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Abstract. We obtain formulas for the asymptotic expansion of the Berezin transform on
symmetric spaces in terms of invariant differential operators associated with the Peter-Weyl
decomposition under the maximal compact subgroup. A unified treatment makes it possible
to derive the formulas for the complex (hermitian) as well as for the real case, and for all types
of symmetric spaces (non-compact, compact and flat).

0 Introduction

The Berezin transform is of central importance in the theory of deformation quantization of
complex Kähler manifolds, in particular for the special case of symmetric spaces of hermitian
type. In this case the eigenvalues of the Berezin transform are explicitly known, both in the non-
compact case of hermitian bounded symmetric domains [UU] and for the compact hermitian
symmetric spaces [Z2] arising from duality. Besides the spectral analysis, another important
problem is the expansion of the Berezin transform into an asymptotic series of differential
operators, as the deformation parameter (“inverse Planck constant”) tends to infinity. More
precisely, the well-known Toeplitz star- (or Moyal) products have asymptotic expansions which
are closely related to that of the (inverse) Berezin transform [EU1], [EU2].

For non-compact symmetric domains, the asymptotic expansion of the Berezin transform
was obtained by Arazy and Orsted [AO]. In a separate paper [EU1] we generalized this result
to the case of real bounded symmetric domains, where again there is a natural “Berezin”
transform which is closely related to the well-known Segal-Bargmann transformations. The
dual situtation of compact symmetric spaces (complex or real) was not considered in [AO] or
[EU1], [EU2].

The purpose of this paper is to give the asymptotic expansion of the Berezin transform
for symmetric spaces of compact and non-compact type, both in the classical complex setting
of hermitian symmetric spaces and in the real setting for the Segal-Bargmann type Berezin
transform. We present a uniform proof for all cases, showing that the compact type behaves
quite similar to the dual non-compact situation. As usual the “flat” case, where the semi-simple
covariance group degenerates into a semi-direct product, is included in the computations.

In a separate paper [EU2] we apply these results to obtain asymptotic expansions (in the
Peter-Weyl context) for star products in the compact and non-compact situation, as well as

∗Research supported by the Academy of Sciences of the Czech Republic institutional research plan

no. AV0Z10190503; and GA ČR grant no. 201/09/0473.
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for the so-called “star restrictions” which are their real counterparts.

Precursors of the results included here appeared in one of the talks by the first author at
the IWOTA09 conference in Guanajuato, Mexico, in Septemer 2009. Both authors thank the
organizers for the invitation (which the second author was not able to accept in the end).

1 Berezin transform for hermitian symmetric spaces

It is well-known that most Riemannian symmetric spaces, including all the classical ones, have
a uniform description in terms of Jordan algebras and Jordan triples. We refer to [EU1], [L]
for a detailed discussion of the Jordan theoretic background and notation. For any hermitian
Jordan triple Z the (spectral) open unit ball Z− is a hermitian bounded symmetric domain
whose compact dual Z+ is a Jordan theoretic analogue of the Grassmann manifold, containing
Z as a Zariski open subset, i.e.,

Z− ⊂ Z ⊂ Z+.

All hermitian symmetric spaces (compact or non-compact) arise this way. (The non-hermitian
case will be studied in Section 2.) We define real Lie groups

G− := Aut (Z−) = {biholomorphic automorphisms of Z−},
G+ = {biholomorphic isometries of Z+},
G0 = Z ×K (semi-direct product),

where K = Aut (Z) = {g ∈ G± : g(0) = 0} is the Jordan triple automorphism group.

The three types of hermitian manifolds Z• = Z+, Z, Z− give rise to reproducing kernel
Hilbert spaces H2

ν (Z•) of holomorphic functions, which play the role of quantization state
spaces. Here ν is a deformation parameter (“inverse Planck constant”). Let K•(z, w) de-
note the reproducing kernel. The Berezin transform (related to the so-called Toeplitz-Berezin
quantization calculus [BMS]) is a G•-invariant densely defined self-adjoint operator

B• : L2(Z•) → L2(Z•)

with integral kernel representation

(B•f)(z) =
∫

Z•

dµ•(w)
K•(z, w)K•(w, z)
K•(z, z)K•(w, w)

f(w)

with respect to a suitably normalized G•-invariant measure dµ• specified below.

We will now discuss the three types of hermitian symmetric spaces separately. For Z• = Z,
the flat case, ν > 0 is arbitrary and H2

ν (Z) is the Fock space of all entire functions ψ ∈ O(Z)
satisfying

‖ψ‖2
ν =

∫

Z

dµ(z) e−ν(z|z)|ψ(z)|2 < +∞.

Here (z|w) denotes the K-invariant scalar product on Z normalized by (e1|e1) = 1 for all
minimal tripotents e1 ∈ Z, and the “invariant” measure is

dµ(z) = νd dz

πd
.
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Here d is the (complex) dimension of Z and dz is the Lebesgue measure for the inner product.
The reproducing kernel of H2

ν (Z) is

K(z, w) = eν(z|w).

Accordingly, we have

(Bf)(z) =
∫

Z

dµ(w)
eν(z|w) eν(w|z)

eν(z|z) eν(w|w)
f(w) = νd

∫

Z

dw

πd
e−ν(z−w|z−w)f(w).

In particular,

(Bf)(0) = νd

∫

Z

dw

πd
e−ν(w|w)f(w).

The basic numerical invariants of an irreducible hermitian Jordan triple Z of rank r can be
described via the Peirce decomposition

Z = U × V = XC × V

with respect to a maximal tripotent e ∈ Z of rank r. Here the Peirce 1-space U is the
complexification of a euclidean Jordan algebra X with unit element e, and the Peirce 1

2 -space
V carries a Jordan algebra representation of X. The “characteristic multiplicities” a and b are
defined by

dimR X = dimC U = r +
a

2
r(r − 1)

dimC V = rb.
(1)

Hence
dimC Z = d = r +

a

2
r(r − 1) + rb.

The genus p of Z is defined by

p =
2 dim U + dim V

r
= 2 + a(r − 1) + b.

For Z• = Z−, the bounded case, ν is a real parameter > p − 1 and H2
ν (Z−) is the (weighted)

Bergman space of holomorphic functions ψ ∈ O(Z−) satisfying

‖ψ‖2
ν =

∫

Z−

dµ−(z)∆(z, z)ν |ψ(z)|2 < +∞,

for the G−-invariant measure

dµ−(z) =
ΓΩ(ν)

ΓΩ(ν − d
r )

dz

πd
∆(z, z)−p.

Here ∆(z, w) is the Jordan triple determinant of Z, dX := dimRX and

ΓΩ(λ) = (2π)
dX−r

2

r∏

j=1

Γ(λj − a

2
(j − 1))
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is the Gindikin Γ-function of the symmetric cone Ω of X [FK], [G]. The reproducing kernel of
H2

ν (Z−) is given by
K−(z, w) = ∆(z, w)−ν .

Therefore

(B−f)(z) =
∫

Z−

dµ−(w)
∆(z, z)ν∆(w, w)ν

∆(z, w)ν∆(w, z)ν
f(w)

=
ΓΩ(ν)

ΓΩ(ν − d
r )

∫

Z−

dw

πd

∆(z, z)ν∆(w, w)ν−p

∆(z, w)ν∆(w, z)ν
f(w).

In particular

(B−f)(0) =
ΓΩ(ν)

ΓΩ(ν − d
r )

∫

Z−

dw

πd
∆(w, w)ν−pf(w).

For Z• = Z+, the compact case, ν ∈ N is a non-negative integer and, as observed in [Z2],
H2

ν (Z+) can be realized as a Bergman type space of entire functions ψ ∈ O(Z) satisfying

‖ψ‖2
ν =

∫

Z

dµ+(z)∆(z,−z)−ν |ψ(z)|2 < +∞

for the G+-invariant measure

dµ+(z) =
ΓΩ(ν + p)

ΓΩ(ν + p− d
r )

dz

πd
∆(z,−z)−p.

This space is finite dimensional, as can be seen from the reproducing kernel

K+(z, w) = ∆(z,−w)ν .

Therefore

(B+f)(z) =
∫

Z

dµ+(w)
∆(z,−w)ν ∆(w,−z)ν

∆(z,−z)ν ∆(w,−w)ν
f(w)

=
ΓΩ(ν + p)

ΓΩ(ν + p− d
r )

∫

Z

dw

πd

∆(z,−w)ν ∆(w,−z)ν

∆(z,−z)ν ∆(w,−w)ν+p
f(w).

In particular,

(B+f)(0) =
ΓΩ(ν + p)

ΓΩ(ν + p− d
r )

∫

Z

dw

πd
∆(w,−w)−(ν+p)f(w).

This concludes our case-by-case discussion.

By [U], [FK], the polynomial algebra P(Z) over Z has a Peter-Weyl decomposition

P(Z) =
∑

m∈Nr
+

Pm(Z)

under the natural K-action. Here Nr
+ denotes the set of all integer partitions

m = (m1, . . . , mr)
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of length ≤ r. We have a corresponding expansion

e(z|w) =
∑
m

Em(z, w)

of the Fischer-Fock kernel in terms of the reproducing kernels Em(z, w) of the finite dimen-
sional subspaces Pm(Z). These functions are polynomials on Z ×Z and therefore give rise to
constant coefficient bi-differential operators Em(∂, ∂), where ∂ denotes the complex Wirtinger
derivative. Specifically, for any fixed u, v ∈ Z,

Em(∂, ∂) e(z|v)+(u|w) = Em(u, v) e(z|v)+(u|w).

Via the diagonal embedding z 7→ (z, z) of Z into Z×Z, we also have the operators ∂Em acting
on Z by

∂Eme(z|v)+(u|z) = Em(u, v) e(z|v)+(u|z).

Theorem 1.1. In terms of the bi-differential operators ∂Em on Z, the Berezin transform has
the asymptotic expansion

(B•f)(0) =
∑
m

c•m(ν)(∂Emf)(0)

at 0, with m = (m1, . . . ,mr) running over all partitions of length ≤ r. Here the coefficients
are given by

cm(ν) =
1

ν|m| (flat case)

c−m(ν) =
1

(ν)m
(bounded case)

c+
m(ν) = (ν + p− d

r )−m∗ (compact case)

where m∗ := (mr, . . . , m1).

Proof. For K-invariant integrable functions f on Z we have the polar integration formula [AU2,
Proposition 3.4] ∫

Z

dx

πd
f(z) =

∫

Ω

dx

ΓΩ (d
r )

∆(x)
d
r
− dX

r f(
√

x),

where ∆ is the Jordan algebra determinant of X [FK]. For x ∈ Ω, we have

Em(
√

x,
√

x)
Em(e, e)

= φm(x)

where φm is the spherical polynomial of type m. Let ∆α be the conical function on Ω, for
α = (α1, . . . , αr). By [FK, Theorem VII.1.7] we have

∫

Ω∩(e−Ω)

dx∆α(x) ∆β(e− x) =
ΓΩ(α + dX

r ) ΓΩ(β + dX
r )

ΓΩ(α + β + 2dX
r )

, (2)

and [G, Proposition 2.6] or [AU1, Lemma 5.7] imply
∫

Ω

dx∆α(x)∆−β(e + x) =
ΓΩ(α + dX

r ) ΓΩ(β − α∗ − dX
r )

ΓΩ(β)
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with α∗ = (αr, . . . , α1). In the flat case we have

e−ν(
√

x|√x) = e−ν(x|e) = e−(x|νe)

for x ∈ Ω. This yields
∫

Z

dw

πd
e−ν(w|w) Em(w, w)

Em(e, e)
=

∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r e−ν(
√

x|√x) Em(
√

x,
√

x)
Em(e, e)

=
∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r e−ν(x|e) φm(x) =
∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r e−ν(x|e) ∆m(x)

=
∫

Ω

dx

ΓΩ(d
r )

∆m+ d
r
− dX

r (x) e−(x|νe) =
ΓΩ(m + d

r )

ΓΩ(d
r )

∆m+ d
r (ν−1e) = (

d

r
)m ν−|m|−d,

since ∆m+ d
r is homogeneous of total degree |m|+ d. (The third equality in the chain uses the

fact that dx, ∆(x) and e(x|e) are all invariant under the subgroup L ⊂ Aut(Ω) stabilizing e,
while φm is the average of ∆m over L.) Therefore

(BEm)(0)
Em(e, e)

= νd

∫

Z

dw

πd
e−ν(w|w) Em(w, w)

Em(e, e)
= ν−|m| (

d

r
)m.

In the bounded case we have
∆(
√

x,
√

x) = ∆(e− x)

for x ∈ Ω ∩ (e− Ω). This yields
∫

Z−

dw

πd
∆(w, w)ν−p Em(w, w)

Em(e, e)

=
∫

Ω∩(e−Ω)

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(
√

x,
√

x)ν−p Em(
√

x,
√

x)
Em(e, e)

=
∫

Ω∩(e−Ω)

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(e− x)ν−p φm(x)

=
∫

Ω∩(e−Ω)

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(e− x)ν−p ∆m(x)

=
∫

Ω∩(e−Ω)

dx

ΓΩ(d
r )

∆m+ d
r
− dX

r (x) ∆(e− x)ν−p =
ΓΩ(m + d

r )

ΓΩ(d
r )

ΓΩ(ν − d
r )

ΓΩ(ν + m)

since ν − p + dX
r = ν − d

r . Therefore

(B−Em)(0)
Em(e, e)

=
ΓΩ(ν)

ΓΩ(ν − d
r )

∫

Z−

dw

πd
∆(w, w)ν−p Em(w,w)

Em(e, e)

=
ΓΩ(ν)

ΓΩ(ν − d
r )

ΓΩ(m + d
r )

ΓΩ(d
r )

ΓΩ(ν − d
r )

ΓΩ(ν + m)
=

(d/r)m
(ν)m

.
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In the compact case, we have
∆(
√

x,−√x) = ∆(e + x)

for x ∈ Ω. This yields
∫

Z

dw

πd
∆(w,−w)−(ν+p) Em(w,w)

Em(e, e)

=
∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(
√

x,−√x)−(ν+p) Em(
√

x,
√

x)
Em(e, e)

=
∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(e + x)−(ν+p) φm(x)

=
∫

Ω

dx

ΓΩ(d
r )

∆(x)
d
r
− dX

r ∆(e + x)−(ν+p) ∆m(x)

=
∫

Ω

dx

ΓΩ(d
r )

∆m+ d
r
− dX

r (x) ∆(e + x)−(ν+p)

=
ΓΩ(m + d

r ) ΓΩ(ν + p−m∗ − d
r )

ΓΩ(d
r ) ΓΩ(ν + p)

.

Therefore

(B+Em)(0)
Em(e, e)

=
ΓΩ(ν + p)

ΓΩ(ν + p− d
r )

∫

Z

dw

πd
∆(w,−w)−(ν+p) Em(w, w)

Em(e, e)

=
ΓΩ(ν + p)

ΓΩ(ν + p− d
r )

ΓΩ(m + d
r ) ΓΩ(ν + p−m∗ − d

r )

ΓΩ(d
r ) ΓΩ(ν + p)

= (d/r)m (ν + p− d

r
)−m∗ .

In all three cases, since B• is a G•-invariant operator on Z•, the localized operator at 0 has a
unique expansion

(B•f)(0) =
∑
m

c•m(ν) (∂Emf)(0)

for all functions f which are smooth near 0 ∈ Z. This implies for the diagonal Em(z, z)

(B•Em)(0) =
∑
n

c•n(ν) ∂EnEm(0) = c•m(ν) ‖Em‖2
Z×Z

= c•m(ν) Em(e, e) (
d

r
)m.

It follows that
c•m(ν) =

1
(d/r)m

B•Em(0)
Em(e, e)

has the value specified above.

Remark 1.2. The bounded case of the last theorem recovers the result of [AO].

2 Berezin transform for real symmetric spaces

In order to introduce the “real” counterparts of hermitian symmetric spaces, let ZC be a
hermitian Jordan triple endowed with a triple involution z 7→ z̃. Then the real form

ZR = {z ∈ ZC : z̃ = z}
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is a euclidean Jordan triple which we assume to be irreducible. The associated unit ball
Z−R ⊂ ZR and compact dual Z+

R ⊃ ZR have the hermitifications Z−C and Z+
C , respectively.

In summary,
Z−C ⊂ ZC ⊂ Z+

C
∪ ∪ ∪

Z−R ⊂ ZR ⊂ Z+
R .

(3)

Remark 2.1. As a special case of this situation, we obtain the “product” case

ZR := Zdiag = {(z, z) : z ∈ Z} ⊂ ZC := Z × Z,

Z−R := Z−diag = {(z, z) : z ∈ Z−} ⊂ Z−C := Z− × Z
−
,

Z+
R := Z+

diag = {(z, z) : z ∈ Z+} ⊂ Z+
C := Z+ × Z

+
,

associated with a hermitian Jordan triple Z and the “flip” involution (z, w)∼ := (w, z). In this
case (3) takes the form

Z− × Z̄− ⊂ Z × Z̄ ⊂ Z+ × Z̄+

∪ ∪ ∪
Z−diag ⊂ Zdiag ⊂ Z+

diag.

This is the only case where the complexified spaces are not irreducible [L]. Since this situation
is covered by Section 1, we will assume from now on that ZC is irreducible.

There exists a maximal tripotent e ∈ ZR (of rank rR) which is also maximal in ZC (i.e., of
rank rC). Let

ZC = UC × VC = XCC × VC

and
ZR = UR × VR = XR × YR × VR

denote the corresponding Peirce decompositions. Then we have complexifications

UC = UCR , VC = V CR

and the euclidean Jordan algebras XC (of rank rC) and XR (of rank rR) are related by

XR = {x ∈ XC : x̃ = x},
iYR = {y ∈ XC : ỹ = −y}.

Equivalently,

XR = {x ∈ UR : x∗ = x},
YR = {y ∈ UR : y∗ = −y}

for the Jordan involution ∗ in UC. Writing e as an orthogonal sum of minimal tripotents in ZR
and ZC, respectively, it follows that the normalized inner products (x|y)R in ZR and (z|w)C in
ZC satisfy (e|e)R = rR and (e|e)C = rC. Therefore we have the reciprocity

rR(x|y)C = rC(x|y)R
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for all x, y ∈ ZR ⊂ ZC. Analogous to (1), we have characteristic multiplicities aC, bC satisfying

dimR VR = dimC VC = rC bC

dimR UR = dimC UC = rC +
aC
2

rC (rC − 1)

and hence
dimR ZR = dimC ZC = rC +

aC
2

rC (rC − 1) + rC bC.

Also, the “complex” genus is

pC =
2dimC UC + dimC VC

rC
= 2 + aC(rC − 1) + bC.

In the real case, we define aR, bR via

dimR XR = rR +
aR
2

rR (rR − 1)

dimR VR = rR bR

and introduce another numerical invariant cR via

dimR YR = rR cR +
aR
2

rR (rR − 1).

One can show that this covers all cases of the classification [L], [Z1], [EU1] with one exception
(type D2) which will not be considered here. The “real” genus pR is defined by

pR =
pC rC
2rR

=
dimR UR

rR
+

dimR VR
2rR

= 1 + cR + aR(rR − 1) +
bR
2

.

In terms of dY = dimR YR and dX = dimRXR = dimRXC − dY , we have the relations

pR − d

2rR
=

dX + dY

2rR

and hence
d

2rR
+

dX

rR
− pR =

dX − dY

2rR
.

Since ZC is irreducible, we may consider the quantization Hilbert spaces H2
νC(Z

•C) introduced
in Section 1, for the appropriate range of parameters νC, with reproducing kernel denoted by
K•C(z, w) for z, w ∈ Z•C. Besides the “complex” Berezin transform B•C on L2(Z•C, dµ•C) defined
as above, for the “invariant” measure dµ•C normalized as in Section 1, there also exists a “real”
Berezin transform B•R, which is a densely defined self-adjoint operator on L2(Z•R, dµ•R), with
integral representation

(B•Rf)(z) =
∫

Z•R

dµ•R(w)
K•C(z, w)

K•C(z, z)1/2K•C(w, w)1/2
f(w).

Here we use the fact that K•C(z, z) > 0 for all z ∈ Z•R. For motivation and background
concerning the real Berezin transform, cf. [AU1], [Z1]. We define the parameter νR by the
condition

νC rC = 2νR rR.
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As in Section 1, we will now discuss the three types of real symmetric spaces separately. For
Z•R = ZR, the real flat case, the invariant measure is

dµR(z) = ν
d/2
R

dz

πd/2
.

Therefore

(BRf)(z) =
∫

ZR

dµR(w)
eνC(z|w)C

e
νC
2

(z|z)C e
νC
2

(w|w)C
f(w)

= ν
d/2
R

∫

ZR

dw

πd/2

eνC(z|w)C

e
νC
2

(z|z)C e
νC
2

(w|w)C
f(w).

In particular,

(BRf)(0) = ν
d/2
R

∫

ZR

dw

πd/2
e−

νC
2

(w|w)C f(w).

For Z•R = Z−R , the real bounded case, the invariant measure is

dµ−R (z) =
ΓΩ(νR + dX−dY

2r )

ΓΩ(νR − pR + dX
r )

dz

πd/2
∆C(z, z)−pC/2,

where ∆C denotes the Jordan triple determinant of ZC. Therefore we obtain

(B−R f)(z) =
∫

Z−R

dµ−R (w)
∆C(z, z)νC/2 ∆C(w, w)νC/2

∆C(z, w)νC f(w)

=
ΓΩ(νR + dX−dY

2r )

ΓΩ(νR − pR + dX
r )

∫

Z−R

dw

πd/2

∆C(z, z)νC/2 ∆C(w, w)(νC−pC)/2

∆C(z, w)νC f(w).

In particular

(B−R f)(0) =
ΓΩ(νR + dX−dY

2r )

ΓΩ(νR − pR + dX
r )

∫

Z−R

dw

πd/2
∆C(w, w)(νC−pC)/2 f(w).

For Z•R = Z+
R , the real compact case, the invariant measure on ZR is

dµ+
R (z) =

ΓΩ(νR + pR)
ΓΩ(νR + pR − d

2r )
dz

πd/2
∆C(z,−z)−pC/2.

Therefore

(B+
R f)(z) =

∫

ZR

dµ+
R (w)

∆C(z,−w)νC

∆C(z,−z)νC/2 ∆C(w,−w)(νC+pC)/2
f(w)

=
ΓΩ(νR + pR)

ΓΩ(νR + pR − d
2r )

∫

ZR

dw

πd/2

∆C(z,−w)νC

∆C(z,−z)νC/2 ∆C(w,−w)(νC+pC)/2
f(w).
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In particular

(B+
R f)(0) =

ΓΩ(νR + pR)
ΓΩ(νR + pR − d

2r )

∫

ZR

dw

πd/2
∆C(w,−w)−(νC+pC)/2 f(w).

This concludes our case-by-case discussion.

As in Section 1, the (C-valued) polynomial algebra P(XR) ≡ P(XCR ) has a Peter-Weyl
decomposition

P(XCR ) =
∑

m∈NrR
+

Pm(XCR )

under the natural action of Aut(XCR ), and we have a corresponding kernel expansion

e(x|y)R =
∑

m∈NrR
+

EmR (x, y)

for the (irreducible) euclidean Jordan algebra XR of rank rR, with m running over all partitions
of length rR.

On the other hand, the polynomial algebra P(ZC) of the (irreducible) hermitian Jordan
triple ZC of rank rC also admits a Peter-Weyl decomposition

P(ZC) =
∑

n∈NrC
+

Pn(ZC)

under the KC-action, with n running over all integer partitions of length rC. Let

e(z|w)C =
∑

n∈NrC
+

EnC (z, w)

denote the corresponding kernel expansion.

A partition n ∈ NrC
+ is called even if Pn(ZC) contains a non-zero KR-invariant polynomial

(which is uniquely determined up to a constant multiple). The results in [Z3] (for tube type
domains) and [Z4] (for non-tube type domains) show that with one exception (type A), which
we will exclude from consideration here, the even signatures are obtained by “doubling” a
signature m ∈ NrR

+ of length rR. Then the associated KR-invariant polynomial Em ∈ PmC(ZC)
is uniquely characterized by the condition

Em(x) = EmR (x, x) = EmR (e, e) φmR (x2)

for all x ∈ XR ⊂ XCR ⊂ ZC, where φmR is the spherical polynomial (normalized Jack polynomial)
of type m [FK].

Proposition 2.2. Em has the (complex) Fock space norm

‖Em‖2C = EmR (e, e)(
d

2rR
)m.

11



Proof. Put dm := dim Pm(XCR ). The Shilov boundary S ⊂ XCR is the orbit of e under the
group Aut(XCR ). Applying Schur orthogonality and putting Emv (u) := EmR (u, v) for u, v ∈ S,
we obtain for the Fock space inner product (p|q)R = (∂p q)(0) on XCR

EmR (e, e)2

dm
=

(Eme |Eme )2R
dm

=
∫

S

du (Eme |Emu )R (Emu |Eme )R

=
∫

S

du |Eme (u)|2 =
(Eme |Eme )R
(dX/rR)m

=
EmR (e, e)
(dX/rR)m

.

This shows
EmR (e, e) =

dm
(dX/rR)m

.

By [Z4, Lemma 3.3 and Proposition 3.6] we have for the Fock space inner product on ZC

‖ Em

EmR (e, e)
‖2C =

(dX/rR)m (d/2rR)m
dm

.

Therefore
‖Em‖2C = EmR (e, e)2

(dX/rR)m (d/2rR)m
dm

= EmR (e, e) (
d

2rR
)m.

Theorem 2.3. Consider the (holomorphic) differential operators ∂Em on ZR ⊂ ZC induced
by the KR-invariant polynomials Em ∈ PmC(ZC). Then the real Berezin transform has the
asymptotic expansion

(B•R f)(0) =
∑
m

c•m(νR) (∂Em f)(0),

near 0, with m = (m1, . . . , mrR) running over all partitions of length ≤ rR. Here the coefficients
are given by

cm = ν
−|m|
R (flat case)

c−m = 1

(νR−pR+ d
2rR+

dX
rR )m

(bounded case)

c+
m = (νR + pR − d

2rR )−m∗ (compact case)

with m∗ := (mrR , . . . , m1).

Proof. By [AU2, Proposition 3.4], one has the polar integration formula
∫

ZR

dz

πd/2
f(z) =

∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR f(

√
x)

for KR-invariant integrable functions f on ZR, Ω being the cone of XR (the proof given there,
valid for functions supported in Z−R , extends to the general case by a homogeneity and density
argument). For x ∈ Ω, we have

Em(
√

x) = EmR (
√

x,
√

x) = EmR (e, e) φmR (x).

12



In the flat case, we have

e−
νC
2

(
√

x|√x)C = e−νR (
√

x|√x)R = e−(x|νR e)R

for x ∈ Ω. This yields
∫

ZR

dw

πd/2
e−

νC
2

(w|w)C Em(w)
EmR (e, e)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR e−

νC
2

(
√

x|√x)C Em(
√

x)
EmR (e, e)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR e−νR(x|e)R φmR (x)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR e−νR(x|e)R ∆m(x)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆m+ d
2rR−

dX
rR (x) e−(x|νR e)R

=
ΓΩ(m+ d

2rR )

ΓΩ( d
2rR )

∆m+ d
2rR (ν−1

R e) = (
d

2rR
)m ν

−|m|−d/2
R

since ∆m+ d
2rR is homogeneous of total degree |m|+ d

2 . Therefore

(BREm)(0)
EmR (e, e)

= ν
d/2
R

∫

ZR

dw

πd/2
e−

νC
2

(w|w)C Em(w)
EmR (e, e)

= (
d

2rR
)m ν

−|m|
R .

In the bounded case, we have

∆C(
√

x,
√

x) = ∆(e− x)rC/rR

for x ∈ Ω ∩ (e− Ω). This yields
∫

Z−R

dw

πd/2
∆C (w,w)(νC−pC)/2 Em(w)

EmR (e, e)

=
∫

Ω∩(e−Ω)

dx

ΓΩ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆C (

√
x,
√

x)(νC−pC)/2 Em(
√

x)
EmR (e, e)

=
∫

Ω∩(e−Ω)

dx

ΓΩ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆(e− x)νR−pR φmR (x)

=
∫

Ω∩(e−Ω)

dx

ΓΩ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆(e− x)νR−pR ∆m(x)

=
∫

Ω∩(e−Ω)

dx

ΓΩ( d
2rR )

∆m+ d
2rR−

dX
rR (x) ∆(e− x)νR−pR =

Γ(m+ d
2rR ) Γ(νR − pR + dX

rR )

ΓΩ ( d
2rR ) Γ(νR + dX−dY

2rR +m)
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using the relation (2). Therefore

(B−R Em)(0)
EmR (e, e)

=
ΓΩ (νR + dX−dY

2rR )

ΓΩ (νR − pR + dX
rR )

∫

Z−R

dw

πd/2
∆C (w, w)(νC−pC)/2 Em(w)

EmR (e, e)

=
ΓΩ (νR + dX−dY

2rR )

ΓΩ (νR − pR + dX
rR )

Γ(m+ d
2rR ) Γ(νR − pR + dX

rR )

ΓΩ ( d
2rR ) Γ(νR + dX−dY

2rR +m)
=

(d/2rR)m
(νR + dX−dY

2rR )m
.

In the compact case, we have

∆C (
√

x,−√x) = ∆(e + x)rC/rR

for x ∈ Ω and obtain
∫

ZR

dw

πd/2
∆C (w,−w)−(νC+pC)/2 Em(w)

EmR (e, e)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆C (

√
x,−√x)−(νC+pC)/2 EmR (

√
x)

EmR (e, e)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆(e + x)−νR−pR φmR (x)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆(x)
d

2rR−
dX
rR ∆(e + x)−νR−pR ∆m(x)

=
∫

Ω

dx

ΓΩ ( d
2rR )

∆m+ d
2rR−

dX
rR (x) ∆ (e + x)−νR−pR =

ΓΩ(m+ d
2rR ) ΓΩ(νR + pR −m∗ − d

2rR )

ΓΩ( d
2rR ) ΓΩ(νR + pR)

.

Therefore

(B+
R Em)(0)

EmR (e, e)
=

ΓΩ (νR + pR)
ΓΩ (νR + pR − d

2rR )

∫

ZR

dw

πd/2
∆C (w,−w)−(νC+pC)/2 Em(w)

EmR (e, e)

=
ΓΩ (νR + pR)

ΓΩ (νR + pR − d
2rR )

ΓΩ(m+ d
2rR ) ΓΩ(νR + pR −m∗ − d

2rR )

ΓΩ( d
2rR ) ΓΩ(νR + pR)

= (
d

2rR
)m (νR + pR − d

2rR
)−m∗ .

In all three cases, since B•R is a G•R-invariant operator on Z•R there exist coefficients c•m(ν) (m ∈
Nr

+) such that
(B•R f)(0) =

∑
m

c•m(νR)(∂Em f)(0)

for all functions f which are smooth near 0 ∈ ZR. This implies

(B•REm)(0) =
∑

k
c•k (∂

Ek Em)(0) = c•m ‖Em‖2C = c•mEmR (e, e)(
d

2rR
)m.

It follows that

c•m =
1

(d/2rR)m

(B•REm)(0)
EmR (e, e)

has the values specified above.
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Remark 2.4. Since

(νR − pR +
d

2rR
+

dX

rR
)m = (νR +

dX − dY

2rR
)m,

the bounded case of the last theorem is in complete agreement with Theorem 14 of [EU1] (up to
a factor of (2rR/rC)2|m|, which is due to our different normalization of the inner product (·|·)C
with respect to (·|·)R.)
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