
BEREZIN TRANSFORM ON THE HARMONIC FOCK SPACE

Miroslav Englǐs

Abstract. We show that the Berezin transform associated to the harmonic Fock
(Segal-Bargmann) space on Cn has an asymptotic expansion analogously as in the
holomorphic case. The proof involves a computation of the reproducing kernel, which
turns out to be given by one of Horn’s hypergeometric functions of two variables,
and an ad hoc determination of the asymptotic behaviour of the resulting integrals,
to which the ordinary stationary phase method is not directly applicable.

1. Introduction

Let Fh be the Segal-Bargmann (or Fock) space of all entire functions on Cn

square-integrable with respect to the Gaussian

dµh(z) :=
1

(πh)n
e−|z|

2/h dz, h > 0,

dz being the Lebesgue volume measure on Cn. It is known that

Kh(x, y) = e〈x,y〉/h

is the reproducing kernel for Fh; thus

f(x) =
∫

Cn

f(y)Kh(x, y) dµh(y) = 〈f, Kh,x〉, Kh,x := Kh(·, x),

for all f ∈ Fh and x ∈ Cn. (See, for instance, Berger and Coburn [2] or Fol-
land [17].) Recall that for f ∈ L∞(Cn), the Berezin transform Bhf of f is the
function on Cn defined by

Bhf(x) =
〈fKh,x,Kh,x〉
〈Kh,x, Kh,x〉 = Kh(x, x)−1

∫

Cn

f(y)|Kh(x, y)|2 dµh(y).

Explicitly,

Bhf(x) =
1

(πh)n

∫

Cn

f(y) e−|x−y|2/h dy = (eh∆/4f)(x),
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2 M. ENGLIŠ

i.e. Bh is the heat solution operator et∆ at the time t = h/4. It follows that as
h ↘ 0, there is an asymptotic expansion

Bhf(x) ≈ f(x) +
h∆f(x)

4
+

h2∆2f(x)
2!42

+ . . . ,

whenever f ∈ L∞(Cn) is smooth in a neighbourhood of x.
It turns out that this kind of situation prevails in much greater generality.

Namely, consider a strictly plurisubharmonic real-valued smooth function Φ on
a domain Ω in Cn. Then gij = ∂2Φ/∂zi∂zj defines a Kähler metric on Ω, with
the associated volume element dµ(z) = det[gij ] dz. For any h > 0, we then have,
in particular, the weighted Bergman spaces L2

hol(Ω, e−Φ/h dµ) =: L2
hol,h of all holo-

morphic functions in L2(Ω, e−Φ/h dµ) =: L2
h, and the corresponding reproducing

kernels Kh(x, y) and Berezin transforms Bhf . Furthermore, for f ∈ L∞(Ω) one
has the Toeplitz operator T

(h)
f with symbol f , namely, the operator on L2

hol,h de-

fined by T
(h)
f φ = Ph(fφ), where Ph : L2

h → L2
hol,h is the orthogonal projection.

Now, assume that Ω ⊂ Cn is smoothly bounded and strictly pseudoconvex, and
e−Φ is a defining function for Ω;1 or that Ω is a bounded symmetric domain in Cn

and eΦ is the (unweighted) Bergman kernel of Ω; or that Ω = Cn and Φ(z) = |z|2.
Then as h ↘ 0, there are asymptotic expansions ([11], [5], [4], [7], [6])

Kh(x, x) ≈ eΦ(x)/h h−n
∞∑

j=0

hj bj(x);(1)

Bhf ≈
∞∑

j=0

hj Qjf ; and(2)

T
(h)
f T (h)

g ≈
∞∑

j=0

hj T
(h)
Cj(f,g) (in operator norm),(3)

for some functions bj ∈ C∞(Ω), with b0 = 1; some differential operators Qj , with
Q0 = I and Q1 the Laplace-Beltrami operator with respect to the metric gij ; and
some bidifferential operators Cj , where C0(f, g) = fg and C1(f, g) − C1(g, f) =
i

2π{f, g} (the Poisson bracket of f and g with respect to the metric gij).
The formulas (1)–(3) have an elegant application to quantization on Kähler man-

ifolds. Recall that the traditional problem of quantization consists in looking for
a map f 7→ Qf from C∞(Ω) into operators on some (fixed) Hilbert space which is
linear, conjugation-preserving, Q1 = I, and as the Planck constant h ↘ 0,

(4) [Qf , Qg] ≈ ih

2π
Q{f,g}.

(The spectrum of Qf is then interpreted as the possible outcomes of measuring the
observable f in an experiment; and (4) amounts to a correct semiclassical limit.)
The formula (3) implies that (4) holds for Qf = T

(h)
f , the Toeplitz operators on the

Bergman spaces L2
hol,h. This is the so-called Berezin-Toeplitz quantization.

1Recall that ρ ∈ C∞(Ω) is called a defining function for Ω if ρ > 0 on Ω, and ρ = 0, ‖∇ρ‖ 6= 0
on ∂Ω.
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From the point of view of these applications, the weighted Bergman spaces L2
hol,h

have an obvious disadvantage in that their very definition requires a holomorphic
structure (hence, in particular, they can make sense only on complex manifolds).
On the other hand, the other ingredients — the Toeplitz operators and the Berezin
transform — make sense not only for L2

hol, but for any subspace of L2 with repro-
ducing kernel. Hence it is of interest to investigate whether any such spaces other
than weighted Bergman spaces can be used for quantization.

One such candidate, namely, the pluriharmonic Bergman spaces L2
ph, consist-

ing of all functions f in L2 for which ∂2f/∂zj∂zk = 0 ∀j, k, has recently been
investigated in [12] and [13]. Unfortunately, it turned out that the analogue of (4),

1
h

[T (h)
f , T (h)

g ] ≈ i

2π
T

(h)
{f,g} as h ↘ 0,

in general fails, even for the unit disc Ω = D ⊂ C with the hyperbolic metric (given
by Φ(z) = lg 1

1−|z|2 ). On the other hand, the analogues of (1) and (2) turned out to
remain in force e.g. for the pluriharmonic Bergman spaces on bounded symmetric
domains and the pluriharmonic Fock (or Segal-Bargmann) space on Cn (basically
because the pluriharmonic Bergman kernels are then just the real parts of the
ordinary holomorphic ones).

The aim of the present paper is to show that an analogue of the asymptotic
expansion (2) for the Berezin transform prevails also in the case of the harmonic,
rather than pluriharmonic, Segal-Bargmann (Fock) space on Cn ∼= R2n; that is,
for the space

(5) Hh := {f ∈ L2(R2n, dµh) : ∆f = 0}

of all harmonic functions in L2(R2n, dµh), n > 1. (For n = 1, the harmonic
functions coincide with the pluriharmonic ones, and thus this case is already covered
by the above results for L2

ph.) Let R denote the radial derivative

R :=
n∑

j=1

(
zj

∂

∂zj
+ zj

∂

∂zj

)
=

m∑

j=1

(
xj

∂

∂xj
+ yj

∂

∂yj

)
, zj = xj + iyj ,

on R2n ∼= Cn. Our main result is the following.

Theorem 1. There exist linear differential operators R0, R1, R2, . . . on R2n \ {0},
of the form

(6) Rj =
∑

k,l≥0
k+2l≤2j

ρjkl|y|2l−2jRk∆l

with some constants ρjkl (depending only on n), such that for any y 6= 0 and for
any f ∈ L∞(R2n) smooth in a neighbourhood of y, the harmonic Berezin transform
Bharm

h associated to the spaces (5) has the asymptotic expansion

(7) Bharm
h f(y) ≈

∞∑

j=0

hjRjf(y) as h ↘ 0.
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Furthermore, R0 = I, the identity operator, and

(8) R1 =
∆

4(2n− 1)
+

(4n− 3)(n− 1)
2(2n− 1)|y|2 R+

n− 1
2(2n− 1)|y|2 R

2.

Finally,

(9) Bharm
h f(0) ≈

∞∑

j=0

hj ∆jf(0)
j!4j

as h ↘ 0

for any f ∈ L∞(R2n) smooth in a neighbourhood of the origin.

Note that (6) does not reduce to (9) when y = 0 (in fact, the operator R1 is
even singular there), thus the asymptotic behaviour of Bharm

h has a discontinuity
at y = 0; apparently, this is a kind of Stokes phenomenon.

The known proofs of (1)–(3) for the strictly-pseudoconvex case rely on microlocal
analysis and employ a trick, going back to Forelli and Rudin [18], of expressing the
Cartesian direct sum of the spaces L2

hol,h, h = 1, 1
2 , 1

3 , 1
4 , . . . , as the (unweighted)

Bergman space on a certain “disc bundle” domain over Ω [5] [11]. For the case
of bounded symmetric domains or Cn, the proofs rely on the homogeneous nature
of the domain and invariance considerations [4] [6] or use the standard machinery
of pseudodifferential operators [7]; in disguise, these were also the kind of methods
used in [13]. For the harmonic Bergman spaces treated in this paper, however, none
of these approaches seems to apply, and a completely different ad hoc argument
must be used.

The paper is organized as follows. In Section 2, we compute the reproducing
kernels Hh of the spaces Hh; it turns out that they are given by an expression
involving a certain hypergeometric function of two variables. A contour integral
representation in combination with (essentially) a variant of the stationary phase
method is used in Section 3 to get the asymptotic behaviour of Bharm

h and prove
Theorem 1. Analogues of the formula (1) for the asymptotic behaviour as h ↘ 0 of
the reproducing kernels Hh are established in Section 4. Some concluding remarks
and open problems are collected in the final Section 5.

We remark that the harmonic Bergman spaces (5) make perfect sense also on
any Rm, m = 1, 2, 3, . . . , instead of Cn ∼= R2n (the Gaussian measure dµh being
then given, of course, by dµh(x) = (πh)−m/2e−|x|

2/h dx). Though at the moment
we are unable to prove Theorem 1 also for odd m, most of the results in Section 2
hold in this generality, and are therefore stated in that way.

Since the holomorphic Berezin transform Bh will not already appear in the rest
of this paper2, we will drop the superscript harm in Bharm

h from now on.

2. Harmonic Fock kernels

Let Ω be an arbitrary domain in Rn, n ≥ 1, and w a positive continuous weight
function on Ω. The harmonic Bergman space L2

harm(Ω, w) consists of all harmonic
functions in L2(Ω, w):

L2
harm(Ω, w) := {f ∈ L2(Ω, w) : ∆f = 0}.

2With a sole exception in §5.6.
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By the mean value property of harmonic functions, for each x ∈ Ω, the evaluation
functional f 7→ f(x) is continuous on L2

harm, and thus is given by the inner product
with a uniquely determined element, Hx, of L2

harm(Ω, w):

f(x) = 〈f, Hx〉 =
∫

Ω

f(y)Hx(y)w(y) dy

for all f ∈ L2
harm(Ω, w). The function

H(x, y) := Hy(x) = 〈Hy, Hx〉 = Hx(y)

on Ω × Ω is called the (weighted) harmonic Bergman kernel of Ω with respect to
the weight w. Since the complex conjugate f is harmonic whenever f is, we have

〈f,Hy〉 = f(y) = 〈f, Hy〉 = 〈f, Hy〉,

implying that Hy = Hy, i.e. H is real-valued:

H(x, y) ∈ R, H(x, y) = H(y, x).

Explicit formulas for H(x, y) for Ω the upper half-space Hn = {x ∈ Rn : xn > 0},
with the weights w(x) = xα

n, α > −1, or for the unit ball Bn = {x ∈ Rn : |x| < 1},
with weights w(x) = (1 − |x|2)α, α > −1, have been computed in many places,
see e.g. Coifman and Rochberg [9], Jevtic and Pavlovic [19], Miao [22], or the book
by Axler, Bourdon and Ramey [1]. For Ω = Bn and w = 1 (i.e. the unweighted
situation), the kernel is given by

H(x, y) =
(n− 4)|x|4|y|4 + (8〈x, y〉 − 2n− 4)|x|2|y|2 + n

nτn(1− 2〈x, y〉+ |x|2|y|2)n/2+1
,

where τn is the Euclidean volume of Bn. For the weighted case with the standard
weights w(x) = (1 − |x|2)α on Bn, things already get much more complicated,
in particular there seems to be no simple explicit formula for H for general α, even
integer. Even less is known for domains more general than Bn or Hn.

In the rest of this section, we derive a formula for the reproducing kernel Hh of
the harmonic Fock space

Hh = L2
harm(Rn, dµh), dµh(x) = (πh)−n/2e−|x|

2/h dx, h > 0, n ≥ 3.

(The normalizing factor (πh)−n/2 is inserted to make dµh of total mass 1, i.e. a prob-
ability measure. For the cases of n = 1, 2, see §5.1.)

We begin by recalling some facts on spherical harmonics; see e.g. [1] for more
details and proofs. Let Sn−1 = ∂Bn denote the unit sphere in Rn, and Yk the space
of all harmonic polynomials on Rn which are homogeneous of degree k. We equip
Yk with the norm and inner product coming from L2(Sn−1):

〈f, g〉Yk
:=

∫

Sn−1
f(ζ) g(ζ) dσ(ζ),

where dσ stands for the normalized surface measure on Sn−1. Since Yk is finite
dimensional, the evaluation functional at any y ∈ Rn is automatically continuous
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on it, and thus Yk possesses a reproducing kernel Yk(x, y). Explicitly, Yk — whose
restriction to Sn−1 is usually known as the zonal spherical harmonic — is given by
Y0 = 1 and [1, Theorem 5.38]

Yk(x, y) = |x|k|y|k
(n

2
+k−1

) [k/2]∑

j=0

(−1)j2k−2j(n
2 )k−j−1

j!(k − 2j)!

( 〈x, y〉
|x||y|

)k−2j

, x, y ∈ Rn,

for k > 0, where [k
2 ] means the greatest integer not exceeding k

2 , and (a)k stands
for the Pochhammer symbol (raising factorial)

(a)k := a(a + 1)(a + 2) . . . (a + k − 1) =
Γ(a + k)

Γ(a)
.

The harmonic polynomials are dense in Hh, hence each f ∈ Hh has the homoge-
neous decomposition

(10) f =
∞∑

k=0

fk (convergence in Hh),

with fk ∈ Yk. Furthermore, the spaces Yk and Yj are orthogonal for j 6= k, both
in L2(Sn−1) and in Hh; thus the decomposition (10) is, in fact, orthogonal.

Recall that the hypergeometric function of two variables Φ2 from Horn’s list [3,
§5.7.1] is defined as

Φ2

(
a, b
c

∣∣∣z, w
)

=
∞∑

j,k=0

(a)j(b)k

(c)j+kj!k!
zjwk.

The series converges for all z, w ∈ C and defines an entire function on C2.

Proposition 2. The harmonic Fock kernel Hh is given by

(11) Hh(x, y) = Φ2

( n
2 − 1, n

2 − 1
n
2 − 1

∣∣∣ t1 + it2
h

,
t1 − it2

h

)
,

where
t1 = 〈x, y〉, t2 =

√
|x|2|y|2 − 〈x, y〉2.

Proof. Observe that for any fk ∈ Yk, the norms of fk in L2(Sn−1) and in Hh are
related by

(12) ‖fk‖2Hh
= ck‖fk‖2Sn−1 , ck := (n

2 )khk.

Indeed, by the homogeneity of fk and integration in polar coordinates

‖fk‖2Hh
= (πh)−n/2

∫

Rn

|fk(x)|2 e−|x|
2/h dx

= (πh)−n/2

∫ ∞

0

∫

Sn−1
|fk(rζ)|2 e−r2/h rn−1 dr dζ

= (πh)−n/2

∫ ∞

0

∫

Sn−1
r2k|fk(ζ)|2 e−r2/h rn−1 dr dζ

= vol(Sn−1) ‖fk‖2Sn−1 (πh)−n/2

∫ ∞

0

r2ke−r2/h rn−1 dr

= ck‖fk‖2Sn−1 ,
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since the last integral equals 1
2hk+ n

2 Γ(k + n
2 ), while

vol(Sn−1) =: σn−1 =
2πn/2

Γ(n
2 )

.

Of course, the proportionality of norms (12) implies that the same holds also for
the corresponding inner products. Using the decomposition (10), we thus have

〈f, Hh,x〉Hh
= f(x) =

∞∑

k=0

fk(x) =
∞∑

k=0

〈fk, Yk,x〉Sn−1

=
∞∑

k=0

〈fk, Yk,x〉Hh

ck
=

〈
f ,

∞∑

k=0

Yk,x

ck

〉
Hh

.

Consequently,

(13) Hh(x, y) =
∞∑

k=0

Yk(x, y)
ck

=
∞∑

k=0

Yk(x, y)
hk(n

2 )k
.

Recall that the k-th Gegenbauer polynomial Cν
k with parameter ν is given by [3,

§10.9 (18)]

Cν
k (z) =

[k/2]∑

j=0

(−1)j(ν)k−j

j!(k − 2j)!
(2z)k−2j .

Thus, for all k ≥ 0,

Yk(x, y) = |x|k|y|k
n
2 + k − 1

n
2 − 1

C
n
2−1

k

( 〈x, y〉
|x||y|

)
.

Introduce the complex number

z =
〈x, y〉+ i

√
|x|2|y|2 − 〈x, y〉2

h
,

so that

z = reiθ with r =
|x||y|

h
, cos θ =

〈x, y〉
|x||y| .

By [3, §10.9 (17)],

Cν
k (cos θ) =

k∑

j=0

(ν)j(ν)k−j

j!(k − j)!
e−i(k−2j)θ.

Consequently,

Yk(x, y)
hk(n

2 )k
=

|x|k|y|k
hk(n

2 − 1)k
C

n
2−1

k

( 〈x, y〉
|x||y|

)

=
rk

(n
2 − 1)k

k∑

j=0

(n
2 − 1)j(n

2 − 1)k−j

j!(k − j)!
e−(k−2j)iθ.
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Inserting this into (13) and switching from the summation variable k to l = k − j,
we get

Hh(x, y) =
∞∑

k=0

rk

(n
2 − 1)k

k∑

j=0

(n
2 − 1)j(n

2 − 1)k−j

j!(k − j)!
e−(k−2j)iθ

=
∞∑

j,l=0

rj+l

(n
2 − 1)j+l

(n
2 − 1)j(n

2 − 1)l

j!l!
e(j−l)iθ

= Φ2

( n
2 − 1, n

2 − 1
n
2 − 1

∣∣∣reiθ, re−iθ
)
,

completing the proof. ¤
According to the general definition, the Berezin transform associated to the

harmonic Fock space Hh is defined as

(14) Bhf(x) =
(πh)−n/2

Hh(x, x)

∫

Rn

f(y) |Hh(x, y)|2 e−|y|
2/h dy

(the modulus signs around Hh(x, y) being, in fact, superfluous in view of the real-
valuedness of Hh). We want to know its asymptotic expansion as h ↘ 0. To get
that, it would clearly be convenient to know the behaviour of Hh(x, y) as h ↘ 0.

For x = y, (11) becomes

Hh(x, x) =
∞∑

j,k=0

(n
2 − 1)j(n

2 − 1)k

(n
2 − 1)j+k

|x|2(j+k)

j!k!hj+k
.

Using the familiar “binomial formula” for Pochhammer symbols,

m∑

j=0

(ν)j(µ)m−j

j!(m− j)!
=

(ν + µ)m

m!

(which is easily proved from the Taylor expansion

(1− z)−ν =
∞∑

k=0

(ν)k

k!
zk

by comparing the coefficients at like powers of z on both sides of the equality
(1− z)−ν(1− z)−µ = (1− z)−ν−µ), this becomes

Hh(x, x) =
∞∑

m=0

(n− 2)m

(n
2 − 1)m

|x|2m

m!hm
= 1F1

(
n− 2
n
2 − 1

∣∣∣ |x|
2

h

)
,

the ordinary confluent hypergeometric function 1F1. Using [3, §6.13.1 (3)] we thus
get the asymptotic expansion as h ↘ 0

(15) Hh(x, x) ≈ Γ(n
2 − 1)

Γ(n− 2)
e|x|

2/h |x|n−2

h
n
2−1

∞∑

j=0

(1− n
2 )j(3− n)j

j!
hj

|x|2j

for x 6= 0, while Hh(x, x) = 1 ∀h for x = 0.
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Unfortunately, for x 6= y no analogous asymptotic formula seems to be available
in the literature. We conclude this section by deriving a contour integral represen-
tation for Hh(x, y) which will serve as a substitute.

The standard integral representation for Φ2,

Φ2

(
a, b
c

∣∣∣z, w
)

=
Γ(c)

Γ(a)Γ(b)Γ(c− a− b)∫∫

u,v≥0,
u+v≤1

ua−1vb−1(1− u− v)c−a−b−1 euz+vw du dv

is valid only for Re a > 0, Re b > 0, Re(c − a − b) > 0, and thus is of no use in
our case when a = b = c = n

2 − 1. We use the standard workaround, see e.g. [23,
§4.4.1].

Consider the complex plane cut along the real axis from −∞ to 1, and let γ
denote the contour going from 0 to 1 − ε along the “upper” edge of the cut, then
around 1 clockwise, and then back from 1−ε to 0 along the “lower” edge of the cut.

Proposition 3. For any z, w ∈ C and α, β ∈ C with Re α > 0,

(16)

∮

γ

a2α−1(a− 1)β−2α−1

∫ 1

−1

(1− t2)α−1e
1+t
2 az+ 1−t

2 aw dt da

=
−πi4αΓ(α)2

Γ(β)Γ(1 + 2α− β)
Φ2

(
α, α
β

∣∣∣z, w
)
.

Here a2α−1 and (a − 1)β−2α−1 are the principal branches of the powers on C \
(−∞, 1].

Proof. In terms of the entire function

φα(z) :=
∫ 1

−1

(1− t2)α−1 ezt dt,

the left-hand side of (16) can be written as

∮

γ

a2α−1(a− 1)β−2α−1e
az+aw

2 φα(az−aw
2 ) da.

By Cauchy’s theorem, the value of the last integral is independent of ε. Further-
more, for the integral over the middle piece |a − 1| = ε of γ we have the straight-
forward estimate

∣∣∣
∮

|a−1|=ε

a2α−1(a− 1)β−2α−1

∫ 1

−1

(1− t2)α−1e
1+t
2 az+ 1−t

2 aw dt da
∣∣∣

≤ 2πε · εRe(β−2α−1) · Cε,

where Cε = sup|a−1|=ε |a2α−1e
az+aw

2 φα(az−aw
2 )| · eπ| Im(β−2α)| tends to a finite limit

as ε ↘ 0. It follows that for Re(β − 2α) > 0, the integral tends to zero as ε ↘ 0.
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On the other hand, the integral along the upper edge of the cut then tends to
∫ 1

0

a2α−1(1− a)β−2α−1e(β−2α−1)πie
az+aw

2 φα(az−aw
2 ) da

= e(β−2α−1)πi

∫ 1

0

a2α−1(1− a)β−2α−1

∫ 1

−1

(1− t2)α−1e
1+t
2 az+ 1−t

2 aw dt da

= 22α−1e(β−2α−1)πi

∫ 1

0

∫ 1

−1

(1− t2

4
a2

)α−1

(1− a)β−2α−1e
1+t
2 az+ 1−t

2 aw a

2
dt da,

which upon the change of variables 1+t
2 a = u, 1−t

2 a = v becomes

22α−1e(β−2α−1)πi

∫∫

u+v≤1
u,v≥0

(uv)α−1(1− u− v)β−2α−1euz+vw du dv

= 22α−1e(β−2α−1)πi
∞∑

j,k=0

zj

j!
wk

k!

∫∫

u+v≤1
u,v≥0

uj+α−1vk+α−1(1− u− v)β−2α−1 du dv

= 22α−1e(β−2α−1)πi
∞∑

j,k=0

zj

j!
wk

k!
Γ(j + α)Γ(k + α)Γ(β − 2α)

Γ(j + k + β)

= 22α−1e(β−2α−1)πi Γ(α)2Γ(β − 2α)
Γ(β)

Φ2

(
α, α
β

∣∣∣z, w
)
.

Similarly, for the integral along the lower edge we get the same expression, only with
e(β−2α−1)πi replaced by −e−(β−2α−1)πi. Thus for Re(β − 2α) > 0, the left-hand
side of (16) equals

22αi sin(β − 2α− 1)π
Γ(α)2Γ(β − 2α)

Γ(β)
Φ2

(
α, α
β

∣∣∣z, w
)
.

By the functional equation for the Gamma function,

sin(β − 2α− 1)π Γ(β − 2α) =
−π

Γ(1− β + 2α)
,

and (16) thus follows, for Re β > 2Re α. Since, for α fixed, both sides of (16)
are entire functions of β, they must in fact coincide for all β ∈ C, completing the
proof. ¤

Taking β = α, we obtain the following corollary.

Corollary 4. For any z, w ∈ C and α ∈ C with Re α > 0,

Φ2

(
α, α
α

∣∣∣z, w
)

=
iα

4α

∮

γ

a2α−1(a− 1)−α−1

∫ 1

−1

(1− t2)α−1e
1+t
2 az+ 1−t

2 aw dt da.

In particular, for α = n
2 − 1 we get from (11)

(17) Hh(x, y) =
i

π

n− 2
2n−1

∮

γ

an−3(a− 1)−
n
2

∫ 1

−1

(1− t2)
n
2−2ea

〈x,y〉+itV (x,y)
h dt da,

where we have set, for the sake of brevity,

V (x, y) :=
√
|x|2|y|2 − 〈x, y〉2.
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3. Proof of Theorem 1

From now on, we will only consider the case of n ≥ 3 even:

n = 2N + 2, N = 1, 2, 3, . . . .

In that case the function (a−1)−n/2 is single-valued, so the contour integral in (17)
can be evaluated explicitly using the residue theorem:

∮

γ

an−3(a− 1)−n/2eaw da =
∫

−C(1,ε)

a2N−1(a− 1)−N−1eaw da

= −2πi Resa=1
a2N−1eaw

(a− 1)N+1

=
2π

i

1
N !

∂N

∂aN
[a2N−1eaw]a=1.

Substituting 〈x,y〉+itV
h for w, we thus have by (17)

Hh(x, y) =
2N

22N+1

∫ 1

−1

(1− t2)N−1 2
N !

∂N

∂aN

[
a2N−1ea

〈x,y〉+itV
h

]
a=1

dt

=
21−2N

(N − 1)!
∂N

∂aN

[
a2N−1

∫ 1

−1

(1− t2)N−1 ea
〈x,y〉+itV

h dt
]

a=1
,(18)

where, for the sake of brevity, we write just V for V (x, y). Integrating by parts
N − 1 times yields

Hh(x, y) =
21−2N

(N − 1)!
∂N

∂aN

[
a2N−1

∫ 1

−1

GN (t)
( h

iV a

)N−1

ea
〈x,y〉+itV

h dt
]

a=1

=
21−2N

(N − 1)!

( h

iV

)N−1
∫ 1

−1

GN (t)
∂N

∂aN

[
aNea

〈x,y〉+itV
h

]
a=1

dt,

where

GN (t) := (−1)N−1 ∂N−1

∂tN−1
(1− t2)N−1.

Finally, by the Leibniz rule

∂N

∂aN

[
aNeaw

]
a=1

=
N∑

j=0

(
N

j

)
N !
j!

wjew,

hence

(19)

Hh(x, y) =
21−2N

(N − 1)!

( h

iV

)N−1 N∑

j=0

(
N

j

)
N !
j!

∫ 1

−1

GN (t)
( 〈x, y〉+ itV

h

)j

e
〈x,y〉+itV

h dt.

After these preparations, we are ready to prove the main result of this paper.
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Proof of Theorem 1. For y = 0, it is immediate from (11) that Hh(x, 0) = 1 for all
x and h, whence

Bhf(0) = (πh)−N−1

∫

CN+1
f(y)e−|y|

2/h dy = (eh∆/4f)(0).

By the standard asymptotic expansion of Gaussian integrals [16],

Bhf(0) ≈
∞∑

j=0

hj

j!4j
∆jf(0),

proving (9).
Throughout the rest of the proof, we thus assume that y 6= 0. We need to prove

(7), (6) and the formulas

(20) R0 = I, R1 =
∆

4(2N + 1)
+

(4N + 1)N
2(2N + 1)|y|2 R+

N

2(2N + 1)|y|2 R
2.

(The latter is just (8) in terms of N). For greater clarity, the proof will be broken
into a series of steps.

Step 1. It is enough to show that (7) holds for all points y of the form

(21) y = (Y, 0, 0, . . . , 0), Y > 0,

and that Rj are of the form

(22) Rj =
∑

k,l≥0
k+2l≤2j

rjkl(|y|)Rk∆l

for some functions rjkl on R+, with R0 and R1 given by (20).

Indeed, let U be an arbitrary orthogonal transformation3 of Rn ∼= CN+1. Since
dµh(Ux) = dµh(x), the composition map

(23) f 7−→ f ◦ U

is unitary on L2(Rn, dµh); as it also maps harmonic functions into harmonic func-
tions, and its inverse f 7→ f ◦U−1 enjoys the same properties, (23) is in fact unitary
also on Hh. Now for any g ∈ Hh,

〈g, HUy〉 = g(Uy) = (g ◦ U)(y) = 〈g ◦ U,Hy〉 = 〈g, Hy ◦ U−1〉,

so HUy = Hy ◦ U−1, or H(x, y) = H(Ux, Uy). From the definition (14) of the
harmonic Berezin transform, it therefore follows that

(24) Bh(f ◦ U) = (Bhf) ◦ U,

3The argument in this paragraph in fact holds for Rn with any n (i.e. not necessarily even); that
is why we decided to include orthogonal transformations, even though unitary transformations of
CN+1 would be enough for the purpose at hand.
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i.e. Bh is invariant under the orthogonal transformations U . On the other hand,
the Laplace operator ∆ as well as the radial derivative

R =
n∑

j=1

yj
∂

∂yj
, y ∈ Rn,

are clearly also invariant under orthogonal transformations of Rn, while the quan-
tity |y|2 is preserved by them. Hence, any linear differential operator L which is a
polynomial in R and ∆ with coefficients depending only on |y|,

Lf(y) =
finite∑

k,l

akl(|y|)Rk∆l,

is likewise invariant under U :

L(f ◦ U) = (Lf) ◦ U.

In particular, this applies to the operators Rj in (22). By (24), the validity of (7)
for f at y is therefore equivalent to its validity for f ◦ U at U−1y. Since any given
y can be mapped by a suitable U into a point of the form (21), with Y = |y|, it is
indeed enough to prove (7) only for points y of the latter form.

It remains to show that if (7) holds with Rj as in (22), then in fact rjkl(|y|) =
ρjkl|y|2l−2j , so that we actually have (6). Observe that for any t > 0,

Hh(x, y) = Hh(tx, t−1y).

Denoting by δt the dilation operator

δtf(x) := f(tx), x ∈ Rn,

it follows easily from (14) that

δtBh = Bh/t2δt.

Consequently,
δtRj = t−2jRjδt.

Since ∆δt = t2δt∆ and δtR = Rδt, it follows that

rjkl(t|y|) = t2l−2jrjkl(y),

so, indeed, rjkl(|y|) = ρjkl|y|2l−2j with ρjkl = rjkl(1), proving Step 1.

Step 2. It is enough to show that there exist functions ajkm on R+ such that,
for any y = (Y, 0, 0, . . . , 0), Y > 0, and f ∈ L∞(Rn) smooth in a neighbourhood
of y,

(25) Bhf(y) ≈
∞∑

j=0

hjR̃jf(y) as h ↘ 0,
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where

(26) R̃jf(y) =
∑

k,l≥0
k+2l≤2j

r̃jkl(Y )
∂k

∂yk
1

∆lf(y),

and, in particular,

(27) R̃0 = I, R̃1 =
∆

4(2N + 1)
+

N

Y

∂

∂y1
+

N

2(2N + 1)
∂2

∂y2
1

.

Indeed, a straightforward induction argument reveals that

(|y|−1R)k = |y|−kR(R− 1) . . . (R− k + 1) =: |y|−kpk(R)

(where we are taking the liberty to write just R − j instead of the more correct
R− jI). Evaluating both sides at y = (Y, 0, . . . , 0) gives

∂kf

∂yk
1

(Y, 0, . . . , 0) = Y −kpk(R)f(Y, 0, . . . , 0),

whence, for any such y,

R̃jf(y) =
∑

k+2l≤2j

r̃jkl(|y|) |y|−kpk(R)∆lf(y)

=
∑

k+2l≤2j

rjkl(|y|) Rk∆lf(y),

with rjkl(|y|) equal to the coefficient at zk in the polynomial
∑2j−2l

m=k
erjml(|y|)
|y|m pm(z).

However, the last right-hand side is of the form (22), and for j = 0, 1 the formulas
(27) translate exactly into (20); thus the assertion follows by Step 1. This completes
the proof of Step 2.

For the rest of the proof of Theorem 1, we thus assume that y is of the form (21)
with Y > 0. We introduce the notation

x = (r,X), r ∈ R, X ∈ Rn−1,

and, further,
X = ρζ, ρ ≥ 0, ζ ∈ Sn−2 ≡ S2N .

Then
〈x, y〉 = rY, V (x, y) = ρY,

while the Gaussian measure dµh(x) takes the form

dµh(x) =
e−(r2+ρ2)/h

(πh)N+1
dr ρ2N dρ σ2N dσ(ζ).



BEREZIN TRANSFORM ON THE HARMONIC FOCK SPACE 15

Thus (19) becomes

Hh(x, y) = N21−2N
( h

iρY

)N−1 N∑

j=0

(
N
j

)

j!

∫ 1

−1

GN (t)
(rY + itρY

h

)j

e
rY +itρY

h dt,

and inserting this into (14), we arrive at the huge formula

(28)

e−Y 2/hHh(y, y)Bhf(y) =
N241−2N

(πh)N+1

N∑

j,k=0

(
N
j

)

j!

(
N
k

)

k!

( h2

−Y 2

)N−1
∫

r∈R

∫

ρ>0

∫

ζ∈S2N

∫ 1

−1

∫ 1

−1

GN (t)GN (u)
(rY + itρY

h

)j(rY + iuρY

h

)k

e
−(r−Y )2+i(t+u)ρY−ρ2

h f(r, ρζ) du dt σ2N dσ(ζ) ρ2 dρ dr.

By (15), the product e−Y 2/hHh(y, y) has an asymptotic expansion in increasing
powers of h as h ↘ 0. In fact, in our current case of even n = 2N + 2, using the
transformation rule for the confluent hypergeometric function [3, §6.3 (7)]

1F1

(
a
c

∣∣∣x
)

= ex
1F1

(
c− a

c

∣∣∣− x
)
,

we can rewrite this expansion in a more convenient form

e−Y 2/hHh(y, y) = 1F1

( 1− n
2

n
2 − 1

∣∣∣− Y 2

h

)
= 1F1

(−N
N

∣∣∣− Y 2

h

)

=
N∑

j=0

(−N)j

j!(N)j

(
− Y 2

h

)j

=:
N∑

j=0

cj

hj
.(29)

Note that cN = Y 2N/(N)N 6= 0.
Suppose now that we can show that (28) also has an asymptotic expansion of

the form

(30) e−Y 2/hHh(y, y)Bhf(y) ≈
∞∑

j=0

bjh
j−N as h ↘ 0,

with bj given by an expression of the form (26). By (29) and elementary power
series manipulations, it will then follow that

Bhf(y) ≈
∞∑

j=0

rjh
j as h ↘ 0,

with rj given recursively by

(31) rl =
bl −

∑min(N,l)
j=1 cN−jrl−j

cN
, l = 0, 1, 2, . . . .
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Hence, rj will also be of the form (26), and the proof of (25) — and, hence, of The-
orem 1 — will be complete (except for the proof of the formulas (27) for R0 and R1,
whose proofs we postpone for a moment). Let us thus prove that the right-hand
side of (28) has the asymptotic expansion (30); we do this in the next two steps.

Step 3. The right-hand side of (28) has as asymptotic expansion

(32) e−Y 2/hHh(y, y)Bhf(y) ≈
∞∑

δ=−3

h
δ
2−Nbδ/2,

where bδ/2 are given by expressions of the form (26) but with 2j replaced by δ+1, i.e.

(33) bδ/2 =
∑

β+2l≤δ+1

r̃δβl(Y )
∂β∆lf(y)

∂rβ
,

and b−3/2 = b−1 = 0.

To see this, set

F (r, ρ) := σ2N

∫

S2N

f(r, ρζ) dσ(ζ).

By hypothesis, f is smooth near y, i.e. near (r, ρζ) = (Y, 0); thus by Taylor’s
formula, we have for any m = 1, 2, 3, . . . ,

f(r,X) =
∑

j+|κ|≤m

∂j+|κ|f
∂rj∂Xκ

(Y, 0)
(r − Y )jXκ

j!κ!
+ O((r − Y )2 + |X|2)m+1

2

(the summation is over all j ≥ 0 and multiindices κ ∈ Nn−1 satisfying j + |κ| ≤
m, with the usual multiindex notation). Integrating term by term and using the
formula

σ2N

∫

S2N

ζκ dσ(ζ) =





0 if some entry of κ is odd,

2
∏n−1

j=1 Γ(λj + 1
2 )

Γ(|λ|+ N + 1
2 )

if κ = 2λ

(note that taking λ = 0 gives a formula for σ2N !), we see that

F (r, ρ) = σ2N

∑

j+|κ|≤m
κ=2λ

∂j+|κ|f
∂rj∂Xκ

(Y, 0)
(r − Y )jρ|κ|

j!κ!
( 1
2 )λ

(N + 1
2 )|λ|

+ O((r − Y )2 + ρ2)(m+1)/2

= σ2N

∑

j+2|λ|≤m

∂j+2|λ|f
∂rj∂X2λ

(Y, 0)
(r − Y )jρ2|λ|

j!4|λ|λ!(N + 1
2 )|λ|

+ O((r − Y )2 + ρ2)(m+1)/2

= σ2N

∑

j+2k≤m
j,k≥0

∂j∆′kf

∂rj
(Y, 0)

(r − Y )jρ2k

j!k!4k(N + 1
2 )k

+ O((r − Y )2 + ρ2)(m+1)/2;
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that is, as (r, ρ) → (Y, 0),

(34) F (r, ρ) ≈ σ2N

∑

β,γ≥0

fβγ · (r − Y )βρ2γ

with

(35) fβγ :=
1

β!γ!4γ(N + 1
2 )γ

∂β∆′γf

∂rβ
(Y, 0).

Here we have used the doubling formula for the Gamma function

(1
2 )λ

(2λ)!
=

1
λ!22|λ| ,

and the multinomial formula

∑

|λ|=k

k!
λ!

∂2k

∂X2λ
= ∆′k,

where ∆′ denotes the Laplacian with respect to the X variable, i.e.

(36) ∆′ = ∆− ∂2

∂r2
.

Returning to (28), we claim that for each of the resulting integrals

(37)

∫

r∈R

∫

ρ>0

∫ 1

−1

∫ 1

−1

GN (t)GN (u)
(rY + itρY

h

)j(rY + iuρY

h

)k

e
−(r−Y )2+i(t+u)ρY−ρ2

h F (r, ρ) ρ2 du dt dρ dr,

we can obtain its asymptotic expansion simply by substituting for F (r, ρ) the right-
hand side of (34), and integrating term by term.

Indeed, assume that, for some m,

|F (r, ρ)| ≤ C ·Rq, R :=
√

(r − Y )2 + ρ2.

Then a brute force estimate shows that (37) is dominated by

(38) C ′
∫

r∈R

∫

ρ>0

(R + Y

h

)j+k

R2N+qe−R2/h dr dρ.

As
∫

r∈R

∫

ρ>0

Rνe−R2/h dr dρ = π

∫ ∞

0

Rν+1e−R2/h dR = πh
ν
2 +1Γ(ν + 2),

the integral (38) is O(hN+1−j−k+ q
2 ) = O(h

q
2+1−N ) as h ↘ 0. Consequently, replac-

ing F (r, ρ) in (37) by the partial sum β + γ ≤ q − 1 of the right-hand side of (34),
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with q ≥ 2(m + N − 1), produces an error of order O(hm). As m can be taken
arbitrarily large, the claim from the end of the preceding paragraph follows.

It thus remains to show that (28) has an asymptotic expansion of the form (30)
when F (r, ρ) is a polynomial in r and ρ2, which we will thus assume from now on.

Note that the function GN has parity (−1)N−1, i.e.

(39) GN (−t) = (−1)N−1GN (t),

while F (r, ρ) is clearly an even function of ρ. Consequently, the integrand in (37)
remains unchanged if t, u, ρ are simultaneously replaced by −t,−u,−ρ. Instead of
(ρ, t, u) ∈ R+ × (−1, 1)× (−1, 1), we can therefore integrate over the domain

ρ ∈ R, t, u ∈ (−1, 1), u + t ≥ 0.

Since GN is also a polynomial, we are thus reduced to obtaining the asymptotic
expansion as h ↘ 0 of the integral

(40)
∫

r∈R

∫∫

u,t∈(−1,1)
u+t≥0

∫

ρ∈R

p(r, t, u, ρ) e−
(r−Y )2+i(t+u)ρY−ρ2

h dρ dt du dr,

for a polynomial p(r, t, u, ρ) in the indicated variables.
We next shift the ρ integration in (40) into the complex plane, namely, from R

to the parallel line R + iY u+t
2 . This makes sense since p is a polynomial (hence

is defined also for complex ρ), and a routine check shows that the value of the
integral remains unchanged (owing to the fast decay of the exponential and Cauchy’s
theorem). Thus (40) equals

∫

r∈R

∫

ρ∈R

∫∫

u,t∈(−1,1)
u+t≥0

p(r, t, u, ρ + iY u+t
2 ) e−

(r−Y )2+ρ2+( u+t
2 Y )2

h du dt dρ dr.

Making the change of variable u = v + w, t = v − w, this becomes

2
∫

r∈R

∫

ρ∈R

∫ 1

v=0

∫ 1−v

w=−1+v

p(r, v − w, v + w, ρ + iY v) e−
(r−Y )2−ρ2−Y 2v2

h dw dv dρ dr

=:
∫∫

r,ρ∈R

∫ 1

v=0

P (r, v, ρ + iY v) e−
(r−Y )2−ρ2−Y 2v2

h dv dρ dr,

where

P (r, v, z) := 2
∫ 1−v

−1+v

p(r, v − w, v + w, z) dw

is again a polynomial. Standard estimate now shows that extending the v integra-
tion from (0, 1) to (0,+∞) introduces an error which is O(e−Y 2/2h) = O(h∞); thus
we may instead work with the integral

∫∫

r,ρ∈R

∫ ∞

v=0

P (r, v, ρ + iY v) e−
(r−Y )2−ρ2−Y 2v2

h dv dρ dr.
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However, this is already a standard Gaussian integral, whose asymptotic behaviour
as h ↘ 0 is easy to compute (see e.g. Fedoryuk [16], Copson [8], de Bruijn [10],
Evgrafov [15], etc.): namely, changing the variables r, ρ, v to Y + r

√
h, ρ

√
h and

v
√

h/Y , respectively, and using the identities
∫ ∞

0

vk e−v2
dv =

1
2
Γ(k+1

2 )h
k+1
2 ,

∫

R

t2j+1 e−t2 dt = 0,

∫

R

t2j e−t2 dt = Γ(j + 1
2 )hj+ 1

2 =
(2j)!Γ( 1

2 )
j!4j

hj+ 1
2 ,

we obtain ∫∫

r,ρ∈R

∫ ∞

v=0

P (r, v, ρ + iY v) e−
(r−Y )2−ρ2−Y 2v2

h dv dρ dr

≈
∞∑

j,k,l=0

Γ( 1
2 )

j!4j
hj+ 1

2
Γ(k+1

2 )
k!2Y k+1

h
k+1
2

Γ( 1
2 )

l!4l
hl+ 1

2

· ∂2l

∂r2l

∂2j

∂ρ2j

∂k

∂vk
P (r, v, ρ + iY v)

∣∣∣
r=Y,ρ=v=0

(the sum on the right-hand side is in fact finite, since P is a polynomial).
Putting everything together, we thus arrive at the following asymptotic expan-

sion, as h ↘ 0, of the integral (28):

(41)

e−Y 2/hHh(y, y)Bhf(y) ≈ 2σ2N
N241−2N

(πh)N+1

(−h2

Y 2

)N−1 N∑

j,k=0

(
N
j

)

j!

(
N
k

)

k!

∞∑

l=0

Γ( 1
2 )

l!4l
hl+ 1

2
∂2l

∂r2l

∣∣∣
r=Y

∞∑
p=0

Γ( 1
2 )

p!4p
hp+ 1

2
∂2p

∂ρ2p

∣∣∣
ρ=0

∞∑
q=0

Γ( q+1
2 )

q!Y q+1
h

q+1
2

∂q

∂vq

∣∣∣
v=0

Y j+k

∫ 1−v

−1+v

GN (v − w)GN (v + w)
(r + i(v − w)(ρ + iY v)

h

)j

(r + i(v + w)(ρ + iY v)
h

)k

dw

· (ρ + iY v)2
∞∑

β,γ=0

fβγ (ρ + iY v)2γ(r − Y )β ,

with fβγ given by (35). Note that the power of h in the generic term on the
right-hand side is

hN+l− 3
2+p+ q

2−j−k = h−N+(N−j)+(N−k)+l+p+ q
2− 3

2 .

Setting δ = 2(N − j) + 2(N − k) + 2l + 2p + q − 3 and denoting by bδ/2 the
corresponding coefficient at h−N+ δ

2 in (41), we see that (32) holds with bδ/2 given
by an expression of the form

(42)
∑

l,p,q,j,k,β,γ
2(N−j)+2(N−k)+2l+2p+q−3=δ

clpqjkβγ(Y ) fβγ .
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Since the last three lines in (41) are a polynomial of degree at least β in (r − Y )
and at least 2γ + 2 in (ρ, v), only the fβγ with

(43) β ≤ 2l and 2γ + 2 ≤ 2p + q

really occur, i.e.
β + 2γ ≤ 2l + 2p + q − 2 ≤ δ + 1.

Thus, first of all, the sum (42) is finite, and bδ/2 is of the form (33) by (35) and (36);
and, second, δ+1 ≥ 0, whence b−3/2 = b−1 = 0. This completes the proof of Step 3.

Step 4. Only the integer powers of h in (32) really appear, i.e. bδ/2 = 0 for
δ odd.

By linearity, it is enough to prove this for real-valued f . Since the integral
kernel in the formula (14) defining the harmonic Berezin transform is real, Bhf is
then also real-valued, so in (41) we can replace the right-hand side by its complex
conjugate, which amounts — since all the variables occurring there are real —
to replacing the six occurrences of i by −i. Next, one can use −r as the variable
instead of r, i.e. replace in (41) ∂

∂r by − ∂
∂r (which has no effect since 2l is even),

the two occurrences of rY after GN (v + w) by −rY , and the (r − Y )β at the
end by (−1)β(r + Y )β . Finally, from (24) we have (Bhf)(y) = (Bhf̃)(−y), where
f̃(x) := f(−x); as also e−|y|

2/hHh(y, y) = e−|−y|2/hHh(−y,−y), the right-hand side
of (41) remains unchanged if we replace Y by −Y and f by f̃ , i.e. fβγ by (−1)βfβγ .
However, upon making all these changes (i.e. i 7→ −i, r 7→ −r, Y 7→ −Y and
fβγ 7→ (−1)βfβγ), the right-hand side of (41) assumes back its original form, with
only one exception — the term Y q+1 (in the denominator before ∂q

∂vq ) gets replaced
by (−1)q+1Y q+1. Since we know the two expressions to be equal, it follows that
the summand on the right-hand side must in fact vanish if q is even, that is, if
δ = 2(N − j + N − k + l + p) + q − 3 is odd. This completes the proof of Step 4.

Restricting δ to be even — that is, q to be odd — in (41), we thus get

e−Y 2/hHh(y, y)Bhf(y) ≈
∞∑

δ=0

bδ h−N+δ,

where (replacing the q in (41) by 2q + 1)

(44)

bδ = 2σ2N
N241−2N

πN+1

(−1
Y 2

)N−1 ∑

l,p,q,j,k,β,γ≥0, j,k≤N
l+p+q+(N−j)+(N−k)=δ+1

β≤2l, γ+1≤p+q

(
N
j

)

j!

(
N
k

)

k!

Γ( 1
2 )

l!4l

∂2l

∂r2l

∣∣∣
r=Y

Γ( 1
2 )

p!4p

∂2p

∂ρ2p

∣∣∣
ρ=0

q!
(2q + 1)!Y 2q+2

∂2q+1

∂v2q+1

∣∣∣
v=0

Y j+k

∫ 1−v

−1+v

GN (v − w)GN (v + w)
(r + i(v − w)(ρ + iY v)

h

)j

(r + i(v + w)(ρ + iY v)
h

)k

dw

· fβγ · (ρ + iY v)2γ+2(r − Y )β .
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The restrictions on β and γ in the sum come from (43), and ensure that β+2γ ≤ 2δ;
thus bj is of the form (26). Consequently, (30) holds, and, hence, (25), and, by (31),
also (26). By Step 2, to complete the proof of Theorem 1 it only remains to prove
the formulas (27) for R̃0 and R̃1; this is the content of the last two steps.

Step 5. R̃0 = I.

To show this, we need to compute b0. For brevity, denote

(ρ + iY v)2F (r, ρ + iY v) =
∑

β,γ

fβγ(r − Y )β(ρ + iY v)2γ+2

=: G(ρ + iY v, r − Y ),
∫ 1−v

−1+v

GN (v − w)GN (v + w) (rY + i(v − w)zY )j (rY + i(v + w)zY )k dw

=: QN−j,N−k(r, v, z),

so that (44) becomes (upon supplying the value for σ2N )

(45)

bδ =
N !2N41−N (−1)N−1

(2N − 1)!Y 2N−2

∑

l+p+q+(N−j)+(N−k)=δ+1

(
N
j

)

j!

(
N
k

)

k!
1

l!4l

∂2l

∂r2l

∣∣∣
r=Y

1
p!4p

∂2p

∂ρ2p

∣∣∣
ρ=0

q!
(2q + 1)!Y 2q+2

∂2q+1

∂v2q+1

∣∣∣
v=0

G(ρ + iY v, r − Y )QN−j,N−k(r, v, ρ + iY v).

Since p + q ≥ γ + 1 ≥ 1 in (44), the only nonzero terms for δ = 0 in the last sum
occur for (l, N − j, N − k, p, q) = (0, 0, 0, 1, 0) and (0, 0, 0, 0, 1). The sum (45) for
δ = 0 therefore equals

(46)
1

N !2
[ 1
4Y 2

∂3

∂ρ2∂v
+

1
6Y 4

∂3

∂v3

]
(r,ρ,v)=(Y,0,0)

G(ρ + iY v, r − Y )Q00(r, v, ρ + iY v).

Note that, by the definition of G,

(47)

∂l

∂rl

∂p

∂ρp

∂q

∂vq
G(ρ + iY v, r − Y )

∣∣∣
r=Y,ρ=v=0

=

{
0, if p + q is odd or 0,

l!(p+q
2 )!(iY )qfl, p+q−2

2
, for p + q even ≥ 2.

Using (47) and the Leibniz rule, we have at (r, ρ, v) = (Y, 0, 0),

∂3

∂ρ2∂v
GQ00 =

∂2G

∂ρ2

∂Q00

∂v
+ 2

∂2G

∂ρ∂v

∂Q00

∂ρ
=

(∂Q00

∂v
+ 2iY

∂Q00

∂ρ

)
f00,

∂3

∂v3
GQ00 = 3

∂2G

∂v2

∂Q00

∂v
= −3Y 2 ∂Q00

∂v
f00,
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hence (46) equals

f00

4Y 2N !2
(
− ∂Q00

∂v
+ 2iY

∂Q00

∂ρ

)∣∣∣
(r,ρ,v)=(Y,0,0)

=
f00

4Y 2N !
(iY ∂3Q00 − ∂2Q00),

where we have taken the liberty to omit the arguments (ρ+iY v, r−Y ) and (r, v, ρ+
iY v) of G and Q00, respectively, and also introduced the shorthand ∂jQ00, j =
1, 2, 3, to mean the derivative of Q00 with respect to the j-th variable evaluated at
(r, v, z) = (Y, 0, 0). Now by the definition of Q00,

(iY ∂3 − ∂2)Q00 =
(
iY

∂

∂z
− ∂

∂v

)[
(1− v)

∫ 1

−1

∏
ε=±1

GN (v + (1− v)ετ)

(rY + i(v + (1− v)ετ)zY )N dτ
]∣∣∣

(r,v,z)=(Y,0,0)

= iY

∫ 1

−1

GN (τ)GN (−τ)
∂

∂z
(Y 2 + iτzY )N (Y 2 − iτzY )N

∣∣
z=0

dτ

+
∫ 1

−1

GN (τ)GN (−τ)Y 4N dτ

−
∫ 1

−1

∂

∂v
[GN (v + (1− v)τ)GN (v − (1− v)τ)]v=0 Y 4N dτ

= Y 4N

∫ 1

−1

[GN (τ)GN (−τ)− (1− τ)G′N (τ)GN (−τ)

− (1 + τ)GN (τ)G′N (−τ)] dτ.

In view of (39), we can continue with

= (−1)N−1Y 4N

∫ 1

−1

[GN (τ)2 + 2τG′N (τ)GN (τ)] dτ

= (−1)N−1Y 4N

∫ 1

−1

[τGN (τ)2]′ dτ

= 2(−1)N−1Y 4NGN (1)2.

On the other hand, from

GN (t) = (−1)N−1[(1− t2)N−1](N−1) = [(t− 1)N−1(t + 1)N−1](N−1)

and the Leibniz rule, we have

G
(k)
N (t) =

N−1+k∑

j=0

(
N − 1 + k

j

)
[(t− 1)N−1](j)[(t + 1)N−1](N−1+k−j),

whence

(48) G
(k)
N (1) =

(
N + k − 1

k

)
(N − 1)!

(N − 1)!
(N − 1− k)!

2N−1−k.
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Thus, in particular,
GN (1) = (N − 1)!2N−1.

Putting everything together, we thus get

b0 =
N !2N41−N (−1)N−1

(2N − 1)!Y 2N−2

f00

4Y 2N !2
· 2(−1)N−1Y 4N (N − 1)!24N−1

=
(N − 1)!
(2N − 1)!

Y 2N f00

= cNf00,

with cN from (29). Thus by (31)

r0 =
b0

cN
= f00 = F (Y, 0) = f(y).

So, indeed, R̃0f(y) = f(y), or R̃0 = I, proving Step 5.

Step 6. R̃1 is given by the formula in (27).

Again, we need to compute b1 and then r1. This time, i.e. for δ = 1, we obtain
nonzero contributions in (45) from nine terms:

l = 0, j = k = N, p = 0, 1, 2, q = 2− p;

l = 1, j = k = N
l = 0, j = N − 1, k = N
l = 0, j = N, k = N − 1



 p = 0, 1, q = 1− p.

The corresponding sum in (45) becomes

1
N !2

[ 2
5!Y 6

∂5

∂v5
+

1
4 · 3!Y 4

∂5

∂ρ2∂v3
+

1
422!Y 2

∂5

∂ρ4∂v

]

[G(ρ + iY v, 0)Q00(Y, v, ρ + iY v)]v=ρ=0

+
1

N !2
[ 1
3!Y 4

∂3

∂v3
+

1
4Y 2

∂3

∂ρ2∂v

]

[1
4

∂2

∂r2

(
G(ρ + iY v, r − Y )Q00(r, v, ρ + iY v)

)
r=Y

+ N2G(ρ + iY v, 0)(Q01 + Q10)(Y, v, ρ + iY v)
]

ρ=v=0
.

Computations a good deal more extensive than, but otherwise completely analo-
gous to, those for the case δ = 0 show that this equals

(−1)N−1Y 4N−4

4N !2
[(

8GN (1)G′′N (1)− 4G′N (1)2 + (6N2 − 4N)GN (1)2
)
f00

+ Y 2GN (1)2f01 + 2NY GN (1)2f10 + Y 2GN (1)2f20

]
.

Hence, supplying the constant in front of the sum in (45) and using (48),

b1 =
(N − 1)!Y 2N−2

(2N − 1)!2
[2N(2N − 1)f00 + Y 2f01 + 2NY f10 + Y 2f20].
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Inserting this into (31) gives

r1 =
b1 − cN−1r0

cN
=

f01 + f20

2
+

N

Y
f10.

Finally, supplying the values (35) for f01, f10 and f20, and recalling (36), we get

R̃1 =
∆

4(2N + 1)
+

N

2(2N + 1)
∂2

∂y2
1

+
N

Y

∂

∂y1
,

which is the second formula in (27), as claimed.
This completes the proof of Step 6, and, hence, of Theorem 1. ¤

4. Harmonic Fock kernels on Cm, m > 1

In this section we establish some more explicit formulas for the kernels Hh(x, y).
Though they do not seem to be of any use e.g. from the point of view of possible
simplification of the proofs in the preceding section, we believe them to be of interest
on their own merit. Besides, they not only better reveal the nature of these kernels,
but also make it possible to describe their asymptotics as h ↘ 0.

Throughout this section, we again consider only the case of Rn with n > 2 even,
setting as before

n = 2N + 2, N = 1, 2, 3, . . . ,

so that Rn ∼= CN+1. For x, y ∈ Rn, we also keep the previous notation

V ≡ V (x, y) =
√
|x|2|y|2 − 〈x, y〉2.

Furthermore, denote

E(z) =
eiz − e−iz

iz
= 2

sin z

z
;

this is an entire function of z ∈ C.
Our first formula expresses Hh as a finite sum of terms involving the function E

and its derivatives.

Proposition 5. For any x, y ∈ R2N+2 and h > 0,

Hh(x, y) =
N

22N−1

∑

j,l≥0
j+l≤N

(2N − 1)!
l!j!(N − l − j)!(N − 1 + l + j)!

( 〈x, y〉
h

)l

e〈x,y〉/h

N−1∑

k=0

(
N − 1

k

)(V

h

)j

E(2k+j)
(V

h

)

=
N

22N−1

N∑

j=0

(
2N−1
N−j

)

j! 1F1

(
j −N
j + N

∣∣∣− 〈x, y〉
h

)
e〈x,y〉/h

N−1∑

k=0

(
N − 1

k

)(V

h

)j

E(2k+j)
(V

h

)
.
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Proof. By the binomial theorem,

∫ 1

−1

(1− t2)N−1eizt dt =
N−1∑

k=0

(
N − 1

k

)
∂2k

∂z2k

∫ 1

−1

eizt dt

=
N−1∑

k=0

(
N − 1

k

)
E(2k)(z).

Thus by (18) and the Leibniz rule

Hh(x, y) =
21−2N

(N − 1)!
∂N

∂aN

[
a2N−1ea

〈x,y〉
h

∫ 1

−1

(1− t2)N−1 ea itV
h dt

]
a=1

=
21−2N

(N − 1)!
∂N

∂aN

[
a2N−1ea

〈x,y〉
h

N−1∑

k=0

(
N − 1

k

)
E(2k)

(aV

h

)]
a=1

=
21−2N

(N − 1)!

∑

j,l≥0
j+l≤N

N !
j!l!(N − l − j)!

∂N−l−j

∂aN−l−j
a2N−1 · ∂l

∂al
ea

〈x,y〉
h

· ∂j

∂aj

N−1∑

k=0

(
N − 1

k

)
E(2k)

(aV

h

)∣∣∣
a=1

,

yielding the first formula. The second formula follows upon summing over l. ¤
Using the elementary relations

E(m)(z) = 2
[ m

2 ]∑

j=0

(−1)m+jm!
(2j)!

sin z

zm−2j+1
− 2

[ m−1
2 ]∑

j=0

(−1)m+jm!
(2j + 1)!

cos z

zm−2j
,

one can get the asymptotic behaviour of Hh(x, y) as x, y are fixed and h ↘ 0.
(Unfortunately, it seems not to be of much direct use for the proof in the preceding
section, since it is not uniform in x.)

Our second formula for the kernel is obtained upon taking

X =
〈x, y〉+ iV (x, y)

h
, Y =

〈x, y〉 − iV (x, y)
h

in the following proposition.

Proposition 6. For any N = 1, 2, . . . and X, Y ∈ C,

Φ2

(
N,N
N

∣∣∣X, Y
)

=
1

(N − 1)!

( ∂2

∂X∂Y

)N−1 XY N−1eX − Y XN−1eY

X − Y

(with the usual interpretation of the right-hand side for X = Y ).

Proof. We have

XY N−1eX − Y XN−1eY

X − Y
=

∞∑
m=0

Xm+1Y N−1 − Y m+1XN−1

m!(X − Y )
.
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The m-th summand is a homogeneous polynomial in X,Y of degree m + N − 1;

thus for m ≤ N − 2 it is annihilated by
∂2N−2

∂XN−1∂Y N−1
. For m ≥ N − 1, it equals

XN−1Y N−1

m!
Xm−N+2 − Y m−N+2

X − Y
=

XN−1Y N−1

m!

∑

j+k=m−N+1

XjY k.

Applying ∂2N−2/∂XN−1∂Y N−1 and restoring the summation over m, we arrive at

∂2N−2

∂XN−1∂Y N−1

XY N−1eX − Y XN−1eY

X − Y

=
∞∑

j,k=0

1
(j + k + N − 1)!

(N − 1 + j)!
j!

Xj (N − 1 + k)!
k!

Y k

=
(N − 1)!2

(N − 1)!
Φ2

(
N, N
N

∣∣∣X,Y
)
. ¤

Corollary 7. For N > 1, Hh(x, y) equals

41−N

(N − 1)!

( ∂2

∂A2
+

∂2

∂B2

)N−1[
eA sin B

B
(A2 + B2)

[ N−2
2 ]∑

l=0

(
N − 2

2l

)
AN−2−2l(−B2)l

+ eA (A2 + B2) cos B

[ N−3
2 ]∑

l=0

(
N − 2
2l + 1

)
AN−3−2l(−B2)l

]

evaluated at A = 〈x,y〉
h , B = V (x,y)

h .
For N = 1, one has to replace the expression by

AeA sin B

B
+ eA cos B.

Proof. By routine manipulation from Proposition 6, upon passing to the variables
A,B from the variables X = A + iB, Y = A− iB. ¤

Note that the expression in the square brackets has the form

eAAN sin B

B
+ eAPN (A,B) sin B + eAQN (A,B) cos B

for some polynomials PN , QN of two variables. Performing the differentiation we
thus see that Hh(x, y) equals

pN (A,B) sin B + qN (A,B) cos B +
N−1∑

k=0

rNk(A)eA
( sin B

B

)(2k)

,

evaluated at A = 〈x,y〉
h , B = V (x,y)

h , with some polynomials pN , qN , rNk in the
indicated variables. From this, one can again read off the asymptotic behaviour of
Hh(x, y) as h ↘ 0 for x, y fixed.
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Note that the last expression for Hh(x, y) differs from the one appearing in Propo-
sition 5, which is of the form

∑

j,k,l

cjklA
lBjE(j+2k)(B),

evaluated at the same A,B, with the appropriate constants cjkl (e.g. the highest
derivative of E that appears is not 2N − 2 but 3N − 2); the equality of these two
expressions is definitely not apparent.

Remark 8. Yet another formula for Hh(x, y) can be obtained upon observing that

Φ2

(
a, b
c

∣∣∣x, y
)

= lim
ε→0

F1( 1
ε , a, b, c, εx, εy),

where F1 is the first Horn hypergeometric function [3, §5.7 (6)]

F1(α, a, b, c, x, y) :=
∞∑

j,k=0

(α)j+k(a)j(b)k

(c)j+kj!k!
xjyk.

From the transformation formula for F1 [3, §5.11 (3)]

F1(α, a, b, c, x, y) = (1− y)−αF1(α, a, c− a− b, c, y−x
y−1 , y

y−1 )

we thus obtain

Φ2

(
a, b
c

∣∣∣x, y
)

= eyΦ2

(
a, c− a− b

c

∣∣∣x− y,−y
)

= exΦ2

(
c− a− b, b

c

∣∣∣− x, y − x
)
.

Hence, in particular,

Φ2

(
a, a
a

∣∣∣x, y
)

= exΦ2

(−a, a
a

∣∣∣− x, y − x
)

= eyΦ2

(
a,−a

a

∣∣∣x− y,−y
)
,

and for N = 1, 2, 3, . . . ,

Φ2

(
N, N
N

∣∣∣x, y
)

= exΦ2

(−N, N
N

∣∣∣− x, y − x
)

= ex
N∑

j=0

(−N)j

(N)j

(−x)j

j! 1F1

(
N

N + j

∣∣∣y − x
)
.

Replacing x, y by 〈x,y〉+iV (x,y)
h and 〈x,y〉−iV (x,y)

h , respectively, we obtain a formula
for Hh(x, y) in terms of finitely many single-variable confluent hypergeometric func-
tions 1F1. Again, using known facts about the asymptotic expansion as |z| → +∞
of 1F1

(
a
c

∣∣∣z
)

[3, §6.13], one can get from here once more the asymptotic behavior

as h ↘ 0 of Hh(x, y) for fixed x, y (which should of course coincide with the ones
obtained from Propositions 5 and 6, though we have not tried to check this).
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5. Concluding remarks

5.1 Low dimensions. We have assumed throughout that n ≥ 3. For n = 2,
the harmonic functions on R2 ∼= C coincide with the pluriharmonic ones, and thus
the results of [13] apply (the harmonic kernel is just twice the real part of the
ordinary holomorphic Bergman kernel minus one, etc.). For n = 1, Hh consists just
of functions of the form f(x) = ax + b, with a, b ∈ R, with reproducing kernel

Hh(x, y) = 1 +
2xy

h
, x, y ∈ R.

Thus
(
1 +

2y2

h

)
Bhf(y) =

1√
πh

∫

R

f(x)
(
1 +

2xy

h

)2

e−x2/h dx

≈
∞∑

j=0

hj

j!4j

[
f (2j)(0) +

4y

h
(xf)(2j)(0) +

4y2

h2
(x2f)(2j)(0)

]

is always a quadratic polynomial in y, and its behaviour as h ↘ 0 is determined by
the jet of f at the origin (rather than at y); in particular, Bhf(y) → f(0), so Bh is
not even an approximate identity as h ↘ 0.

5.2 Different proof? As has already been noted at several places in Section 4,
our proof of Theorem 1 in fact bypasses the asymptotics of the kernels Hh(x, y)
as h ↘ 0 (working instead directly with the whole integral (14)). Having a proof
building on the asymptotic formulas from Section 4 might be of interest from several
respects.

5.3 Toeplitz operators. Liu [20] shows that for n = 2, the Toeplitz operators
T

(h)
f on the harmonic Bergman space of the unit ball Bn in Rn satisfy

(49) ‖T (h)
f ‖ → ‖f‖∞ as h ↘ 0

for any bounded continuous f ; the same is shown to hold also for n > 2, provided
f is in addition radial (i.e. f(x) depends only on |x|). The proof actually goes
via showing that Bhf → f pointwise. (The assertion then follows since ‖T (h)

f ‖ ≥
|Bhf(x)| for each x.) Our Theorem 1 thus implies that (49) remains in force
also for the harmonic Fock (Segal-Bargmann) spaces on Rn, for any even n ≥ 3.
(More precisely, Theorem 1 implies this for any bounded smooth f ; to get it for
general bounded continuous f , one can approximate f by bounded smooth functions
in the uniform norm and use the fact that ‖T (h)

f ‖ ≤ ‖f‖∞.)

5.4 Higher order terms. Computer aided calculations lead to the following
formula for the operator R2 in (7):

R2 =
3∆2

32(4n2 − 1)
+

n− 1
8(4n2 − 1)|y|2R

2∆ +
(4n + 1)(n− 1)
8(4n2 − 1)|y|2 R∆

+
(n− 1)(2n− 3)
4(2n− 1)|y|2 ∆ +

n(n− 1)
8(4n2 − 1)|y|4R

4 +
(n− 1)(4n2 − 5n− 2)

4(4n2 − 1)|y|4 R3

+
(n− 1)(16n3 − 56n2 + 27n + 24)

8(4n2 − 1)|y|4 R2 − (40n3 − 72n2 + n + 22)(n− 1)
4(4n2 − 1)|y|4 R.

It is absolutely unclear to the author what the formula for general Rj , j ≥ 3,
might be.



BEREZIN TRANSFORM ON THE HARMONIC FOCK SPACE 29

5.5 Jack polynomials. The sum
k∑

j=0

(ν)j(ν)k−j

j!(k − j)!
zjwk−j =

νk

k!
J

(1/ν)
(k) (z, w)

coincides, up to the constant factor νk

k! , with the Jack symmetric polynomial J
(1/ν)
(k) ,

with parameter 1/ν and corresponding to the signature (or partition) (k), of two
variables z, w; see MacDonald [21], p. 378 and Example 1 on p. 383. Consequently,
the hypergeometric function Φ2 with equal parameters can be written as

(50) Φ2

(
a, a
a

∣∣∣z, w
)

=
∞∑

k=0

ak

k!(a)k
J

(1/a)
(k) (z, w).

In view of Proposition 2, we thus obtain an expansion of the harmonic Fock kernels
Hh(x, y) in terms of Jack polynomials of two variables with parameter 2

n−2 .
Jack polynomials play an important role in several fields of mathematics, like

representation theory, statistics, combinatorics, and also in analysis on bounded
symmetric domains in Cn. In the latter, the Jack polynomials of two variables
and with parameter 2

n−2 correspond to an important series of bounded symmetric
domains of rank 2, known as Lie spheres; it seems extremely intriguing to under-
stand if there is any reason for their occurrence in the above context, what might
be the connection between harmonic Fock space and analysis on Lie spheres, and
why only single-entry partitions (k) appear in the expansion (50). See e.g. [14] and
the references therein for more information on Jack polynomials in the analysis on
rank 2 bounded symmetric domains in Cn.

5.6 Translations. On the holomorphic Fock space Fh on Cn, the translations
τa : z 7→ z + a, z, a ∈ Cn, induce the Weyl operators

(51) Waf(z) := e−
〈z,a〉

h − |a|22h f(z + a),
which are unitary on L2(Cn, dµh) as well as on Fh. This is extremely helpful in
many situations, for instance, the existence of Wa is responsible for the fact that
the holomorphic Berezin transform commutes with translations:
(52) Bh(f ◦ τa) = (Bhf) ◦ τa,

so that it is enough to prove asymptotic expansions like (7) only at the origin.
For the harmonic Fock space Hh, no operators like (51) exist, and (52) fails.

5.7 Open problems. Of course, the greatest deficiency of our method is that
we are unable to treat the case of odd n ≥ 3. The problem is that the da integral
in (17) then cannot be explicitly evaluated. Proceeding by simply inserting it into
(14) produces an integral whose asymptotic behaviour we were unable to determine
(it is of the form ∫

F (x)e−S(x)/h dx

where the phase function S has a unique critical point, but a degenerate one).
Another problem is to extend our results to harmonic Bergman spaces on the

unit ball of Rn, or even to all real bounded symmetric domains. Of course, the
ultimate generalization would be to the weighted harmonic Bergman spaces

Ah(Ω) = L2
harm(Ω, r1/h), h > 0,

on any smoothly bounded domain Ω ⊂ Rn, with r ³ dist( · , ∂Ω); however, this
seems to be completely out of reach at present.
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