
Qp SPACES FOR WEIGHTED MÖBIUS ACTIONS

MIROSLAV ENGLIŠ

Abstract. We extend the classical theory of Qp-spaces of Aulaskari, Xiao and
Zhao in two directions: first, by considering more general construction of such
spaces; and second, by considering invariance with respect to weighted Möbius
actions. In addition, related results for the associated Bloch-type spaces are
also established.

1. Introduction

Let D be the unit disc in the complex plane C. For −∞ < p < ∞, a holomorphic
function f is said to belong to the space Qp if

(1) sup
x∈D

∫

D

|f ′(z)|2
(
1−

∣∣∣ x− z

1− xz

∣∣∣
2)p

dz < ∞,

the square root of the last quantity being, by definition, the (semi)norm in Qp.
Here dz denotes the Lebesgue area measure. Since any Möbius map φ (i.e. biholo-

morphic self-map of D) is of the form φ(z) = ε
x− z

1− xz
, with |ε| = 1 and x ∈ D,

the quantity (1) can be rewritten as

(2)

sup
φ∈Aut(D)

∫

D

|f ′(z)|2 (1− |φ(z)|2)p dz

= sup
φ∈Aut(D)

∫

D

∆|f |2(z) (1− |φ(z)|2)p dz

= sup
φ∈Aut(D)

∫

D

(∆̃|f |2)(z) (1− |φ(z)|2)p dµ(z)

= sup
φ∈Aut(D)

∫

D

∆̃|f ◦ φ(z)|2 (1− |z|2)p dµ(z),

= sup
φ∈Aut(D)

∫

D

∆|f ◦ φ(z)|2 (1− |z|2)p dz,

= sup
φ∈Aut(D)

∫

D

|(f ◦ φ)′(z)|2 (1− |z|2)p dz,

where ∆̃ = (1 − |z|2)2 ∂2

∂z∂z
and dµ(z) =

dz

(1− |z|2)2 are the Aut(D)-invariant

Laplacian and the Aut(D)-invariant measure on D, respectively, and Aut(D) stands
for the group of all Möbius maps. (Note that we are using the normalization ∆ = ∂∂
for the Euclidean Laplacian, which differs from the usual one by a factor of 4.) From
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2 M. ENGLIŠ

the last formula it is apparent that f ∈ Qp implies f ◦ φ ∈ Qp and f and f ◦ φ
have the same norm in Qp, for all φ ∈ Aut(D). That is, the space Qp is Möbius
invariant under the unweighted composition

(3) f 7→ f ◦ φ, φ ∈ Aut(D).

The spaces Qp were introduced in 1995 by Aulaskari, Xiao and Zhao [AXZ], who
showed that

(4)

p > 1 =⇒ Qp = B, the Bloch space,
p = 1 =⇒ Qp = BMOA,

0 ≤ p1 < p2 ≤ 1 =⇒ Qp1 ( Qp2 ,

p = 0 =⇒ Qp = D, the Dirichlet space,

p < 0 =⇒ Qp = {constants}.
Thus the Qp spaces provide a whole range of Möbius-invariant function spaces on
D lying strictly between the Dirichlet space on the one hand, and BMOA and the
Bloch space

B = {f holomorphic on D : sup
z∈D

(1− |z|2)|f ′(z)| < ∞}

on the other hand.
The Qp spaces subsequently attracted a lot of attention; see e.g. the book by

Xiao [Xiao] and the references therein. They were generalized to the unit ball
Bd ⊂ Cd in 1998 by Ouyang, Yang and Zhao [OYZ], and, more recently, to bounded
symmetric domains in Cn by Arazy and the author [AE]. Other generalizations
include the spaces QK of Wulan, Essen and Zhu [EW] [WuZh], where (1−| x−z

1−xz |2)p

in (1) is replaced by K(− log | x−z
1−xz |) with a more general function K; the spaces

F (p, q, s), 0 < p < ∞, −2 < q < ∞, 0 ≤ s < ∞ of Zhao [Zhao] and Rättyä [Ratt],
consisting of holomorphic functions f on D satisfying

(5) sup
φ∈Aut(D)

∫

D

|f ′(z)|p(1− |z|2)q(1− |φ(z)|2)s dz < ∞;

and the spaces Q(n, p, α), 0 < p < ∞, −1 < α < ∞, of Zhu [Zhu1], consisting of
holomorphic functions f on D satisfying

(6) sup
φ∈Aut(D)

∫

D

|(f ◦ φ)(n)(z)|p(1− |z|2)α dz < ∞.

The spaces Q(n, p, α) are again, by their very definition, Möbius invariant under
the unweighted composition (3), and in fact Q(1, 2, p) = Qp by the last line of (2).
The spaces F (p, q, s) are invariant if p = q + 2, but not in general (however, see
further below); and similarly, F (2, 0, p) = Qp.

In this paper, we extend all the above in two directions: first, we consider Möbius
invariance under the weighted action

(7) U
(λ)
φ : f 7→ f ◦ φ · (φ′)λ/2, λ ∈ R,

which reduces to (3) for λ = 0; and second, we consider a more general construction
of the corresponding Qp-type spaces.

The weighted actions (7) have been around and of interest from the point of
view of automorphic forms (see e.g. the book by Kra [Kra]) and also represent
the simplest example of holomorphic discrete series representations of semisimple
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Lie groups (for λ > 1) and their analytic continuation (for λ > 0); see Rossi and
Vergne [RoVe] (cf. also Section 5 below). It turns out that the case when λ is a
nonpositive integer are somewhat special, in that the space P≤−λ of polynomials
of degree not exceeding −λ is invariant under the action (7), and is thus most of
the time trivially contained in the spaces that we consider.

We pause to note that, although the spaces F (p, q, s) — as mentioned above —
are not in general Möbius invariant under the unweighted action (3), it turns out
that the space of first derivatives of F (p, q, s) functions,

(8)
E(p, q, s) := {f ′ : f ∈ F (p, q, s)}

= {f ∈ H(D) : sup
φ∈Aut(D)

∫

D

|f(z)|p(1− |z|2)q(1− |φ(z)|2)s dz < ∞}

is invariant under the weighted action (7) where λ = 2 q+2
p > 0; see (4.1) and

Proposition 4.3 in [Zhao]. Cf. also the comment after Theorem 8 below.
As for the construction of our Q-type spaces, consider, quite generally, a map

q from the Frechet space H(D) of holomorphic functions on D into the interval
[0, +∞] with the following properties:

(i) there exists C > 0 such that for all f, g ∈ H(D), Cq[f + g] ≤ q[f ] + q[g];
(ii) there exists p > 0 such that for all f ∈ H(D) and c ∈ C, q[cf ] = |c|pq[f ]

(with 0.(+∞) = 0).

Let Q
(λ)
[q] be the space of all f ∈ H(D) such that

(9) ‖f‖(λ)
[q] := sup

φ∈Aut(D)

q[U (λ)
φ f ]1/p < ∞.

Then Q
(λ)
[q] is a vector space and ‖ · ‖(λ)

[q] is a (quasi-)seminorm on Q
(λ)
[q] .

It should be noted that there is some ambiguity in the definition (7), connected
with the choice of the branch of the power of φ′; strictly speaking, when λ/2 is
not an integer, one should define U

(λ)
φ for φ not in Aut(D) but in its universal

cover Ãut(D). However, since (ii) implies

(10) q[εf ] = q[f ] wheneverε ∈ C, |ε| = 1,

the choice of power plays no role and can thus be ignored.
As examples of the quantities q in (9), we have the following.

Example 1. q[f ] = |f (k)(0)|, where k is a nonnegative integer. The corresponding
space Q

(λ)
[q] will be denoted by E(λ)

k :

E(λ)
k := {f ∈ H(D) : sup

φ∈Aut(D)

|(U (λ)
φ f)(k)(0)| < ∞},

and called the (k, λ)-Bloch space. For λ = 0, E(0)
1 is the ordinary Bloch space, and

one can show that E(0)
k = E(0)

1 for all k ≥ 1. For k = 0, E(0)
0 = H∞, the space of

bounded analytic functions.

Example 2. q[f ] =
∫
D
|f (k)|p dµρ, where p > 0, k is a nonnegative integer, and

dµρ, ρ ∈ R, is the measure

dµρ(z) = (1− |z|2)ρ dz,
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with dz the Lebesgue area measure normalized so that D has total mass 1. For λ =
0, the corresponding spaces Q

(0)
[q] coincide with Zhu’s spaces Q(k, p, ρ).

Note that for p = 2, one has |f (k)|2 = ∆k|f |2, so the corresponding spaces are

(11) Q
(λ)
k,ρ := {f ∈ H(D) : ‖f‖2k,ρ := sup

φ∈Aut(D)

∫

D

∆k|U (λ)
φ f |2 dµρ < ∞},

which reduce to the Qρ from (1) for λ = 0, k = 1.

The last example, as well as (6), are generalizations of the last two lines in (2);
the next example is about a generalization of the third line from the bottom in (2).
Consider, quite generally, a constant coefficient linear differential operator L on C
which is invariant under rotations, i.e.

(12) L(fε) = (Lf)ε, ∀ε ∈ C, |ε| = 1,

where
fε(z) := f(εz).

Then the (linear) differential operator L̃ on D defined by

(13) (L̃f)(φ(0)) := (1− |φ(0)|2)−λ(L(V (λ)
φ f))(0)

is invariant under the action

(14) V
(λ)
φ : f 7→ f ◦ φ · |φ′|λ, φ ∈ Aut(D).

(Thus L̃ depends also on λ, though this is not reflected by the notation.) Indeed,
(13) precisely says that (V (λ)

φ L̃f)(0) = (LV
(λ)
φ f)(0), and it follows from the com-

position law
V

(λ)
φ V

(λ)
ψ = V

(λ)
ψ◦φ

that

(15) V
(λ)
φ L̃ = L̃V

(λ)
φ , ∀φ ∈ Aut(D).

Note also that, thanks to (12), the right-hand side of (13) remains unchanged when
φ is replaced by φε, |ε| = 1, so that it indeed does not depend on φ but only on φ(0).

Taking in particular for L the power ∆k of the Laplacian, we get the invariant
differential operators ∆̃k, k = 0, 1, 2, . . . , on D. Note that for f holomorphic,

(16) V
(λ)
φ |f |p = |U (2λ/p)

φ f |p,
thus, in particular, for any a ∈ D and φ ∈ Aut(D) with φ(0) = a,

(17) (∆̃k|f |p)(a) = (1− |a|2)−λ|(U (2λ/p)
φ f)(k)(0)|p ≥ 0

for any f holomorphic, and the following definition of q therefore makes sense.

Example 3. q[f ] =
∫
D

∆̃k|f |p dµρ−2, where p > 0, k is a nonnegative integer, and
ρ ∈ R. In particular, for p = 2, the corresponding Q spaces are

(18) Q̃
(λ)
k,ρ := {f ∈ H(D) : ‖f‖2fk,ρ

:= sup
φ∈Aut(D)

∫

D

∆̃k|U (λ)
φ f |2 dµρ−2 < ∞}.

For λ = 0 and k = 1, ∆̃ is just the invariant Laplacian (1− |z|2)2∆, so Q̃
(0)f1,ρ

= Q
(0)
1,ρ

(= Qρ). (This equality, of course, was the reason for the change from dµρ in (11)
to dµρ−2 in (18).)
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It is immediate from the definitions that

ρ1 ≤ ρ2 =⇒ Q
(λ)
k,ρ1

⊂ Q
(λ)
k,ρ2

, Q̃
(λ)
k,ρ1

⊂ Q̃
(λ)
k,ρ2

.

Example 4. q[f ] =
∫
D

∆|f |2(z) K(− log |z|) dz, where K : [0,∞) → [0,∞) is a
nondecreasing function, not identically zero. For λ = 0, the corresponding Q-space
coincides with the QK from [WuZh].

More generally we can take

q[f ] =
∫

D

∆k|f |2(z)K(− log |z|) dz,

or

q[f ] =
∫

D

∆̃k|f |2(z)K(− log |z|) dz,

with k a nonnegative integer, and get the corresponding Q-spaces Q
(λ)
k,K and Q̃

(λ)
k,K ,

respectively.

For p = 2, the last four examples turn out to be just special cases of the follow-
ing one. Assume that in addition to (i) and (ii) above, q in addition satisfies

(iii) C = 1, p = 2 and q[f ] satisfies the parallelogram law

q[f + g] + q[f − g] = 2(q[f ] + q[g]);

(iv) q[fε] = q[f ], for all ε ∈ C, |ε| = 1.

Then, by (iii), the set {f ∈ H(D) : q[f ] < ∞} becomes a (semi-definite) inner prod-
uct space under the inner product obtained by polarizing q[f ]; in an appropriate
sense, it is therefore given in terms of the Taylor coefficients fj of f by

q[f ] =
∞∑

j,k=0

qjkfjfk, f(z) =
∞∑

j=0

fjz
j ,

with some positive-semidefinite matrix {qjk}. The condition (iv) then implies that
qjk = 0 for j 6= k. Thus q[f ] =

∑
j sj |fj |2, with sj = qjj , and sj = +∞ interpreted

to mean that q[f ] < ∞ only if fj = 0. Heuristically, this is our motivation for the
next example.

Example 5. Let s = (s0, s1, s2, . . . ) be a sequence of numbers sj ∈ [0,+∞], and
set q[f ] =

∑
j sj |fj |2 (with sj |0|2 interpreted as 0 if sj = +∞), where fj are the

Taylor coefficients of f . Thus the corresponding Q-space is

Q(λ)
s := {f ∈ H(D) : ‖f‖2s := sup

φ∈Aut(D)

∑

j

sj |(U (λ)
φ f)j |2 < ∞}.

Plainly the spaces E(λ)
k correspond to s = ek, the sequence with sk = 1 and

sj = 0 ∀j 6= k. We will identify the sequences s corresponding to the spaces Q̃
(λ)
k,ρ

and Q
(λ)
k,ρ in Sections 3 and 4 below, respectively.

We will write s . s′ if there exists a finite constant c > 0 such that sj ≤ cs′j for
all j, and s ³ s′ if s . s′ and s′ . s. Again, clearly

(19) s . s′ =⇒ Q
(λ)
s′ ↪→ Q(λ)

s ,

and s ³ s′ implies that Q
(λ)
s = Q

(λ)
s′ , with equivalent norms.
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Our main results are the following. For k a nonnegative integer and ν ∈ R,
we introduce the sequence

(20) s[k, ν] = {sj} where sj =

{
0 if j < k,

(j + 1)ν if j ≥ k,

and we denote by Q
(λ)
s[k,ν] the corresponding space Q

(λ)
s . Finally, denote

L∞,ν
hol (D) = {f ∈ H(D) : sup

z∈D
(1− |z|2)ν |f(z)| < ∞}.

Note that L∞,ν
hol (D) = {0} for ν < 0, by the maximum principle.

Theorem 6. (i) If −λ is not a nonnegative integer, then E(λ)
k = L

∞,λ/2
hol (D)

for all k = 0, 1, 2, . . . .
(ii) If −λ = m is a nonnegative integer, then

E(λ)
k = L

∞,λ/2
hol (D) for k = 0, 1, . . . , m,

E(λ)
k = E(λ)

m+1 for k > m,

and

E(λ)
m+1 = {f ∈ H(D) : f (m/2) ∈ B} for m even,(21)

E(λ)
m+1 = {f ∈ H(D) : f ( m−1

2 ) ∈ B1/2} for m odd,(22)

with equivalent norms.

Here Bα, 0 < α ≤ 1, denotes the weighted Bloch space

Bα = {f ∈ H(D) : sup
z∈D

(1− |z|2)α|f ′(z)| < ∞},

and B = B1 is the ordinary Bloch space.

Theorem 7. For −λ not a nonnegative integer,

(i) Q̃
(λ)
k,ρ = {0} if ρ ≤ 1 or ρ < λ,

(ii) Q̃
(λ)
k,ρ = L

∞,λ/2
hol (D) of ρ > max(1, 1 + λ),

(iii) for ρ > 1 and λ ≤ ρ ≤ λ + 1, the spaces Q̃
(λ)
k,ρ are strictly increasing with ρ;

in fact (cf. (8)), Q̃
(λ)
k,ρ = E(2, λ− 2, ρ− λ),

(iv) Q̃
(λ)
k,ρ = Q

(λ)
s[0,1−ρ] for ρ > 1.

Thus (ii)-(iii) also give a description of Q
(λ)
s[0,ν] for ν < 0.

Theorem 8. For −λ = m a nonnegative integer,

(i) Q̃
(λ)
k,ρ = {0} if k ≤ m and ρ ≤ 1,

(ii) Q̃
(λ)
k,ρ = L

∞,λ/2
hol (D) if k ≤ m and ρ > 1,

(iii) Q̃
(λ)
k,ρ = P≤m trivially (i.e. with seminorm identically zero) if k > m and

ρ < −m,
(iv) Q̃

(λ)
k,ρ = E(λ)

m+1 if k > m and ρ > −m + 1,

(v) for k > m and −m ≤ ρ ≤ −m + 1, the spaces Q̃
(λ)
k,ρ are strictly increasing

with ρ; in fact,

f ∈ Q̃
(λ)
k,ρ ⇐⇒ f (m) ∈ F (2,m, ρ + m),
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(vi) Q̃
(λ)
k,ρ = Q

(λ)
s[m+1,1−ρ] for ρ > −2m− 1.

Note that (iv) implies that the space of m-th primitives of F (2, m, s), 0 ≤ s ≤ 1,
is Möbius invariant under (7) with λ = −m; this seems not to have been noticed in
the literature.

For λ ∈ C and k a nonnegative integer, denote by

(λ)k := λ(λ + 1) . . . (λ + k − 1), (λ)0 := 1,

the Pochhammer symbol (raising factorial). Thus −λ ∈ {0, 1, . . . , k−1} is precisely
equivalent to (λ)k = 0.

Theorem 9. (i) If (λ)k 6= 0 and λ < 0, then Q
(λ)
k,ρ = {0} for all ρ.

(ii) Q
(λ)
k,ρ = E(λ)

k for ρ > 2k − 1 + λ.

(iii) If (λ)k = 0, then Q
(λ)
k,ρ = P≤−λ trivially for ρ < 2k + λ− 2.

(iv) If (λ)k 6= 0, then Q
(λ)
k,ρ = {0} for ρ < 2k + λ− 2.

(v) If (λ)k = 0 and 2k+λ−2 ≤ ρ ≤ 2k+λ−1, then Q
(λ)
k,ρ are strictly increasing

with ρ; in fact, Q
(λ)
k,ρ = Q̃

(λ)
k,ρ−2k+2 are described by the preceding theorem.

(vi) If (λ)k 6= 0, λ ≥ 0 and ρ ∈ (2k− 1,∞)∩ [2k + λ− 2, 2k + λ− 1], then Q
(λ)
k,ρ

are strictly increasing with ρ; in fact, Q
(λ)
k,ρ = Q̃

(λ)
k,ρ−2k+2 are described by

the two preceding theorems.
(vii) Q

(λ)
k,ρ = Q

(λ)
s[k,2k−ρ−1] for ρ > −1. Also,

(23) Q
(λ)
s[k,2k−ρ−1] =

{
Q

(λ)
s[0,2k−ρ−1] if(λ)k 6= 0,

Q
(λ)
s[1−λ,2k−ρ−1] if (λ)k = 0.

The only case left out in the last theorem thus is (λ)k 6= 0, λ ≥ 0 and 2k+λ−2 ≤
ρ ≤ 2k − 1 where k ≥ 1. (For k = 0, we have straight from their definition
Q

(λ)
k,ρ = Q̃

(λ)
k,ρ+2, which are described by the previous two theorems.)

The proofs of Theorems 6–8 are given in Section 3, after fixing some preliminaries
in Section 2. The proof of Theorem 9 is given in Section 4. Some final remarks and
comments are collected in the last section, Section 5.

Notation. Recall that any φ ∈ Aut(D) can be written as φ(z) = ε a−z
1−az with

|ε| = 1 and a ∈ D. We use the shorthand

φa(z) :=
a− z

1− az

for the Möbius map interchanging 0 and a, and abbreviate U
(λ)
φa

just to U
(λ)
a . Simi-

larly, the rotation z 7→ εz will be denoted by U
(λ)
ε . For convenience, we also fix the

choice of the branches of the powers of φ′ in (7) as follows:

U (λ)
ε : f 7→ fε, U (λ)

a : f 7→ f ◦ φa · (1− |a|2)λ/2

(1− az)λ
,

with the principal branch of (1−z)λ, z ∈ D. The symbol N = {0, 1, 2, . . . } denotes
the set of all nonnegative integers, and T = {z ∈ C : |z| = 1} the unit circle.
For f ∈ H(D), (f)j or just fj denotes the j-th Taylor coefficient of f (so that
f(z) =

∑∞
j=0 fjz

j). The symbols Pm and P≤m denote the space of polynomials
on D of degree equal to m and not exceeding m, respectively. Finally, we fix
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the weight parameter λ from now on, and write only Uφ, Vφ, Ek, Qk,ρ, Q̃k,ρ etc. for
U

(λ)
φ , V

(λ)
φ , E(λ)

k , Q
(λ)
k,ρ, Q̃

(λ)
k,ρ, etc., respectively.

2. Preliminaries

The following proposition is common knowledge, but we include a proof for
completeness.

Proposition 10. (i) For ν > −1, there exists a finite constant cν such that

(24) sup
z∈D

(1− |z|2)ν+1|f ′(z)| ≤ cν sup
z∈D

(1− |z|2)ν |f(z)|

for all f ∈ H(D).
(ii) For ν > 0,

(25) sup
z∈D

(1− |z|2)ν |f(z)− f(0)| ≤ 2ν

ν
sup
z∈D

(1− |z|2)ν+1|f ′(z)|

for all f ∈ H(D).

Proof. (i) If the supremum on the right-hand side of (24) is finite, then f ∈
L1

hol(D, dµν), so by the reproducing property of the weighted Bergman kernel [Zhu2,
Proposition 4.23],

f(z) = (ν + 1)
∫

D

f(w)
(1− zw)ν+2

dµν(w).

Differentiating under the integral sign gives

f ′(z) = (ν + 1)(ν + 2)
∫

D

wf(w)(1− |w|2)ν

(1− zw)ν+3
dw

so

|f ′(z)| ≤ (ν + 1)(ν + 2)
(

sup
w∈D

(1− |w|2)ν |f(w)|
) ∫

D

dw

|1− zw|ν+3
.

By the classical Forelli-Rudin estimates [Zhu2, Lemma 3.10], the last integral is
majorized by (1− |z|2)−ν−1, and the claim follows.

(ii) Denoting the supremum on the right-hand side by c, we have

|f(z)− f(0)| =
∣∣∣
∮

[0,z]

f ′
∣∣∣ ≤ c

∫ |z|

0

dt

(1− t2)ν+1

≤ c

∫ |z|

0

dt

(1− t)ν+1
=

c

ν

[ 1
(1− |z|)ν

− 1
]
≤ c2ν/ν

(1− |z|2)ν
.

¤

For λ = 0, the next proposition yields a more precise version of Lemma 1
from [Zhu1] (with the constants explicitly evaluated).

Proposition 11. For f ∈ H(D),

(26) (Uaf)(k)(z) = (−1)k
k∑

j=0

(1− |a|2)λ
2 +jf (j)(φa(z))

(−a)k−j(λ + j)k−j

(1− az)k+j+λ

(
k

j

)
.
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Proof. Pulling out the factor (1−|a|2)λ/2, we will prove a more general formula for

Ik,λ[f ] :=
(
f
( a− z

1− bz

)
(1− bz)−λ

)(k)

;

the claim will then follow just by taking b = a. By the Leibniz rule,

I1,λ[f ] = −f ′
( a− z

1− bz

) 1− ba

(1− bz)λ+2
+ f

( a− z

1− bz

) λb

(1− bz)λ+1
.

Taking k-th derivative on both sides yields

Ik+1,λ[f ] = −(1− ba)Ik,λ+2[f ′] + λbIk,λ+1[f ].

From this recurrence formula, together with I0,λ[f ] = f( a−z
1−bz )(1− bz)−λ, we get by

induction

Ik,λ[f ] = (−1)k
k∑

j=0

(1− ba)jf (j)
( a− z

1− bz

) (−b)k−j

(1− bz)k+j+λ
pjk(λ),

with some polynomials pjk(λ) in λ. To evaluate the latter, we take f(z) = zm (with
0 ≤ m ≤ k), a = 0 and evaluate at z = 0. The right-hand side of the last formula
then reduces to (−1)km!(−b)k−mpmk(λ), while the left-hand side is

(( −z

1− bz

)m

(1− bz)−λ
)(k)∣∣∣

z=0
=

( (−z)m

(1− bz)m+λ

)(k)∣∣∣
z=0

=
( ∞∑

j=0

(−1)m(m + λ)j

j!
bjzm+j

)(k)∣∣∣
z=0

= (−1)m (m + λ)k−m

(k −m)!
k!bk−m.

It follows that pkm(λ) = (m + λ)k−m

(
k
m

)
, proving the assertion. ¤

Setting z = 0 in the last proposition, we get in particular

(27) (Uaf)(k)(0) = (−1)k
k∑

j=0

(1− |a|2)λ
2 +jf (j)(a)(−a)k−j(λ + j)k−j

(
k

j

)

for f ∈ H(D). Together with (16) (with p = 2) and (13), this yields also a formula
for the weighted invariant k-Laplacians ∆̃k.

Corollary 12. We have

∆̃k =
k∑

j,l=0

(1− |z|2)j+l(−z)k−j(−z)k−l(λ + j)k−j(λ + l)k−l

(
k

j

)(
k

l

)
∂j∂l.

For λ = 0 and k = 1, this of course recovers the formula ∆̃ = (1 − |z|2)2∆ for
the unweighted invariant Laplacian on D.

Note that if −λ = m ∈ N and k > m, then (λ+ j)k−j = 0 for all j ≤ m; we thus
get another consequence of the last proposition.

Corollary 13. If −λ = m ∈ N, then the space P≤m of polynomials of degree not
exceeding m is invariant under Uφ, φ ∈ Aut(D). Also, ∆̃k|f |2 ≡ 0 for any f ∈ P≤m

and k > m.

Proof. By (26), (Uφf)(k) ≡ 0 for f ∈ P≤m and k > m. ¤
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Next we turn to the behavior of the measures dµρ under Uφ.

Proposition 14. For ρ ∈ R and F nonnegative measurable,

(28)
∫

D

VφF dµρ =
∫

F |(φ−1)′|2−λ+ρ dµρ.

In particular, the measure dµλ−2 is invariant under Vφ.

Proof. Denoting temporarily φ−1 =: ψ, and noting (by the chain rule) that φ′ ◦ψ ·
ψ′ ≡ 1, we have by the change of variable z 7→ ψ(z)

∫

D

VφF dµρ =
∫

D

F ◦ φ · |φ′|λ (1− |z|2)ρ dz

=
∫

D

F |φ′ ◦ ψ|λ(1− |ψ|2)ρ|ψ′|2 dz

=
∫

D

F |ψ′|2−λ(1− |ψ|2)ρ dz =
∫

D

F |ψ′|2−λ+ρ dµρ,

since 1− |ψ|2 = (1− |z|2)|ψ′| for any ψ ∈ Aut(D). ¤

As a corollary, we have for any f ∈ H(D), using (15),

(29)

∫

D

∆̃k|Uφf |2 dµλ−2 =
∫

D

∆̃kVφ|f |2 dµλ−2 =
∫

D

Vφ∆̃k|f |2 dµλ−2

=
∫

D

∆̃k|f |2 dµλ−2.

The space of all f ∈ H(D) for which the last integral is finite — that is, Q̃k,λ —
is therefore a (higher-order) Möbius invariant Dirichlet space.

The next proposition gives a rigorous version of the heuristic argument in the
paragraph before Example 5 in the Introduction, which applies, in particular, to all
our spaces Qk,ρ, Q̃k,ρ, Qk,K and Q̃k,K .

Proposition 15. Let L be a rotation-invariant linear differential operator on D
such that L|f |2 ≥ 0 ∀f ∈ H(D), dµ a rotation invariant measure on D, and set

q[f ] =
∫

D

L|f |2 dµ.

Then the corresponding Q-space equals Qs for the sequence given by

(30) sj =
∫

D

L|zj |2 dµ.

Proof. Expanding f into the Taylor series, we get by uniform convergence, for any
0 < r < 1, ∫

rD

L|f |2 dµ =
∑

j,k

fjfk

∫

rD

L(zjzk) dµ.

Since both L and dµ are rotation invariant, the last integral vanishes for j 6= k.
Letting r ↗ 1, we thus get

q[f ] =
∑

j

|fj |2
∫

D

L|zj |2 dµ,

which coincides with qs[f ] for s as indicated. ¤
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Note that the hypothesis on L in the last proposition is plainly satisfied for
L = ∆k, since

∆k|f |2 = |f (k)|2 ≥ 0 ∀f ∈ H(D);

as well as for L = ∆̃k, in view of (17).

Proposition 16. (i) If sn = +∞ for some n and f ∈ Qs, then (Uφf)n = 0
for all φ ∈ Aut(D). In particular, if sn = +∞ ∀n > m, then Qs ⊂ P≤m.

(ii) If sn > 0 for some n, then Qs ↪→ En.

Proof. Part (i) is immediate from the definitions. For (ii), we have for any f ∈ Qs

and φ ∈ Aut(D),

‖f‖2s = sup
φ∈Aut(D)

qs[Uφf ] = sup
φ∈Aut(D)

∑

j

sj |(Uφf)j |2 ≥ sup
φ∈Aut(D)

sn|(Uφf)n|2.

Since (Uφf)n = 1
n! (Uφf)(n)(0), this gives

sup
φ∈Aut(D)

|(Uφf)(n)(0)|2 ≤ n!2

sn
‖f‖2s ,

so ‖f‖En ≤ n!√
sn
‖f‖s, proving the claim. ¤

Recall that for m ∈ N, we denoted by em the sequence given by sj = 0 for
j 6= m, sm = 1.

Proposition 17. Assume that for some m,n ∈ N, sn > 0 and En = Em. Then
Qs = Qs+em .

Proof. Since s+em ≥ s, obviously Qs+em ↪→ Qs, by (19). On the other hand, from
sn > 0 we have, by part (ii) of the last proposition, Qs ↪→ En, so if En = Em, then
Qs ↪→ Em, i.e.

(31) ‖f‖Em ≤ c‖f‖s ∀f ∈ H(D).

Hence

‖f‖2s+em
= sup

φ∈Aut(D)

(qs[Uφf ] + qem [Uφf ])

≤ sup
φ∈Aut(D)

qs[Uφf ] + sup
φ∈Aut(D)

qem [Uφf ]

= ‖f‖2s + ‖f‖2em
≤ (1 + c2)‖f‖2s ,

implying that Qs ↪→ Qs+em . ¤

Corollary 18. If Em = Em+1 then Qs[m+1,ν] = Qs[m,ν] ∀ν ∈ R.
Consequently, if Em = Ej ∀j ≥ m, then Qs[j,ν] = Qs[m,ν] ∀j ≥ m ∀ν ∈ R.

Proof. Applying the last proposition to s = s[m + 1, ν], n = m + 1 gives the first
assertion. The second assertion follows from the first. ¤
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3. The spaces Ek and Q̃k,ρ

In this section we treat the (k, λ)-Bloch spaces Ek and the Q-spaces Q̃k,ρ defined
using the invariant Laplacians; recall that these consist of all f ∈ H(D) for which
the quantities

‖f‖Ek
:= sup

φ∈Aut(D)

|(Uφf)(k)(0)|

and

(32) ‖f‖fk,ρ
:= sup

φ∈Aut(D)

( ∫

D

∆̃k|Uφf |2 dµρ−2

)1/2

are finite, respectively. Here is an alternative characterization of the spaces Ek.

Proposition 19. Ek = {f ∈ H(D) : supz∈D(1 − |z|2)λ∆̃k|f(z)|2 < ∞}, the last
supremum being equal to ‖f‖2Ek

.

Proof. By (13), (16) and the definition of ∆̃k,

|(Uφf)(k)(0)|2 = (∆kVφ|f |2)(0) = (∆̃kVφ|f |2)(0)

= Vφ(∆̃k|f |2)(0) = (1− |φ(0)|2)λ(∆̃k|f |2)(φ(0)),

and the assertion follows. ¤

In particular, for k = 0 we get ‖f‖E0 = supz∈D(1− |z|2)λ/2|f(z)|, so

(33) E0 = L
∞,λ/2
hol (D)

with equality of norms.

Proposition 20. For ρ > 1 + λ, we have Ek ↪→ Q̃k,ρ.

Proof. Since dµν is a finite measure for ν > −1, we get for ρ− 2− λ > −1
∫

D

∆̃k|f |2 dµρ−2 =
∫

D

(1− |z|2)λ∆̃k|f |2 dµρ−2−λ

≤ µρ−2−λ(D) sup
z∈D

(1− |z|2)λ∆̃k|f |2

= µρ−2−λ(D)‖f‖2Ek

by the preceding proposition. Replacing f by Uφf , noting that ‖Uφf‖Ek
= ‖f‖Ek

,
and taking supremum over all φ ∈ Aut(D) yields ‖f‖fk,ρ

≤ µρ−2−λ(D)1/2‖f‖Ek
,

as desired. ¤

Our next task will be the examination of the coefficients sj in (30), where —
in view of (32) — we need to take dµ = dµρ−2 and L = ∆̃k. Recall that the
hypergeometric function 2F1 with parameters a, b, c, −c /∈ N, is defined for z ∈ D by

2F1

(a, b
c

∣∣∣z
)

=
∞∑

j=0

(a)j(b)j

(c)jj!
zj .

If a (or b) is a nonpositive integer, then the series terminates; in that case one can
allow even parameters c with −c ∈ N, as long as c ≤ a (or c ≤ b).
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Lemma 21. For k,m ∈ N, one has

∆̃k|z|2m =
( min(m,k)∑

j=0

(1− t)jt
m+k

2 −j(−m)j(λ + j)k−j

(
k

j

))2

(34)

= tm−k
( k∑

j=0

(−k)j

j!
(m + λ)j(λ + j)k−j(1− t)j

)2

,(35)

where, for the sake of brevity, we have set t := |z|2.
If (λ)k 6= 0, this can be written more neatly as

∆̃k|z|2m = (λ)2ktm+k
2F1

(−m,−k
λ

∣∣∣1− 1
t

)2

(36)

= (λ)2ktm−k
2F1

(−k, m + λ
λ

∣∣∣1− t
)2

.(37)

Proof. Applying Corollary 12 to |z|2m yields

∆̃k|z|2m =
∣∣∣
min(m,k)∑

j=0

(1− |z|2)j m!
(m− j)!

zm−j(−z)k−j(λ + j)k−j

(
k

j

)∣∣∣
2

=
∣∣∣zm+k

min(m,k)∑

j=0

(1− |z|2)j(−m)j |z|−2j(λ + j)k−j

(
k

j

)∣∣∣
2

,

which is (34). For (λ)k 6= 0, one can write

(38) (λ + j)k−j =
(λ)k

(λ)j
,

while
(
k
j

)
= (−1)j (−k)j

j! ; thus we can continue with

∆̃k|z|2m = (λ)2ktm+k
( min(m,k)∑

j=0

(1− t)j (−m)j(−k)j

j!(λ)j
(−t)j

)2

,

which is (36). Using the transformation formula for hypergeometric functions [BE,
2.1.4(22)]

2F1

(a, b
c

∣∣∣z
)

= (1− z)−b
2F1

(
c− a, b

c

∣∣∣ z

z − 1

)
,

the last expression becomes

∆̃k|z|2m = (λ)2ktm−k
2F1

(−k, m + λ
λ

∣∣∣1− t
)2

,

which is (37). Expanding the hypergeometric function back into series and using
again (38) yields (35). Finally, since (34) and (35) both are polynomials in λ, their
equality for (λ)k 6= 0 implies that they actually coincide for all λ. ¤

Denote

(39) c̃jkρ :=
∫

D

∆̃k|z|2j dµρ−2(z).

Thus, by Proposition 15, Q̃k,ρ = Qs for the sequence s = {c̃jkρ}∞j=0.

Lemma 22. Let k, j ∈ N.
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(i) If −λ ∈ {0, 1, . . . , k − 1} and j ≤ −λ, then c̃jkρ = 0 for all ρ ∈ R.
(ii) If −λ ∈ {0, 1, . . . , k − 1} and j > −λ, then

c̃jkρ =

{
finite positive ρ > 2λ− 1,

+∞ ρ ≤ 2λ− 1.

(iii) If −λ /∈ {0, 1, . . . , k − 1}, then, for all j,

c̃jkρ =

{
finite positive ρ > 1,

+∞ ρ ≤ 1.

Note that the condition −λ ∈ {0, 1, . . . , k − 1} is equivalent just to (λ)k = 0.

Proof. (i) In this case, as already noted in Corollary 13, ∆̃k|z|2j ≡ 0, and the
conclusion follows trivially.

(ii) In this case (λ + j)k−j = 0 for 0 ≤ j ≤ −λ, while (λ + j)k−j > 0 for
1 − λ ≤ j ≤ k. Thus by (34), ∆̃k|z|2j is a nonnegative smooth radial function on
D which behaves as (1 − |z|2)2−2λ as |z| ↗ 1. The integral (39) is therefore finite
positive for ρ− 2 + (2− 2λ) > −1, i.e. ρ > 2λ− 1, and equals +∞ otherwise.

(iii) In this case (λ+j)k−j 6= 0 for all j; so by (34) again, ∆̃k|z|2j is a nonnegative
smooth radial function on D which tends to the a nonzero boundary value (λ)2k at
|z| = 1. It follows that the integral (39) is finite positive for ρ− 2 > −1, i.e. ρ > 1,
and equals +∞ otherwise. ¤

We will say that a set P is contained in Q̃k,ρ trivially if ‖f‖fk,ρ
= 0 for all f ∈ P.

Corollary 23. Let k ∈ N.
(i) If (λ)k = 0, then

P≤−λ ↪→ Q̃k,ρ trivially, ∀λ ∈ R,(40)

Q̃k,ρ = P≤−λ for ρ ≤ 2λ− 1,(41)

Ek ↪→ Q̃k,ρ ↪→ Ej for j > −λ and ρ > max(1 + λ, 2λ− 1).(42)

(ii) If (λ)k 6= 0, then

Q̃k,ρ = {0} for ρ ≤ 1,(43)

Ek ↪→ Q̃k,ρ ↪→ Ej ∀j ∈ N, for ρ > max(1, 1 + λ).(44)

Proof. (i) The first claim (40) is immediate from part (i) of the last lemma, together
with the fact that P≤−λ is Möbius invariant by Corollary 13. Using part (i) of
Proposition 16, (41) follows. For (42), we have Q̃k,ρ ↪→ Ej ∀ρ > 2λ− 1 by part (ii)
of the last lemma and part (ii) of Proposition 16; while Ek ↪→ Q̃k,ρ for ρ > 1 + λ
by Proposition 20.

(ii) Using part (iii) of the last lemma, part (i) of Proposition 16 immediately
gives (43), while part (ii) of the same gives Q̃k,ρ ↪→ Ej for all j ∀ρ > 1. Combining
the latter with Proposition 20 yields (44). ¤

Theorem 24. (i) For −λ /∈ N, we have Ek = L
∞,λ/2
hol (D) for all k.

(ii) For −λ ∈ N,

L
∞,λ/2
hol (D) = E0 = E1 = · · · = E−λ ↪→ E1−λ = Ej ∀j > −λ.
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Note that L
∞,λ/2
hol (D) = {0} for λ < 0, by the maximum principle.

Proof. (i) If −λ /∈ N, then (λ)k 6= 0 ∀k, so choosing ρ > max(1, 1 + λ) we get
from (44)

Ek ↪→ Ej ∀j, k ∈ N.

By (33), we are done.
(ii) If −λ ∈ N, we have (λ)k = 0 ∀k > −λ, and (λ)k 6= 0 for k ≤ −λ. Choosing

ρ > max(1, 1 + λ, 2λ− 1), we thus have

Ek ↪→ Ej if j, k > −λ by (42), and

Ek ↪→ Ej if k ≤ −λ, j ∈ N by (44).

Recalling (33) again, the conclusion follows. ¤

For λ > 0, part (i) of the last theorem was proved as Lemma 4.6 in [Zhao]
(by different method).

Note that the last theorem says that if the sum (27) is bounded as a ∈ D —
which is precisely the condition for f to belong to Ek — then in fact each term
of this sum separately is bounded. (Note that for (λ)k = 0, only the terms with
1− λ ≤ j ≤ k are nonzero.) (Cf. also the proof of Proposition 41 below.)

We complete our characterization of (k, λ)-Bloch spaces by giving a description
of the remaining unknown space, namely, E1−λ.

Proposition 25. For −λ = m ∈ N, the norm in Em+1 is equivalent to

(45)
sup
z∈D

(1− |z|2)|f ( m
2 +1)(z)| if m is even,

sup
z∈D

(1− |z|2)1/2|f ( m+1
2 )(z)| if m is odd.

Proof. For λ = −m, k = m + 1 we get from (27)

(Uaf)(k)(0) = (−1)k(1− |a|2)λ
2 +kf (k)(a) = (−1)k(1− |a|2)m

2 +1f (m+1)(a).

Thus
‖f‖Em+1 = sup

a∈D
(1− |a|2)m

2 +1|f (m+1)(a)|.
The equivalence of this seminorm to (45) now follows by repeated application of
Proposition 10. ¤

Proposition 26. (i) For −λ /∈ N,

Q̃k,ρ = {0} for ρ ≤ 1,

Q̃k,ρ = L
∞,λ/2
hol (D) for ρ > max(1, 1 + λ).

(ii) For −λ ∈ N,

Q̃k,ρ = {0} if k ≤ −λ, ρ ≤ 1,

Q̃k,ρ = L
∞,λ/2
hol (D) if k ≤ −λ, ρ > 1,

Q̃k,ρ = P≤−λ trivially if k > −λ, ρ ≤ 2λ− 1,

P≤−λ
trivially

↪→ Q̃k,ρ ↪→ E1−λ if k > −λ, 2λ− 1 < ρ ≤ λ + 1,

P≤−λ
trivially

↪→ Q̃k,ρ = E1−λ if k > −λ, ρ > λ + 1.
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Proof. (i) This is immediate from (43) and (44), together with our description of
the spaces Ek in part (i) of the last theorem.

(ii) For k ≤ −λ, we still have (λ)k 6= 0, so the assertion again follows in the same
way as for (i), noting only that max(1, 1+λ) = 1 since λ ≤ 0. For k > −λ, we have
(λ)k = 0, so the first assertion is just (41), the second follows from (40) and (42)
(with j = 1 − λ, noting that 2λ − 1 < λ + 1 since λ ≤ 0), and the third from the
same together with Proposition 20. ¤

By the last proposition, the remaining interesting intervals for ρ are thus 1 <
ρ ≤ 1 + λ for λ > 0, and 2λ− 1 < ρ ≤ λ + 1 for −λ ∈ N and k > −λ. We proceed
to resolve these cases.

Recall that Q̃k,ρ = Qs for the sequence sj = c̃jkρ given by (39).

Proposition 27. If (λ)k 6= 0, then

Q̃k,ρ =

{
Qs[0,1−ρ] for ρ > 1,

{0} for ρ ≤ 1.

If (λ)k = 0, then

Q̃k,ρ =

{
P≤−λ for ρ ≤ 2λ− 1,

Qs[1−λ,1−ρ] for ρ > 2λ− 1.

(Here we are using the notation (20).)
Note that by Corollary 18 and Theorem 24,

(46) Qs[1−λ,1−ρ] = Qs[k,1−ρ]

if (λ)k = 0.

Proof. The cases of ρ ≤ 1, (λ)k 6= 0 and ρ ≤ 2λ−1, (λ)k = 0 are already covered by
Proposition 26; we thus only need to show that when (λ)k 6= 0, ρ > 1 or (λ)k = 0,
ρ > 2λ − 1, j > −λ — which, by Lemma 22, are precisely the cases when c̃jkρ is
finite and positive — the constants c̃jkρ satisfy

c̃mkρ ³ m1−ρ as m → +∞.

By (35), we have

c̃mkρ =
∫

D

∆̃k|z|2m dµρ−2

=
∫ 1

0

tm−k
( k∑

j=0

(−k)j

j!
(m + λ)j(λ + j)k−j(1− t)j

)2

(1− t)ρ−2 dt

=
k∑

j,l=0

(−k)j

j!
(−k)l

l!
(m + λ)j(m + λ)l(λ + j)k−j(λ + l)k−l

×
∫ 1

0

tm−k(1− t)j+l+ρ−2 dt.

(47)

If (λ)k = 0, the sum involves only j, l ≥ 1− λ (the other terms are zero). Thus in
both cases above j + l + ρ− 2 > −1, so the last integral exists and equals
∫ 1

0

tm−k(1− t)j+l+ρ−2 dt =
(m− k)!Γ(j + l + ρ− 1)

Γ(j + l + ρ + m− k)
∼ Γ(j + l + ρ− 1)m1−ρ−j−l
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as m → ∞, by Stirling’s formula. Since (m + λ)j ∼ mj as m → ∞, we thus get
c̃mkρ ∼ cm1−ρ as m →∞, with

c =
k∑

j,l=0

(−k)j

j!
(−k)l

l!
(λ + j)k−j(λ + l)k−lΓ(j + l + ρ− 1).

Now

c =
k∑

j,l=0

(−k)j

j!
(−k)l

l!
(λ + j)k−j(λ + l)k−l

∫ ∞

0

e−ttj+l+ρ−2 dt

=
∫ ∞

0

∣∣∣
k∑

j=0

(−k)j

j!
(λ + j)k−jt

j
∣∣∣
2

e−ttρ−2 dt > 0

since the polynomial given by the last sum does not vanish identically. Thus indeed
c̃mkρ ³ m1−ρ as m →∞, completing the proof. ¤

The following proposition gives a characterization of Q̃k,ρ analogous to (1).

Proposition 28. For any k ∈ N and ρ ∈ R,

(48) ‖f‖2fk,ρ
= sup

φ∈Aut(D)

∫

D

∆̃k|f |2 (1− |φ|2)ρ−λ dµλ−2.

Thus f ∈ Q̃k,ρ if and only if the last supremum is finite.

Proof. Using the invariance of ∆̃k and dµλ−2 (Proposition 14),

‖f‖2fk,ρ
= sup

φ∈Aut(D)

∫

D

∆̃k(Vφ|f |2) dµρ−2

= sup
φ∈Aut(D)

∫

D

(1− |z|2)ρ−λ∆̃k(Vφ|f |2) dµλ−2

= sup
φ∈Aut(D)

∫

D

(1− |z|2)ρ−λVφ(∆̃k|f |2) dµλ−2

= sup
φ∈Aut(D)

∫

D

Vφ[(1− |φ−1|2)ρ−λ∆̃k|f |2] dµλ−2

= sup
φ∈Aut(D)

∫

D

(1− |φ−1|2)ρ−λ∆̃k|f |2 dµλ−2,

where we noted that Vφ(uv) = (u ◦ φ)(Vφv) for any u, v. ¤

Proposition 29. If ρ < λ, then Q̃k,ρ = {f ∈ H(D) : ∆̃k|f |2 ≡ 0}. That is, for
ρ < λ, Q̃k,ρ = {0} if (λ)k 6= 0, and Q̃k,ρ = P≤−λ trivially if (λ)k = 0.

Proof. Assume there is f ∈ Q̃k,ρ with ∆̃k|f |2(y) > 0 for some y ∈ D; replacing f
by Uyf , we may assume without loss of generality that y = 0. By continuity, there
exist 0 < r < 1 and δ > 0 such that ∆̃k|f |2 ≥ δ > 0 for |z| ≤ r. Thus by (48),

‖f‖2fk,ρ
= sup

a∈D

∫

D

(1− |φa|2)ρ−λ∆̃k|f |2 dµλ−2

≥ δ sup
a∈D

∫

rD

(1− |φa|2)ρ−λ dµλ−2
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= δ sup
a∈D

(1− |a|2)ρ−λ

∫

rD

(1− |z|2)ρ−2

|1− az|2(ρ−λ)
dz

≥ (1− r2)max(0,ρ−2)δ sup
a∈D

(1− |a|2)ρ−λ

∫

rD

|1− az|2(λ−ρ) dz

≥ (1− r2)max(0,ρ−2) min((1− r)2(λ−ρ), (1 + r)2(λ−ρ))δ sup
a∈D

(1− |a|2)ρ−λ.

It therefore follows that (1−|a|2)ρ−λ is bounded as a ∈ D, which means that ρ ≥ λ.
This proves the first assertion.

If ∆̃k|f |2 ≡ 0, then by (39) and the proof of Proposition 15,

0 =
∫

D

∆̃k|f |2 dµρ−2 =
∑

j

|fj |2c̃jkρ,

implying that fj = 0 unless c̃jkρ = 0. By Lemma 22, this means that fj = 0 ∀j if
(λ)k 6= 0, and fj = 0 ∀j > −λ if (λ)k = 0, which proves the second assertion. ¤

Since 2λ− 1 < λ for λ ≤ 0, the last proposition restricts the unresolved cases to
ρ ∈ (1,∞) ∩ [λ, λ + 1] for λ > 0, and λ ≤ ρ ≤ λ + 1 for −λ ∈ N, k > −λ.

Proposition 30. For (λ)k 6= 0 and ρ > 1,

Q̃k,ρ = E(2, λ− 2, ρ− λ)

(cf. (8)).

Proof. By Proposition 27, Q̃k,ρ = Qs[0,1−ρ] = Q̃0,ρ; and by (48),

‖f‖2f0,ρ
= sup

φ∈Aut(D)

∫

D

|f(z)|2(1− |z|2)λ−2(1− |φ(z)|2)ρ−λ dz = ‖f‖2E(2,λ−2,ρ−λ).

¤

Here we remark that the spaces F (p, q, s) — and, hence, also our space E(p, q, s)
of primitives of functions in F (p, q, s) — are usually defined for q > −2 and s ≥
0; however the definitions (5) and (8), of course, make sense for any q, s ∈ R.
For any fixed φ ∈ Aut(D), the product (1 − |z|2)q(1 − |φ(z)|2)s is ³ (1 − |z|2)q+s

as |z| ↗ 1; from the subharmonicity of |f |p it therefore follows that the integral
in (8) can exist only if q + s > −1 (unless f ≡ 0). From the last corollary and
Proposition 29, we infer that also E(2, q, s) = {0} if s < 0; for the record, we give
a direct (and different) proof of this fact.

Proposition 31. E(p, q, s) = {0} if s < 0, for any p > 0 and q ∈ R.

Proof. Assume that ‖f‖E(p,q,s) =: c < ∞. From

c ≥
∫

D

|f |p(1− |φa|2)s dµq =
∫

D

|f(z)|p (1− |a|2)s

|1− az|2s
dµq+s(z)

we get

(49)
∫

D

∣∣∣ f(z)
(1− az)2s/p

∣∣∣
p

dµq+s(z) ≤ c(1− |a|2)−s.

If s < 0, letting |a| ↗ 1 shows, by Fatou’s lemma, that

(1− az)−2s/pf(z) = 0, ∀z ∈ D, a ∈ T.
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Since, for each fixed z ∈ D, the left-hand side is a holomorphic function of a ∈ D,
it follows by the maximum principle that the left-hand side vanishes in fact for all
a, z ∈ D. Taking a = 0 gives f ≡ 0. ¤

It turns out that at least in our case p = 2, the space E(p, q, s) is trivial also for
q < −2. For this, we need the following proposition, which is of interest in its own
right.

Proposition 32. Let f(z) =
∑∞

j=0 fjz
j belong to Q̃k,ρ. Then fjz

j ∈ Q̃k,ρ ∀j.
Proof. By rotation invariance, we have for each ε ∈ T and φ ∈ Aut(D)

‖f‖2fk,ρ
= ‖fε‖2fk,ρ

≥
∫

D

∆̃k|fε|2 (1− |φ|2)ρ−λ dµλ−2

by (48). Integrating over ε gives, by uniform convergence,

‖f‖2fk,ρ
≥

∫

D

∆̃k
( ∫

T

|fε|2 dε
)

(1− |φ|2)ρ−λ dµλ−2

=
∫

D

∞∑

j=0

∆̃k|fjz
j |2 (1− |φ|2)ρ−λ dµλ−2.

Since ∆̃k|g|2 ≥ 0 for any g ∈ H(D), it follows that

‖f‖2fk,ρ
≥

∫

D

∆̃k|fjz
j |2 (1− |φ|2)ρ−λ dµλ−2

for any fixed j. Taking supremum over all φ ∈ Aut(D) yields ‖f‖2fk,ρ
≥ ‖fjz

j‖2fk,ρ
,

proving the claim. ¤

Corollary 33. E(2, q, s) = {0} if q < −2, for any s ∈ R.

Proof. By the preceding proposition, if there is a nonzero f ∈ E(2, q, s) = Q̃
(q+2)
0,s+q+2,

then zm ∈ E(2, q, s) for some m ∈ N. Thus by (49)
∫

D

∣∣∣ zm

(1− az)s

∣∣∣
2

dµq+s(z) ≤ c

(1− |a|2)s
∀a ∈ D

with c := ‖zm‖2E(2,q,s) < ∞. Thus q + s > −1 and, expanding (1 − az)−s by the
binomial theorem and integrating term by term,

∞∑

j=0

(s)2j
j!2

|a|2j

∫

D

|zm+j |2 dµq+s(z) ≤ c

(1− |a|2)s
,

that is,
∞∑

j=0

(s)2j
j!2

(m + j)!Γ(q + s + 1)
Γ(q + s + m + j + 2)

|a|2j ≤ c

(1− |a|2)s
.

By Stirling’s formula, the coefficients at |a|2j is ³ (j +1)s−q−3 as j →∞, hence the
last sum behaves as (1−|a|2)q+2−s if q+2−s < 0, as− log(1−|a|2) if q+2−s = 0, and
is bounded if q+2−s > 0. Since in our case q+2−s = 2q+2−(q+s) < 2q+3 < −1,
we conclude that

(1− |a|2)q+2−s . (1− |a|2)−s.

However, this means that q + 2 ≥ 0, contradicting the hypothesis. ¤
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Note that for q = −2, we have by Proposition 26(ii) E(2, q, s) = Q̃
(0)
0,s = {0} for

s ≤ 1 and E(2, q, s) = L∞,0
hol (D) = H∞ for s > 1.

We are now ready to complete our discussion of the first of the remaining cases,
namely, Q̃k,ρ with λ > 0 and ρ ∈ (1,∞) ∩ [λ, λ + 1].

Theorem 34. For −λ /∈ N and ρ ∈ (1,∞)∩[λ, λ+1], the spaces Q̃k,ρ are nontrivial
and strictly increasing with ρ, i.e. Q̃k,ρ ( Q̃k,ρ′ if ρ < ρ′.

Proof. This follows from Proposition 30 and the corresponding property of F (p, q, s)
spaces, cf. Theorem 5.5 in [Zhao]; however, since the proof there concerns F (p, q, s)
rather than E(p, q, s), we briefly repeat the details here. Consider a lacunary series
f(z) =

∑
k akz2k

. On the one hand, we have

‖f‖2f0,ρ
≥

∫

D

|f |2 dµρ−2 ³
∑

j

|fj |2(j + 1)1−ρ by Proposition 27

³
∑

k

|ak|22(1−ρ)k.

On the other hand, we have for φ = εφa ∈ Aut(D)
∫

D

|f |2(1− |φ|2)ρ−λ dµλ−2

≤
∫

D

( ∑

j

|fj ||z|j
)2 (1− |z|2)ρ−2(1− |a|2)ρ−λ

|1− az|2(ρ−λ)
dz

=
∫ 1

0

( ∑

j

|fj |rj
)2

(1− r2)ρ−2(1− |a|2)ρ−λ
( ∑

j

(ρ− λ)2j
j!2

|a|2jr2j
)

r dr

by integrating in polar coordinates. As (ρ−λ)2j
j!2 ³ (j + 1)2(ρ−λ−1) by Stirling’s

formula, the last sum is majorized by




(1− r|a|)2λ+1−2ρ if 2λ + 1− 2ρ < 0,

− log(1− r|a|) if 2λ + 1− 2ρ = 0,

1 if 2λ + 1− 2ρ > 0;

in our case of 0 ≤ ρ − λ ≤ 1, this is in turn majorized by (1 − |a|r)λ−ρ. Since
1−|a|2
1−|a|r ≤ 2, we get

∫

D

|f |2(1− |φ|2)ρ−λ dµλ−2 .
∫ 1

0

( ∑

j

|fj |rj
)2

(1− r2)ρ−2 dr.

By [AXZ, Lemma 3], for our lacunary f and ρ > 1 the last integral is majorized by∑
k 2−(ρ−1)k|ak|2. Altogether, we thus see that

f ∈ Q̃0,ρ ⇐⇒
∑

k

|ak|22(1−ρ)k < ∞.

Taking ak = 2(ρ1−1)k/2 therefore gives an f which belongs to Q̃0,ρ for ρ > ρ1, but
not to Q̃0,ρ1 . ¤

It remains to tackle the case λ ≤ ρ ≤ λ + 1 and −λ ∈ N, k > −λ (i.e. (λ)k = 0).
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Theorem 35. If (λ)k = 0 and λ ≤ ρ ≤ λ + 1, then

(50) Q̃k,ρ = {f ∈ H(D) : f (−λ) ∈ F (2,−λ, ρ− λ)}
with equivalent seminorms. Consequently, the spaces Q̃k,ρ are nontrivial, do not
depend on k (as long as k > −λ) and are strictly increasing with ρ, i.e. Q̃k,ρ ( Q̃k,ρ′

if ρ < ρ′.

Proof. By Proposition 27, we have Q̃k,ρ = Qs[1−λ,1−ρ]; since the latter does not
depend on k, we may assume that k = 1− λ. Then by Corollary 12

∆̃k = (1− |z|2)2k∆k,

so by (48)

‖f‖2fk,ρ
= sup

φ∈Aut(D)

∫

D

|f (k)|2 (1− |φ|2)ρ−λ dµ2k+λ−2.

Since 2k + λ− 2 = −λ, we thus get

f ∈ Q̃k,ρ ⇐⇒ f (k−1) ∈ F (2,−λ, ρ− λ)

with equivalent seminorms, proving the first claim.
The second claim again follows from the corresponding property of the F (p, q, s)

spaces, cf. [Zhao, Theorem 5.5]: namely, for a lacunary series f(z) =
∑

j ajz
nj

with inf nj+1
nj

> 1, one has f ∈ F (2,−λ, ρ− λ) if and only if
∑

j |aj |2n2λ+1−ρ
j < ∞;

hence, f ∈ Q̃k,ρ if and only if
∑

j |aj |2n1−ρ
j < ∞, and one constructs the required

examples as in the preceding proof. ¤

Remark 36. For λ = −1, one can use Theorem 3.2 in [Ratt] to conclude that (50)
is equivalent to

Q̃
(−1)
k,ρ = F (2,−1, ρ + 1), ρ ≥ −1, k ≥ 2. ¤

The material amassed above establishes also our theorems on the spaces Ek and
Q̃k,ρ from the Introduction.

Proof of Theorem 6. This is just Theorem 24, together with the description of E1−λ,
−λ ∈ N, from Proposition 25. ¤

Proof of Theorem 7. (i) This follows from Proposition 26(i) and Proposition 29.
(ii) This is contained in Proposition 26(i).
(iii) This follows from Proposition 30 and Theorem 34.
(iv) This is contained in the first part of Proposition 27. ¤

Proof of Theorem 8. (i) and (ii) are the first two assertions of Proposition 26(ii).
(iii) This follows from the second part of Proposition 29.
(iv) This is the fifth assertion in Proposition 26(ii).
(v) This is Theorem 35.
(vi) This is contained in the second part of Proposition 27. ¤

We conclude by remarking that Theorem 34 (together with Proposition 30)
and Theorem 35 also give a description of the “invariant Dirichlet space” Q̃k,λ

from (29): namely, for λ > 1 this is just the weighted Bergman space E(2, λ−2, 0) =
L2

hol(D, dµλ−2); for −λ = m ∈ N, it is the holomorphic Sobolev space W
m
2 +1

hol (D)
of order m

2 + 1; for other values of λ, it reduces just to the constant zero.
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4. The spaces Qk,ρ

In this section we treat the spaces Qk,ρ; recall that these were defined using
ordinary Laplacians, namely they consists of all f ∈ H(D) for which the quantity

‖f‖2k,ρ = sup
φ∈Aut(D)

∫

D

∆k|Uφf |2 dµρ = sup
φ∈Aut(D)

∫

D

|(Uφf)(k)|2 dµρ

is finite. For k = 0, clearly

(51) Q0ρ = Q̃0,ρ+2.

By (26), we also have
(52)

‖f‖2k,ρ = sup
a∈D

∫

D

∣∣∣
k∑

j=0

(1− |a|2)λ
2 +j f (j)(φa(z))(−a)k−j

(1− az)k+j+λ
(λ + j)k−j

(
k

j

)∣∣∣
2

dµρ(z).

Proposition 37. For f ∈ H(D),
(53)

‖f‖2k,ρ = sup
a∈D

(1−|a|2)ρ+2−2k−λ

∫

D

∣∣∣
k∑

j=0

f (j)(y)(−a)k−j

(1− ay)ρ+2−k−j−λ
(λ+j)k−j

(
k

j

)∣∣∣
2

dµρ(y).

Proof. Make the change of variable z = φa(y) in (52), and use the facts that
1− aφa(y) = 1−|a|2

1−ay and

dµρ(φa(y)) =
(1− |a|2)ρ+2

|1− ay|2ρ+4
dµρ(y).

¤

The next proof borrows from the proof of Theorem 5 in [Zhu1].

Proposition 38. For ρ < 2k + λ− 2,

Qk,ρ =

{
{0} if (λ)k 6= 0,

P≤−λ trivially if (λ)k = 0.

Proof. For f ∈ Qk,ρ, (53) implies
∫

D

∣∣∣
k∑

j=0

f (j)(y)(−a)k−j

(1− ay)ρ+2−k−j−λ
(λ + j)k−j

(
k

j

)∣∣∣
2

dµρ(y) ≤ ‖f‖2k,ρ

(1− |a|2)ρ+2−2k−λ
.

If ρ + 2− 2k − λ < 0, then letting |a| ↗ 1 we obtain, by Fatou’s lemma,
∫

D

∣∣∣
k∑

j=0

f (j)(y)(−a)k−j

(1− ay)ρ+2−k−j−λ
(λ + j)k−j

(
k

j

)∣∣∣
2

dµρ(y) = 0 ∀a ∈ T.

Consequently, the sum vanishes identically for a ∈ T and z ∈ D. Since for each
y ∈ D, the sum is a holomorphic function of a in some neighborhood of D, it follows
by the maximum principle that it vanishes for all a, y ∈ D. Writing this as

0 ≡ (−a)k(1− ay)k+λ−ρ−2
k∑

j=0

(1
a
− y

)j

f (j)(y)(λ + j)k−j

(
k

j

)
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and noting that the last sum is a polynomial in 1
a − y, it follows that

(54) (λ + j)k−jf
(j) ≡ 0 ∀j = 0, . . . , k.

If (λ)k 6= 0, taking j = 0 shows that f ≡ 0, so Qk,ρ = {0}. If (λ)k = 0, (54) pre-
cisely means that f (1−λ) ≡ 0, so Qk,ρ ⊂ P≤−λ. Conversely, if (λ)k = 0, then by
Corollary 13 Uφ maps P≤−λ into itself, hence (Uφf)(k) ≡ 0 for all f ∈ P≤−λ, so
P≤−λ ⊂ Qk,ρ trivially. ¤

Recall from Proposition 15 that Qk,ρ = Qs for s = {cjkρ}∞j=0, where

(55) cjkρ :=
∫

D

∆k|z|2j dµρ(z).

Lemma 39. For j, k ∈ N and ρ ∈ R,

cjkρ =





0 if k > j, ∀ρ ∈ R,

+∞ if k ≤ j, ρ ≤ −1,
j!2

(j−k)!(ρ+1)j−k+1
if k ≤ j, ρ > −1.

Proof. For k > j, the integrand in (55) vanishes identically. For k ≤ j, we have
∆k|z|2j = j!2

(j−k)!2 |z|2j−2k, and
∫

D

|z|2j−2k dµρ(z) =
∫ 1

0

tj−k(1− t)ρ dt =
(j − k)!Γ(ρ + 1)
Γ(ρ + j − k + 2)

for ρ > −1, while for ρ ≤ −1 the integral is infinite. The assertion follows. ¤
Corollary 40. We have Qk,ρ ⊂ P≤k trivially if ρ ≤ −1, while

(56) Qk,ρ = Qs[k,2k−ρ−1] for ρ > −1.

Proof. Immediate from the last lemma, since for j ≥ k

j!2

(j − k)!(ρ + 1)j−k+1
³ (j + 1)2k−ρ−1

by Stirling’s formula. ¤
By the last corollary and Proposition 16(ii), we have

(57) Qk,ρ ↪→ Ek ∀ρ ∈ R

(and trivially if ρ ≤ −1).

Proposition 41. For ρ > 2k − 1 + λ, Ek ↪→ Qk,ρ.

Proof. Let f ∈ Ek. By Theorem 24, for (λ)k 6= 0 we have Ej = L
∞,λ/2
hol (D) for

j = 0, 1, . . . , k. Since, by Proposition 19 and (27),

(58) f ∈ Em ⇐⇒
m∑

j=0

(1− |z|2)λ
2 +jf (j)(z)(−z)k−j(λ + j)k−j

(
k

j

)
∈ L∞(D),

it follows by an induction argument (starting from j = 0) that in fact

(59) (1− |z|2)λ
2 +jf (j)(z) ∈ L∞(D) for all 0 ≤ j ≤ k.

Now for a ∈ D, by the Minkowski inequality,
( ∫

D

|(Uaf)(k)|2 dµρ

)1/2
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=
( ∫

D

∣∣∣
k∑

j=0

(1− |a|2)λ
2 +j f (j)(φa(z))(−a)k−j

(1− az)j+k+λ
(λ + j)k−j

(
k

j

)∣∣∣
2

dµρ

)1/2

≤
k∑

j=0

(1− |a|2)λ
2 +j |ak−j(λ + j)k−j |

(
k

j

)( ∫

D

∣∣∣ f (j)(φa(z))
(1− az)j+k+λ

∣∣∣
2

dµρ

)1/2

.

By (59),
∣∣∣ f (j)(φa(z))
(1− az)j+k+λ

∣∣∣ ≤ c
(1− |φa(z)|2)−λ

2−j

|1− az|j+k+λ
≤ c

(1− |z|2)−λ
2−j(1− |a|2)−λ

2−j

|1− az|k−j
,

so the last integral is majorized by

(60) (1− |a|2)−λ−2j

∫

D

(1− |z|2)ρ−λ−2j

|1− az|2k−2j
dz.

For ρ > 2k − 1 + λ, one has ρ− λ− 2j ≥ ρ− λ− 2k > −1, so the integral in (60)
exists and, by the classical Forelli-Rudin estimates [Zhu2, Lemma 3.10], is bounded
as a ∈ D. Hence (60) is majorized by (1− |a|2)−λ−2j , and

(∫

D

|(Uaf)(k)|2 dµρ

)1/2

. 1,

i.e. the left-hand side is bounded on D. Thus f ∈ Qk,ρ and Ek ↪→ Qk,ρ.
For (λ)k = 0, the sum in (58) involves only 1−λ ≤ j ≤ k (the other terms vanish

since (λj)k−j = 0), while, by Theorem 24 again, Ej = E1−λ for 1−λ ≤ j ≤ k. Since
(by (58) one more time) f ∈ E1−λ ⇐⇒ (1−|z|2)1−λ/2f (1−λ)(z) ∈ L∞(D), it again
follows by a simple induction argument (starting from j = 1− λ) that

(1− |z|2)λ
2 +jf (j)(z) ∈ L∞(D) for all 1− λ ≤ j ≤ k.

Using this in the place of (59) the argument above (with the sums now extending
only over 1− λ ≤ j ≤ k) works without change, with the same conclusion. ¤

Corollary 42. For ρ > 2k − 1 + λ, Qk,ρ = Ek, with equivalent seminorms.

Proof. Immediate from (57) and the last proposition. ¤

In combination with Proposition 38, we thus see that the interesting range for
Qk,ρ spaces is

(61) 2k + λ− 2 ≤ ρ ≤ 2k + λ− 1.

Note that if (λ)k 6= 0 and λ < 0, then Ek = {0} by Theorem 24, hence by (57)
Qk,ρ = {0} too in that case, for all ρ. Below, we are able to handle the range (61)
when either (λ)k = 0, or (λ)k 6= 0 and ρ > 2k − 1; the case of (61) for (λ)k 6= 0,
λ ≥ 0 and 2k + λ − 2 ≤ ρ ≤ 2k − 1 (this can only happen for 0 ≤ λ ≤ 1) thus,
unfortunately, remains open.

Proposition 43. For (λ)k = 0 and ρ − 2k − λ ∈ [−2,−1], the spaces Qk,ρ are
nontrivial and strictly increasing with ρ, i.e. Qk,ρ ( Qk,ρ′ if ρ < ρ′.

Proof. Set ρ = 2k−2+β, with λ ≤ β ≤ λ+1. Note that 2k+λ−2 ≥ 2(1−λ)+λ−2 =
−λ ≥ 0, since−λ ∈ N and k ≥ 1−λ by hypothesis. In particular, ρ > −1, so by (56)

Qk,ρ = Qs[k,1−β].
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On the other hand, by Proposition 27 and (46), we see that

Q̃k,β = Qs[1−λ,1−β] = Qs[k,1−β].

(Note that ρ ≥ −λ ≥ λ > 2λ − 1 since λ ≤ 0.) Thus Qk,ρ = Q̃k,β . The desired
conclusion therefore follows by Theorem 35. ¤

Proposition 44. For (λ)k 6= 0 and ρ ∈ (2k − 1,∞) ∩ [2k + λ − 2, 2k + λ − 1],
the spaces Qk,ρ are nontrivial and strictly increasing with ρ, i.e. Qk,ρ ( Qk,ρ′ if
ρ < ρ′.

Proof. By Theorem 24, for (λ)k 6= 0 we have E0 = E1 = · · · = Ek. Applying
Corollary 18 repeatedly, we thus see that Qs[k,ν] = Qs[0,ν] ∀ν ∈ R. Hence by (56),
as ρ > −1 by hypothesis,

Qk,ρ = Qs[0,2k−ρ−1].

On the other hand, setting again ρ = 2k − 2 + β with λ ≤ β ≤ λ + 1, from
Proposition 27 we have

Q̃k,β = Qs[0,1−β]

provided that β > 1, i.e. ρ > 2k− 1. Thus under the hypothesis of our proposition,
we have Qk,ρ = Q̃k,β , with β = ρ + 2− 2k satisfying β ∈ [λ, λ + 1]. The conclusion
then follows by Theorem 34. ¤

Again, after all the preparations above, we are ready to prove Theorem 9 from
the Introduction.

Proof of Theorem 9. (i) As already noted, this is immediate from Theorem 24
and (57).

(ii) This is Proposition 41.
(iii) and (iv) are just Proposition 38.
(v) This is Proposition 43.
(vi) This is Proposition 44.
(vii) This is Corollary 40, while (23) was established in course of the proof of

Propositions 43 and 44. ¤

5. Concluding remarks

5.1. Lp-variants. As in [Zhu1], one could consider also the “Lp-variants” of our
“L2” objects investigated so far; that is, we might define the spaces Q̃pkρ, Qpkρ,
etc., as consisting of all functions f ∈ H(D) for which the quantities

sup
φ∈Aut(D)

∫

D

(∆̃k|Uφf |2)p/2 dµρ−2,

sup
φ∈Aut(D)

∫

D

(∆k|Uφf |2)p/2 dµρ,

or perhaps even

sup
φ∈Aut(D)

∫

D

∆̃k|Uφf |p dµρ−2,

sup
φ∈Aut(D)

∫

D

∆k|Uφf |p dµρ
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are finite. We have not tried to see whether our methods could be extended to any
of these situations.

5.2. Heuristics. The construction of Q̃k,ρ, Qk,ρ with k ≥ 2 of course draws upon
the established principle of function theory on the disc, which says that “a holomor-
phic function g(z) can in many respects be replaced by (1−|z|2)g′(z), only the latter
is better”; an excellent place to see this approach in action for Bergman spaces is the
book by Zhao and Zhu [ZhaZh]. From this perspective, our spaces Qk,ρ should “es-
sentially be equal to Qk+1,ρ+2, only the latter is better”. In particular, Qk,ρ should
depend only on the difference ρ− 2k, as soon as k is sufficiently large. Our results
above demonstrate that this is indeed the case. Similarly for Q̃k,ρ, and for the fact
that Q̃k,ρ coincide with Qk,ρ+2k−2 in the cases which are of greatest interest.

5.3. Inclusions. We have not examined possible inclusions among the various
spaces Qk,ρ and Q̃k,ρ with different values of the weight parameter λ. It was shown
in Proposition 4.8 in [Zhao] that if X is a functional Banach space on D which
is invariant under U (λ) with λ > α > 0, then X cannot be invariant under U (α).
We expect similar result could be obtained (in the same way) also for our Q-spaces
here, and without the restriction of positivity of λ and α.

5.4. Bounded symmetric domains. Most of the results in Section 3 likely ex-
tend also to the case when the disc D is replaced by any irreducible bounded
symmetric domain Ω ⊂ Cn, n ≥ 1. Referring the reader to [AE] for the various
prerequisites on bounded symmetric domains and for the notation, let, for a signa-
ture m, Km denote the reproducing kernel of the space Pm of polynomials in the
Peter-Weyl decomposition, and let ∆(λ)

m = ∆m be the differential operator which
coincides with Km(∂, ∂) at the origin and is invariant under the weighted action

V
(λ)
φ : f 7→ (f ◦ φ) · | Jacφ |2λ/p, φ ∈ Aut(Ω),

where λ ∈ R and p is the genus of Ω. With

U
(λ)
φ : f 7→ (f ◦ φ) · Jacλ/p

φ

the associated action on holomorphic functions (so that V
(λ)
φ |f |2 = |U (λ)

φ f |2 for
f ∈ H(Ω)), we define

E(λ)
m = {f ∈ H(Ω) : sup

φ
Km(∂, ∂)|U (λ)

φ f |2(0) < ∞},

Q̃m,ρ = {f ∈ H(Ω) : sup
φ

∫

Ω

∆m|Uφf |2 dµρ−p < ∞},

Qm,ρ = {f ∈ H(Ω) : sup
φ

∫

Ω

Km(∂, ∂)|Uφf |2 dµρ < ∞},

where µρ(z) = h(z, z)ρ dz where h is the Jordan triple determinant. Also, for a
sequence s = {sm} of numbers sm ∈ [0,+∞] indexed by the signatures m, let

Qs = {f ∈ H(Ω) : sup
φ

∑
m

sm‖(Uφf)m‖2F < ∞}

where gm denotes the component in the Peter-Weyl decomposition g =
∑

m gm

of a holomorphic function g, and ‖ · ‖F stands for the Fischer-Fock norm. Using
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the methods of [AE], it should be possible to extend our results in Sections 3–4
also to the spaces above. The author hopes to possibly return to this topis in a
future work.
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[OYZ] C. Ouyang, W. Yang and R. Zhao: Möbius invariant Qp spaces associated with the

Green’s function on the unit ball of Cn, Pacific J. Math. 182 (1998), 69–99.
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