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Abstract. Generalizing earlier results for the disc and the ball, we give a formula
for the Dixmier trace of the product of 2n Hankel operators on Bergman spaces of
strictly pseudoconvex domains in Cn. The answer turns out to involve the dual Levi
form evaluated on boundary derivatives of the symbols. Our main tool is the theory
of generalized Toeplitz operators due to Boutet de Monvel and Guillemin.

1. Introduction

Let Ω be a bounded strictly pseudoconvex domain in Cn with smooth bound-
ary, and L2

hol(Ω) the Bergman space of all holomorphic functions in L2(Ω). For a
bounded measurable function f on Ω, the Toeplitz and the Hankel operator with
symbol f are the operators Tf : L2

hol(Ω) → L2
hol(Ω) and Hf : L2

hol(Ω) → L2(Ω) ª
L2

hol(Ω), respectively, defined by

(1) Tfg := Π(fg), Hfg := (I −Π)(fg),

where Π : L2(Ω) → L2
hol(Ω) is the orthogonal projection. It has been known for

some time that for f holomorphic and n > 1, the Hankel operator Hf belongs
to the Schatten ideal Sp if and only if f is in the diagonal Besov space Bp(Ω)
and p > 2n, or f is constant (so Hf = 0) and p ≤ 2n; see Arazy, Fisher and
Peetre [1] for Ω = Bn, the unit ball of Cn, and Li and Luecking [21] for general
smoothly bounded strictly pseudoconvex domains Ω. This phenomenon is called a
cutoff at p = 2n. In dimension n = 1, the situation is slightly different, in that the
cutoff occurs not at p = 2 but at p = 1. Since it is immediate from (1) that for
holomorphic functions f and g,

[Tf ,Tg] = Tfg −TgTf = H∗
g Hf ,

one can rephrase the above results also in terms of membership in the Schat-
ten classes of the commutators [Tf ,Tg]. In any case, it follows that there are
no nonzero trace-class Hankel operators Hf if n = 1, and similarly the product
H∗

f1
Hf2

. . .H∗
f2n−1

Hf2n
= [Tf2

,Tf1 ] . . . [Tf2n
,Tf2n−1 ] is never trace-class if n > 1.
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In particular, there is no hope for n > 1 of having an analogue of the well-known
formula for the unit disc,

(2) tr[Tf ,Tf ] =
∫

D

|f ′(z)|2 dm(z)

expressing the trace of the commutator [Tf ,Tf ] as the square of the Dirichlet norm
of the holomorphic function f , which is one of the best known Moebius invariant
integrals. (This formula actually holds for Toeplitz operators on any Bergman space
of a bounded planar domain, if the Lebesgue area measure dm(z) is replaced by an
appropriate measure associated to the domain, see [2].) A remarkable substitute for
(2) on the unit ball Bn is the result of Helton and Howe [19], who showed that for
smooth functions f1, . . . , f2n on the closed ball, the complete anti-symmetrization
[Tf1 ,Tf2 , . . . ,Tf2n

] of the 2n operators Tf1 , . . . ,Tf2n
is trace-class and

tr[Tf1 ,Tf2 , . . . ,Tf2n ] =
∫

Bn

df1 ∧ df2 ∧ · · · ∧ df2n.

There is, however, a generalization of (2) to the unit ball Bn, n > 1, in a different
direction — using the Dixmier trace. This may be notable especially in view of
the prominent applications of the Dixmier trace in noncommutative differential
geometry [9].

Namely, it was shown by the present authors and Guo [12] that for f1, . . . , fn and
g1, . . . , gn smooth on the closed ball, the product [Tf1 ,Tg1 ] . . . [Tfn ,Tgn ] belongs
to the Dixmier class SDixm and has Dixmier trace equal to

(3) Trω([Tf1 ,Tg1 ] . . . [Tfn ,Tgn ]) =
1
n!

∫

∂Bn

n∏

j=1

{fj , gj}b dσ,

where dσ is the normalized surface measure on ∂Bn and {f, g}b is the “boundary
Poisson bracket” given by

{f, g}b :=
n∑

j=1

( ∂f

∂zj

∂g

∂zj
− ∂f

∂zj

∂g

∂zj

)
− (RfRg −RfRg),

with R :=
∑n

j=1 zj
∂

∂zj
and R :=

∑n
j=1 zj

∂
∂zj

the anti-holomorphic and the holo-
morphic part of the radial derivative, respectively. In particular, for f holomorphic
on Bn and smooth on the closed ball, (H∗

f
Hf )n = [Tf ,Tf ]n ∈ SDixm and

Trω((H∗
f
Hf )n) =

1
n!

∫

∂Bn

( n∑

j=1

∣∣∣ ∂f

∂zj

∣∣∣
2

− |Rf |2
)n

dσ.

Note that for n = 1 the right-hand side vanishes, in accordance with the fact that in
dimension 1 the cutoff occurs at p = 1 instead of p = 2n = 2; in fact, it was shown
by Rochberg and the first author [13] that for n = 1 actually |Hf | = (H∗

f Hf )1/2,
rather than H∗

f Hf , is in the Dixmier class for any f ∈ C∞(D), and

Trω(|Hf |) =
∫

∂D

|∂f | dσ,
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so, in particular,

Trω(|Hf |) =
∫

∂D

|f ′| dσ = ‖f ′‖H1

for f ∈ C∞(D) holomorphic on D, where H1 denotes the Hardy 1-space on the
unit circle.

In this paper, we generalize the result of [12] to arbitrary bounded strictly pseu-
doconvex domains Ω with smooth boundary. Our result is that for any 2n functions
f1, g1, . . . , fn, gn ∈ C∞(Ω),

(4) Trω(H∗
f1

Hg1 . . .H∗
fn

Hgn) =
1

n!(2π)n

∫

∂Ω

n∏

j=1

L(∂bgj , ∂bfj) η ∧ (dη)n−1,

where ∂b stands for the boundary ∂-operator [14], η ∧ (dη)n−1 is a certain measure
on ∂Ω, and L stands for the dual of the Levi form on the anti-holomorphic tangent
bundle; see §§ 2 and 4 below for the details.

In contrast to [12], where we were using the so-called pseudo-Toeplitz operators
of Howe [18], our proof here relies on Boutet de Monvel’s and Guillemin’s theory
of Toeplitz operators on the Hardy space H2(∂Ω) with pseudodifferential symbols.
(This is also the approach used in [13], however the situation Ω = D treated there
is much more manageable.)

In fact, it turns out that for any classical pseudodifferential operator Q on ∂Ω of
order −n, the corresponding Hardy-Toeplitz operator TQ belongs to the Dixmier
class and

(5) Trω(TQ) =
1

n!(2π)n

∫

∂Ω

σ−n(Q)(x, η(x)) η(x) ∧ (dη(x))n−1,

where σ−n(Q) is the principal symbol of Q, and η is a certain 1-form on ∂Ω; see
again §2 below for the details. In particular, in view of the results of Guillemin
[16] [17], this means that on Toeplitz operators TQ of order ≤ −n, the Dixmier
trace Trω TQ coincides with the residual trace TrRes TQ, a quantity constructed
using the meromorphic continuation of the ζ function of TQ (Wodzicki [24], Boutet
de Monvel [7], Ponge [23], Lesch [20], Connes [9]).

We recall the necessary prerequisites on the Dixmier trace, Hankel operators
and the Boutet de Monvel-Guillemin theory in Section 2. The proofs of (5) and (4)
appear in Sections 3 and 4, respectively. Some concluding comments are assembled
in the final Section 5.

Throughout the paper, we will denote Bergman-space Toeplitz operators by Tf ,
in order to distinguish them from the Hardy-space Toeplitz operators Tf and TQ.
Since Hankel operators on the Hardy space never appear in this paper, Hankel
operators on the Bergman space are denoted simply by Hf .

2. Background

2.1 Generalized Toeplitz operators. Let r be a defining function for Ω, that is,
r ∈ C∞(Ω), r < 0 on Ω, and r = 0, ‖∂r‖ > 0 on ∂Ω. Denote by η the restriction to
∂Ω of the 1-form Im(∂r) = (∂r−∂r)/2i. The strict pseudoconvexity of Ω guarantees
that η is a contact form, i.e. the half-line bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}
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is a symplectic submanifold of T ∗(∂Ω). Equip ∂Ω with a measure with smooth pos-
itive density, and let L2(∂Ω) be the Lebesgue space with respect to this measure.
The Hardy space H2(∂Ω) is the subspace in L2(∂Ω) of functions whose Poisson
extension is holomorphic in Ω; or, equivalently, the closure in L2(∂Ω) of C∞hol(∂Ω),
the space of boundary values of all the functions in C∞(Ω) that are holomorphic
on Ω. We will also denote by W s(∂Ω), s ∈ R, the Sobolev spaces on ∂Ω, and by
W s

hol(∂Ω) the corresponding subspaces of nontangential boundary values of func-
tions holomorphic in Ω. (Thus W 0(∂Ω) = L2(∂Ω) and W 0

hol(∂Ω) = H2(∂Ω).)
Unless otherwise specified, by a pseudodifferential operator or Fourier integral

operator (ΨDO or FIO for short) on ∂Ω we will always mean an operator which is
“classical”, i.e. whose total symbol (or amplitude) in any local coordinate system
has an asymptotic expansion

p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ),

where pm−j is C∞ in x, ξ, and is positive homogeneous of degree m − j in ξ for
|ξ| > 1. Here j runs through nonnegative integers, while m can be any integer;
and the symbol “∼” means that the difference between p and

∑k−1
j=0 pm−j should

belong to the Hörmander class Sm−k, for each k = 0, 1, 2, . . . . The set of all
classical ΨDOs on ∂Ω as above (i.e. of order m) will be denoted by Ψm

cl ; and we
set, as usual, Ψcl :=

⋃
m∈Z Ψm

cl and Ψ−∞ :=
⋂

m∈Z Ψm
cl . The operators in Ψ−∞

are precisely the smoothing operators, i.e. those given by a C∞ Schwartz kernel;
and for any P,Q ∈ Ψcl, we will write P ∼ Q if P − Q is smoothing. Note that if
P ∈ Ψm

cl , then P is continuous from W s(∂Ω) into W s−m(∂Ω), for any s ∈ R.
For Q ∈ Ψm

cl , the generalized Toeplitz operator TQ : Wm
hol(∂Ω) → H2(∂Ω) is

defined as
TQ = ΠQ,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projection).
Alternatively, one may view TQ as the operator

TQ = ΠQΠ

on all of Wm(∂Ω). Actually, TQ maps continuously W s(∂Ω) into W s−m
hol (∂Ω), for

each s ∈ R, because Π is bounded on W s(∂Ω) for any s ∈ R (see [6]).
It is known that the generalized Toeplitz operators TP , P ∈ Ψcl, have the fol-

lowing properties.
(P1) They form an algebra which is, modulo smoothing operators, locally iso-

morphic to the algebra of classical ΨDOs on Rn.
(P2) In fact, for any TQ there exists a ΨDO P of the same order such that

TQ = TP and PΠ = ΠP .
(P3) If P, Q are of the same order and TP = TQ, then the principal symbols σ(P )

and σ(Q) coincide on Σ. One can thus define unambiguously the order of
a generalized Toeplitz operator as ord(TQ) := min{ord(P ) : TP = TQ}, and
its principal symbol (or just “symbol”) as σ(TQ) := σ(Q)|Σ if ord(Q) =
ord(TQ). (The symbol is undefined if ord(TQ) = −∞.)

(P4) The order and the symbol are multiplicative: ord(TP TQ) = ord(TP ) +
ord(TQ) and σ(TP TQ) = σ(TP )σ(TQ).
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(P5) If ord(TQ) ≤ 0, then TQ is a bounded operator on L2(∂Ω); if ord(TQ) < 0,
then it is even compact.

(P6) If Q ∈ Ψm
cl and σ(TQ) = 0, then there exists P ∈ Ψm−1

cl with TP = TQ.
In particular, if TQ ∼ 0, then there exists a ΨDO P ∼ 0 such that TQ = TP .

(P7) We will say that a generalized Toeplitz operator TQ of order m is ellip-
tic if σ(TQ) does not vanish. Then TQ has a parametrix, i.e. there exists
a Toeplitz operator TP of order −m, with σ(TP ) = σ(TQ)−1, such that
TQTP ∼ IH2(∂Ω) ∼ TP TQ.

We refer to the book [5], especially its Appendix, and to the paper [4] (which we
have loosely followed in this section) for the proofs and additional information on
generalized Toeplitz operators.

2.2 The Poisson operator. Let K denote the Poisson extension operator on Ω,
i.e. K solves the Dirichlet problem

(6) ∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordinary
Laplace operator.) By the standard elliptic regularity theory (see e.g. [22]), K acts
continuously from W s(∂Ω) onto the subspace W

s+1/2
harm (Ω) of all harmonic functions

in W s+1/2(Ω). In particular, it is continuous from L2(∂Ω) into L2(Ω), and thus
has a continuous Hilbert space adjoint K∗ : L2(Ω) → L2(∂Ω). The composition

K∗K =: Λ

is known to be an elliptic positive ΨDO on ∂Ω of order −1. We have

(7) Λ−1K∗K = IL2(∂Ω),

while
KΛ−1K∗ = Πharm,

the orthogonal projection in L2(Ω) onto the subspace L2
harm(Ω) of all harmonic

functions. (Indeed, from (7) it is immediate that the left-hand side acts as the
identity on the range of K, while it trivially vanishes on KerK∗ = (RanK)⊥.)
Comparing (7) with (6), we also see that the restriction

γ := Λ−1K∗|L2
harm(Ω)

is the operator of “taking the boundary values” of a harmonic function. Again,
by elliptic regularity, γ extends to a continuous operator from W s

harm(Ω) onto
W s−1/2(∂Ω), for any s ∈ R, which is the inverse of K.

The operators
Λw := K∗wK,

with w a smooth function on Ω, are governed by a calculus developed by Boutet
de Monvel [3]. It was shown there that for w of the form

(8) w = rmg, m = 0, 1, 2, . . . , g ∈ C∞(Ω),
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Λw is a ΨDO on ∂Ω of order −m− 1, with symbol

(9) σ(Λw)(x, ξ) =
(−1)mm!
2|ξ|m+1

g(x) ‖ηx‖m.

(In particular, σ(Λ)(x, ξ) = 1/2|ξ|.)
By abstract Hilbert space theory, K has, as an operator from L2(∂Ω) into L2(Ω),

the polar decomposition

(10) K = U(K∗K)1/2 = UΛ1/2,

where U is a partial isometry with initial space RanK∗ = (KerK)⊥ and final space
RanK; that is, U is a unitary operator from L2(∂Ω) onto L2

harm(Ω).
The operators γ, K and U = KΛ−1/2 can be used to “transfer” operators on

L2
harm(Ω) ⊂ L2(Ω) into operators on L2(∂Ω). The following proposition appears as

Proposition 8 in [11]; we reproduce its (short) proof here for completeness.

Proposition 1. γΠK = T−1
Λ ΠΛ.

Proof. Set ΠΛ := KT−1
Λ ΠΛγ, an operator on L2

harm(Ω); we need to show that
ΠΛ = Π|L2

harm
. Since T−1

Λ ΠΛ acts as the identity on the range of Π, it is immediate
that Π2

Λ = ΠΛ; furthermore, ΠΛ = KT−1
Λ ΠK∗ = KΠT−1

Λ ΠK∗ is evidently self-
adjoint. Thus ΠΛ is the orthogonal projection in L2

harm(Ω) onto RanΠΛ. But

RanΠΛ = (KerΠΛ)⊥ = (KerKΠT−1
Λ ΠK∗)⊥ = (Ker T

−1/2
Λ ΠK∗)⊥

= (Ker ΠK∗)⊥ = RanKΠ = KH2(∂Ω)

= W
1/2
hol (Ω) = L2

hol(Ω).

So, indeed, ΠΛ = Π. ¤
Similarly to (10), the bounded (in fact — since Λ is of order < 0 — even compact)

operator Λ1/2Π on L2(∂Ω) has polar decomposition

Λ1/2Π = W (ΠΛΠ)1/2 = WT
1/2
Λ ,

where W is a partial isometry with initial space RanΠΛ1/2 = H2(∂Ω) and final
space RanΛ1/2Π = Λ1/2H2(∂Ω); in particular,

(11) W ∗W = I on H2(∂Ω).

The following proposition is analogous to Corollary 9 of [11].

Proposition 2. Let w ∈ C∞(Ω) be of the form (8). Then

U∗TwU = WT
−1/2
Λ TΛwT

−1/2
Λ W ∗ = WTQwW ∗,

where Qw is a ΨDO on ∂Ω of order −m with σ(Qw)(x, ξ)|Σ = (−1)mm!
|ξ|m g(x) ‖ηx‖m.

Proof. By Proposition 1, ΠK = KT−1
Λ ΠΛ = KΠT−1

Λ ΠΛ; hence

U∗TwU = Λ−1/2K∗ΠwΠKΛ−1/2

= Λ1/2ΠT−1
Λ ΠK∗wKΠT−1

Λ ΠΛ1/2

= Λ1/2ΠT−1
Λ ΠΛwΠT−1

Λ ΠΛ1/2

= Λ1/2ΠT−1
Λ TΛwT−1

Λ ΠΛ1/2

= WT
−1/2
Λ TΛwT

−1/2
Λ W ∗,
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proving the first equality. The second equality follows from (9) and the properties
(P1) and (P4). ¤
2.3 The Dixmier trace. Recall that if A is a compact operator acting on a Hilbert
space then its sequence of singular values {sj(A)}∞j=1 is the sequence of eigenvalues
of |A| = (A∗A)1/2 arranged in nonincreasing order. In particular if A À 0 this will
also be the sequence of eigenvalues of A in nonincreasing order. For 0 < p < ∞ we
say that A is in the Schatten ideal Sp if {sj(A)} ∈ lp(Z>0). If A À 0 is in S1, the
trace class, then A has a finite trace and, in fact, tr(A) =

∑
j sj(A). If however we

only know that

sj(A) = O(j−1) or that

Sk(A) :=
k∑

j=1

sj(A) = O(log(1 + k))

then A may have infinite trace. However in this case we may still try to compute its
Dixmier trace, Trω(A). Informally Trω(A) = limk

1
log kSk(A) and this will actually

be true in the cases of interest to us. We begin with the definition. Select a
continuous positive linear functional ω on l∞(Z>0) and denote its value on a =
(a1, a2, ...) by Limω(ak). We require of this choice that Limω(ak) = lim ak if the
latter exists. We require further that ω be scale invariant; a technical requirement
that is fundamental for the theory but will not be of further concern to us.

Let SDixm be the class of all compact operators A which satisfy

(12)
( Sk(A)

log(1 + k)

)
∈ l∞.

With the norm defined as the l∞-norm of the left-hand side of (12), SDixm becomes
a Banach space [15]. For a positive operator A ∈ SDixm, we define the Dixmier trace
of A, Trω(A), as Trω(A) = Limω( Sk(A)

log(1+k) ). Trω(·) is then extended by linearity to
all of SDixm. Although this definition does depend on ω the operators A we consider
are measurable, that is, the value of Trω(A) is independent of the particular choice
of ω. We refer to [9] for details and for discussion of the role of these functionals.

It is a result of Connes [8] that if Q is a ΨDO on a compact manifold M of real
dimension n and ord(Q) = −n, then Q ∈ SDixm and

(13) Trω(Q) =
1

n!(2π)n

∫

(T ∗M)1

σ(Q).

(Here (T ∗M)1 denotes the unit sphere bundle in the cotangent bundle T ∗M , and
the integral is taken with respect to a measure induced by any Riemannian metric
on M ; since σ(Q) is homogeneous of degree −n, the value of the integral is indepen-
dent of the choice of such metric.) In the next section, we will see that for Toeplitz
operators TQ on ∂Ω, Ω ⊂ Cn, the “right” order for TQ to belong to SDixm is not
− dimR ∂Ω = −(2n− 1), but − dimC Ω = −n.

3. Dixmier trace of generalized Toeplitz operators

Let T be a positive self-adjoint generalized Toeplitz operator on ∂Ω of order 1
with σ(T ) > 0. Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the points of its spectrum (counting
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multiplicities) and let N(λ) denote the number of λj ’s less than λ. It was shown in
Theorem 13.1 in [5] that as λ → +∞,

(14) N(λ) =
vol(ΣT )
(2π)n

λn + O(λn−1),

where ΣT is the subset of Σ where σ(T ) ≤ 1, and vol(ΣT ) is its symplectic volume.
Using properties of generalized Toeplitz operators, it is easy to derive from here

the formula for the Dixmier trace.

Theorem 3. Let T be a generalized Toeplitz operator on H2(∂Ω) of order −n.
Then T ∈ SDixm, and

Trω(T ) =
1

n!(2π)n

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

In particular, T is measurable.

Proof. As the Dixmier trace is defined first on positive operators and then extended
to all of SDixm by linearity, while T may be split into its real and imaginary parts
each of which can be expressed as a difference of two positive generalized Toeplitz
operators of the same order, it is enough to prove the assertion when T is positive
self-adjoint with σ(T ) > 0. Then T is elliptic, and it follows from Seeley’s theo-
rem on complex powers of ΨDO’s and from the property (P2) that T−1/n is also
a generalized Toeplitz operator, with symbol σ(T )−1/n and of order 1 (see [10],
Proposition 16, for the detailed argument). Thus the eigenvalues λ1 ≤ λ2 ≤ . . . of
T−1/n satisfy (14). Consequently,

Sk(T ) =
k∑

j=1

sj(T ) =
k∑

j=1

λ−n
j =

∫

[λ1,λk]

λ−n dN(λ)

=
∫

[λ1,λk]

( c

N(λ)
+ O

(
N(λ)−1− 1

n

))
dN(λ)

=
∫ k

1

( c

N
+ O(N−1− 1

n )
)

dN

= c log k + O(1).

Here we have temporarily denoted c := (2π)−n vol(ΣT−1/n). Dividing by log(k + 1)
and letting k tend to infinity, it follows that T ∈ SDixm and

(15) Trω(T ) = lim
k→∞

Sk(T )
log(k + 1)

= c.

Let us parameterize Σ as (x, tηx) with x ∈ ∂Ω, t > 0. The subset ΣT−1/n is then
characterized by

σ(T )(x, tηx)−1/n ≤ 1, or t ≤ σ(T )(x, ηx)1/n.

A routine computation, which we postpone to the next lemma, shows that the
symplectic volume on Σ with respect to the above parameterization is given by
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tn−1

(n−1)! dt ∧ η(x) ∧ (dη(x))n−1. Consequently,

vol(ΣT−1/n) =
∫

∂Ω

∫ σ(T )(x,ηx)1/n

0

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1

=
1
n!

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

Combining this with (15) and the definition of c, the assertion follows. ¤
Remark 4. Observe that, in analogy with (13), the last integral is independent of
the choice of the defining function. Indeed, if r is replaced by gr, with g > 0 on ∂Ω,
then η = Im(∂r) is replaced by gη (since ∂(gr) = g∂r on the set where r = 0), and
η ∧ (dη)n−1 by gη ∧ (g dη + dg ∧ η)n−1 = gn η ∧ (dη)n−1 (because η ∧ η = 0); as
σ(T )(x, ξ) is homogeneous of degree −n in ξ, the integrand remains unchanged. ¤
Lemma 5. With respect to the parameterization Σ = {(x, tηx) : x ∈ ∂Ω, t > 0},
the symplectic form on Σ is given by

ω = t dη + dt ∧ η = d(tη).

Consequently, the symplectic volume in the (x, t) coordinates is given by

ωn

n!
=

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1.

Proof. Recall that if (x1, x2, . . . , x2n−1) is a real coordinate chart on ∂Ω and (x, ξ)
the corresponding local coordinates for a point (x; ξ1dx1 + · · · + ξ2n−1dx2n−1) in
T ∗∂Ω, then the form α = ξ1dx1 + · · · + ξ2n−1dx2n−1 is globally defined and the
symplectic form is given by ω = dα = dξ1∧dx1+· · ·+dξ2n−1∧dx2n−1. Since exterior
differentiation commutes with restriction (or, more precisely, with the pullback j∗

under the inclusion map j : Σ → T ∗∂Ω), it follows that the symplectic form
ωΣ = j∗ω on Σ is given by ωΣ = d(j∗α). As in our case j∗α = tη, the first
formula follows. (We will drop the subscript Σ from now on.) The second formula
is immediate from the first since η ∧ η = 0 and (dη)n = 0. ¤

The following corollary is immediate upon combining Theorem 3 and Proposi-
tion 2.

Corollary 6. Assume that f ∈ C∞(Ω) vanishes at ∂Ω to order n. Then Tf

belongs to the Dixmier class, is measurable, and

Trω(Tf ) =
1

n!(4π)n

∫

∂Ω

Nnf
η ∧ (dη)n−1

‖η‖n
,

where N denotes the interior unit normal derivative.

4. Dixmier trace for products of Hankel operators

It is known [5] that the symbol of the commutator of two generalized Toeplitz
operators is given by the Poisson bracket (with respect to the symplectic structure
of Σ) of their symbols:

σ([TP , TQ]) = 1
i {σ(TP ), σ(TQ)}Σ.



10 M. ENGLIŠ, G. ZHANG

We need an analogous formula for the semi-commutator TPQ − TP TQ of two gen-
eralized Toeplitz operators. Not surprisingly, it turns out to be given (at least in
the cases of interest to us) by an appropriate “half” of the Poisson bracket.

Let us denote by T ′′ ⊂ T ∂Ω ⊗ C the anti-holomorphic complex tangent space
to ∂Ω, i.e. the elements of T ′′x , x ∈ ∂Ω, are the vectors

∑n
j=1 aj

∂
∂zj

, aj ∈ C, such
that

∑
j aj

∂r
∂zj

(x) = 0. (This notation follows [6], p. 141.) On the open subset Um

of ∂Ω where ∂r
∂zm

6= 0 (as m ranges from 1 to n, these subsets cover all of ∂Ω), T ′′ is
spanned by the n− 1 vector fields

Rj :=
∂

∂zj
− ∂r/∂zj

∂r/∂zm

∂

∂zm
, j 6= m.

(Thus Rj depends also on m, although this is not reflected by the notation.)
The (similarly defined) holomorphic complex tangent space T ′ is, analogously,
spanned on Um by the n− 1 vector fields

Rj :=
∂

∂zj
− ∂r/∂zj

∂r/∂zm

∂

∂zm
, j 6= m,

while the whole complex tangent space T ∂Ω ⊗C is spanned there by the Rj , Rj

and

E :=
n∑

j=1

∂r

∂zj

∂

∂zj
− ∂r

∂zj

∂

∂zj

(the “complex normal” direction).
The boundary d-bar operator ∂b : C∞(∂Ω) → C∞(∂Ω, T ′′∗) is defined as the

restriction
∂bf := df |T ′′ ,

or, more precisely, ∂bf = df̃ |T ′′ for any smooth extension f̃ of f to a neighbourhood
of ∂Ω in Cn (the right-hand side is independent of the choice of such extension).
On Um, T ′′∗ admits dzj |T ′′ , j 6= m, as a basis and

∂bf =
∑

j

Rjf dzj |T ′′ .

Under our parameterization of Σ by (x, t) ∈ ∂Ω ×R+, the tangent bundle T Σ
is identified with T ∂Ω ×R, being spanned at each (x, tηx) ∈ Σ by Rj , Rj , E and
the extra vector T := ∂

∂t . Recall that the Levi form L′ is the Hermitian form on T ′
defined by

L′(X, Y ) :=
n∑

j,k=1

∂2r

∂zj∂zk
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.

The strong pseudoconvexity of Ω means that L′ is positive definite. Similarly,
one has the positive-definite Levi form L′′ on T ′′ defined by

L′′(X, Y ) :=
n∑

j,k=1

∂2r

∂zk∂zj
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.
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In terms of the complex conjugation X 7→ X given by Xj
∂

∂zj
= Xj

∂
∂zj

, mapping
T ′ onto T ′′ and vice versa, the two forms are related by

(16) L′′(X,Y ) = L′(Y , X) ∀X, Y ∈ T ′′.
By the usual formalism, L′′ induces a positive definite Hermitian form1 on the dual
space T ′′∗ of T ′′; we denote it by L. Namely, if L′′ is given by a matrix L with
respect to some basis {ej}, then L is given by the inverse matrix L−1 with respect
to the dual basis {êk} satisfying êk(ej) = δjk. An alternative description is the
following. For any α ∈ T ′′∗, let Z ′′α ∈ T ′′ be defined by

L′′(X, Z ′′α) = α(X) ∀X ∈ T ′′.
(This is possible, and Z ′′α is unique, owing to the non-degeneracy of L′′. Note that
α 7→ Z ′′α is conjugate-linear.) Then

L(α, β) = L′′(Z ′′β , Z ′′α) = α(Z ′′β ) = β(Z ′′α).

Let, in particular, Z ′′f := Z ′′
∂bf

, so that

L′′(X, Z ′′f ) = ∂bf(X) ∀X ∈ T ′′,
and denote by Z ′f ∈ T ′ the similarly defined holomorphic vector field satisfying

L′(Y, Z ′f ) = ∂bf(Y ) ∀Y ∈ T ′,
where ∂bf := df |T ′ . Set

Zf := i(Z ′′f − Z ′f ) ∈ T ′ + T ′′.
These objects are related to the symplectic structure of Σ as follows. Note that

dη = i∂∂r = i

n∑

k,l=1

∂2r

∂zk∂zl
dzk ∧ dzl,

hence
dη(X ′ + X ′′, Y ′ + Y ′′) = iL′(X ′, Y ′′)− iL′(Y ′, X ′′)

for all X ′, Y ′ ∈ T ′ and X ′′, Y ′′ ∈ T ′′. It follows that dη is a non-degenerate
skew-symmetric bilinear form on T ′ + T ′′, and

(17) dη(X, Zf ) = Xf ∀X ∈ T ′ + T ′′.
Indeed,

dη(X ′ + X ′′, Zf ) = iL′(X ′,−iZ ′f )− iL′(iZ ′′f , X ′′)

= L′(X ′, Z ′f ) + L′′(X ′′, Z ′′f )

= ∂bf(X ′) + ∂bf(X ′′) = df(X ′ + X ′′).

Let us define ET ∈ T ′ + T ′′ by

(18) dη(X, ET ) = dη(X, E) ∀X ∈ T ′ + T ′′
(again, this is possible and unambiguous by virtue of the non-degeneracy of dη on
T ′ + T ′′), and set

E⊥ :=
E − ET

η(E)
=

E − ET
i‖η‖2 .

1or, perhaps more appropriately, a positive definite Hermitian bivector



12 M. ENGLIŠ, G. ZHANG

Proposition 7. Let f, g ∈ C∞(∂Ω), and let F, G be the functions on Σ ∼= ∂Ω×R+

given by
F (x, t) = t−kf(x), G(x, t) = t−mg(x).

Then the Poisson bracket of F and G is given by

{F, G}Σ = t−k−m−1
(
Zfg + mgE⊥f − kfE⊥g

)
.

Proof. Recall that the Hamiltonian vector field HF of F is the pre-dual of dF with
respect to the symplectic form ωΣ ≡ ω on Σ, namely

ω(X, HF ) = dF (X) = XF, ∀X ∈ T Σ.

Since F = t−kf(x), we have dF = t−kdf − kt−k−1fdt, so

(19) HF = t−kHf − kt−k−1fHt.

We claim that

(20) Ht = E⊥, Hf =
1
t
Zf − E⊥f T.

We check the formula for Ht, i.e.

ω(X,Ht) = dt(X) ∀X ∈ T Σ.

For X = T ,

ω(T, E⊥) =
1

η(E)
(tdη + dt ∧ η)(T, E − ET )

=
1

η(E)
dt ∧ η(T,E − ET ) =

η(E)− η(ET )
η(E)

= 1 = dt(T ),

since η vanishes on T ′ + T ′′ 3 ET . Similarly, for X = X ′ ∈ T ′,

ω(X ′, E⊥) =
1

η(E)
t dη(X ′, E⊥)

vanishes by the definition (18) of ET , and so does dt(E⊥) since E⊥ contains no
t-differentiations. Analogously for X = X ′′ ∈ T ′′. Finally, for X = E we have

ω(E, E⊥) = − 1
η(E)

ω(E, ET ) = − 1
η(E)

t dη(E, ET )

= − 1
η(E)

t dη(ET , ET ) = 0 = dt(E),

where in the third equality we have used (18) for X = ET .
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Next we check the formula for Hf . For X = T , both ω(X,Hf ) and df(X) are
zero. For X ∈ T ′ + T ′′, we have ω(X,T ) = dt ∧ η(X, T ) = −η(X) = 0 and the
equality follows by (17). Finally for X = E

ω(E, Hf ) = t dη(E, 1
t Zf ) + dt ∧ η(E,−E⊥f T )

= dη(ET , Zf ) + η(E)E⊥f

= ET f + η(E)E⊥f by (17)

= ET f + (E − ET )f,

which indeed coincides with df(E) = Ef .
By (20) and (19), we thus get

HF = t−k−1Zf − t−kE⊥f T − kt−k−1fE⊥.

Consequently,

{F, G}Σ = ω(HF ,HG) = HF G

= t−k−m−1Zfg + mt−k−m−1gE⊥f − kt−k−m−1fE⊥g,

and the assertion follows. ¤

Corollary 8. Let f, g ∈ C∞(∂Ω), and denote by f, g also the corresponding func-
tions on Σ ∼= ∂Ω×R+ constant on each fiber. Then

{f, g}Σ =
1
t
Zfg = i

L(∂bf, ∂bg)− L(∂bg, ∂bf)
t

.

Proof. Immediate upon taking m = k = 0 in the last proposition, and observing
that

1
i
Zfg = Z ′′f g − Z ′fg = dg(Z ′′f )− dg(Z ′f )

= ∂bg(Z ′′f )− ∂bg(Z ′f ) = ∂bg(Z ′′f )− ∂bg(Z ′f )

= L(∂bg, ∂bf)− L(∂bg, ∂bf),

since Z ′f = Z ′′
f

by virtue of (16). ¤

We are now ready to state the main result of this section and, in some sense,
of this paper.

Theorem 9. Let U , W have the same meaning as in Proposition 2. Then for
f, g ∈ C∞(Ω),

U∗(Tfg −TgTf )U = WTQW ∗,

where TQ is a generalized Toeplitz operator on ∂Ω of order −1 with principal symbol

(21) σ(TQ)(x, tηx) =
1
t
L(∂bf, ∂bg)(x).
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Proof. By Proposition 2,

U∗(Tfg −TgTf )U = W (TQfg
− TQg

TQf
)W ∗,

where TQf
= T

−1/2
Λ TΛf

T
−1/2
Λ is a generalized Toeplitz operator of order 0 with

symbol σ(TQf
)(x, ξ) = f(x). By (P1) and (P4), the expression TQfg

− TQg
TQf

is
thus a generalized Toeplitz operator TQ of order 0 with symbol σ(TQ) = σ(TQfg

)−
σ(TQg

)σ(TQf
) = fg − gf = 0; thus by (P6), it is indeed, in fact, a generalized

Toeplitz operator of order −1. It remains to show that its symbol, which we denote
by ρ(f, g), is given by (21).

By the general theory, ρ(f, g) is given by a local expression, i.e. one involving
only finitely many derivatives of f and g at the given point, and linear in f and g.
(Indeed, the proof of Proposition 2.5 in [5] shows that the construction, for a given
ΨDO Q, of the ΨDO P from property (P2), i.e. such that TQ = TP and [P, Π] = 0,
is completely local in nature, so the total symbol of the P corresponding to Q = Λf

is given by local expressions in terms of the total symbol of Λf , hence, by local
expressions in terms of f ; the claim thus follows from the product formula for the
symbol of ΨDOs.) It is therefore enough to show that

(22) ρ(f, g) =
1
t
L(∂bf, ∂bg)

for functions f, g of the form uv, with u, v holomorphic on Ω. 2 Next, if u and v are
holomorphic on Ω, then TvTf = Tvf and TfTu = Tfu for any f ; consequently,
using Proposition 2 and (11),

U∗(Tufvg −TvgTuf )U = U∗Tv(Tfg −TgTf )TuU

= U∗TvUU∗(Tfg −TgTf )UU∗TuU

= WTQv
W ∗W (TQfg

− TQg
TQf

)W ∗WTQuW ∗

= WTQv
(TQfg

− TQg
TQf

)TQuW ∗.

By (P4) we see that

ρ(uf, vg) = u ρ(f, g) v.

Since also

L(∂buf, ∂bvg) = uL(∂bf, ∂bg) v

(because ∂b(uf) = u ∂bf for holomorphic u), it in fact suffices to prove (22) when
f, g are both conjugate-holomorphic, i.e. ∂bf = ∂bg = 0. However, in that case
Tfg = TfTg, so, using again Proposition 2 and (11),

U∗(Tfg −TgTf )U = U∗[Tf ,Tg]U = [U∗TfU,U∗TgU ]

= [WTQf
W ∗,WTQg

W ∗] = W [TQf
, TQg

]W ∗,

2In fact, even holomorphic polynomials u, v would do.
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implying that

ρ(f, g) = σ([TQf
, TQg

])

= 1
i {σ(TQf

), σ(TQg
)}Σ

= 1
i {f, g}Σ

=
L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
by Corollary 8

= 1
t L(∂bf, ∂bg),

completing the proof. ¤

Remark 10. It seems much more difficult to obtain a formula for the symbol of
TPQ − TP TQ for general ΨDOs P and Q. ¤

We are now ready to prove the main result on Dixmier traces.

Theorem 11. Let f1, g1, . . . , fn, gn ∈ C∞(Ω). Then the operator

H = H∗
g1

Hf1H
∗
g2

Hf2 . . . H∗
gn

Hfn

on L2
hol(Ω) belongs to the Dixmier class, and

(23) Trω(H) =
1

n!(2π)n

∫

∂Ω

L(∂bf1, ∂bg1) . . .L(∂bfn, ∂bgn) η ∧ (dη)n−1.

In particular, H is measurable.

Proof. Denote, for brevity, Vj := T
−1/2
Λ (TΛfjgj

− TΛgj
T−1

Λ TΛfj
)T−1/2

Λ . We have
seen in the last theorem that H∗

gj
Hfj = Tgjfj −Tgj

Tfj satisfies

U∗H∗
gj

Hfj U = WVjW
∗

and that Vj is a generalized Toeplitz operator of order −1 with symbol given by
σ(Vj)(x, tηx) = 1

tL(∂bfj , ∂bgj). By iteration and using (11), it follows that

U∗H∗
g1

Hf1H
∗
g2

Hf2 . . . H∗
gn

HfnU = WV1V2 . . . VnW ∗ = WV W ∗,

where V := V1V2 . . . Vn is a generalized Toeplitz operator of order −n with symbol
σ(V )(x, tηx) = t−n

∏n
j=1 L(∂bfj , ∂bgj). An application of Theorem 3 completes the

proof. ¤

Corollary 12. Let f be holomorphic on Ω and C∞ on Ω. Then |Hf |2n is in the
Dixmier class, measurable, and

Trω(|Hf |2n) =
1

n!(2π)n

∫

∂Ω

L(∂bf, ∂bf)n η ∧ (dη)n−1.



16 M. ENGLIŠ, G. ZHANG

By standard matrix algebra, one has3

L(∂bf, ∂bg) =
[

∂g̃
0

]∗ [
∂∂r ∂r
∂r 0

]−1 [
∂f̃
0

]
,

where f̃ , g̃ are any smooth extensions of f, g ∈ C∞(∂Ω) to a neighbourhood of ∂Ω.
In particular, for Ω = Bd, the unit ball, with the defining function r(z) = |z|2−1,

we obtain

(24) L(∂bf, ∂bg) =
n∑

j=1

∂f̃

∂zj

∂g̃

∂zj
−Rf̃Rg̃,

where R :=
∑n

j=1 zj
∂

∂zj
is the anti-holomorphic radial derivative. One also easily

checks that η ∧ (dη)n−1 = (2π)n dσ where dσ is the normalized surface measure
on ∂Bn. The last two theorems thus recover, as they should, the results from [12]
(Theorem 4.4 — which is the formula (3) above — and Corollary 4.5 there).

Note also that for n = 1, the expression (24) vanishes; in this case U∗H∗
g HfU

is thus in fact of order not −1 but −2 (so that |H∗
g Hf |1/2 is in the Dixmier class

rather than H∗
g Hf ), and some additional work is needed to compute the symbol

(and, from it, the Dixmier trace); see [13].
Finally, we pause to remark that the value of the integral (23) remains unchanged

under biholomorphic mappings, as well as changes of the defining function. Indeed,
if r is replaced by gr, with g > 0 on ∂Ω, then T ′′ and ∂b are unaffected, while the
Levi form L on T ′′ gets multiplied by g. Hence its dual L gets multiplied by g−1,
and as η ∧ (dη)n−1 transforms into gnη ∧ (dη)n−1 (cf. Remark 4), the integrand in
(23) does not change. Similarly, if φ : Ω1 → Ω2 is a biholomorphic map and r is a

3Let, quite generally, X be an operator on Cn, u ∈ Cn, and denote by A the compression of X
to the orthogonal complement u⊥ of u, i.e. A = PX|Ran P where P : Cn → u⊥ is the orthogonal

projection. Assume that A is invertible. Then the block matrix

ů
X u
u∗ 0

ÿ
∈ C(n+1)×(n+1) is

invertible, and for any v, w ∈ Cn,

〈A−1Pv, Pw〉 =

ů
w
0

ÿ∗ ů
X u
u∗ 0

ÿ−1 ů
v
0

ÿ
.

Indeed, switching to a convenient basis we may assume that u = [0, . . . , 0, 1]t. Write X =

ů
A b
c∗ d

ÿ
,

with b, c ∈ Cn, d ∈ C. Then

ů
X u
u∗ 0

ÿ
=

2
4

A b 0
c∗ d 1
0 1 0

3
5 =

2
4

1 0 b
0 1 d
0 0 1

3
5

2
4

A 0 0
0 0 1
0 1 0

3
5

2
4

1 0 0
0 1 0
c∗ 0 1

3
5 ,

whence

2
4

1 0 0
0 1 0
c∗ 0 1

3
5

ů
X u
u∗ 0

ÿ−1
2
4

1 0 b
0 1 d
0 0 1

3
5 =

2
4

A 0 0
0 0 1
0 1 0

3
5
−1

=

2
4

A−1 0 0
0 0 1
0 1 0

3
5 ,

and the claim follows.

The formula for L(∂bf, ∂bg) is obtained upon taking X = L, u = ∂r, v = ∂f and w = ∂g.
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defining function for Ω2, one can choose φ◦r as the defining function for Ω1; then it is
immediate, in turn, that φ sends T ′ into T ′ and T ′′ into T ′′, and that it transforms
each of η, η ∧ (dη)n−1, ∂b, ∂b, L and L into the corresponding object on the other
domain. Hence L(∂bf, ∂bg) = (φ∗L)(φ∗∂bf, φ∗∂bg) = L(∂b(f ◦ φ), ∂b(g ◦ φ)) and,
finally, φ∗(

∏
j L(∂bfj , ∂bgj) η ∧ (dη)n−1) =

∏
j L(∂b(fj ◦ φ), ∂b(gj ◦ φ)) η ∧ (dη)n−1,

proving the claim. Note that e.g. even in the formula (3) for Ω = Bn, the invariance
of the value of the integral under biholomorphic self-maps of the ball is definitely
not apparent.

5. Concluding remarks

5.1 Residual trace. Comparing Theorem 3 with the results of Guillemin [16] [17],
we see that the Dixmier trace for generalized Toeplitz operators coincides (possibly
up to different normalization) with the residual trace of Wodzicki, Guillemin, Manin
and Adler. This is completely analogous to the situation for ΨDOs, cf. Connes [8],
Theorem 1.

5.2 Nonsmooth symbols. For the unit disc D in C, the analogue of Corol-
lary 12 is

Trω(|Hf |) =
∫

∂D

|f ′(eiθ)| dθ

2π

for f holomorphic on D and smooth on D; see [13]. It was shown in [13] that the
smoothness assumption can be dispensed with: namely, for f holomorphic on D,
|Hf | ∈ SDixm if and only if f ′ belongs to the Hardy 1-space H1(∂D), and then

Trω(|Hf |) = ‖f ′‖H1 .

We expect that the same situation prevails also for general domains Ω of the kind
studied in this paper, in the following sense. For f holomorphic on Ω, denote

Lf (z) :=
[

∂f
0

]∗ [
∂∂r ∂r
∂r 0

]−1 [
∂f
0

]
(z).

This is a smooth function defined in some neighbourhood of ∂Ω in Ω, whose bound-
ary values coincide with L(∂bf, ∂bf) if f is smooth up to the boundary.

Conjecture. Let f be holomorphic on Ω. Then |Hf |2n ∈ SDixm if and only if

‖f‖L := lim sup
ε↘0

( 1
n!(2π)n

∫

r=−ε

|Lf |n |η ∧ (dη)n−1|
)1/2n

is finite, and then
Trω(|Hf |2n) = ‖f‖2n

L .

The proof for the disc went by showing first that ‖f ′‖H1 actually dominates
the SDixm norm of |Hf |; the result then followed from the one for f ∈ C∞(D)
by a straightforward approximation argument. This approach might also work
for general domains Ω (with ‖f‖L and |Hf |2n replacing ‖f ′‖H1 and |Hf |), but
the techniques for doing so (estimates for the oscillation of f ′ on Carleson-type
rectangles, etc.) are outside the scope of this paper.
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5.3 Higher type. The generalized Toeplitz operators on H2(∂Ω) of higher type m,
m = 1, 2, . . . , are defined as T

(m)
Q = ΠmQΠm, where Q is a ΨDO on ∂Ω as before

and Πm is the orthogonal projection in L2(∂Ω) onto the subspace H2
(m)(∂Ω) of

functions annihilated by the m-th symmetric power of ∂b; in other words,

H2
(m)(∂Ω) = closure of {f ∈ C∞(∂Ω) : Rj1Rj2 . . . Rjmf = 0 ∀j1, j2, . . . , jm}.

For m = 1, this recovers the ordinary Szegö projector Π and the generalized Toeplitz
operators discussed so far. As shown in §15.3 of [5], the projectors Πm have almost
the same microlocal description as Π, so it is conceivable that our results could also
be extended to these higher type Toeplitz operators.

5.4 Weighted spaces. Our methods also work, with only minimal modifications,
for L2

hol(Ω) replaced by the weighted Bergman spaces L2
hol(Ω, |r|ν) ⊂ L2(Ω, |r|ν),

with any ν > −1. The formulas in Theorems 9 and 11, and in Corollary 12, remain
unchanged (i.e. they do not depend on ν).

Finally, it is immediate from Theorem 3, the property (P4) and the proof of
Theorem 9 that the formulas in Theorem 11 and Corollary 12 also remain valid for
Hankel operators on the Hardy space H2(∂Ω).

References

[1] J. Arazy, S.D. Fisher, J. Peetre: Hankel operators on weighted Bergman spaces, Amer. J.
Math. 110 (1988), 989–1053.

[2] J. Arazy, S.D. Fisher, S. Janson, J. Peetre: An identity for reproducing kernels in a planar
domain and Hilbert-Schmidt Hankel operators, J. reine angew. Math. 406 (1990), 179–199.

[3] L. Boutet de Monvel: Boundary problems for pseudo-differential operators, Acta Math. 126
(1971), 11–51.

[4] L. Boutet de Monvel: On the index of Toeplitz operators in several complex variables, Invent.
Math. 50 (1979), 249–272.

[5] L. Boutet de Monvel, V. Guillemin: The spectral theory of Toeplitz operators, Ann. Math.
Studies 99, Princeton University Press, Princeton, 1981.
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E-mail address: englis@math.cas.cz

Department of Mathematical Sciences, Chalmers University of Technology and
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