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Abstract. We obtain a general expression for a Wigner transform (Wigner
function) on symmetric spaces of non-compact type and study the Weyl cal-
culus of pseudodifferential operators on them.

1. Introduction

The Wigner transform and the Weyl calculus of pseudodifferential operators
have long played prominent roles in PDE theory [11] [15], time-frequency analysis
[7] [21] [5] and mathematical physics [19]. As their definition relies on the Fourier
transform, it is not surprising that they have been studied most extensively in the
context of the Euclidean n-space. The aim of this paper is to extend these notions to
a more general context where a version of the Fourier transform is available: namely,
to symmetric spaces of non-compact type, with the Fourier-Helgason transform.

There have been several efforts in this direction before in the literature. First
of all, there is an extensive theory of Weyl calculi for which the symmetric domains
are the phase spaces; these are special cases of the so-called “invariant operator
calculi” developed recently by Arazy and Upmeier [4]. (It should be noted that
these calculi seem not to involve any analogue of the Wigner transform.) Our goal
here is different in that we have the symmetric domains only as the configuration
space, i.e. the Wigner transform and symbols of the Weyl operators are functions
on the cotangent bundles of the symmetric domains (or, more precisely, on the
products Ω×Ω∗, where Ω∗ is the Fourier-Helgason dual of the symmetric space Ω;
the latter product is essentially isomorphic to the cotangent bundle T ∗Ω). In this
direction, Tate [16] studied the situation for the simplest complex bounded sym-
metric domain, the unit disc; generalization to the unit ball of Rn (realized as
one-sheeted hyperboloid in Rn+1) has then been carried out by Bertola and the
first author [1]. We also mention that apparently yet another kind of the Weyl cal-
culus for the disc, for which the symbols also live on the tangent bundle of the disc
and which ultimately leads to the occurrence of Bessel functions, was introduced
by Terras [17] and studied by Trimeche [18] or Peng and Zhao [14]; it seems unclear
whether this calculus is in any way related to Tate’s and ours. (We pause to remark
that the Bessel-function Weyl calculus, however, seems to have rather complicated
behaviour under holomorphic transformations of the unit disc.)

In the physical literature there have been several different generalizations of
the original Wigner function [20] to non-flat configuration spaces and their phase
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spaces. One approach towards a generalization exploits the fact that that the origi-
nal Wigner function lives on a coadjoint orbit of the Weyl-Heisenberg group and can
be obtained using the square-integrability property of its representations. A general
description of this method, exploiting square-integrable group representations, may
be found in [13] and earlier references cited therein. An approach that is very close
to the one adopted in the present paper has been used in [2, 3] to obtain Wigner
functions on hyperboloids and spheres. However, the results obtained there were
on a case by case basis, while we present here a general theory. Another suggestion
for a generaliztion, using the entire dual space of the Weyl-Heisenberg group has
been given in [12]. The virtue of our present approach lies in its generality and the
fact that our construction preserves both the marginality and unitarity properties
that allowed the original Wigner function to be interpreted as a pseudo-probability
distribution on phase space.

The Wigner transform is constructed in Section 3 below, after reviewing the
necessary prerequisites on symmetric spaces in Section 2. The non-Euclidean Weyl
calculus of pseudodifferential operators is introduced in Section 4. The invertibil-
ity of the Wigner transform and its unitarity are discussed in Sections 5 and 6,
respectively. The final Section 7 contains miscellaneous concluding remarks, open
problems, etc. For the most part, our approach parallels fairly directly that of
Tate’s in [16]; however, Theorem 12 and Corollary 10 seem to be new even for his
situation of the unit disc.

Acknowledgement. Large part of this work was done while the second author
was visiting the first; the hospitality of the mathematics department of Concordia
University on this occasion is gratefully acknowledged.

2. Bounded symmetric domains

Recall that a connected Riemannian manifold Ω of dimension d is called a sym-
metric space if for any x ∈ Ω there exists a (necessarily unique) element sx ∈ G,
the group of isometries of Ω, which is involutive (i.e. sx ◦ sx = id) and has x as an
isolated fixed-point. One calls sx the geodesic symmetry at x. The symmetric space
is called irreducible if it is not isomorphic to a Cartesian product of another two
symmetric spaces. Irreducible symmetric spaces come in three types: Euclidean
(these are just Rd and its quotients), of compact type (the compact ones) and of
non-compact type. Any symmetric space of non-compact type can be realized as
(i.e. is isomorphic to) a domain in Rd which is circular with respect to the origin
and convex (the so-called Harish-Chandra realization). Throughout the rest of this
paper, we will thus assume that Ω is of the latter form, i.e. a symmetric space of
non-compact type in its Harish-Chandra realization.

It turns out that the geodesic symmetries sx in fact act transitively on Ω, i.e. for
any y, z ∈ Ω there exists an x ∈ Ω such that sxy = z; denoting by K = {g ∈
G : g(0) = 0} the stabilizer in G of the origin 0 ∈ Ω, it therefore follows that
Ω is isomorphic to the coset space G/K. (It is also true that elements of K are
orthogonal maps on Rd that preserve Ω, and that K is a maximal compact subgroup
of G.) There exists a unique (up to constant multiples) G-invariant measure on Ω
(obtained as the projection of the Haar measure on G); we will denote it by dµ(z).
(Thus dµ(z) = dµ(g(z)) for any g ∈ G.)
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For x ∈ Ω, there exists a unique geodesic symmetry φx ∈ G which interchanges
x and the origin, i.e.

(1) φx ◦ φx = id, φx(0) = x, φx(x) = 0,

and φx has only isolated fixed-points. In fact, φx has only one fixed point, namely
the geodesic mid-point between 0 and x; we will denote, quite generally, the geodesic
mid-point between some given x, y ∈ Ω by mx,y or mxy. (Thus the fixed point of
φx is precisely mx,0, and φx = smx,0 .)

Employing the standard notation, let G = NAK be the Iwasawa decomposition
of G, a the Lie algebra of the maximal Abelian part A, a∗ its dual, r = dimR a
its dimension (known as the rank of Ω), ρ = (ρ1, . . . , ρr) ∈ a∗ the sum of positive
roots, M and M ′ the centralizer and the normalizer of A in K, respectively, and
W = M ′/M the Weyl group. For any λ ∈ a∗ ∼= Rr and b in the coset space
B := K/M = G/MAN , one defines the “plane waves” on Ω by

eλ,b(x) := e(iλ+ρ)(A(x,b)), x ∈ Ω,

where A(x, b) is the unique element of a satisfying, if b = kM and x = gK,

k−1g ∈ N expA(x, b)K

under the Iwasawa decomposition G = NAK.
The Helgason-Fourier transform of f ∈ C∞0 (Ω) is a function on Ω∗ := a∗ × B

(∼= Rr ×K/M) given by

f̃(λ, b) :=
∫

Ω

f(x)e−λ,b(x) dµ(x).

For any f ∈ C∞0 (Ω) we then have the Fourier inversion formula

f(x) =
∫

a∗

∫

B

f̃(λ, b)eλ,b(x) dρ(λ, b)

and the Plancherel theorem∫

Ω

|f(x)|2 dµ(x) =
∫

a∗

∫

B

|f̃(λ, b)|2dρ(λ, b).

Here
dρ(λ, b) := |c(λ)|−2 db dλ,

where db is the unique K-invariant probability measure on K/M , dλ is a suitably
normalized Lebesgue measure on a∗ ∼= Rr, and c(λ) is a certain meromorphic
function on the complexification a∗C ∼= Cr of a∗ (the Harish-Chandra c-function).
From the Plancherel theorem it can be deduced, in particular, that f 7→ f̃ extends
to a Hilbert space isomorphism of L2(dµ) into L2(Ω∗, dρ) whose image consists of
functions F (λ, b) which satisfy a certain symmetry condition (relating the values
F (λ, b) and F (sλ, b) for s in the Weyl group; see Corollary VI.3.9 in [10].)

A (linear) differential operator L on Ω is called G-invariant if

L(f ◦ g) = (Lf) ◦ g

for any f ∈ C∞(Ω) and any g ∈ G. For any such L, it is known that the “plane
waves” are eigenfunctions of L:

Leλ,b = L̃(λ)eλ,b

where L̃(λ) is a polynomial in r variables; that is, each such L is a Fourier multiplier
with respect to the Helgason-Fourier transform. The correspondence L 7→ L̃ sets
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up an isomorphism between the ring of all G-invariant differential operators on Ω
and the ring of all polynomials on Rr ∼= a∗ invariant under the Weyl group W .

The “plane waves” eλ,b obey the following transformation rule under composition
with elements of G:

(2) eλ,b ◦ g = eλ,b(g0) eλ,g−1b.

(We will often write g0, gz, etc. instead of g(0), g(z) etc.) It follows from here that

eλ,gb(g0)eλ,b(g−10) = 1

and

(3)
dρ(λ, gb) = |eλ,b(g−10)|2 dρ(λ, b),

dρ(λ, b) = |eλ,gb(g0)|2 dρ(λ, gb).

Indeed, from the formula for the Helgason-Fourier transform and (2) we have

f̃(λ, gb) =
∫

Ω

f(z) e−λ,gb(z) dµ(z)

=
∫

Ω

f(z)
e−λ,b(g−1z)
e−λ,b(g−10)

dµ(z)

=
1

e−λ,b(g−10)

∫

Ω

f(gz) e−λ,b(z) dµ(z)

=
(f ◦ g)∼(λ, b)
e−λ,b(g−10)

,

whence from

f(z) =
∫

Ω∗
f̃(λ, b) eλ,b(z) dρ(λ, b)

=
∫

Ω∗
f̃(λ, gb) eλ,gb(z) dρ(λ, gb)

=
∫

Ω∗

(f ◦ g)∼(λ, b)
e−λ,b(g−10)

eλ,b(g−1z)
eλ,b(g−10)

dρ(λ, gb)

we get, upon replacing f by f ◦ g−1 and z by gz,

f(z) =
∫

Ω∗

f̃(λ, b)
e−λ,b(g−10)

eλ,b(z)
eλ,b(g−10)

dρ(λ, gb),

proving the claim. (Note that e−λ,b = eλ,b.)
Since |eλ,b(x)|2 = e2ρ(A(x,b)) does not depend on λ, (3) in fact implies that

(4)
d(gb) = |eλ,b(g−10)|2 db,

db = |eλ,gb(g0)|2 d(gb).

A function f on Ω is called K-invariant if f(kx) = f(x) for all x ∈ Ω and k ∈ K.
For such functions, the Helgason-Fourier transform f̃(λ, b) does not depend on b,
and reduces to the spherical transform

f̃(λ) =
∫

Ω

f(z)Φ−λ(z) dµ(z),

where Φλ are the spherical functions

Φλ(z) :=
∫

K

eλ,b(kz) dk =
∫

K

eλ,kb(z) dk.
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One has Φλ = Φsλ for all s in the Weyl group, i.e. f̃ is W -invariant. The Fourier
inversion formula and the Plancherel theorem assume the form

f(z) =
∫

a∗
f̃(λ)Φλ(z) dρ(λ),(5)

∫

Ω

|f(z)|2 dµ(z) =
∫

a∗
|f̃(λ)|2 dρ(λ),

respectively, where (abusing notation a little)

dρ(λ) := |c(λ)|−2 dλ.

Some examples. 1. The absolutely simplest example of the type of symmetric
space studied here could be the unit interval Ω = (−1, 1) ⊂ R, on which G =
O(1, 1)/R acts by

gx =
ax + b

cx + d
, x ∈ Ω, g =

(
a b
c d

)
∈ O(1, 1),

that is,

(6) gx = ε
x cosh t + sinh t

x sinh t + cosh t
, x ∈ Ω, t ∈ R, ε ∈ {±1}.

In particular,

φax =
a− x

1− ax
, x, a ∈ Ω.

The stabilizer of the origin is K = O(1) = {±1}, the invariant measure is dµ(x) =
dx

1−x2 , and N = {1}, A = G, M = K, B = {1}. The Lie algebra g can be identified
with R, and the exponential map g → G is

(7) ξ 7−→ tanh ξ.

It follows that

eλ,b(x) =
(1 + x

1− x

)iλ/2

, λ ∈ R.

The invariant differential operators on Ω are precisely the polynomials in ∆̃ :=
((1− x2) ∂

∂x )2, and

∆̃eλ,b = −λ2eλ,b.

However, this example is not really a symmetric space of noncompact type, since, by
dimensional reasons, the Lie algebra g is necessarily abelian and thus Ω is actually
a Euclidean space. In fact, the exponential map (7) gives an isomorphism of R
onto Ω under which the action (6) becomes just the Euclidean motion ξ 7→ ε(ξ + t),
dµ(x) becomes the Lebesgue measure dξ, ∆̃ becomes ∂2/∂ξ2, and eλ,b(x) reduces
to the ordinary exponential eiλξ. Since the Weyl group is just W = {±1} while
ρ = 0 and c(λ) ≡ 1, the Helgason-Fourier transform on Ω thus reduces just to the
ordinary Fourier transform on R.

2. The simplest genuine example is thus the unit disc Ω = {z ∈ C ∼= R2 : |z| <
1}, considered by Tate [16]. In this case Ω = G/K with G = U(1, 1)/C acting
again by

gz =
az + b

cz + d
, z ∈ Ω, g =

(
a b
c d

)
∈ U(1, 1),
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and K = U(1), A = {
(

cosh t sinh t
sinh t cosh t

)
: t ∈ R} is the same as in the preceding

example, M = {1}, W = {±1} and ρ = 1. The geodesic symmetries are given by

φaz =
a− z

1− az
.

The quotient space B = K/M can be identified with the unit circle T, and

eλ,b(z) =
(1− |z|2
|z − b|2

) 1+iλ
2

, λ ∈ R, b ∈ T, z ∈ Ω.

The invariant measure is dµ(z) = (1 − |z|2)−2 dz ∧ dz, the invariant differential
operators are precisely the polynomials in ∆̃ := (1−|z|2)2∆, where ∆ is the ordinary
Laplace operator, and

∆̃eλ,b = −(λ2 + 1)eλ,b.

The Plancherel measure dρ is given by dρ(λ) = λ
4π tanh πλ

2 dλ, yielding the simplest
nontrivial example of the Helgason-Fourier transform.

3. The real hyperbolic n-space, modelled in [1] as one-sheeted hyperboloid,
can be realized as the unit ball Ω = {x ∈ Rn : |x| < 1} = G/K with G = O(n, 1)/R,
K = O(n). The geodesic symmetries are the Moebius maps

φax =
(1− 2〈a, x〉+ |x|2)a− (1− |a|2)x

1− 2〈a, x〉+ |a|2|x|2 , x, a ∈ Ω;

the maximal abelian subgroup A can be identified with {τa : a = re1, −1 < r < 1}
where τa(x) := φa(−x) and e1 = (1, 0, 0, . . . , 0); and M = {k ∈ K : ke1 = e1} ∼=
O(n−1), so that B = K/M can again be identified with the unit sphere ∂Ω = Sn−1.
The Weyl group W is again just {±1}, the sum of positive roots is ρ = n− 1, and
the “plane waves” are

eλ,b(x) =
(1− |x|2
|x− b|2

)n−1+iλ
2

, x ∈ Ω, b ∈ ∂Ω, λ ∈ R.

The invariant differential operators are precisely the polynomials in

∆̃ := (1− |x|2)
[
(1− |x|2)

n∑

j=1

∂2

∂x2
j

+ (2n− 4)
n∑

j=1

xj
∂

∂xj

]
,

and ∆̃eλ,b = −(λ2 + (n − 1)2)eλ,b. Note that for n = 1 and n = 2, this example
recovers the previous two as special cases.

4. All three examples above are in turn special cases of the unit ball of real
n×m matrices

Ω = {z ∈ Rn×m : I − ztz is positive definite}
(or, equivalently, ‖z‖ < 1 when z is viewed as an operator z : Rm → Rn). One has
Ω = G/K with G = O(n,m)/R acting by

gz = (az + b)(cz + d)−1, z ∈ Ω, g =
(

a b
c d

)
∈ O(n,m)

(with a ∈ Rn×n, b ∈ Rn×m, etc.). The stabilizer subgroup K consists of all
block-diagonal (b = c = 0) elements in G, while A can be taken as {τa : a =∑

j rjej , −1 < rj < 1}, where τa(x) := φa(−x) and ej is the n×m matrix with 1
on the (j, j)-position and 0 everywhere else, 1 ≤ j ≤ min(m, n). In particular, the
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rank of Ω is r = min(m,n). (The previous three examples, corresponding to m = 1,
were thus of rank 1.)

5. General symmetric spaces of non-compact type include, in addition to anal-
ogous unit balls of symmetric or anti-symmetric matrices, also some other infinite
series of matrix domains, as well as so-called “exceptional” symmetric domains
related to (some) exceptional Lie groups.

For more details and the proofs of all the above, as well as for the complete clas-
sification (up to isomorphism) of all symmetric spaces, we refer e.g. to Helgason’s
books [10], [9], [8].

3. Wigner transform

Recall that mx,y stands for the geodesic midpoint between two points x, y of Ω.
We begin by establishing a few properties of the Jacobian J(x, y) of this map,
defined by the following equality

(8)
∫

Ω

f(mz,y) dµ(z) =
∫

Ω

f(x) J(x, y) dµ(x).

Proposition 1. For any g ∈ G, J(gx, gy) = J(x, y).

Proof. From the definition of J and invariance of dµ we get∫

Ω

f(x)J(gx, gy) dµ(x) =
∫

Ω

f(x)J(gx, gy) dµ(gx)

=
∫

Ω

f ◦ g−1(x) J(x, gy) dµ(x)

=
∫

Ω

f ◦ g−1(mz,gy) dµ(z)

=
∫

Ω

f ◦ g−1(gmg−1z,y) dµ(z)

=
∫

Ω

f(mg−1z,y) dµ(z)

=
∫

Ω

f(mz,y) dµ(z)

=
∫

Ω

f(x)J(x, y) dµ(x),

where the fourth equality follows from the fact that mgx,gy = gmx,y. ¤
Corollary 2. J(x, y) = J(y, x).

Proof. Take for g the geodesic symmetry interchanging x and y. ¤
Now let F be a function on Ω×Ω. The Wigner transform WF : Ω×Ω∗ → C of

F is defined by

WF (x;λ, b) : = |eλ,b(x)|−2

∫

Ω

eλ,b(y) e−λ,b(sxy) F (sxy, y) J(x, y) dµ(y)

= |eλ,b(x)|−2

∫

Ω

eλ,b(sxy) e−λ,b(y) F (y, sxy) J(x, y) dµ(y).

The second expression follows from the first upon the change of variable y 7→ sxy
and noting that J(x, y) = J(sxx, sxy) = J(x, sxy) by the preceding proposition.
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Note that the quantity |eλ,b(x)|−2 is, in fact, independent of λ.
The next three theorems show that our Wigner transform retains the properties

we expect from the Euclidean case.

Theorem 3. (Invariance) For any g ∈ G,

WF◦g(x; λ, b) = WF (gx;λ, gb),

where F ◦ g(x, y) := F (gx, gy).

Proof. Note that for any x, y ∈ Ω and g ∈ G,

sgxgy = gsxy.

Using the definition of W, the invariance of dµ and J , and (2), we therefore have

WF◦g(g−1x;λ, b)

= |eλ,b(g−1x)|−2

∫

Ω

eλ,b(y)e−λ,b(sg−1xy)F (gsg−1xy, gy)J(g−1x, y) dµ(y)

= |eλ,b(g−1x)|−2

∫

Ω

eλ,b(g−1y)e−λ,b(sg−1xg−1y)F (gsg−1xg−1y, y)

J(g−1x, g−1y) dµ(y)

= |eλ,b(g−1x)|−2

∫

Ω

eλ,b(g−1y)e−λ,b(g−1sxy)F (sxy, y)J(x, y) dµ(y)

= |eλ,b(g−10)eλ,gb(x)|−2

∫

Ω

eλ,b(g−10)eλ,gb(y)e−λ,b(g−10)e−λ,gb(sxy)

F (sxy, y)J(x, y) dµ(y)

= |eλ,gb(x)|−2

∫

Ω

eλ,gb(y)e−λ,gb(sxy)F (sxy, y)J(x, y) dµ(y)

= WF (x; λ, gb),

as asserted. ¤

Theorem 4. (Marginality) For F of the form F (x, y) = f(x)g(y), with f, g ∈
L2(Ω, dµ), we have the marginality relations∫

Ω

WF (x; λ, b) |eλ,b(x)|2 dµ(x) = f̃(λ, b) g̃(λ, b);
∫

Ω∗
WF (x; λ, b) |eλ,b(x)|2 dρ(λ, b) = f(x) g(x).

Proof. For the first, use the defining property (8) of the Jacobian:∫

Ω

WF (x; λ, b) |eλ,b(x)|2 dµ(x)

=
∫

Ω

∫

Ω

eλ,b(y) e−λ,b(sxy) f(sxy) g(y) J(x, y) dµ(x) dµ(y)

=
∫

Ω

∫

Ω

eλ,b(y) e−λ,b(smz,yy) f(smz,yy) g(y) dµ(z) dµ(y)

=
∫

Ω

∫

Ω

eλ,b(y) e−λ,b(z) f(z) g(y) dµ(z) dµ(y) (since smz,yy = z)

= f̃(λ, b) g̃(λ, b).
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For the second, note that by Plancherel

(9)
∫

Ω∗
eλ,b(y) e−λ,b(z) dρ(λ, b) = δyz.

Thus
∫

Ω∗
WF (x; λ, b) |eλ,b(x)|2 dρ(λ, b)

=
∫

Ω

∫

Ω∗
eλ,b(y) e−λ,b(sxy) f(sxy) g(y) J(x, y) dρ(λ, b) dµ(y)

=
∫

Ω

δy,sxy f(sxy) g(y) J(x, y) dµ(y)

= f(sxx) g(x) J(x, x)

= f(x) g(x) J(x, x).

On the other hand, by the invariance of J we have J(x, x) = J(φxx, φxx) = J(0, 0),
and taking in the defining property for J

∫

Ω

f(x) J(x, 0) dµ(x) =
∫

Ω

f(mz,0) dµ(z)

for f an approximate identity (i.e. letting f tend to the delta function at the origin),
we get J(0, 0) = 1. Thus the second part of the theorem follows. ¤

Remark. In addition to the Iwasawa decomposition G = NAK, one also has the
Bruhat decomposition G = KA+K, where A+ is a certain “positive” subset of A
and the bar stands for closure. It can be deduced from the latter that the ambient
space Rd ⊃ Ω = G/K admits a “polar decomposition” as Rd ∼= K/M × a+ —
more precisely, any x ∈ Rd can be written in the form x = ka with a lying in a
fixed subspace isomorphic to a ∼= a∗ ∼= Rr; and if we set a+ = {t1e1 + · · · + trer :
t1 > t2 > · · · > tr > 0}, where e1, . . . , er is an appropriate basis for a, then the
correspondence Rd 3 x ←→ (kM, a) ∈ K/M × a+ is one-to-one except for the set
of measure zero where tj = tj+1 or tj = 0 for some j (then the t1, . . . , tr are still
determined uniquely, but kM is not). (The r-tuple d(x) := (t1, . . . , tr) is called
the “complex distance” of x from the origin.) In this way, the cotangent space
T ∗x Ω ∼= Rd at any point x ∈ Ω can essentially be identified with K/M × a∗, and
we can thus think of the Fourier-Helgason transform f̃ : Ω∗ → C as living on
the cotangent space T ∗x Ω. Similarly, the Wigner transform WF : Ω × Ω∗ → C
can be envisaged as living in fact on the cotangent bundle T ∗Ω. In a way, this
is reminiscent of viewing the ordinary Fourier transform f̃(ξ) on R2 ∼= C in the
polar coordinates as f̃(ξ) ≡ f̃(r, θ) where ξ = reiθ; the subtle difference is that
instead of the simple symmetry relation f̃(r, θ) = f̃(−r, θ + π), for the Fourier-
Helgason transform one has the more complicated symmetry relations, mentioned
in Section 2, relating f̃(λ, b) and f̃(sλ, b) for s in the Weyl group. ¤

4. Pseudodifferential operators

In analogy with the Euclidean case, the Wigner function can be used to define the
Weyl calculus of pseudodifferential operators by assigning to a “symbol” function
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a on Ω× Ω∗ the operator Ψa on L2(Ω, dµ) defined by

〈Ψau, v〉 =
∫

Ω

∫

Ω∗
Wu⊗v(x; λ, b) a(x, λ, b) |eλ,b(x)|2 dρ(λ, b) dµ(x),

where (u⊗ v)(x, y) := u(x)v(y). In other words,

Ψau(y) =
∫

Ω∗

∫

Ω

a(mz,y; λ, b) eλ,b(y) e−λ,b(z) u(z) dµ(z) dρ(λ, b)

=
∫

Ω

ã(y, z) u(z) dµ(z),

where ã is the integral kernel

(10) ã(y, z) :=
∫

Ω∗
a(mz,y; λ, b) eλ,b(y) e−λ,b(z) dρ(λ, b).

Note that for a(x; λ, b) = a(x) depending only on the space variable, Ψa reduces
just to a multiplication operator: indeed, by Plancherel’s formula (9),

Ψau(y) =
∫

Ω

a(mz,y) δy,z u(z) dµ(z) = a(my,y)u(y) = a(y)u(y).

Similarly, for a(x;λ, b) = a(λ) depending only on λ the operator Ψa reduces to the
corresponding Fourier multiplier:

Ψau(y) =
∫

Ω∗
a(λ) eλ,b(y) ũ(λ, b) dρ(λ, b) =

(
a(λ)ũ(λ, b)

)
∧,

where ∧ stands for the inverse Fourier-Helgason transform. This shows, in par-
ticular, that all invariant differential operators on Ω arise as Ψa for a = a(λ) an
appropriate W -invariant polynomial on a∗.

The invariance properties of the Wigner transform are reflected in the corre-
sponding invariance properties for the Weyl pseudodifferential operators Ψa and
their integral kernels ã.

Theorem 5. For any g ∈ G, we have

ã(gy, gz) = ãg(y, z),

i.e. ã ◦ g = ãg, where ag(x; λ, b) := a(gx;λ, gb).

Proof. From (2),

ã(gy, gz) =
∫

Ω∗
a(gmz,y;λ, b) eλ,b(gy) e−λ,b(gz) dρ(λ, b)

=
∫

Ω∗
|eλ,b(g0)|2a(gmz,y; λ, b) eλ,g−1b(y) e−λ,g−1b(z) dρ(λ, b)

=
∫

Ω∗
a(gmz,y;λ, gb) eλ,b(y) e−λ,b(z) |eλ,gb(g0)|2 dρ(λ, gb)

=
∫

Ω∗
a(gmz,y;λ, gb) eλ,b(y) e−λ,b(z) dρ(λ, b)

= ãg(y, z),

where the penultimate equality used (3). ¤
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For g ∈ G, let Ug denote the unitary operator on L2(Ω, dµ) of composition
with g−1:

Ugf(z) := f(g−1z).

Theorem 6. U∗
g ΨaUg = Ψag .

Proof. Using the invariance of dµ and the preceding theorem, we get

〈ΨaUgu,Ugv〉 =
∫

Ω

∫

Ω

ã(y, z) u(g−1y) v(g−1z) dµ(y) dµ(z)

=
∫

Ω

∫

Ω

ã(gy, gz) u(y) v(z) dµ(y) dµ(z)

=
∫

Ω

∫

Ω

ãg(y, z) u(y) v(z) dµ(y) dµ(z)

= 〈Ψagu, v〉,
completing the proof. ¤

5. Invertibility

We proceed by showing that, to a certain extent, the assignments a 7→ ã and
F 7→ WF are inverses of each other. While in the Euclidean case this is true without
any restrictions, for symmetric domains this turns out to hold, in general, only for
functions F which are of a special form. On the level of the Wigner transform, this
corresponds to symbols a on Ω× Ω∗ which are independent of the variable b:

a(x; λ, b) = a(x; λ).

Theorem 7. Let a be a function on Ω×Ω∗ which is independent of the variable b.
Then

Wea = a.

We begin with a lemma.

Lemma 8. For x, y ∈ Ω and λ ∈ a∗,∫

B

eλ,b(x) e−λ,b(y) db = Φλ(φyx) = Φλ(φxy).

Proof. By (2),

eλ,b(x) = eλ,b(φyφyx) = eλ,b(φy0)eλ,φyb(φyx) = eλ,b(y)eλ,φyb(φyx).

Hence
eλ,b(x)e−λ,b(y) = |eλ,b(y)|2 eλ,φyb(φyx).

But by (4), |eλ,b(y)|2 db = d(φyb); thus
∫

B

eλ,b(x) e−λ,b(y) db =
∫

B

eλ,φyb(φyx) d(φyb)

=
∫

B

eλ,b(φyx) db = Φλ(φyx),

proving the first claim. For the second, note that φφxyφxφy =: k maps 0 to 0, hence
belongs to K; and from φφxy = kφyφx we then get φxy = φφxy0 = kφyφx0 = kφyx.
Since Φλ is K-invariant, it follows that Φλ(φxy) = Φλ(φyx). ¤
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Proof of Theorem 7. Note that from the transformation properties of W and ã
we have

Wea(x; λ, b) = Wea(φx0; λ, φxφxb) = Wea◦φx
(0; λ, φxb) = Wgaφx

(0; λ, φxb),

a(x; λ, b) = a(φx0; λ, φxφxb) = aφx(0; λ, φxb).

Furthermore, it is immediate from the definition that if a is independent of b, then
so is ag for any g ∈ G. Thus it is enough to prove the assertion for x = 0, i.e. to
prove that

Wea(0; λ, b) = a(0; λ) ∀b ∈ B.

From the definitions we get

Wea(x; λ, b) = |eλ,b(x)|−2

∫

Ω

eλ,b(y) e−λ,b(sxy) ã(sxy, y) J(x, y) dµ(y)

= |eλ,b(x)|−2

∫

Ω

∫

Ω∗
eλ,b(y) e−λ,b(sxy) a(my,sxy;λ′, b′)eλ′,b′(sxy)

e−λ′,b′(y) J(x, y) dρ(λ′, b′) dµ(y)

= |eλ,b(x)|−2

∫

Ω∗
a(x;λ′, b′)

∫

Ω

eλ,b(y) e−λ,b(sxy) eλ′,b′(sxy)

e−λ′,b′(y) J(x, y) dµ(y) dρ(λ′, b′),

since my,sxy = x. Thus, as eλ,b(0) = 1 for any λ and b,

Wea(0; λ, b) =
∫

Ω∗
a(0; λ′, b′)

∫

Ω

eλ,b(y) e−λ,b(s0y) eλ′,b′(s0y)

e−λ′,b′(y) J(0, y) dµ(y) dρ(λ′, b′).

(Here, of course, s0y = −y, but we keep s0 in order to avoid some extra parenthesis
below.) As a(0; λ′, b′) is independent of b′ by hypothesis, we can carry out the b′

integration, the result being by the last lemma

Wea(0; λ, b) =
∫

a∗
a(0; λ′)

∫

Ω

eλ,b(y) e−λ,b(s0y) Φλ(φys0y) J(0, y) dµ(y) dρ(λ′)

=
∫

Ω

eλ,b(y) e−λ,b(s0y) ǎ(0; φys0y) J(0, y) dµ(y),

where ǎ stands for the inverse Helgason-Fourier (or, in this case, spherical) trans-
form of a(x; λ) with respect to λ. Applying the definition of the Jacobian, this
becomes

Wea(0; λ, b) =
∫

Ω

eλ,b(m0y) e−λ,b(s0m0y) ǎ(0; φm0ys0m0y) dµ(y).

However, φmy,0s0my,0 = y, so the last expression equals

Wea(0; λ, b) =
∫

Ω

eλ,b(m0y) e−λ,b(s0m0y) ǎ(0; y) dµ(y).

Since ǎ(0, · ) is a K-invariant function, we can replace y by ky, and then also
integrate over k. Since m0,ky = mk0,ky = km0,y and eλ,b(kz) = eλ,k−1b(z), this
gives, using again the last lemma,

Wea(0; λ, b) =
∫

Ω

∫

K

eλ,b(m0,ky) e−λ,b(s0m0,ky) dk ǎ(0; y) dµ(y)
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=
∫

Ω

∫

K

eλ,k−1b(m0y) e−λ,k−1b(s0m0y) dk ǎ(0; y) dµ(y)

=
∫

Ω

∫

B

eλ,b(m0y) e−λ,b(s0m0y) db ǎ(0; y) dµ(y)

=
∫

Ω

Φλ(φm0y
s0m0y) ǎ(0; y) dµ(y)

=
∫

Ω

Φλ(y) ǎ(0; y) dµ(y)

= a(0; λ),

by (5). (Note that, K being a compact group, d(k−1) = dk.) This completes the
proof. ¤

Remark. From the proof it is evident that the theorem in general cannot be expected
to hold if the K-invariance hypothesis is dropped.

To state the analogue of the last theorem in the other direction, we first need
to identify the functions ã(x, y) corresponding to symbols a(x;λ, b) which are inde-
pendent of b.

Let A denote the set of all functions F on Ω× Ω of the form

(11) F (x, y) = A(mxy, φxy),

where A : Ω×Ω → C is K-invariant in the second argument, i.e. A(u, v) = A(u, kv)
∀k ∈ K.

Remark. The map
(x, y) 7−→ (mxy, φmxyx)

of Ω× Ω into itself is a diffeomorphism onto; its inverse is given by

(m,u) 7−→ (φmu, φms0u).

Thus every function F on Ω × Ω can be written uniquely in the form F (x, y) =
G(mxy, φmxyx) for some function G on Ω×Ω. Functions in A correspond to the G
which are K-invariant in the second argument.

(Indeed, recalling the notion of the complex distance d(x) from the origin men-
tioned in the end of Section 3, one can define also the complex distance d(x, y)
of two points x, y ∈ Ω by d(x, y) := d(φxy) = d(φyx). It is then known that
d(gx, gy) = d(x, y) for any g ∈ G (and, conversely, if d(x, y) = d(x1, y1), then
there is g ∈ G with gx = x1, gy = y1). The condition that a function f(x),
x ∈ Ω, is K-invariant means precisely that it depends only on d(x). Furthermore,
d(x, s0x) = 2d(x)

1+d(x)2 (where 2d
1+d2 := ( 2d1

1+d2
1
, . . . , 2dr

1+d2
r
) if d = (d1, . . . , dr)), and simi-

larly d(x, y) = 2d(mxy,x)
1+d(mxy,x)2 ; that is, d(x, y) and d(mxy, x) are uniquely determined

by each other, and similarly for d(x) and d(x, s0x). Hence, if F (x, y) = A(mxy, φxy)
where A is K-invariant in the second argument, and G(m,u) := F (φmu, φms0u),
then G(m,u) depends only on mφmu,φms0u = m and d(φmu, φms0u) = d(u, s0u) =

2d(u)
1+d(u)2 , hence only on m and d(u), so it is K-invariant in u. Conversely, if
F (x, y) = G(mxy, φmxyx) where G is K-invariant in the second argument, then
F (x, y) depends only on mxy and d(mxy, x), hence only on mxy and d(x, y), so it
has the form F (x, y) = A(mxy, φxy) where A(m,u) is K-invariant in u, i.e. F ∈ A.)
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Proposition 9. If a(x; λ, b) = a(x;λ) does not depend on b, then ã ∈ A. Con-
versely, every function F in A arises as ã for a unique a as above.

Proof. For a = a(x; λ) independent of b, we have by Lemma 8

ã(x, y) =
∫

Ω∗
a(mxy; λ) eλ,b(x) e−λ,b(y) dρ(λ, b)

=
∫

Ω∗
a(mxy; λ) Φλ(φxy) dρ(λ)

= ǎ(mxy; φxy),

where ǎ has the same meaning as in the proof of Theorem 7. Thus F = ã is of
the form (11) with A = ǎ, proving the first claim. The inversion formula for the
spherical transform gives the second part. ¤
Corollary 10. Let F ∈ A. Then

W̃F = F.

Proof. With the a from the last proposition, we have by Theorem 7

W̃F = W̃ea = ã = F.

¤
Observe that in the proof of Theorem 7, when computing Wea(0; λ, b) we in

fact never used the full hypothesis that a(x;λ, b) is independent of b, but only
that a(0; λ, b) is independent of b. We conclude this section by recording a small
corollary to this observation.

Proposition 11. Assume that a is K-invariant, in the sense that a = ak ∀k ∈ K.
Then a(0; λ, b) = a(0; λ) is independent of b, and

Wea(0; λ, b) = a(0; λ) ∀b ∈ B.

Proof. From ak = a we get

a(0; λ, kb) = a(k0; λ, kb) = a(0; λ, b),

proving that a(0; λ, b) is independent of b, since K acts transitively on B = K/M .
The rest is immediate from the observation preceding the proposition. ¤

6. Unitarity

The classical Euclidean Wigner transform is a unitary operator on L2(Rn×Rn).
Here is an analogue of this fact in our setting of symmetric spaces of non-compact
type. This theorem seems not to have been hitherto noticed even in the simplest
non-Euclidean setting of the unit disc. For brevity, let us denote by B the set of all
functions a(x;λ, b) on Ω× Ω∗ which are independent of the variable b.

Theorem 12. The map F 7→ WF is a unitary operator from L2(Ω×Ω, dµ×dµ)∩A
onto L2(Ω× Ω∗, dµ× dρ) ∩ B.

Proof. In view of Theorem 7 and Proposition 9, it is enough to show that the inverse
map a 7→ ã is an isometry from L2(Ω × Ω∗) ∩ B into L2(Ω × Ω) ∩ A (with their
respective measures); that is, that∫

Ω

∫

a∗
|a(x, λ)|2 dρ(λ) dµ(x) =

∫

Ω

∫

Ω

|ã(x, y)|2 dµ(y) dµ(x).
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In course of the proof of Proposition 7, we have seen that ã(x, y) = ǎ(mxy, φxy),
where ǎ has again the same meaning as before. By Plancherel, the desired equality
is therefore equivalent to

(12)
∫

Ω

∫

Ω

|ǎ(x; y)|2 dµ(y) dµ(x) =
∫

Ω

∫

Ω

|ǎ(mxy, φxy)|2 dµ(y) dµ(x).

In view of the invariance of the measure dµ, we may replace x by kx, k ∈ K, so the
left-hand side of (12) equals

(13)
∫

Ω

∫

Ω

|ǎ(kx, y)|2 dµ(x) dµ(y),

for any k ∈ K. Similarly, on the right-hand side of (12) we can replace y by φxy in
the inner integral, giving

∫

Ω

∫

Ω

|ǎ(mx,φxy, y)|2 dµ(y) dµ(x).

Replacing again x, y by kx, ky, k ∈ K, recalling that ǎ is a K-invariant function
in its second argument, and using the fact that φkxky = kφxy and mkx,kφxy =
mkφx0,kφxy = kφxm0y (since φx is a Riemannian isometry), we thus see that the
right-hand side of (12) is equal to

(14)
∫

Ω

∫

Ω

|ǎ(kφxm0y, y)|2 dµ(x) dµ(y),

for any k ∈ K. Since the k ∈ K in both (13) and (14) can be taken arbitrary, the
desired equality (12) is therefore actually equivalent to (as x = φx0)
∫

K

∫

Ω

∫

Ω

|ǎ(kφx0, y)|2 dµ(x) dµ(y) dk =
∫

K

∫

Ω

∫

Ω

|ǎ(kφxm0y, y)|2 dµ(x) dµ(y) dk.

We claim that we in fact have even the equality

(15)
∫

K

∫

Ω

|ǎ(kφx0, y)|2 dµ(x) dk =
∫

K

∫

Ω

|ǎ(kφxm0y, y)|2 dµ(x) dk

for any fixed y ∈ Ω.
Indeed, denote, for brevity, F (x) := |ǎ(x; y)|2. For z ∈ Ω, consider the integral

I(z) :=
∫

K

∫

Ω

F (kφxz) dk dµ(x).

Now any g ∈ G can be uniquely written in the form kφx with k ∈ K and x ∈ Ω
(in fact, x = g−10 and k = gφx), and the measure dk dµ(x) corresponds under this
parameterization to the Haar measure dg on G. (Recall that G, as a semisimple
Lie group, is unimodular, so dg is both the left and the right Haar measure.) Thus

I(z) =
∫

G

F (gz) dg.

For any g1 ∈ G, the invariance of the Haar measure gives

I(g1z) =
∫

G

F (gg1z) dg =
∫

G

F (gg1z) d(gg1) = I(z).

Since G acts transitively on Ω = G/K, I(z) is thus independent of z. In particular,
I(0) = I(m0y), proving (15) and completing the proof of the theorem. ¤
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Remark. The equality (12) would follow immediately if the diffeomorphism (x, y) 7→
(mxy, φxy) were measure-preserving. However, a simple calculation shows that on
the disc

dµ(mxy) dµ(φxy)
dµ(x) dµ(y)

=
2− xy − yx

2|1− xy|

√
1− |x|2
1− |y|2 6= 1,

so this is not the case even for the unit disc.

The proof of the last theorem again indicates that W cannot probably be ex-
pected to act unitarily also on functions a(x; λ, b) which are not independent of b.

Remark. Note that the class of K-invariant functions on Ω, and the corresponding
class of the functions on Ω∗ which are independent of b, play a distinguished role also
in the properties of the Helgason-Fourier transform: for instance, the convolution
f ∗ g of two functions on Ω does not in general satisfy (f ∗ g)∼ = f̃ g̃ (which is
notorious for the ordinary Fourier transform), however this becomes true if g is
K-invariant. This makes the introduction of the two function classes A, B above
quite natural.

7. Concluding remarks

7.1. We have been somewhat nonspecific about what kind of functions we are
dealing with: for instance, the inversion formula for the Helgason-Fourier transform
holds for f smooth with compact support, and extends to f ∈ L2 only by Plancherel.
There are also analogues of the Schwartz space, one on Ω and another one on Ω∗,
such that the Helgason-Fourier transform is an isomorphism of the former onto
the latter; see e.g. [6], Chapter 6. The rigorously minded reader should think of
the functions a, ã, etc., as belonging to the appropriate tensor products of these
Schwartz spaces; in that case the convergence of all the integrals involved etc. can
be verified with ease. Extensions to more general functions, or even distributions,
can be achieved by the standard techniques used for handling oscillatory integrals
(see e.g. [15]).

7.2. One might try introducing Hörmander classes for symbols a, and building an
analogue of the usual calculus for the Weyl operators Ψa — composition formulas,
boundedness in Sobolev spaces, etc. Some steps in this direction have been done
in Tate [16] for the disc.

A related theory of pseudodifferential operators (on the disc, but very likely
extending to any symmetric space of non-compact type), corresponding to the
standard Kohn-Nirenberg, rather than Weyl, pseudodifferential operators in the
Euclidean case, was developed by Zelditch [22]. However, expressing our opera-
tors Ψa as these “Kohn-Nirenberg” pseudodifferential operators (thus reducing the
questions mentioned in the previous paragraph to the theory already developed
by Zelditch) does not seem straightforward, even for the special case of functions
independent of b.

7.3. The function class A is somewhat mysterious: it is totally unclear to the
present authors, for instance, how to characterize the Weyl operators Ψa with
ã ∈ A. In the Euclidean setting, this would correspond to operators whose Schwartz
kernels depend only on x+y

2 and |x−y|; even in this case the answer is not obvious.
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7.4. Though the authors are convinced that there are no analogues of Theorem 7
and Theorem 12 for general symbols a (i.e. possibly depending on b), we are unable
to provide an explicit counterexample.
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