`0, `1, q, and c are defined by (12.210).
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Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.20) and
(12.211) hold. From (12.211) we get

u(1) = u(0)− u(6)y0 , (12.225)

u(2) = u(1) + u(3)
√∣∣∣µ

λ

∣∣∣− y0 +

2∫

1

q0(s)ds , (12.226)

u(2) =
u(3)

1 + |u(3)| , (12.227)

u(4) = u(3) + u(6)
√∣∣∣µ

λ

∣∣∣− y0 , (12.228)

u(4) =
u(5)

1 + |u(5)| . (12.229)

The equalities (12.225), (12.226), and (12.228), in view of (1.20) and (2.1),
result in

u(2) = u(4)
√∣∣∣µ

λ

∣∣∣− y0 +

2∫

1

q0(s)ds.

Hence, by virtue of (12.227) and (12.229), we get

2∫

1

q0(s)ds =
u(3)

1 + |u(3)| −
u(5)

1 + |u(5)|

√∣∣∣µ
λ

∣∣∣− y0 ≤

≤ |u(3)|
1 + |u(3)| +

|u(5)|
1 + |u(5)|

√∣∣∣µ
λ

∣∣∣− y0 < 1 +
√∣∣∣µ

λ

∣∣∣− y0 ,

which contradicts (12.224).

On Remark 12.4. Let |µ| < |λ|, ε > 0, `, `0 ∈ Lab be defined by (4.59),
where p ∈ L

(
[a, b];R+

)
satisfies (4.60). According to Example 4.1 (see

p. 98), the problem (1.10), (1.20) has a nontrivial solution. By Remark 1.1
(see p. 14), there exist q0 ∈ L

(
[a, b];R

)
and c0 ∈ R such that the problem

(10.1), (10.2) with

F (v)(t) def= `(v)(t) + q0(t) for t ∈ [a, b], h(v) def= c0 (12.230)
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has no solution, while the conditions (12.1), (12.13), and (12.14) are ful-
filled with `1 ≡ 0, c = |c0|, and q ≡ |q0|. Thus, the condition (12.12) in
Theorem 12.4 cannot be replaced by the condition (12.14), no matter how
small ε > 0 would be.

Let |µ| < |λ|, ε ∈ ]0, 1[ , ` ∈ Lab be defined by (4.61), where p ∈
L

(
[a, b];R+

)
satisfies (4.62). According to Example 4.2 (see p. 98), the

problem (1.10), (1.20) has a nontrivial solution. By Remark 1.1 (see p. 14),
there exist q0 ∈ L

(
[a, b];R

)
and c0 ∈ R such that the problem (10.1), (10.2)

with F and h given by (12.230) has no solution, while the conditions (12.1),
(12.12), and (12.15) are fulfilled with `0 ≡ `, `1 ≡ 0, c = |c0|, and q ≡ |q0|.
Thus, the condition (12.13) in Theorem 12.4 cannot be replaced by the
condition (12.15), no matter how small ε > 0 would be.

Example 12.1. Let |µ| < |λ|, a = 0, b = 5, and ε ∈ ]0, 1[ . Choose
δ ∈ ]0, ε[ and ϑ > 0 such that

ϑ ≤ min
{
ε− δ

1− ε
, 1− δ

}
.

Let, moreover, ` ∈ Lab be an operator defined by (4.63), where

p(t) =





|λ|−|µ|
|λ| − δ for t ∈ [0, 1[

0 for t ∈ [1, 2[ ∪ [3, 4[
−1+ϑ

1−δ for t ∈ [2, 3[
−(1 + ϑ) for t ∈ [4, 5]

, τ(t) =





5 for t ∈ [0, 1[
1 for t ∈ [1, 3[
3 for t ∈ [3, 5]

,

and let `0, `1 ∈ Lab be defined by (4.64), where p0 ≡ [p]+, p1 ≡ [p]−, τ0 ≡ 5,
and

τ1(t) =





0 for t ∈ [0, 1[
1 for t ∈ [1, 3[
3 for t ∈ [3, 5]

.

Put

z(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[ ∪ [4, 5[
− 1−δ−ϑ

(1−δ−ϑ)(1−t)+1−δ for t ∈ [1, 2[

− 1−ϑ
1−(1−ϑ)(t−3) for t ∈ [3, 4[

.

It is clear that z ∈ L(
[0, 5];R−

)
, `0, `1 ∈ P05, and

5∫

0

`0(1)(s)ds =

1∫

0

p0(s)ds =
|λ| − |µ|
|λ| − δ <

|λ| − |µ|
|λ| .
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Consequently, according to Remark 2.5 (see p. 19), we have `0 ∈ V +
ab (λ, µ).

Furthermore, it is not difficult to verify that the homogeneous problem

u′(t) = −(1− ε)`1(u)(t), λu(0) + µu(5) = 0

has only the trivial solution and, for arbitrary q0 ∈ L
(
[0, 5];R+

)
and c0 ∈ R

satisfying c0 sgnλ ≥ 0, the solution of the problem

u′(t) = −(1− ε)`1(u)(t) + q0(t), λu(0) + µu(5) = c0

is nonnegative. Therefore, by Definition 2.1 (see p. 15), we obtain

−(1− ε)`1 ∈ V +
ab (λ, µ).

On the other hand, the function

u(t) =





( |λ|−|µ|
|λ| − δ

)
t+

∣∣µ
λ

∣∣ for t ∈ [0, 1[

(1− δ − ϑ)(1− t) + 1− δ for t ∈ [1, 2[
(1 + ϑ)(2− t) + ϑ for t ∈ [2, 3[
(1− ϑ)(t− 3)− 1 for t ∈ [3, 4[
(1 + ϑ)(t− 4)− ϑ for t ∈ [4, 5]

is a nontrivial solution of the problem (12.205). Therefore, according to
Remark 1.1 (see p. 14), there exist q0 ∈ L

(
[a, b];R

)
and c0 ∈ R such that

the problem (10.1), (10.2) with F and h given by (12.206) has no solution,
while the conditions (12.1), (12.12), and (12.16) are fulfilled with c = |c0|
and q ≡ |q0|.

Example 12.2. Let |µ| < |λ| and ε ≥ 0. Put a = 0, b = 5,

g(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[
1 for t ∈ [1, 2[ ∪ [3, 4[
ε for t ∈ [4, 5]

, ν(t) =





5 for t ∈ [0, 3[
2 for t ∈ [3, 4[
1 for t ∈ [4, 5]

.

Furthermore, define the operator G ∈ Kab by

G(v)(t) =





−v(t)|v(t)| for t ∈ [0, 1[ ∪ [2, 3[
0 for t ∈ [1, 2[ ∪ [3, 4[
q0(t) for t ∈ [4, 5]

,
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where q0 ∈ L
(
[a, b];R

)
is such that

5∫

4

q0(s)ds ≥ 2 + ε . (12.231)

Let, moreover, the function γ be defined by (4.66), where δ > |µ|
|λ|−|µ|(2+

ε). It is clear that γ ∈ C̃(
[a, b]; ]0,+∞[

)
,

γ(b)− γ(a) = 2 + ε,

and the conditions (12.17) and (12.18) hold with `0 and `1 given by (4.65).
We will show that the problem (10.1), (10.2) with

F (v)(t) def= −g(t)v(ν(t)) +G(v)(t), h(v) def= 0 (12.232)

has no solution, while the conditions (12.1) and (12.3) are fulfilled, whith
q ≡ |q0| and c = 0.

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.232), i.e., the equality (1.20) holds
and

u′(t) = −g(t)u(ν(t)) +G(u)(t) for t ∈ [a, b]. (12.233)

From (12.233) we get

u(1) =
u(0)

1 + |u(0)| , (12.234)

u(2) = u(1)− u(5) , (12.235)

u(3) =
u(2)

1 + |u(2)| , (12.236)

u(4) = u(3)− u(2) , (12.237)

u(5) = u(4)− εu(1) +

5∫

4

q0(s)ds . (12.238)

The equalities (12.235), (12.237), and (12.238) imply

u(3) =
(
1 + ε

)
u(1)−

5∫

4

q0(s)ds.
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Hence, by virtue of (12.234) and (12.236), we get

5∫

4

q0(s)ds =
(
1 + ε

) u(0)
1 + |u(0)| −

u(2)
1 + |u(2)| ≤

≤ (
1 + ε

) |u(0)|
1 + |u(0)| +

|u(2)|
1 + |u(2)| < 2 + ε ,

which contradicts (12.231).

Example 12.3. Let δ0 ∈ ]0, 1[ be a number satisfying

1− δ0
δ0

=
√
δ0 ,

∣∣µ
λ

∣∣ ∈ ]δ0, 1], ε ≥ 0, a = 0, b = 5, and let `0, `1 ∈ Lab be operators defined
by

`0(v)(t)
def= p0(t)v(τ(t)), `1(v)(t)

def= p1(t)v(τ(t)) for t ∈ [a, b],

where

p0(t) =

{√∣∣µ
λ

∣∣ for t ∈ [0, 1[

0 for t ∈ [1, 5]
, p1(t) =





0 for t ∈ [0, 2[ ∪ [3, 4[√∣∣µ
λ

∣∣ for t ∈ [2, 3[

ε for t ∈ [4, 5]

,

τ(t) =

{
2 for t ∈ [0, 2[
5 for t ∈ [2, 5]

.

Put

G(v)(t) =





q0(t) for t ∈ [0, 1[
v(t)|v(t)| for t ∈ [1, 2[ ∪ [3, 4[
0 for t ∈ [2, 3[ ∪ [4, 5]

,

where q0 ∈ L
(
[a, b];R

)
is such that

1∫

0

q0(s)ds ≥ 1 +
√∣∣∣µ

λ

∣∣∣ . (12.239)
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It is clear that `0, `1 ∈ Pab, and

b∫

a

(
`0(1)(s) + `1(1)(s)ds

)
=

5∫

0

(
p0(s) + p1(s)

)
ds = 2

√∣∣∣µ
λ

∣∣∣ + ε.

Moreover, according to the condition

b∫

a

p0(s)ds =
√∣∣∣µ

λ

∣∣∣

and Theorem 2.11 (with `1 ≡ 0, see p. 26), we find `0 ∈ V −ab (λ, µ).
We will show that the problem (10.1), (10.2) with

F (v)(t) def=
(
p0(t) + p1(t)

)
v(τ(t)) +G(v)(t), h(v) def= 0 (12.240)

has no solution, while the conditions (12.8), (12.20), and (12.21) are fulfilled
with q ≡ |q0| and c = 0.

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.240), i.e., the equality (1.20) holds
and

u′(t) =
(
p0(t) + p1(t)

)
u(τ(t)) +G(u)(t) for t ∈ [a, b]. (12.241)

From (12.241) we get

u(1) = u(0) + u(2)
√∣∣∣µ

λ

∣∣∣ +

1∫

0

q0(s)ds , (12.242)

u(1) =
u(2)

1 + |u(2)| , (12.243)

u(3) = u(2) + u(5)
√∣∣∣µ

λ

∣∣∣ , (12.244)

u(3) =
u(4)

1 + |u(4)| . (12.245)

The equalities (12.242) and (12.244), in view of (1.20) and (2.1), result in

u(1) = u(3)
√∣∣∣µ

λ

∣∣∣ +

1∫

0

q0(s)ds.
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Hence, by virtue of (12.243) and (12.245), we get

1∫

0

q0(s)ds =
u(2)

1 + |u(2)| −
u(4)

1 + |u(4)|

√∣∣∣µ
λ

∣∣∣ ≤

≤ |u(2)|
1 + |u(2)| +

|u(4)|
1 + |u(4)|

√∣∣∣µ
λ

∣∣∣ < 1 +
√∣∣∣µ

λ

∣∣∣ ,

which contradicts (12.239).

On Remark 12.7. Let δ0 ∈ ]0, 1[ be a number satisfying

ln
1
δ0

= 2
√
δ0 ,

∣∣µ
λ

∣∣ ∈ ]δ0, 1[, ε > 0, and `0 ∈ Lab be defined by

`0(v)(t)
def= p(t)v(t) for t ∈ [a, b],

where p ∈ L(
[a, b];R+

)
is such that

b∫

a

p(s)ds = ln
∣∣∣∣
λ

µ

∣∣∣∣ .

Put `1 ≡ 0. Then the condition (12.22) holds and according to Corollary 3.5
(see p. 70), we have (1 + ε)`0 ∈ V −ab (λ, µ).

On the other hand, the problem

u′(t) = `0(u)(t), λu(a) + µu(b) = 0

has a nontrivial solution

u(t) = |µ| exp




t∫

a

p(s)ds


 for t ∈ [a, b].

Therefore, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and

c0 ∈ R such that the problem (10.1), (10.2) with

F (v)(t) def= `0(v)(t) + `1(v)(t) + q0(t) for t ∈ [a, b], h(v) def= c0

has no solution, while the conditions (12.8), (12.20), (12.22), and (12.23)
are fulfilled with q ≡ |q0| and c = |c0|.
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In this section we will establish some consequences of the main results from
§12 for the equation with deviating arguments (10.1′). Here we will also
suppose that the inequality (2.1) is fulfilled.

In what follows we will use the notation

p0(t) =
m∑

j=1

pj(t), g0(t) =
m∑

j=1

gj(t) for t ∈ [a, b]

and we will suppose that the function q ∈ K(
[a, b]×R+;R+

)
is nondecreas-

ing in the second argument and satisfies (10.5), i.e.,

lim
x→+∞

1
x

b∫

a

q(s, x)ds = 0.

13.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following assertions hold.

Theorem 13.1. Let 0 6= |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

c ∈ R+, the condition (12.1) be fulfilled, and let on the set [a, b]×Rn+1 the
inequality

f(t, x, x1, . . . , xn) sgnx ≤ q(t, |x|) (13.1)

hold. If, moreover,
‖p0‖L < 1, (13.2)

‖p0‖L

1− ‖p0‖L
− |λ| − |µ|

|µ| < ‖g0‖L < 2
√

1− ‖p0‖L , (13.3)

then the problem (10.1′), (10.2) has at least one solution.

Remark 13.1. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(13.2) and (13.3) can be replaced by the nonstrict one.

The next theorem can be understood as a supplement of the previous
one for the case µ = 0.
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Theorem 13.2. Let µ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), c ∈ R+,

the condition (12.1) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.1) hold. If, moreover,

‖p0‖L < 1, (13.4)

‖g0‖L < 2
√

1− ‖p0‖L , (13.5)

then the problem (10.1′), (10.2) has at least one solution.

Remark 13.2. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (13.4) and (13.5)
cannot be replaced by the nonstrict ones.

Theorem 13.3. Let 0 6= |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

c ∈ R+, the condition (12.8) be fulfilled, and let on the set [a, b]×Rn+1 the
inequality

f(t, x, x1, . . . , xn) sgnx ≥ −q(t, |x|) (13.6)

hold. If, moreover,

‖g0‖L <
∣∣∣µ
λ

∣∣∣ , (13.7)

|λ|
|µ| − |λ|‖g0‖L

− 1 < ‖p0‖L < 2
√∣∣∣µ

λ

∣∣∣− ‖g0‖L , (13.8)

then the problem (10.1′), (10.2) has at least one solution.

Remark 13.3. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(13.7) and (13.8) can be replaced by the nonstrict one.

Theorem 13.4. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the condition (12.1) be fulfilled, and let on the set
[a, b]×Rn+1 the inequality (13.1) hold. Let, moreover, the functions pk, τk
(k = 1, . . . ,m) satisfy at least one of the conditions a), b) or c) in Theo-
rem 3.1 (see p. 63) or the assumptions of Theorem 3.2 (see p. 64), while the
functions gk, νk (k = 1, . . . ,m) satisfy νk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m)
and at least one of the conditions a), b) or c) in Theorem 3.3 (see p. 65).
Then the problem (10.1′), (10.2) has at least one solution.

Theorem 13.5. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the conndition (12.1) be fulfilled and let on the set
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[a, b]×Rn+1 the inequality (13.1) hold. If, moreover,

|µ| exp




b∫

a

p0(s)ds


 < |λ|, (13.9)

τk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m), (13.10)

and

|λ| − |µ|

|λ| − |µ| exp

(
b∫
a
p0(s)ds

)
b∫

a

g0(s) exp




b∫

s

p0(ξ)dξ


 ds < 2, (13.11)

then the problem (10.1′), (10.2) has at least one solution.

Theorem 13.6. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the condition (12.1) be fulfilled, and let on the set [a, b]×
Rn+1 the inequality (13.1) hold. If, moreover,

|λ| − |µ|
|λ|




b∫

a

g0(s)ds+ α1


 + 2β1 < 2, (13.12)

where

α1 =

b∫

a

m∑

k=1

pk(s)




τk(s)∫

a

g0(ξ)dξ


 exp




b∫

s

p0(ξ)dξ


 ds, (13.13)

β1 =
∣∣∣µ
λ

∣∣∣ exp




b∫

a

p0(s)ds


+

+

b∫

a

m∑

k=1

pk(s)σk(s)




τk(s)∫

s

p0(ξ)dξ


 exp




b∫

s

p0(ξ)dξ


 ds,

(13.14)

σk(t) =
1
2

(1 + sgn(τk(t)− t)) for t ∈ [a, b] (k = 1, . . . ,m), (13.15)

then the problem (10.1′), (10.2) has at least one solution.
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Remark 13.4. Example 12.2 (see p. 249) also shows that the strict in-
equalities (13.11) in Theorem 13.5 and (13.12) in Theorem 13.6 cannot be
replaced by the nonstrict ones.

The next theorem concerns the equation with deviating arguments of
the form

u′(t) =
m∑

k=1

(
pk(t)u(τk(t)) + gk(t)u(νk(t))

)
+

+ f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

(13.16)

where f ∈ K([a, b] × Rn+1;R), pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), ζj ∈Mab (j = 1, . . . , n), and m,n ∈ N .

Theorem 13.7. Let 0 6= |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab

(k = 1, . . . ,m), c ∈ R+, the condition (12.8) be fulfilled, and let on the set
[a, b]×Rn+1 the inequality (13.6) hold. Let, moreover,

b∫

a

(
p0(s) + g0(s)

)
ds < 2

√∣∣∣µ
λ

∣∣∣ (13.17)

and the functions pk, τk (k = 1, . . . ,m) satisfy the assumptions of Theo-
rem 3.9 (see p. 69) or Theorem 3.10 (see p. 69). Then the problem (13.16),
(10.2) has at least one solution.

In Theorems 13.8–13.14, the conditions guaranteeing the unique solv-
ability of the problem (10.1′), (10.2) are established.

Theorem 13.8. Let 0 6= |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

the condition (12.24) be fulfilled, and let on the set [a, b] × Rn+1 the in-
equality

[f(t, x, x1, . . . , xn)− f(t, y, y1, . . . , yn)] sgn(x− y) ≤ 0 (13.18)

hold. If, moreover, the inequalities (13.2) and (13.3) are fulfilled, then the
problem (10.1′), (10.2) is uniquely solvable.

Remark 13.5. The examples constructed in Subsection 12.3 (see On Re-
mark 12.1, p. 240) also show that neither one of the strict inequalities in
(13.2) and (13.3) can be replaced by the nonstrict one.
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The next theorem can be understood as a supplement of the previous
one for the case µ = 0.

Theorem 13.9. Let µ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.24) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.18) hold. If, moreover, the inequalities (13.4) and (13.5) are fulfilled,
then the problem (10.1′), (10.2) is uniquely solvable.

Remark 13.6. The examples constructed in Subsection 12.3 (see On Re-
mark 12.2, p. 243) also show that the strict inequalities (13.4) and (13.5)
cannot be replaced by the nonstrict ones.

Theorem 13.10. Let 0 6= |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

the condition (12.26) be fulfilled, and let on the set [a, b] × Rn+1 the in-
equality

[f(t, x, x1, . . . , xn)− f(t, y, y1, . . . , yn)] sgn(x− y) ≥ 0 (13.19)

hold. If, moreover, the inequalities (13.7) and (13.8) are fulfilled, then the
problem (10.1′), (10.2) is uniquely solvable.

Remark 13.7. The examples constructed in Subsection 12.3 (see On Re-
mark 12.3, p. 245) also show that neither one of the strict inequalities in
(13.7) and (13.8) can be replaced by the nonstrict one.

Theorem 13.11. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), the condition (12.24) be fulfilled, and let on the set [a, b] ×
Rn+1 the inequality (13.18) hold. Let, moreover, the functions pk, τk (k =
1, . . . ,m) satisfy at least one of the conditions a), b) or c) in Theorem 3.1
(see p. 63) or the assumptions of Theorem 3.2 (see p. 64), while the func-
tions gk, νk (k = 1, . . . ,m) satisfy νk(t) ≤ t for t ∈ [a, b] (k = 1, . . . ,m) and
at least one of the conditions a), b) or c) in Theorem 3.3 (see p. 65). Then
the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.12. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), the condition (12.24) be fulfilled, and let on the set [a, b]×Rn+1

the inequality (13.18) hold. If, moreover, the inequalities (13.9)–(13.11) are
satisfied, then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.13. Let |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk ∈ Mab (k =

1, . . . ,m), the condition (12.24) be fulfilled, and let on the set [a, b]×Rn+1

the inequality (13.18) hold. If, moreover, the inequality (13.12) holds, where
α1 and β1 are defined by (13.13) and (13.14) with σk (k = 1, . . . ,m) given
by (13.15), then the problem (10.1′), (10.2) is uniquely solvable.
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Remark 13.8. Example 12.2 (see p. 249) also shows that the strict in-
equalities (13.11) in Theorem 13.12 and (13.12) in Theorem 13.13 cannot
be replaced by the nonstrict ones.

The next theorem deals with the equation with deviating arguments
(13.16).

Theorem 13.14. Let 0 6= |µ| < |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab

(k = 1, . . . ,m), the condition (12.26) be fulfilled, and let on the set [a, b]×
Rn+1 the inequality (13.19) hold. Let, moreover, the inequality (13.17) be
fulfilled and the functions pk, τk (k = 1, . . . ,m) satisfy the assumptions of
Theorem 3.9 (see p. 69) or Theorem 3.10 (see p. 69). Then the problem
(13.16), (10.2) has a unique solution.

In the case, where |µ| ≥ |λ|, the following statements hold.

Theorem 13.15. Let |µ| ≥ |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

c ∈ R+, the conndition (12.8) be fulfilled, and let on the set [a, b] × Rn+1

the inequality (13.6) hold. If, moreover,

‖g0‖L < 1, (13.20)

‖g0‖L

1− ‖g0‖L
− |µ| − |λ|

|λ| < ‖p0‖L < 2
√

1− ‖g0‖L , (13.21)

then the problem (10.1′), (10.2) has at least one solution.

The next theorem can be understood as a supplement of the previous
one for the case λ = 0.

Theorem 13.16. Let λ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), c ∈

R+, the conndition (12.8) be fulfilled, and let on the set [a, b] × Rn+1 the
inequality (13.6) hold. If, moreover,

‖g0‖L < 1, (13.22)

‖p0‖L < 2
√

1− ‖g0‖L , (13.23)

then the problem (10.1′), (10.2) has at least one solution.
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Theorem 13.17. Let |µ| ≥ |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

c ∈ R+, the condition (12.1) be fulfilled, and let on the set [a, b]×Rn+1 the
inequality (13.1) hold. If, moreover,

‖p0‖L <

∣∣∣∣
λ

µ

∣∣∣∣ , (13.24)

|µ|
|λ| − |µ|‖p0‖L

− 1 < ‖g0‖L < 2

√∣∣∣∣
λ

µ

∣∣∣∣− ‖p0‖L , (13.25)

then the problem (10.1′), (10.2) has at least one solution.

Theorem 13.18. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the condition (12.8) be fulfilled, and let on the set [a, b]×
Rn+1 the inequality (13.6) hold. Let, moreover, the functions pk, τk (k =
1, . . . ,m) satisfy τk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m) and at least one of
the conditions a), b) or c) in Theorem 3.14 (see p. 72), while the functions
gk, νk (k = 1, . . . ,m) satisfy at least one of the conditions a), b) or c) in
Theorem 3.12 (see p. 70) or the assumptions of Theorem 3.13 (see p. 71).
Then the problem (10.1′), (10.2) has at least one solution.

Theorem 13.19. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the conndition (12.8) be fulfilled, and let on the set
[a, b]×Rn+1 the inequality (13.6) hold. If, moreover,

|λ| exp




b∫

a

g0(s)ds


 < |µ|, (13.26)

νk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m), (13.27)

and

|µ| − |λ|

|µ| − |λ| exp

(
b∫
a
g0(s)ds

)
b∫

a

p0(s) exp




s∫

a

g0(ξ)dξ


 ds < 2, (13.28)

then the problem (10.1′), (10.2) has at least one solution.
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Theorem 13.20. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), c ∈ R+, the condition (12.8) be fulfilled, and let on the set [a, b]×
Rn+1 the inequality (13.6) hold. If, moreover,

|µ| − |λ|
|µ|




b∫

a

p0(s)ds+ α2


 + 2β2 < 2, (13.29)

where

α2 =

b∫

a

m∑

k=1

gk(s)




b∫

νk(s)

p0(ξ)dξ


 exp




s∫

a

g0(ξ)dξ


 ds, (13.30)

β2 =
∣∣∣∣
λ

µ

∣∣∣∣ exp




b∫

a

g0(s)ds


+

+

b∫

a

m∑

k=1

gk(s)σk(s)




s∫

νk(s)

g0(ξ)dξ


 exp




s∫

a

g0(ξ)dξ


 ds,

(13.31)

σk(t) =
1
2

(1 + sgn(t− νk(t))) for t ∈ [a, b] (k = 1, . . . ,m), (13.32)

then the problem (10.1′), (10.2) has at least one solution.

The next theorem concerns the equation with deviating arguments of
the form

u′(t) =−
m∑

k=1

(
pk(t)u(τk(t)) + gk(t)u(νk(t))

)
+

+ f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

(13.33)

where f ∈ K([a, b] × Rn+1;R), pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), ζj ∈Mab (j = 1, . . . , n), and m,n ∈ N .

Theorem 13.21. Let |µ| > |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab

(k = 1, . . . ,m), c ∈ R+, the condition (12.1) be fulfilled, and let on the set
[a, b]×Rn+1 the inequality (13.1) hold. Let, moreover,

b∫

a

(
p0(s) + g0(s)

)
ds < 2

√∣∣∣∣
λ

µ

∣∣∣∣ (13.34)
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and the functions gk, νk (k = 1, . . . ,m) satisfy the assumptions of Theo-
rem 3.6 (see p. 67) or Theorem 3.7 (see p. 68). Then the problem (13.33),
(10.2) has at least one solution.

In Theorems 13.22–13.28, the conditions guaranteeing the unique solv-
ability of the problem (10.1′), (10.2) are established.

Theorem 13.22. Let |µ| ≥ |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

the condition (12.26) be fulfilled, and let on the set [a, b] × Rn+1 the in-
equality (13.19) hold. If, moreover, the inequalities (13.20) and (13.21) are
fulfilled, then the problem (10.1′), (10.2) is uniquely solvable.

The next theorem can be understood as a supplement of the previous
one for the case λ = 0.

Theorem 13.23. Let λ = 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.26) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.19) hold. If, moreover, the inequalities (13.22) and (13.23) are fulfilled,
then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.24. Let |µ| ≥ |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m),

the condition (12.24) be fulfilled, and let on the set [a, b] × Rn+1 the in-
equality (13.18) hold. If, moreover, the inequalities (13.24) and (13.25) are
fulfilled, then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.25. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab (k =

1, . . . ,m), the condition (12.26) be fulfilled and let on the set [a, b]×Rn+1

the inequality (13.19) hold. Let, furthermore, the functions pk, τk (k =
1, . . . ,m) satisfy τk(t) ≥ t for t ∈ [a, b] (k = 1, . . . ,m) and at least one of
the conditions a), b) or c) in Theorem 3.14 (see p. 72), while the functions
gk, νk (k = 1, . . . ,m) satisfy at least one of the conditions a), b) or c) in
Theorem 3.12 (see p. 70) or the assumptions of Theorem 3.13 (see p. 71).
Then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.26. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), the condition (12.26) be fulfilled, and let on the set [a, b]×Rn+1

the inequality (13.19) hold. If, moreover, the inequalities (13.26)–(13.28)
are satisfied, then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 13.27. Let |µ| > |λ|, pk, gk ∈ L
(
[a, b];R+

)
, νk ∈ Mab (k =

1, . . . ,m), the condition (12.26) be fulfilled, and let on the set [a, b]×Rn+1
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the inequality (13.19) hold. If, moreover, the inequality (13.29) holds, where
α2 and β2 are defined by (13.30) and (13.31) with σk (k = 1, . . . ,m) given
by (13.32), then the problem (10.1′), (10.2) is uniquely solvable.

The next theorem deals with the equation with deviating arguments
(13.33).

Theorem 13.28. Let |µ| > |λ| 6= 0, pk, gk ∈ L
(
[a, b];R+

)
, τk, νk ∈ Mab

(k = 1, . . . ,m), the condition (12.24) be fulfilled, and let on the set [a, b]×
Rn+1 the inequality (13.18) hold. Let, moreover, the inequality (13.34) be
fulfilled and the functions gk, νk (k = 1, . . . ,m) satisfy the assumptions of
Theorem 3.6 (see p. 67) or Theorem 3.7 (see p. 68). Then the problem
(13.33), (10.2) has a unique solution.

Remark 13.9. According to Remark 12.14 (see p. 211), Theorems 13.15–
13.28 can be derived from Theorems 13.1–13.14. Moreover, by virtue of
Remarks 13.1–13.8, Theorems 13.15–13.17, 13.19, 13.20, 13.22–13.24, 13.26,
and 13.27 are nonimprovable in an appropriate sense.

13.2. Proofs

Proof of Theorem 13.1. Obviously, the conditions (13.1)–(13.3) yield
the conditions (12.3)–(12.5), where

F (v)(t) def=
m∑

k=1

(
pk(t)v(τk(t))− gk(t)v(νk(t))

)
+

+f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

`0(v)(t)
def=

m∑

k=1

pk(t)v(τk(t)), `1(v)(t)
def=

m∑

k=1

gk(t)v(νk(t)).

(13.35)

Consequently, the assumptions of Theorem 12.1 (see p. 199) are fulfilled.

Proof of Theorem 13.2. Similarly to the proof of Theorem 13.1 one can
show that the assumptions of Theorem 12.2 (see p. 200) are satisfied.

Proof of Theorem 13.3. Similarly to the proof of Theorem 13.1 one can
show that the assumptions of Theorem 12.3 (see p. 201) are satisfied.
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Proof of Theorem 13.4. Clearly, the condition (13.1) yields the condi-
tion (12.12), where F , `0, and `1 are defined by (13.35). Moreover, ac-
cording to Theorems 3.1–3.3 (see pp. 63–65), the condition (12.13) holds.
Therefore, the assumptions of Theorem 12.4 (see p. 203) are satisfied.

Proof of Theorem 13.5. Obviously, the condition (13.1) yields the con-
dition (12.3), where F , `0, and `1 are defined by (13.35). Moreover, simi-
larly to the proof of Theorem 5.4 (see p. 112), one can show that there exists
a function γ ∈ C̃(

[a, b]; ]0,+∞[
)

satisfying the inequalities (12.17)–(12.19).
Therefore, the assumptions of Theorem 12.5 (see p. 204) are fulfilled.

Proof of Theorem 13.6. Obviously, the condition (13.1) yields the con-
dition (12.3), where F , `0, and `1 are defined by (13.35). Moreover, simi-
larly to the proof of Theorem 5.5 (see p. 113), one can show that there exists
a function γ ∈ C̃(

[a, b]; ]0,+∞[
)

satisfying the inequalities (12.17)–(12.19).
Therefore, the assumptions of Theorem 12.5 (see p. 204) are fulfilled.

Proof of Theorem 13.7. Obviously, the conditions (13.6) and (13.17)
yield the conditions (12.20) and (12.22), where

F (v)(t) def=
m∑

k=1

(
pk(t)v(τk(t)) + gk(t)v(νk(t))

)
+

+f(t, u(t), u(ζ1(t)), . . . , u(ζn(t))),

`0(v)(t)
def=

m∑

k=1

pk(t)v(τk(t)), `1(v)(t)
def=

m∑

k=1

gk(t)v(νk(t)).

(13.36)

Consequently, the assumptions of Theorem 12.6 (see p. 204) are fulfilled.

Proof of Theorem 13.8. Obviously, the conditions (13.2), (13.3), and
(13.18) yield the conditions (12.4), (12.5), and (12.25), where F , `0, and
`1 are defined by (13.35). Consequently, the assumptions of Theorem 12.7
(see p. 205) are fulfilled.

Proof of Theorem 13.9. Similarly to the proof of Theorem 13.8, one can
show that the assumptions of Theorem 12.8 (see p. 205) are satisfied.

Proof of Theorem 13.10. Similarly to the proof of Theorem 13.8, one
can show that the assumptions of Theorem 12.9 (see p. 206) are satisfied.
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Proof of Theorem 13.11. Clearly, the condition (13.18) yields the con-
dition (12.28), where F , `0, and `1 are defined by (13.35). Moreover, ac-
cording to Theorems 3.1–3.3 (see pp. 63–65), the condition (12.13) holds.
Therefore, the assumptions of Theorem 12.10 (see p. 206) are satisfied.

Proof of Theorem 13.12. Similarly to the proof of Theorem 13.5 one
can show that the assumptions of Theorem 12.11 (see p. 207) are satisfied.

Proof of Theorem 13.13. Similarly to the proof of Theorem 13.6 one
can show that the assumptions of Theorem 12.11 (see p. 207) are satisfied.

Proof of Theorem 13.14. Obviously, the conditions (13.17) and (13.19)
yield the conditions (12.22) and (12.29), where F , `0, and `1 are defined by
(13.36). Consequently, the assumptions of Theorem 12.12 (see p. 207) are
fulfilled.
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In this section, we will establish nonimprovable, in a certain sense, suffi-
cient conditions for solvability and unique solvability of the problem (10.1),
(10.2), where the boundary condition (10.2) is of an antiperiodic type, i.e.,
when the inequality (7.1) is satisfied. In Subsection 14.1, the main results
are formulated. Theorems 14.1–14.4 deal with the case |µ| ≤ |λ|, while the
case |µ| ≥ |λ| is considered in Theorems 14.5–14.8. The proofs of the main
results can be found in Subsection 14.2. Subsection 14.3 is devoted to the
examples verifying the optimality of the main results.

In the sequel, we will assume that the function q ∈ K(
[a, b]×R+;R+

)
is nondecreasing in the second argument and satisfies (10.5), i.e.,

lim
x→+∞

1
x

b∫

a

q(s, x)ds = 0.

14.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 14.1. Let |µ| ≤ |λ|, c ∈ R+, the inequality (12.1) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the in-

equality (12.3) holds. If, moreover,

‖`1(1)‖L < α(λ, µ), (14.1)

where

α(λ, µ) =

{
−µ

λ + 2
√

1− ‖`0(1)‖L if ‖`0(1)‖L < 1− (µ
λ

)2

λ
µ (1− ‖`0(1)‖L) if ‖`0(1)‖L ≥ 1− (µ

λ

)2 , (14.2)

then the problem (10.1), (10.2) has at least one solution.

Remark 14.1. Note that the condition ‖`0(1)‖L < 1 is necessary for op-
erators `0, `1 to satisfy the condition (14.1) with α given by (14.2).

Let |µ| ≤ |λ|. Denote by U the set of pairs (x, y) ∈ R+ ×R+ satisfying
either

x < 1−
(µ
λ

)2
, y < −µ

λ
+ 2

√
1− x
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or
1−

(µ
λ

)2
≤ x, y <

λ

µ
(1− x)

(see Fig. 14.1).

x

y

1− (µλ )2 1

µ
λ

2− µ
λ

U

Fig. 14.1.

According to Theorem 14.1, if (12.1) holds, there exist `0, `1 ∈ Pab such
that the inequality (12.3) is satisfied on the set B1

λµc

(
[a, b];R

)
, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ U,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 14.1, see p. 280) that for every x0, y0 ∈ R+, (x0, y0) 6∈ U there
exist F ∈ Kab, `0, `1 ∈ Pab, and c0 ∈ R such that the conditions (12.1)
(with h ≡ c0, c = |c0|) and (12.3) hold,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L,

and the problem (10.1), (10.2) with h ≡ c0 has no solution. In particular,
the strict inequality (14.1) cannot be replaced by the nonstrict one.

Theorem 14.2. Let |µ| ≤ |λ|, c ∈ R+, the condition (12.8) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the inequality

(12.9) holds. If, moreover,

‖`0(1)‖L +
µ

λ
‖`1(1)‖L <

µ

λ
, (14.3)



268 §14. ANTIPERIODIC TYPE BVP

then the problem (10.1), (10.2) has at least one solution.

Remark 14.2. Let |µ| ≤ |λ| and

S =
{

(x, y) ∈ R+ ×R+ : x+
µ

λ
y <

µ

λ

}

(see Fig. 14.2).

x

y

µ
λ

1

S

Fig. 14.2.

According to Theorem 14.2, if (12.8) holds, there exist `0, `1 ∈ Pab such
that the inequality (12.9) is satisfied on the set B2

λµc

(
[a, b];R

)
, and

(
‖`0(1)‖L, ‖`1(1)‖L

)
∈ S,

then the problem (10.1), (10.2) is solvable. Below we will show (see On
Remark 14.2, see p. 284) that for every x0, y0 ∈ R+ such that (x0, y0) 6∈ S
there exist F ∈ Kab, `0, `1 ∈ Pab, and c0 ∈ R such that (12.8) (with h ≡ c0,
c = |c0|) and (12.9) hold,

x0 = ‖`0(1)‖L, y0 = ‖`1(1)‖L,

and the problem (10.1), (10.2) with h ≡ c0 has no solution. In particular,
the strict inequality (14.3) cannot be replaced by the nonstrict one.
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In Theorems 14.3 and 14.4, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 14.3. Let |µ| ≤ |λ|, the inequality (12.24) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality (12.25) holds. If, moreover, (14.1) is satisfied, where α is
defined by (14.2), then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.3. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (14.1) cannot be
replaced by the nonstrict one.

Theorem 14.4. Let |µ| ≤ |λ|, the condition (12.26) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality (12.27) holds. If, moreover, the inequality (14.3) is satisfied,
then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.4. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (14.3) cannot be
replaced by the nonstrict one.

In the case, where |µ| ≥ |λ|, the following assertions hold.

Theorem 14.5. Let |µ| ≥ |λ|, c ∈ R+, the inequality (12.8) be fulfilled,
and let there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
the in-

equality (12.9) holds. If, moreover,

‖`0(1)‖L < β(λ, µ), (14.4)

where

β(λ, µ) =




−λ

µ + 2
√

1− ‖`1(1)‖L if ‖`1(1)‖L < 1−
(

λ
µ

)2

µ
λ (1− ‖`1(1)‖L) if ‖`1(1)‖L ≥ 1−

(
λ
µ

)2 , (14.5)

then the problem (10.1), (10.2) has at least one solution.

Theorem 14.6. Let |µ| ≥ |λ|, c ∈ R+, the condition (12.1) be fulfilled, and
let there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
the inequality

(12.3) holds. If, moreover,

‖`1(1)‖L +
λ

µ
‖`0(1)‖L <

λ

µ
, (14.6)

then the problem (10.1), (10.2) has at least one solution.
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In Theorems 14.7 and 14.8, the conditions guaranteeing the unique solv-
ability of the problem (10.1), (10.2) are established.

Theorem 14.7. Let |µ| ≥ |λ|, the inequality (12.26) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B2

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality (12.27) holds. If, moreover, (14.4) is satisfied, where β is
defined by (14.5), then the problem (10.1), (10.2) is uniquely solvable.

Theorem 14.8. Let |µ| ≥ |λ|, the condition (12.24) be fulfilled, and let
there exist `0, `1 ∈ Pab such that on the set B1

λµc

(
[a, b];R

)
, where c = |h(0)|,

the inequality (12.25) holds. If, moreover, the inequality (14.6) is satisfied,
then the problem (10.1), (10.2) is uniquely solvable.

Remark 14.5. According to Remark 12.14 (see p. 211), Theorems 14.5–
14.8 can be immediately derived from Theorems 14.1–14.4. Moreover, by
virtue of Remarks 14.1–14.4, Theorems 14.5–14.8 are nonimprovable in an
appropriate sense.

14.2. Proofs

First we will prove two lemmas.

Lemma 14.1. Let |µ| ≤ |λ| and the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab. If, moreover, the condition (14.1) holds,
where α is defined by (14.2), then ` ∈ A1

(
λ, µ

)
.

Proof. Let q∗ ∈ L(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃(

[a, b];R
)

satisfy (11.13)
and (11.14) for i = 1. Define the number λ0 by (12.45). We will show that
(11.15) holds with

r =





λ0(‖`1(1)‖L+1+µ
λ)

1−‖`0(1)‖L− 1
4(‖`1(1)‖L+µ

λ)2 if ‖`0(1)‖L < 1− (µ
λ

)2

λ0(‖`1(1)‖L+1+µ
λ)

1−‖`0(1)‖L−µ
λ
‖`1(1)‖L

if ‖`0(1)‖L ≥ 1− (µ
λ

)2
. (14.7)

Obviously, u satisfies (12.47), where q̃ is defined by (12.48). It is also
evident that the inequalities (12.49) and (12.50) hold.

First suppose that u does not change its sign. According to (12.50),
(7.1), and the assumption µ

λ ∈ ]0, 1], we obtain

|u(a)| ≤ c

|λ| . (14.8)
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Choose t0 ∈ [a, b] such that

|u(t0)| = ‖u‖C . (14.9)

Due to (12.2) and (12.49), (12.47) implies

|u(t)|′ ≤ ‖u‖C `0(1)(t) + q∗(t) for t ∈ [a, b]. (14.10)

The integration of (14.10) from a to t0, on account of (12.2), (14.8), and
(14.9), results in

‖u‖C − c

|λ| ≤ ‖u‖C − |u(a)| ≤ ‖u‖C

t0∫

a

`0(1)(s)ds+

t0∫

a

q∗(s)ds ≤

≤ ‖u‖C‖`0(1)‖L + ‖q∗‖L.

Thus, in view of (12.45), the inequality

‖u‖C (1− ‖`0(1)‖L) ≤ c

|λ| + ‖q∗‖L ≤ λ0(c+ ‖q∗‖L)

holds and, consequently, on account of (14.1), (14.2), (14.7), and Re-
mark 14.1, the estimate (11.15) holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tM , tm ∈ [a, b] such that (12.60) is fulfilled. Obviously,
M > 0, m > 0, and either (12.61) or (12.62) holds.

First suppose that (12.61) is satisfied. It is clear that there exists α2 ∈
]tm, tM [ such that

u(t) > 0 for α2 < t ≤ tM , u(α2) = 0. (14.11)

Let
α1 = inf{t ∈ [a, tm] : u(s) < 0 for t ≤ s ≤ tm}.

Obviously,
u(t) < 0 for α1 < t ≤ tm (14.12)

and
if α1 > a, then u(α1) = 0. (14.13)

It follows from (7.1), (12.50), (14.12), and the assumption µ
λ ∈ ]0, 1] that

u(α1) ≥ −µ
λ

[u(b)]+ − c

|λ| ≥ −µ
λ
M − c

|λ| . (14.14)
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The integration of (12.47) from α1 to tm and from α2 to tM , in view of
(12.2), (12.49), (12.59), (12.60), (14.11)–(14.14), yields

m− µ

λ
M − c

|λ| ≤ m+ u(α1) ≤

≤M

tm∫

α1

`1(1)(s)ds+m

tm∫

α1

`0(1)(s)ds+

tm∫

α1

q∗(s)ds,

M ≤M

tM∫

α2

`0(1)(s)ds+m

tM∫

α2

`1(1)(s)ds+

tM∫

α2

q∗(s)ds.

From the last two inequalities we obtain

m(1− C1) ≤M
(
A1 +

µ

λ

)
+ ‖q∗‖L +

c

|λ| ,

M(1−D1) ≤ mB1 + ‖q∗‖L,

(14.15)

where

A1 =

tm∫

α1

`1(1)(s)ds, B1 =

tM∫

α2

`1(1)(s)ds,

C1 =

tm∫

α1

`0(1)(s)ds, D1 =

tM∫

α2

`0(1)(s)ds.

According to Remark 14.1, ‖`0(1)‖L < 1, i.e., C1 < 1 and D1 < 1. By
virtue of (12.45), the inequalities (14.15) imply

0 < m(1− C1)(1−D1) ≤
(
A1 +

µ

λ

)
(mB1 + ‖q∗‖L) + ‖q∗‖L+

+
c

|λ| ≤ m
(
A1 +

µ

λ

)
B1 + λ0(‖q∗‖L + c)

(
‖`1(1)‖L + 1 +

µ

λ

)
,

0 < M(1− C1)(1−D1) ≤ B1

(
M

(
A1 +

µ

λ

)
+ ‖q∗‖L +

c

|λ|
)

+

+‖q∗‖L ≤M
(
A1 +

µ

λ

)
B1 + λ0(‖q∗‖L + c)

(
‖`1(1)‖L + 1 +

µ

λ

)
.

(14.16)

Obviously,

(1− C1)(1−D1) ≥ 1− (C1 +D1) ≥ 1− ‖`0(1)‖L > 0. (14.17)
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If ‖`0(1)‖L ≥ 1− (µ
λ

)2, then, according to (14.1) and (14.2), we obtain
‖`1(1)‖L <

µ
λ . Hence, B1 <

µ
λ and

(
A1 +

µ

λ

)
B1 = A1B1 +

µ

λ
B1 ≤ µ

λ
(A1 +B1) ≤ µ

λ
‖`1(1)‖L.

By the last inequality, (14.1), (14.2), and (14.17), from (14.16) we get

m ≤ r0λ0

(
‖`1(1)‖L + 1 +

µ

λ

)
(c+ ‖q∗‖L),

M ≤ r0λ0

(
‖`1(1)‖L + 1 +

µ

λ

)
(c+ ‖q∗‖L),

(14.18)

where

r0 =
(

1− ‖`0(1)‖L − µ

λ
‖`1(1)‖L

)−1

. (14.19)

Therefore, on account of (12.59), (14.7), (14.18), and (14.19), the estimate
(11.15) holds.

If ‖`0(1)‖L < 1− (µ
λ

)2, then by virtue of the inequality

(
A1 +

µ

λ

)
B1 ≤ 1

4

(
A1 +B1 +

µ

λ

)2
≤ 1

4

(
‖`1(1)‖L +

µ

λ

)2
,

(14.1), (14.2), and (14.17), (14.16) implies

m ≤ r1λ0

(
‖`1(1)‖L + 1 +

µ

λ

)
(c+ ‖q∗‖L),

M ≤ r1λ0

(
‖`1(1)‖L + 1 +

µ

λ

)
(c+ ‖q∗‖L),

(14.20)

where

r1 =
(

1− ‖`0(1)‖L − 1
4

(
‖`1(1)‖L +

µ

λ

)2
)−1

. (14.21)

Therefore, on account of (12.59), (14.7), (14.20), and (14.21), the estimate
(11.15) is valid.

Now suppose that (12.62) is satisfied. It is clear that there exists α4 ∈
]tM , tm[ such that

u(t) < 0 for α4 < t ≤ tm, u(α4) = 0. (14.22)

Let
α3 = inf{t ∈ [a, tM ] : u(s) > 0 for t ≤ s ≤ tM}.
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Obviously,

u(t) > 0 for α3 < t ≤ tM (14.23)

and

if α3 > a, then u(α3) = 0. (14.24)

From (7.1), (12.50), (14.23), and the assumption µ
λ ∈ ]0, 1] we get

u(α3) ≤ µ

λ
[u(b)]− +

c

|λ| ≤
µ

λ
m+

c

|λ| . (14.25)

The integration of (12.47) from α3 to tM and from α4 to tm, in view of
(12.2), (12.49), (12.59), (12.60), (14.22)–(14.25), results in

M − µ

λ
m− c

|λ| ≤M − u(α3) ≤

≤M

tM∫

α3

`0(1)(s)ds+m

tM∫

α3

`1(1)(s)ds+

tM∫

α3

q∗(s)ds,

m ≤M

tm∫

α4

`1(1)(s)ds+m

tm∫

α4

`0(1)(s)ds+

tm∫

α4

q∗(s)ds.

From the last two inequalities we obtain

M(1− C2) ≤ m
(
A2 +

µ

λ

)
+ ‖q∗‖L +

c

|λ| ,

m(1−D2) ≤MB2 + ‖q∗‖L,

(14.26)

where

A2 =

tM∫

α3

`1(1)(s)ds, B2 =

tm∫

α4

`1(1)(s)ds,

C2 =

tM∫

α3

`0(1)(s)ds, D2 =

tm∫

α4

`0(1)(s)ds.
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Due to Remark 14.1, ‖`0(1)‖L < 1, i.e., C2 < 1 and D2 < 1. By virtue of
(12.45), the inequalities (14.26) imply

0 < M(1− C2)(1−D2) ≤
(
A2 +

µ

λ

)
(MB2 + ‖q∗‖L) + ‖q∗‖L+

+
c

|λ| ≤M
(
A2 +

µ

λ

)
B2 + λ0(‖q∗‖L + c)

(
‖`1(1)‖L + 1 +

µ

λ

)
,

0 < m(1− C2)(1−D2) ≤ B2

(
m

(
A2 +

µ

λ

)
+ ‖q∗‖L +

c

|λ|
)

+

+‖q∗‖L ≤ m
(
A2 +

µ

λ

)
B2 + λ0(‖q∗‖L + c)

(
‖`1(1)‖L + 1 +

µ

λ

)
.

(14.27)

Obviously,

(1− C2)(1−D2) ≥ 1− (C2 +D2) ≥ 1− ‖`0(1)‖L > 0. (14.28)

If ‖`0(1)‖L ≥ 1− (µ
λ

)2, then, according to (14.1) and (14.2), we obtain
‖`1(1)‖L <

µ
λ . Hence, B2 <

µ
λ and

(
A2 +

µ

λ

)
B2 = A2B2 +

µ

λ
B2 ≤ µ

λ
(A2 +B2) ≤ µ

λ
‖`1(1)‖L.

By the last inequality, (14.1), (14.2), and (14.28), (14.27) implies (14.18),
where r0 is defined by (14.19). Therefore, on account of (12.59), (14.7),
(14.18), and (14.19), the estimate (11.15) is valid.

If ‖`0(1)‖L < 1− (µ
λ

)2, then by virtue of the inequality

(
A2 +

µ

λ

)
B2 ≤ 1

4

(
A2 +B2 +

µ

λ

)2
≤ 1

4

(
‖`1(1)‖L +

µ

λ

)2
,

(14.1), (14.2), and (14.28), (14.27) implies (14.20), where r1 is defined by
(14.21). Therefore, on account of (12.59), (14.7), (14.20), and (14.21), the
estimate (11.15) holds.

Lemma 14.2. Let |µ| ≤ |λ| and the operator ` admit the representation
` = `0 − `1, where `0, `1 ∈ Pab. If, moreover, the condition (14.3) holds,
then ` ∈ A2

(
λ, µ

)
.

Proof. Let q∗ ∈ L(
[a, b];R+

)
, c ∈ R+, and u ∈ C̃(

[a, b];R
)

satisfy (11.13)
and (11.14) for i = 2. Put

µ0 = max
{

1,
1
|µ|

}
. (14.29)
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We will show that (11.15) holds, where

r =
µ0(µ‖`0(1)‖L + λ+ µ)

µ− µ‖`1(1)‖L − λ‖`0(1)‖L
. (14.30)

Obviously, u satisfies (12.47), where q̃ is defined by (12.48). It is also
evident that the inequalities (12.96) and (12.97) hold.

First suppose that u does not change its sign. According to (7.1),
(12.97), and the assumption µ

λ ∈ ]0, 1], we obtain

|u(b)| ≤ c

|µ| . (14.31)

Choose t0 ∈ [a, b] such that (14.9) holds. Due to (12.2) and (12.96), (12.47)
implies

−|u(t)|′ ≤ ‖u‖C `1(1)(t) + q∗(t) for t ∈ [a, b]. (14.32)

The integration of (14.32) from t0 to b, on account of (12.2), (14.9), and
(14.31), results in

‖u‖C − c

|µ| ≤ ‖u‖C − |u(b)| ≤ ‖u‖C

b∫

t0

`1(1)(s)ds+

b∫

t0

q∗(s)ds ≤

≤ ‖u‖C‖`1(1)‖L + ‖q∗‖L.

Thus, in view of (14.29), the inequality

‖u‖C (1− ‖`1(1)‖L) ≤ c

|µ| + ‖q∗‖L ≤ µ0(c+ ‖q∗‖L)

holds and, consequently, on account of (7.1), (14.3), and (14.30), the esti-
mate (11.15) holds.

Now suppose that u changes its sign. Define numbers M and m by
(12.59) and choose tM , tm ∈ [a, b] such that (12.60) is fulfilled. Obviously,
M > 0, m > 0, and either (12.61) or (12.62) is valid.

First suppose that (12.62) holds. It is clear that there exists α1 ∈
]tM , tm[ such that

u(t) > 0 for tM ≤ t < α1, u(α1) = 0. (14.33)

Let
α2 = sup{t ∈ [tm, b] : u(s) < 0 for tm ≤ s ≤ t}.
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Obviously,

u(t) < 0 for tm ≤ t < α2, (14.34)

and

if α2 < b, then u(α2) = 0. (14.35)

From (7.1), (12.97), (14.34), and the assumption µ
λ ∈ ]0, 1] we obtain

u(α2) ≥ −λ
µ

[u(a)]+ − c

|µ| ≥ −λ
µ
M − c

|µ| . (14.36)

The integration of (12.47) from tM to α1 and from tm to α2, in view of
(12.2), (12.59), (12.60), (12.96), (14.33)–(14.36), implies

M ≤M

α1∫

tM

`1(1)(s)ds+m

α1∫

tM

`0(1)(s)ds+

α1∫

tM

q∗(s)ds,

m− λ

µ
M − c

|µ| ≤ m+ u(α2) ≤

≤M

α2∫

tm

`0(1)(s)ds+m

α2∫

tm

`1(1)(s)ds+

α2∫

tm

q∗(s)ds.

From the last two inequalities we get

M(1−A1) ≤ mC1 + ‖q∗‖L,

m(1−B1) ≤M

(
D1 +

λ

µ

)
+ ‖q∗‖L +

c

|µ| ,
(14.37)

where

A1 =

α1∫

tM

`1(1)(s)ds, B1 =

α2∫

tm

`1(1)(s)ds,

C1 =

α1∫

tM

`0(1)(s)ds, D1 =

α2∫

tm

`0(1)(s)ds.
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Due to (7.1) and (14.3), A1 < 1, B1 < 1. By virtue of (14.29), the inequal-
ities (14.37) imply

0 < M(1−A1)(1−B1) ≤ C1

(
M

(
D1 +

λ

µ

)
+ ‖q∗‖L +

c

|µ|
)

+

+‖q∗‖L ≤MC1

(
D1 +

λ

µ

)
+ µ0

(
‖`0(1)‖L + 1 +

λ

µ

)
(‖q∗‖L + c) ,

0 < m(1−A1)(1−B1) ≤
(
D1 +

λ

µ

)
(mC1 + ‖q∗‖L) + ‖q∗‖L+

+
c

|µ| ≤ mC1

(
D1 +

λ

µ

)
+ µ0

(
‖`0(1)‖L + 1 +

λ

µ

)
(‖q∗‖L + c) .

(14.38)

Obviously,

(1−A1)(1−B1) ≥ 1− (A1 +B1) ≥ 1− ‖`1(1)‖L > 0. (14.39)

According to (7.1), (14.3), and the assumption µ
λ ∈ ]0, 1], we get ‖`0(1)‖L <

λ
µ . Hence, C1 <

λ
µ and

C1

(
D1 +

λ

µ

)
= C1D1 +

λ

µ
C1 ≤ λ

µ
(C1 +D1) ≤ λ

µ
‖`0(1)‖L.

By the last inequality, (14.3), and (14.39), from (14.38) we get

M ≤ r0µ0 (µ‖`0(1)‖L + λ+ µ) (c+ ‖q∗‖L),

m ≤ r0µ0 (µ‖`0(1)‖L + λ+ µ) (c+ ‖q∗‖L),
(14.40)

where
r0 = (µ− µ‖`1(1)‖L − λ‖`0(1)‖L)−1. (14.41)

Therefore, on account of (12.59), (14.30), (14.40), and (14.41), the estimate
(11.15) holds.

Now suppose that (12.61) is valid. Obviously, there exists α3 ∈ ]tm, tM [
such that

u(t) < 0 for tm ≤ t < α3, u(α3) = 0. (14.42)

Let
α4 = sup{t ∈ [tM , b] : u(s) > 0 for tM ≤ s ≤ t}.

It is clear that
u(t) > 0 for tM ≤ t < α4, (14.43)
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and

if α4 < b, then u(α4) = 0. (14.44)

It follows from (7.1), (12.97), (14.43), and the assumption µ
λ ∈ ]0, 1] that

u(α4) ≤ λ

µ
[u(a)]− +

c

|µ| ≤
λ

µ
m+

c

|µ| . (14.45)

The integration of (12.47) from tm to α3 and from tM to α4, in view of
(12.2), (12.59), (12.60), (12.96), (14.42)–(14.45), yields

m ≤M

α3∫

tm

`0(1)(s)ds+m

α3∫

tm

`1(1)(s)ds+

α3∫

tm

q∗(s)ds,

M − λ

µ
m− c

|µ| ≤M − u(α4) ≤

≤M

α4∫

tM

`1(1)(s)ds+m

α4∫

tM

`0(1)(s)ds+

α4∫

tM

q∗(s)ds.

From the last two inequalities we get

m(1−A2) ≤MC2 + ‖q∗‖L,

M(1−B2) ≤ m

(
D2 +

λ

µ

)
+ ‖q∗‖L +

c

|µ| ,
(14.46)

where

A2 =

α3∫

tm

`1(1)(s)ds, B2 =

α4∫

tM

`1(1)(s)ds,

C2 =

α3∫

tm

`0(1)(s)ds, D2 =

α4∫

tM

`0(1)(s)ds.

Due to (7.1) and (14.3), A2 < 1 and B2 < 1. By virtue of (14.29), the
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inequalities (14.46) imply

0 < m(1−A2)(1−B2) ≤ C2

(
m

(
D2 +

λ

µ

)
+ ‖q∗‖L +

c

|µ|
)

+

+‖q∗‖L ≤ mC2

(
D2 +

λ

µ

)
+ µ0

(
‖`0(1)‖L + 1 +

λ

µ

)
(‖q∗‖L + c) ,

0 < M(1−A2)(1−B2) ≤
(
D2 +

λ

µ

)
(MC2 + ‖q∗‖L) + ‖q∗‖L+

+
c

|µ| ≤MC2

(
D2 +

λ

µ

)
+ µ0

(
‖`0(1)‖L + 1 +

λ

µ

)
(‖q∗‖L + c) .

(14.47)

Obviously,

(1−A2)(1−B2) ≥ 1− (A2 +B2) ≥ 1− ‖`1(1)‖L > 0. (14.48)

According to (7.1), (14.3), and the assumption µ
λ ∈ ]0, 1], we get ‖`0(1)‖L <

λ
µ . Hence, C2 <

λ
µ and

C2

(
D2 +

λ

µ

)
= C2D2 +

λ

µ
C2 ≤ λ

µ
(C2 +D2) ≤ λ

µ
‖`0(1)‖L.

By the last inequality, (14.3), and (14.48), (14.47) implies (14.40), where
r0 is defined by (14.41). Therefore, on account of (12.59), (14.30), (14.40),
and (14.41), the estimate (11.15) is valid.

Theorem 14.1 follows from Lemma 11.3 (see p. 195) and Lemma 14.1
(see p. 270). Theorem 14.2 follows from Lemma 11.3 (see p. 195) and
Lemma 14.2 (see p. 275). Theorem 14.3 follows from Lemma 11.4 (see
p. 196) and Lemma 14.1 (see p. 270). Theorem 14.4 follows from Lemma 11.4
(see p. 196) and Lemma 14.2 (see p. 275).

14.3. Comments and Examples

On Remark 14.1. Let |µ| ≤ |λ|. It is clear that if x0, y0 ∈ R+ and
(x0, y0) 6∈ U , then (x0, y0) belongs at least to one of the following sets:

U1 = {(x, y) ∈ R+ ×R+ : 1 < x} ,

U2 =
{

(x, y) ∈ R+ ×R+ : 1−
(µ
λ

)2
≤ x ≤ 1,

λ

µ
(1− x) ≤ y

}
,

U3 =
{

(x, y) ∈ R+ ×R+ : x < 1−
(µ
λ

)2
, 2
√

1− x− µ

λ
≤ y

}
.
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Let (x0, y0) ∈ U1 and let ε ∈ ]
0, µ

λ

[
be such that x0− ε ≥ 1. Put a = 0,

b = 4, t0 = 3 + ε
1+ε ,

p(t) =





0 for t ∈ [0, 1[
−y0 for t ∈ [1, 2[
x0 − 1− ε for t ∈ [2, 3[
1 + ε for t ∈ [3, 4]

, τ(t) =

{
t0 for t ∈ [0, 3[
4 for t ∈ [3, 4]

,

z(t) =

{
− µ−λε

µ−(µ−λε)t for t ∈ [0, 1[

0 for t ∈ [1, 4]
.

It is not difficult to verify that (12.204) holds and the problem (12.205) has
the nontrivial solution

u(t) =





−(µ− λε)t+ µ for t ∈ [0, 1[
λε for t ∈ [1, 3[
−λ(1 + ε)(t− 3) + λε for t ∈ [3, 4]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.1) and (12.3) are fulfilled, where `0, `1,
q, and c are defined by (12.207).

Let (x0, y0) ∈ U2. Put a = 0, b = 4,

p(t) =





0 for t ∈ [0, 1[
−λ

µ(1− x0) for t ∈ [1, 2[

x0 for t ∈ [2, 3[
λ
µ(1− x0)− y0 for t ∈ [3, 4]

, τ(t) =





0 for t ∈ [0, 2[
4 for t ∈ [2, 3[
1 for t ∈ [3, 4]

.

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





−v(t)|v(t)| for t ∈ [0, 1[
q0(t) for t ∈ [1, 2[
0 for t ∈ [2, 4]

,

where q0 ∈ L
(
[a, b];R

)
is such that

2∫

1

q0(s)ds ≥ 1 + y0 − λ

µ
(1− x0) . (14.49)
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We will show that the problem (10.1), (10.2) with F and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
`0, `1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.20) and
(12.211) hold. From (12.211) we get

u(1) =
u(0)

1 + |u(0)| , (14.50)

u(2) = u(1)− λ

µ
(1− x0)u(0) +

2∫

1

q0(s)ds , (14.51)

u(3) = u(2) + u(4)x0 , (14.52)

u(4) = u(3)−
(
y0 − λ

µ
(1− x0)

)
u(1) . (14.53)

The equalities (14.51)–(14.53), in view of (1.20) and (7.1), result in

2∫

1

q0(s)ds =
(
y0 − λ

µ
(1− x0)− 1

)
u(1).

Hence, the last equality, together with (14.50), implies

2∫

1

q0(s)ds =
(
y0 − λ

µ
(1− x0)− 1

)
u(0)

1 + |u(0)| ≤

≤
(
y0 − λ

µ
(1− x0) + 1

) |u(0)|
1 + |u(0)| < 1 + y0 − λ

µ
(1− x0) ,

which contradicts (14.49).
Let (x0, y0) ∈ U3. Put a = 0, b = 5,

p(t) =





µ
λ −

√
1− x0 for t ∈ [0, 1[

0 for t ∈ [1, 2[
−√1− x0 for t ∈ [2, 3[
x0 for t ∈ [3, 4[
2
√

1− x0 − µ
λ − y0 for t ∈ [4, 5]

,
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and

τ(t) =





5 for t ∈ [0, 2[ ∪ [3, 4[
1 for t ∈ [2, 3[
2 for t ∈ [4, 5]

.

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





0 for t ∈ [0, 1[ ∪ [2, 3[ ∪ [4, 5]
−v(t)|v(t)| for t ∈ [1, 2[
q0(t) for t ∈ [3, 4[

,

where q0 ∈ L
(
[a, b];R

)
is such that

2∫

1

q0(s)ds ≥ 1 + y0 +
µ

λ
− 2

√
1− x0 . (14.54)

We will show that the problem (10.1), (10.2) with F and h given by (12.209)
has no solution, while the conditions (12.1) and (12.3) are fulfilled, where
`0, `1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.20) and
(12.211) hold. From (12.211) we get

u(1) = u(0) +
(µ
λ
−√1− x0

)
u(5) , (14.55)

u(2) =
u(1)

1 + |u(1)| , (14.56)

u(3) = u(2)− u(1)
√

1− x0 , (14.57)

u(4) = u(3) + u(5)x0 +

4∫

3

q0(s)ds , (14.58)

u(5) = u(4)−
(
y0 +

µ

λ
− 2

√
1− x0

)
u(2) . (14.59)

The equalities (14.55) and (14.57)–(14.59), in view of (1.20) and (7.1), result
in

4∫

3

q0(s)ds =
(
y0 +

µ

λ
− 2

√
1− x0 − 1

)
u(2).
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Hence, the last equality, together with (14.56), implies

4∫

3

q0(s)ds =
(
y0 +

µ

λ
− 2

√
1− x0 − 1

) u(1)
1 + |u(1)| ≤

≤
(
y0 +

µ

λ
− 2

√
1− x0 + 1

) |u(1)|
1 + |u(1)| < 1 + y0 +

µ

λ
− 2

√
1− x0 ,

which contradicts (14.54).

On Remark 14.2. Let |µ| ≤ |λ|. It is clear that if x0, y0 ∈ R+ and
(x0, y0) 6∈ S, then (x0, y0) belongs at least to one of the following sets:

S1 =
{

(x, y) ∈ R+ ×R+ :
µ

λ
< x

}
,

S2 =
{

(x, y) ∈ R+ ×R+ : x ≤ µ

λ
, −λ

µ
x+ 1 ≤ y

}
.

Let (x0, y0) ∈ S1 and ε ∈ ]0, 1[ be such that x0 − µ
λ ≥ ε. Put a = 0,

b = 4, t0 = µ
µ+λε ,

p(t) =





µ
λ + ε for t ∈ [0, 1[
−y0 for t ∈ [1, 2[
x0 − µ

λ − ε for t ∈ [2, 3[
0 for t ∈ [3, 4]

,

z(t) =

{
0 for t ∈ [0, 3[

1−ε
(1−ε)(t−4)+1 for t ∈ [3, 4]

, τ(t) =

{
4 for t ∈ [0, 1[
t0 for t ∈ [1, 4]

.

It is not difficult to verify that (12.204) holds and the problem (12.205) has
the nontrivial solution

u(t) =





(µ+ λε)t− µ for t ∈ [0, 1[
λε for t ∈ [1, 3[
λ(1− ε)(t− 4) + λ for t ∈ [3, 4]

.

Then, by Remark 1.1 (see p. 14), there exist q0 ∈ L
(
[a, b];R

)
and c0 ∈ R

such that the problem (10.1), (10.2) with F and h given by (12.206) has no
solution, while the conditions (12.8) and (12.9) are fulfilled, where `0, `1,
q, and c are defined by (12.207).
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Let (x0, y0) ∈ S2. Put a = 0, b = 4,

p(t) =





x0 for t ∈ [0, 1[
λ
µ x0 − 1 for t ∈ [1, 2[

0 for t ∈ [2, 3[
1− y0 − λ

µ x0 for t ∈ [3, 4]

, τ(t) =

{
4 for t ∈ [0, 1[
0 for t ∈ [1, 4]

.

Obviously, (12.204) holds. Furthermore, define the operator G ∈ Kab by

G(v)(t) =





q0(t) for t ∈ [0, 1[
0 for t ∈ [1, 2[ ∪ [3, 4]
v(t)|v(t)| for t ∈ [2, 3[

,

where q0 ∈ L
(
[a, b];R

)
is such that

1∫

0

q0(s)ds ≥ 1 . (14.60)

We will show that the problem (10.1), (10.2) with F and h given by (12.209)
has no solution, while the conditions (12.8) and (12.9) are fulfilled, where
`0, `1, q, and c are defined by (12.210).

Indeed, suppose on the contrary that u is a solution of the problem
(10.1), (10.2) with F and h given by (12.209), i.e., the equalities (1.20) and
(12.211) hold. From (12.211) we get

u(1) = u(0) + u(4)x0 +

1∫

0

q0(s)ds , (14.61)

u(2) = u(1)−
(

1− λ

µ
x0

)
u(0) , (14.62)

u(2) =
u(3)

1 + |u(3)| . (14.63)

The equalities (14.61) and (14.62), in view of (1.20) and (7.1), result in

1∫

0

q0(s)ds = u(2).
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Hence, the last equality, together with (14.63), implies

1∫

0

q0(s)ds =
u(3)

1 + |u(3)| ≤
|u(3)|

1 + |u(3)| < 1 ,

which contradicts (14.60).



§15. Antiperiodic Type BVP for EDA

In this section, we will establish some consequences of the main results from
§14 for the equation with deviating arguments (10.1′). Here we will also
suppose that the inequality (7.1) is fulfilled.

In what follows we will use the notation

p0(t) =
m∑

j=1

pj(t), g0(t) =
m∑

j=1

gj(t) for t ∈ [a, b]

and we will suppose that the function q ∈ K(
[a, b]×R+;R+

)
is nondecreas-

ing in the second argument and satisfies (10.5), i.e.,

lim
x→+∞

1
x

b∫

a

q(s, x)ds = 0.

15.1. Existence and Uniqueness Theorems

In the case, where |µ| ≤ |λ|, the following statements hold.

Theorem 15.1. Let |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), c ∈

R+, the condition (12.1) be fulfilled, and let on the set [a, b] × Rn+1 the
inequality (13.1) hold. If, moreover,

‖g0‖L < γ(λ, µ), (15.1)

where

γ(λ, µ) =

{
−µ

λ + 2
√

1− ‖p0‖L if ‖p0‖L < 1− (µ
λ

)2

λ
µ (1− ‖p0‖L) if ‖p0‖L ≥ 1− (µ

λ

)2 , (15.2)

then the problem (10.1′), (10.2) has at least one solution.

Remark 15.1. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (15.1) cannot be
replaced by the nonstrict one.
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Theorem 15.2. Let |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), c ∈

R+, the condition (12.8) be fulfilled, and let on the set [a, b] × Rn+1 the
inequality (13.6) hold. If, moreover,

b∫

a

p0(s)ds+
µ

λ

b∫

a

g0(s)ds <
µ

λ
, (15.3)

then the problem (10.1′), (10.2) has at least one solution.

Remark 15.2. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (15.3) cannot be
replaced by the nonstrict one.

In Theorems 15.3 and 15.4, the conditions guaranteeing the unique solv-
ability of the problem (10.1′), (10.2) are established.

Theorem 15.3. Let |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.24) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.18) hold. If, moreover, (15.1) is fulfilled, where γ is defined by (15.2),
then the problem (10.1′), (10.2) is uniquely solvable.

Remark 15.3. The examples constructed in Subsection 14.3 (see On Re-
mark 14.1, p. 280) also show that the strict inequality (15.1) cannot be
replaced by the nonstrict one.

Theorem 15.4. Let |µ| ≤ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.26) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.19) hold. If, moreover, the inequality (15.3) is fulfilled, then the problem
(10.1′), (10.2) is uniquely solvable.

Remark 15.4. The examples constructed in Subsection 14.3 (see On Re-
mark 14.2, p. 284) also show that the strict inequality (15.3) cannot be
replaced by the nonstrict one.

In the case, where |µ| ≥ |λ|, the following assertions hold.

Theorem 15.5. Let |µ| ≥ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.8) be fulfilled and let on the set [a, b] × Rn+1 the inequality
(13.6) hold. If, moreover,

‖p0‖L < δ(λ, µ), (15.4)
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where

δ(λ, µ) =




−λ

µ + 2
√

1− ‖g0‖L if ‖g0‖L < 1−
(

λ
µ

)2

µ
λ (1− ‖g0‖L) if ‖g0‖L ≥ 1−

(
λ
µ

)2 , (15.5)

then the problem (10.1′), (10.2) has at least one solution.

Theorem 15.6. Let |µ| ≥ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.1) be fulfilled, and let on the set [a, b] × Rn+1 the inequality
(13.1) hold. If, moreover,

b∫

a

g0(s)ds+
λ

µ

b∫

a

p0(s)ds <
λ

µ
, (15.6)

then the problem (10.1′), (10.2) has at least one solution.

In Theorems 15.7 and 15.8, the conditions guaranteeing the unique solv-
ability of the problem (10.1′), (10.2) are established.

Theorem 15.7. Let |µ| ≥ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.26) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.19) hold. If, moreover, (15.4) is fulfilled, where δ is defined by (15.5),
then the problem (10.1′), (10.2) is uniquely solvable.

Theorem 15.8. Let |µ| ≥ |λ|, pk, gk ∈ L
(
[a, b];R+

)
(k = 1, . . . ,m), the

condition (12.24) be fulfilled, and let on the set [a, b]×Rn+1 the inequality
(13.18) hold. If, moreover, the inequality (15.6) is fulfilled, then the problem
(10.1′), (10.2) is uniquely solvable.

Remark 15.5. According to Remark 12.14 (see p. 211), Theorems 15.5–
15.8 can be derived from Theorems 15.1–15.4. Moreover, by virtue of Re-
marks 15.1–15.4, Theorems 15.5–15.8 are nonimprovable in an appropriate
sense.

15.2. Proofs

Proof of Theorem 15.1. Obviously, the conditions (13.1), (15.1), and
(15.2) yield the conditions (12.3), (14.1), and (14.2), where F , `0, and `1
are defined by (13.35). Consequently, the assumptions of Theorem 14.1
(see p. 266) are fulfilled.
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Proof of Theorem 15.2. Similarly to the proof of Theorem 15.1 one can
show that the assumptions of Theorem 14.2 (see p. 267) are satisfied.

Proof of Theorem 15.3. Obviously, the conditions (13.18), (15.1), and
(15.2) yield the conditions (12.25), (14.1), and (14.2), where F , `0, and `1
are defined by (13.35). Consequently, the assumptions of Theorem 14.3
(see p. 269) are fulfilled.

Proof of Theorem 15.4. Similarly to the proof of Theorem 15.3 one can
show that the assumptions of Theorem 14.4 (see p. 269) are satisfied.



Suplementary Remarks

The main ideas of the results presented in Chapter II can be found in
[23,25,28,29], where the special case of the boundary condition (10.2) with
λ = 1 is considered.

Theorems 12.1, 12.3, 12.7, and 12.9 are proved in [25], Theorems 12.4
and 12.10 are proved in [29], Theorems 12.5 and 12.11 are proved in [28],
and Theorems 14.1–14.4 one can find in [23].
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