
UNIQUENESS OF SMOOTH RADIAL

BALANCED METRICS ON THE DISC

Miroslav Englǐs

Abstract. We show that the usual Poincaré metric is the only radial balanced
metric on the disc with not too wild boundary behaviour. Additionally, we identify
explicitly all radial metrics with such boundary behaviour which satisfy the balanced
condition as far as germs at the boundary are concerned. Related results for the
annulus and the punctured disc are also established.

1. Introduction

Let Ω be a bounded domain in Cn, n ≥ 1, which we assume for simplicity to be
contractible to a point, and let φ be a strictly plurisubharmonic function on Ω with
the associated Kähler metric

(1) gjk(z) =
∂2φ(z)
∂zj∂zk

, j, k = 1, . . . , n, z ∈ Ω,

and volume element g(z) dz, where g(z) = det[gjk(z)]nj,k=1 and dz denotes the
Lebesgue measure on Cn. In terms of the function u := e−φ, one has

det[gjk] ≡ det[∂∂φ] = det[∂∂ log 1
u ] = u−n−1J [u],

where J [u] is the Monge-Ampére determinant

(2) J [u] := (−1)n det
[

u ∂u
∂u ∂∂u

]
.

Setting, for brevity, w := J [u] = un+1 det[∂∂ log 1
u ] = e−(n+1)φ det[∂∂φ], consider

the weighted Bergman space L2
hol(Ω, w) of all holomorphic functions in L2(Ω, w).

It is well known that L2
hol(Ω, w) has bounded point evaluations and hence possesses

a reproducing kernel Kw(x, y), given in fact by Kw(x, y) =
∑

j ej(x)ej(y) for any
orthonormal basis {ej}j of L2

hol(Ω, w). The metric (1) — or, abusing terminology,
the function u — is called balanced if

(3) Kw(z, z) =
c

u(z)n+1
∀z ∈ Ω

for some constant c. (One can check that this indeed depends only on the metric
(1), not on its potential φ or, equivalently, on u = e−φ.)
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2 M. ENGLIŠ

Example. Let Ω = D, the unit disc in C, and u(z) = 1−|z|2. Then w = J [u] = 1
and the corresponding Bergman kernel is well known to be

K(x, y) =
1

π(1− xy)2
.

Thus (3) holds with c = 1
π . ¤

The notion extends in an obvious way from complex domains also to the more
general setting of polarized Kähler manifolds. Namely, let Ω be a complex manifold
of dimension n and ω a Kähler form on Ω such that the second cohomology class
[ω] is integral. Then there exists a holomorphic Hermitian line bundle L over Ω
with Kähler connection ∇ such that curv∇ = ω. Let L∗ be the dual bundle, and
L2

hol(L∗, ωn) the Bergman space of all square-integrable holomorphic sections of L∗.
For any orthonormal basis {sj}j of this space, set

(4) ε(x) :=
∑

j

‖sj(x)‖2x

(where ‖ · ‖x denotes the fiber norm in L∗x); one can again show that ε(x) does
not depend on the choice of the orthonormal basis {sj}j , and also does not really
depend on the line bundle L but only on the Kähler form ω. The Kähler form ω
(or the associated Kähler metric) is called balanced if

(5) ε ≡ const.

Of course, if Ω is contractible, then the bundle L is trivial, so fixing a trivialization
its sections can be identified with functions on Ω, and under this identification the
fiber norm of a function f at a point x is given by h(x)|f(x)|2 for some positive
smooth function h on Ω satisfying ω = i∂∂ log h. Setting φ := 1

n+1 log h, we recover
the situation from the previous paragraph.

The function ε has appeared in the literature under different names. The earliest
one was probably the η-function of Rawnsley [17] (later renamed to ε-function
in [5]), defined for arbitrary Kähler manifolds; followed by the distortion function of
Kempf [12] and Ji [11] for the special case of Abelian varieties, and of Zhang [19] for
complex projective varieties. The metrics for which ε is constant were called critical
in [19]; the term balanced was first used by Donaldson [7], who also established
the existence of such metrics on any (compact) projective Kähler manifold with
constant scalar curvature. Subsequent studies of the existence and uniqueness of
balanced metrics in the compact case — where the balancedness condition (5) is
actually tantamount to the existence of a “balanced” imbedding of Ω into the
complex projective space CPN , N = dim L2

hol(L∗, ωn) — include Seyyedali [18],
Li [13], and others; see also Phong and Sturm [16] for an overview.

However, much less seems to be known about the existence and uniqueness of
balanced metrics in the noncompact setting of domains in Cn. Apart from the
example above for the disc, and the analogous situation for u(z) = (1 − ‖z‖2)α,
α > n

n+1 , on the unit ball Bn of Cn (with c = Γ(αn+α)
πnαnΓ(αn+α−n) ), the only known

examples of balanced metrics are the (appropriate multiples of the) Bergman met-
rics on bounded symmetric domains in Cn, or, more generally, of invariant metrics
on bounded homogeneous domains. The situation for Cartan-Hartogs domains is
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discussed in Loi and Zedda [15]. We will briefly recall some other examples in §4.3
below. Similarly, the Euclidean metric is balanced on Cn (with φ(z) = ‖z‖2). As for
uniqueness, it was shown in Cuccu and Loi [6] that u = e−φ with φ(z) = ‖z‖2 the
potential for the Euclidean metric on Cn is, up to constant multiples, the only solu-
tion to Ku(z)n+1(z, z) = c/u(z)n+1 among the φ of the form φ(z) =

∑n
j=1 φj(|zj |2),

with some functions φj . In Greco and Loi [10], it was shown that u(z) = 1− |z|2 is
the only solution to Ku(z)3/(1−|z|2)2(z, z) = c/u(z)3 of the form u(z) = f(|z|2) with
f real analytic on the interval (−ε, 2 + ε) with some ε > 0 and satisfying f(1) = 0,
f ′(1) = −1. Some remarks on Donaldson’s original approach in the noncompact
case appear in the final section of Arezzo and Loi [1]. In the negative direction,
it was shown by Bommier, Youssfi and the present author [4] that on the Kepler
manifold Kn := {z ∈ Cn+1 \ {0} :

∑n+1
j=1 z2

j = 0}, balanced metric either does
not exist, or exists but is not unique. The reason is, roughly speaking, that the
isotropy subgroup of the group of all holomorphic automorphisms of Kn has a non-
compact orbit on the tangent space; note that, however, this can never happen for
a bounded domain Ω ⊂ Cn in the place of Kn, since the isotropy subgroup of a
bounded domain is always compact.

It is a conjecture of the author’s [9] that for Ω ⊂ Cn bounded strictly pseudo-
convex with smooth boundary and any α > n

n+1 , there exists a unique balanced
metric on Ω with u(n+1)/α vanishing precisely to the first order at the boundary ∂Ω,
i.e. u(z) ³ dist(z, ∂Ω)α/(n+1). In this paper, we consider this problem for α = n+1
and u radial on the unit disc, i.e. u(z) = f(|z|2) for some f ∈ C∞[0, 1). Our strat-
egy will be to look at the boundary behaviour of both sides of (3). More specifically,
let us call a metric — or, abusing terminology, the function u — on a domain Ω
almost-balanced if there exists a constant c 6= 0 such that

(6) u(z)n+1KJ[u](z, z)− c ∈ C∞(Ω) ∩ C1
0 (Ω),

the space of all functions smooth on the closure Ω of Ω that vanish at ∂Ω together
with their first derivatives (i.e. to second order). Our main results are the following.

Theorem 1. Radial functions u(z) = f(|z|2) on the disc D, with f ∈ C∞(0, 1]
satisfying f(1) = 0, f ′(1) = −1, that give rise to almost balanced metrics on D are
precisely those of the form

(7) f(t) = ta
t−
√

v − t
√

v

2
√

v
+ h(t),

with a, v ∈ R and h ∈ C∞(0, 1] satisfying h(k)(1) = 0 ∀k. Also, the constant c in
(6) necessarily equals 1

π .

Here for v = 0, (7) is to be interpreted as the limit v → 0, i.e. f(t) = −ta log t +
h(t). Note also that the right-hand side of (7) remains unchanged upon replacing√

v by −√v, so there is no ambiguity connected with the choice of the square root.

Corollary 2. If u(z) = f(|z|2) on the disc with f(1) = 0, f ′(1) = −1 and f
real-analytic near 1, then u is balanced if and only if f(t) = 1− t.

Finally, the hypothesis of the smoothness of u at the boundary in Theorem 1
can be weakened considerably: writing temporarily for brevity r(z) := dist(z, ∂Ω),
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assume that u ∈ C∞(Ω) has an asymptotic expansion at ∂Ω of the form

(8) u(z) ≈ r(z)
∞∑

k=0

Mk∑

j=0

akj(z)r(z)k(log r(z))j ,

with some nonnegative integers Mk and functions akj ∈ C∞(Ω), where

(9) M0 = 0 and a00 = 1 on ∂Ω.

Here (8) means that u differs from the partial sum
∑N−1

k=0 of the right-hand side by
a function in CN (Ω) all of whose partial derivatives up to order N vanish at ∂Ω,
for all N = 0, 1, 2, . . . . Note that u ∈ C∞(Ω) is equivalent to Mk = 0 ∀k.

Theorem 3. Assume that u(z) = f(|z|2) is a smooth radial function on the disc,
with asymptotic expansion (8) satisfying (9), that gives rise to an almost-balanced
metric. Then f ∈ C∞(0, 1] (and, hence, Theorem 1 applies).

The proofs of Theorem 1 and Corollary 2 are given in Section 2, and the proof
of Theorem 3 in Section 3. The final section, Section 4, collects some concluding
comments and remarks; among others, it is also shown there that there exist no
complete radial balanced metrics on the disc or on the annulus that are real-analytic
up to the exterior boundary.

2. The smooth case

Let quite generally w(z) = w(|z|) be a radial weight on the unit disc D. It is
then standard (and easily shown by using polar coordinates) that the monomials
form an orthogonal basis in L2

hol(D, w), with norm squares

‖zk‖2 =
∫

D

|z|2kw(z) dz = π

∫ 1

0

tkw(
√

t) dt =: πck.

Furthermore, the reproducing kernel is given by

(10) Kw(x, y) = 1
π F (xy), F (t) :=

∞∑

k=0

tk

ck

(with tk/ck interpreted as 0 if ck = +∞).

Proof of Theorem 1. Assume that u(z) = f(|z|2), with f ∈ C∞(0, 1] satisfying
f(1) = 0, f ′(1) = −1, gives rise to an almost-balanced metric. It will be convenient
to switch to the variable

L := − log |z|2.
One then has, in the sense of (8),

(11) u(z)2 ≈ L2
∞∑

k=0

fkLk
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where fk = 1
k!

dk

dLk

u(e−L)2

L2 |L=0 are some real numbers; in particular, f0 = 1 (from
f ′(1) = −1). Taking logarithm gives

log u ≈ log L +
∞∑

m=1

f ′m
2

Lm,

where

f ′m =
m∑

k=1

(−1)k+1

k

∑

j1,...,jk≥1
j1+···+jk=m

fj1 . . . fjk

= fm + (a polynomial in f1, . . . , fm−1).(12)

Now (8) can be differentiated termwise any number of times; using the formulas

(13)
∂2 log L

∂z∂z
= − eL

L2
,

∂2Lm

∂z∂z
= m(m− 1)Lm−2eL,

it therefore follows that

∂2

∂z∂z
log

1
u(z)

≈ eL

L2

[
1−

∞∑
m=1

m(m− 1)f ′m
2

Lm
]
,

and, using again (11),

w ≡ u2∂∂ log 1
u = eL

[
1−

∞∑
m=1

m(m− 1)f ′m
2

Lm
][

1 +
∞∑

j=1

fjL
j
]

= eL
∞∑

n=0

f ′′nLn,(14)

where, by (12),

f ′′n = fn +
n∑

m=1

m(1−m)f ′m
2

fn−m

= (1 + n(1−n)
2 )fn + (a polynomial in f1, . . . , fn−1).

Now by elementary computation

∫ 1

0

tk−1(log 1
t )

n dt =
∫ ∞

0

Lne−kL dL =
n!

kn+1
.

From (14) we thus get the asymptotic expansion for the moments ck

ck =
∫ 1

0

w(
√

t)tk dt ≈
∞∑

n=0

n!f ′′n
kn+1



6 M. ENGLIŠ

as k → +∞, where “≈” now means that the difference between ck and the partial
sum

∑N−1
n=0 of the right-hand side is O(k−N−1) as k → +∞, for each N = 0, 1, 2, . . . .

Taking reciprocals yields

(15)
1
ck
≈ 1

/1
k

[
1 +

∞∑
n=1

n!f ′′n
kn

]
= k

[
1 +

∞∑

j=1

f ′′′j

kj

]
,

with

f ′′′j =
j∑

l=1

(−1)l
∑

n1,...,nl≥1
n1+···+nl=j

l∏

i=1

(ni!f ′′ni
)

= j!( j(j−1)
2 − 1)fj + (a polynomial in f1, . . . , fj−1).(16)

In particular, by a short computation,

(17) f ′′′1 = −f1, f ′′′2 = 0.

Now, quite generally, whenever a holomorphic function f(t) =
∑∞

k=0 aktk on the
disc has Taylor coefficients satisfying ak = O(k−N−2) as k → +∞ (N = 0, 1, 2, . . . ),
then by a straightforward estimate f ∈ CN (D). Recalling the definition of Lerch’s
transcendental function [2, §1.11]

Φ(z, s, v) :=
∞∑

k=0

zk

(k + v)s
, s ∈ C, v 6= 0,−1,−2, . . . ,

we have
∑∞

k=1
tk

kj = tΦ(t, j, 1), so for the function F in (10) we thus get from (15)

F (t) =
t

(1− t)2
+

tf ′′′1

1− t
+

N+2∑

j=2

f ′′′j tΦ(t, j − 1, 1) + (a function in CN (D)),

for any N = 0, 1, 2, . . . . By Lerch’s formula [2, 1.11(9)], for an integer j ≥ 2,

(18) tΦ(t, j−1, 1) =
(−1)j−1

(j − 2)!
Lj−2 log L+

∞∑

k=0

′ (−1)k

k!
ζ(j−1−k)Lk, L := log

1
t
,

where the sum on the right-hand side converges for |L| < 2π, and the
∑′ means that

in the term k = j− 2, ζ(1) should be replaced by
∑j−2

n=1
1
n .1 Altogether, employing

also the fact that t
(1−t)2 − 1

L2 and t
1−t − 1

L are holomorphic on C, we thus obtain

(19) F (t) ≈ 1
L2

+
f ′′′1

L
+

∞∑

j=2

(
aj +

f ′′′j (−1)j−1

(j − 2)!
log L

)
Lj−2, L := log

1
t
,

1This formula is stated in [2, 1.11(9)] for j ≥ 3; however, in this form it holds also for j = 2,

when tΦ(t, 1, 1) = log 1
1−t

.
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in the sense of (8), with some coefficients aj , j = 2, 3, . . . . Now, on the other
hand, the almost-balanced condition u2Kw − c ∈ C∞(D) ∩ C1

0 (D) means that
f2F = πc[1 +

∑∞
j=2 bjL

j ]; that is, by (11) again,

F (t) ≈ πc

f2

[
1 +

∞∑

j=2

bjL
j
]

≈ πc

L2

[
1 +

∞∑

j=2

bjL
j
]/[

1 +
∞∑

k=1

fkLk
]

=
πc

L2

[
1 +

∞∑

k=1

f̃kLk
]
,(20)

with some coefficients f̃k, where f̃1 = −f1. Comparing this with (19), we see that
necessarily (c = 1

π and)

(21) f ′′′1 = −f1, f ′′′j = 0 ∀j ≥ 2.

By (17), the conditions on f ′′′1 and f ′′′2 are always fulfilled, while by (16), for j ≥
3 the equation f ′′′j = 0 is always uniquely solvable for fj (if f0, f1, . . . , fj−1 are
already given) since j(j−1)

2 − 1 6= 0. Altogether, we thus see that for any chosen
f1, f2 ∈ R (and f0 = 1), there exist unique fj , j ≥ 3, such that (21) holds. In other
words, there exist at most2 two-parameter family of germs of f at t = 1 for which
u(z) = f(|z|2) can give rise to an almost-balanced metric.

Since (7) is a two-parameter family of germs of f at t = 1, it is thus enough to
show that any f as in (7) gives rise to an almost-balanced metric; this will complete
the proof of the theorem.

As we have seen above, the term h(t) gives a contribution of order O(k−∞) to ck

and of order C∞(D) to u and K, hence is negligible as far as the almost-balanced
condition is concerned; so we can take h ≡ 0. By direct computation, one then gets
(t = |z|2)

∂∂ log 1
u =

4v

t(t
√

v − t−
√

v)2
,(22)

w(z) = t2a−1,

ck =
∫ 1

0

tkw(
√

t) dt =
1

k + 2a
(k + 2a > 0),

and

F (t) =
∑

k≥0, k+2a>0

(k + 2a)tk(23)

=
t

(1− t)2
+

2a

1− t
+

∑

0≤k≤−2a

(k + 2a)tk

=
1

(1− t)2
[
1 + (2a− 1)(1− t) + (1− t)2p(t)

]

2In fact, “at most” can be dropped here, since from (20) and (19) it follows that, conversely,
once (21) if fulfilled, one has F ≈ πc

f2 [1 +
P∞

j=2 bjLj ] with some bj and thus f indeed gives rise

to an almost-balanced metric.
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with some polynomial p(t). On the other hand, by the familiar formula

t−b = (1− (1− t))−b =
∞∑

k=0

(b)k

k!
(1− t)k, b ∈ C, |1− t| < 1

(where (b)k = b(b + 1) . . . (b + k − 1) is the usual Pochhammer symbol), we get

f(t) =
ta−

√
v − ta+

√
v

2
√

v

=
∞∑

k=0

(−a +
√

v)k − (−a−√v)k

k!2
√

v
(1− t)k

= (1− t) + ( 1
2 − a)(1− t)2 +

∞∑

k=3

qk(1− t)k

with some qk. Hence finally

πKw(z, z)u(z)2 = f(t)2F (t)

=
[
1 + ( 1

2 − a)(1− t) +
∞∑

k=2

qk+1(1− t)k
]2[

1 + (2a− 1)(1− t) + (1− t)2p(t)
]

= 1 + (1− t)2q(t)

with some function q holomorphic on the disc |t− 1| < 1. Consequently, u2Kw − 1
π

is smooth up to ∂D (in fact, even extends to a holomorphic function on |z|2 < 2)
and vanishes to second order at |z| = 1. This means that the almost-balanced
condition (6) is satisfied, with c = 1

π , completing the proof. ¤
Note that for f as in (7) we get from (11)

f1 = −2a, f2 = 2a2 +
v

3
,

or a = − f1
2 , v = 3f2− 3

2f2
1 ; thus when (f1, f2) runs through all of R2, so does (a, v).

Proof of Corollary 2. If f is real-analytic near 1, then it follows from (7) that so is h,
hence h ≡ 0 by Theorem 1. As we already saw in (22), the metric is then given by

g(z) =
4v

t(t
√

v − t−
√

v)2
, t = |z|2.

If v < 0, say v = −s2 with s > 0, this becomes

g(z) =
s2eL

sin2(sL)
, L = log

1
|z|2 ,

which has singularities at |z|2 = e−kπ/s, k = 0, 1, 2, . . . . Similarly, for v → 0, the
metric becomes g(z) = 1/t(log t)2, which has a singularity at the origin t = 0. Thus
to have g smooth on the disc, necessarily v > 0, say v = s2 with s > 0. Then the
function u(z) = f(|z|2) = |z|2a−2s−|z|2a+2a

2s , being of the form u = e−φ with φ a
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(smooth) potential for the Kähler metric, has to be smooth at z = 0; hence both
a− s and a + s > a− s must be nonnegative integers, thus 2a = (a + s) + (a− s) is
an integer ≥ 1. On the other hand, the balanced condition (with c = 1

π ) then says
that the function F from (10) satisfies

(24) F (t) =
1

f(t)2
=

4s2t2s−2a

(1− t2s)2
= 4s2

∞∑

k=0

(k + 1)t2sk+2s−2a.

But we have seen that F is given by (23); it follows that necessarily s = 1
2 (since

the exponents of t increase by 1 in (23)). Comparing (24) and (23) then gives∑∞
k=0(k + 1)tk+1−2a =

∑
k≥0, k+2a>0(k + 2a)tk, or

(25)
∞∑

k=0

(k + 1)tk+1 =
∑

k≥0, k+2a>0

(k + 2a)tk+2a.

Since 2a > 0, looking at the lowest order terms shows that 1t1 = 2at2a, or a = 1
2 .

Hence f(t) = 1− t and u(z) = 1− |z|2, proving the corollary. ¤

3. The general case

We will need the following refinement of Lerch’s formula (18).

Lemma 4. The series

(26)
∞∑

k=1

tk

ks

(
log

1
k

)n

=
( d

ds

)n

tΦ(t, s, 1), n = 0, 1, 2, . . . ,

equals

n∑

j=0

(
n

j

)
(−1)n−jΓ(n−j)(1− s)Ls−1(log L)j +

∞∑

k=0

ζ(n)(s− k)
(−1)k

k!
Lk,

(27)

|L| < 2π, s 6= 1, 2, 3, . . . , L := log
1
t
.

For s = 1, 2, 3, . . . , the first sum on the right-hand side of the last formula has to
be replaced by

(28)
n∑

j=0

(
n

j

)
cs,n−jL

s−1(log L)j +
(−1)s−1

(s− 1)!

[
γn − (log L)n+1

n + 1

]
Ls−1,

while the term k = s− 1 in the second sum on the right-hand side of (27) has to be
omitted. Here cs,j and γj are certain constants (given explicitly below).

Proof. For s 6= 1, 2, 3, . . . , we have by [2, 1.11(8)]

tΦ(t, s, 1) = Γ(1− s)Ls−1 +
∞∑

k=0

ζ(s− k)
(−1)k

k!
Lk,(29)

|L| < 2π, L := log
1
t
.

Applying (d/ds)n to both sides, the Leibniz rule gives (27).
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To get the formula for s = m, where m = 1, 2, 3, . . . , we first take s = m + ε
in (29), then apply (d/ds)n, and finally let ε → 0. Clearly there is no problem with
the terms k 6= m− 1 in (29); thus we only need to evaluate the limit

(30) lim
ε→0

( d

ds

)n[
Γ(1−m− ε)Lm−1+ε + ζ(ε + 1)

(−1)m−1

(m− 1)!
Lm−1

]
.

Recall that

(31) ζ(ε + 1) =
1
ε

+
∞∑

j=0

γj

j!
εj , ε ∈ C,

where γj are certain coefficients (the Stieltjes constants). Similarly, Γ(s) has a
simple pole at s = 1−m with residue (−1)m−1/(m− 1)!, so

(32) Γ(1−m− ε) =
(−1)m

(m− 1)!ε
+

∞∑

j=0

cm,j

j!
εj , |ε| < 1,

with some coefficients cm,j . After pulling out the factor Lm−1 from both terms
in (30), we thus get

Γ(1−m− ε)Lε + ζ(ε + 1)
(−1)m−1

(m− 1)!

=
( (−1)m

(m− 1)!
Lε − 1

ε
+

(−1)m

(m− 1)!ε
+

∞∑

j=0

cm,j

j!
εjLε

)
+

(−1)m−1

(m− 1)!

(1
ε

+
∞∑

j=0

γj

j!
εj

)

=
(−1)m

(m− 1)!

∞∑

j=0

(log L)j+1

(j + 1)!
εj +

∞∑

j=0

cm,j

j!
εjLε +

(−1)m−1

(m− 1)!

∞∑

j=0

γj

j!
εj .

By the Leibniz rule,

( d

dε

)n[ (−1)m

(m− 1)!

∞∑

j=0

(log L)j+1

(j + 1)!
εj +

∞∑

j=0

cm,j

j!
εjLε +

(−1)m−1

(m− 1)!

∞∑

j=0

γj

j!
εj

]

=
∞∑

j=0

(−1)m−1

(m− 1)!

[
γj+n − (log L)j+n+1

j + n + 1

]εj

j!
+

∞∑

j=0

n∑
q=0

(
n

q

)
cm,j+n−q

εj

j!
Lε(log L)q.

Letting ε → 0 and inserting back the factor Lm−1, (28) follows (with q,m in the
place of j, s). ¤

For later use, we also note that the simple formula
∫ ∞

0

Lse−kL dL =
Γ(s + 1)

ks+1
, Re s > −1, k = 1, 2, 3, . . . ,

yields upon applying (d/ds)n to both sides (n = 0, 1, 2, . . . )

(33)
∫ ∞

0

Ls(log L)ne−kL dL =
n∑

l=0

(
n

l

)
Γ(n−l)(s + 1)

ks+1

(
log

1
k

)l

,

again by the Leibniz rule.



BALANCED METRICS 11

Proof of Theorem 3. Assume that u(z) = f(|z|2) is a smooth radial function on the
disc, with the asymptotic expansion (8) satisfying (9), that gives rise to an almost
balanced metric. Passing again from the variable t = |z|2 to L = log 1

t , (8) and (9)
become

(34) f(t) ≈ L

∞∑

k=0

Mk∑

j=0

akjL
k(log L)j , M0 = 0, a00 = 1.

We will show that Mk = 0 for all k, so that f ∈ C∞(0, 1] as claimed.
Assume, to the contrary, that there is N ≥ 1 such that M0 = M1 = · · · =

MN−1 = 0 but MN ≥ 1 with aNMN 6= 0. By (34) and the definition of (8), we have

(35) u ≈ L
[
1 + pN (L) +

M∑

j=1

ajL
N (log L)j + O(LN+δ)

]
,

with any 0 < δ < 1; here we started writing just M and aj for MN and aNj ,
respectively, and pN stands for some polynomial (not necessarily the same one at
each occurrence) of degree N without constant term. Furthermore, (35) can be
differentiated termwise any number of times. Taking logarithm we get

log
1
u
≈ log

1
L

+ pN (L)−
M∑

j=1

ajL
N (log L)j + O(LN+δ).

Using again the formulas (13) and also

(36)
∂2

∂z∂z
Lm(log L)j = Lm−2eL[j(j − 1)(log L)j−2 + j(2m− 1)(log L)j−1

+ m(m− 1)(log L)j ],

this implies

∂∂ log
1
u
≈ eL

L2

[
1 + pN (L)−

M∑

j=1

ajL
N

(
j(j − 1)(log L)j−2 + j(2N − 1)(log L)j−1

+ N(N − 1)(log L)j
)

+ O(LN+δ)
]
,

and, combining with (35),

w ≡ u2∂∂ log
1
u
≈ eL

[
1 + pN (L)−

M∑

j=1

ajL
N

(
j(j − 1)(log L)j−2

+ j(2N − 1)(log L)j−1 + N(N − 1)(log L)j
)

+ O(LN+δ)
]

·
[
1 + pN (L) + 2

M∑

j=1

ajL
N (log L)j + O(LN+δ)

]

= eL
[
1 + pN (L) + LN

M∑

j=1

aj

(
(2−N2 + N)(log L)j − j(2N − 1)(log L)j−1
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− j(j − 1)(log L)j−2
)

+ O(LN+δ)
]

= eL
[
1 + pN (L) +

M∑

j=1

AjL
N (log L)j + O(LN+δ)

]
,

Aj :=
(
(2−N2 + N)aj − (j + 1)(2N − 1)aj+1 − (j + 2)(j + 1)aj+2

)
,

where we set aM+1 = aM+2 := 0. For the moments ck we thus obtain, in view
of (33),

ck =
∫ 1

0

tkw(
√

t) dt =
∫ ∞

0

e−(k+1)Lw dL

≈ 1
k

+
1
k

pN (
1
k

) +
M∑

j=1

Aj

j∑

l=0

(
j

l

)
Γ(j−l)(N + 1)

kN+1

(
log

1
k

)l

+ O
( 1

kN+1+δ

)
.

Taking reciprocal yields

1
ck
≈ k

[
1 + pN (

1
k

)−
M∑

j=1

Aj

j∑

l=0

(
j

l

)
Γ(j−l)(N + 1)

kN

(
log

1
k

)l

+ O
( 1

kN+δ

)]
.

It transpires that

(37)

F (t) =
∞∑

k=0

tk

ck
=

t

(1− t)2
+

β1t

1− t
+

N∑
r=2

βrtΦ(t, r − 1, 1)

−
M∑

j=1

Aj

j∑

l=0

(
j

l

)
Γ(j−l)(N + 1)

( d

ds

)l

tΦ(t, s, 1)
∣∣∣
s=N−1

+ R(t),

with some coefficients βr, where the remainder term R(t) is O((1− t)δ−1) if N = 1,
and belongs to CN−2(0, 1] if N ≥ 2.

If N = 1, then the first sum on right-hand side of (37) is absent, while the second
sum equals, by (27),

(38)
M∑

j=1

Aj

j∑

l=0

(
j

l

)
Γ(j−l)(2)

l∑
r=1

(
l

r

)
(−1)l−rΓ(l−r)(1)

(log L)r

L
+ h(L)

with some function h(L) holomorphic on the disc |L| < 2π. Now

∑

r≤l≤j

(
j

l

)
Γ(j−l)(2)

(
l

r

)
(−1)l−rΓ(l−r)(1)

=
(

j

r

)( d

ds

)j−r

Γ(2 + s)Γ(1− s)
∣∣∣
s=0

=
(

j

r

)( d

ds

)j−r πs(s + 1)
sin πs

∣∣∣
s=0

=:
j!
r!

Cj−r,(39)
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so (38) equals

M∑

j=1

j∑
r=1

Aj
r!
j!

Cj−r
(log L)r

L
+ h(L) =:

M∑
r=1

Ãr
(log L)r

L
+ h(L),

and, finally,

F (t) =
1
L2

+
β1

L
−

M∑
r=1

Ãr
(log L)r

L
+ h(L) + O(Lδ−1)

=
1
L2

[
1 + pN (L)−

M∑
r=1

ÃrL(log L)r + O(L1+δ)
]
.(40)

On the other hand, from the almost-balanced condition we have, as in the preceding
section,

F ≈ πc

u2

[
1 +

∞∑

j=2

bjL
j
]
,

whence by (35)

F ≈ πc

L2

[
1 +

∞∑

j=2

bjL
j
][

1 + pN (L)− 2
M∑

j=1

ajL(log L)j + O(L1+δ)
]

=
πc

L2

[
1 + pN (L)− 2

M∑

j=1

ajL(log L)j + O(L1+δ)
]
.

Comparing this with (40), we thus see that we must have (c = 1
π and) Ãj = 2aj

for all j = 1, . . . , M . For j = M − 1, the latter reads, since C0 = C1 = 1,

2aM−1 = ÃM−1 = AMMC1 + AM−1C0

= (2aM )M + (2aM−1 −MaM ),

or MaM = 0, contradicting the hypothesis that M ≥ 1 and aM 6= 0. Thus N = 1
cannot occur.

For N ≥ 2, by (18) the first sum on the right-hand side of (37) equals p(L) log L+
h(L), with some polynomial p of degree N − 2 and some function h holomorphic in
the disc |L| < 2π. The second sum on the right-hand side of (37) equals, by (27)
and (28),

M∑

j=1

Aj

j∑

l=0

(
j

l

)
Γ(j−l)(N + 1)

[ l∑
r=1

(
l

r

)
cN−1,l−r(log L)r − (−1)N−2

(N − 2)!
(log L)l+1

l + 1

]
LN−2 + h(L)

=:
M+1∑
r=1

ÃrL
N−2(log L)r + h(L),
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with some h(L) as above. Consequently,

F (t) =
1
L2

+
β1

L
+ p(L) log L−

M+1∑
r=1

ÃrL
N−2(log L)r + h(L) + RN−2

=
1
L2

[
1 + pN (L) + L2p(L) log L−

M+1∑
r=1

ÃrL
N (log L)r + RN

]
,

where Rk denotes a remainder term in Ck[0,+∞). On the other hand, from the
almost-balanced condition we get as above

F ≈ πc

L2

[
1 +

∞∑

j=2

bjL
j
][

1 + pN (L)− 2
M∑

j=1

ajL
N (log L)j + RN

]

=
πc

L2

[
1 + pN (L)− 2

M∑

j=1

ajL
N (log L)j + RN

]
.

Comparing the two formulas, we see that we must have (c = 1
π and) Ãj = 2aj for

all j = 2, . . . ,M + 1. For j = M + 1, this yields ÃM+1 = 0, i.e. AM = 0, that is,

(2−N2 + N)aM = 0.

Since aM 6= 0 by hypothesis, necessarily 0 = (2 − N2 + N) = (N + 1)(2 − N),
so N = 2. If M ≥ 2, then for j = M we get

2aM = ÃM = −N !
M

(−1)N−2

(N − 2)!
AM−1 −AMΓ′(N + 1)

(−1)N−2

(N − 2)!
+ AMN !cN−1,0

= − 2
M

AM−1 since AM = 0 and N = 2

= − 2
M

(0aM−1 − 3MaM ) = 6aM ,

or aM = 0, again a contradiction. Thus we must have M = 1.
We conclude by doing the computations for the remaining case N = 2, M = 1

with a bit more care for the terms pN (L). Namely, (35) becomes (changing the
notation a little)

u ≈ L[1 + a1L + a2L
2 + bL2 log L + O(L2+δ)],

with b 6= 0. Hence, in turn, by tedious but routine manipulations,

log
1
u
≈ log

1
L
− a1L + ( 1

2a2
1 − a2)L2 − bL2 log L + O(L2+δ),

∂∂ log
1
u
≈ eL

L2

[
1 + (a2

1 − 2a2 − 3b)L2 − 2bL2 log L + O(L2+δ)
]
,

w ≈ eL
[
1 + 2a1L + (2a2

1 − 3b)L2 + O(L2+δ)
]
,

ck ≈ 1
k

[
1 +

2a1

k
+

4a2
1 − 6b

k2
+ O

( 1
k2+δ

)]
,

1
ck
≈ k

[
1− 2a1

k
+

6b

k2
+ O

( 1
k2+δ

)]
,
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and

F (t) ≈ t

(1− t)2
− 2a1t

1− t
+ 6b log

1
1− t

+ R0

=
1
L2

[
1− 2a1L + (a1 − 1

12 )L2 − 6bL2 log L + R2

]
,

while, on the other hand,

πc

u2
≈ πc

L2

[
1− 2a1L + (3a2

1 − 2a2)L2 − 2bL2 log L + R2

]
.

Consequently, (c = 1
π and) 6b = 2b, or b = 0, a contradiction again. This completes

the proof. ¤

4. Concluding remarks

4.1 Punctured disc. Quite generally, for a radial weight w(z) = w(|z|) on the
punctured disc D∗ := D \ {0}, the Laurent monomials {zk}k∈Z again form an
orthogonal basis in L2

hol(D
∗, w), with norm squares

‖zk‖2 = π

∫ 1

0

tkw(
√

t) dt =: πck, k ∈ Z,

and the reproducing kernel is given by

K(x, y) =
1
π

F (xy), F (t) :=
∞∑

k=−∞

tk

ck
, 0 < |t| < 1,

with tk/ck interpreted as zero if ck = +∞. By general properties of Laurent series,
the principal part

∑−1
k=−∞ of F (t) converges on all of C\{0}, in particular is smooth

at t = 1; thus the boundary behaviour as t ↗ 1 of F (t) is completely determined by
the regular part

∑∞
k=0 of F , whose analysis we carried out in the last two sections.

We thus immediately obtain the following extensions of Theorems 1 and 3 from the
disc to the case of D∗.

Theorem 5. Let u(z) = f(|z|2) be a radial function on D∗, with f ∈ C∞(0, 1]
satisfying f(1) = 0, f ′(1) = −1, that gives rise to a metric almost-balanced at
|z| = 1, i.e. there exists a constant c 6= 0 such that u(z)2KJ[u](z, z) − c is smooth
up to |z| = 1 and vanishes to (at least) second order there. Then f is again of the
form (7) (and c = 1

π ).

Theorem 6. Assume u(z) = f(|z|2) is a smooth radial function on D∗, with
asymptotic expansion (8) satisfying (9) as |z| ↗ 1, that gives rise to a metric almost-
balanced at |z| = 1 as in the preceding theorem. Then f ∈ C∞(0, 1] (and, hence,
the conclusion of the preceding theorem applies).

We also have an analogue of Corollary 2.
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Corollary 7. There exists no complete radial balanced metric on D∗ with u real-
analytic at |z| = 1.

Proof. If u is real-analytic near |z| = 1, then as before h ≡ 0 in (7), hence, as we saw
in (22), the metric is given by

g(z) =
4v

t(t
√

v − t−
√

v)2
, t = |z|2;

also w(z) = t2a−1 and

ck =
∫ 1

0

tkw dt =
1

k + 2a
for k + 2a > 0.

Write −2a = m + δ, with m ∈ Z and 0 ≤ δ < 1. Then k + 2a > 0 is equivalent to
k ≥ m + 1, and

(41) F (t) =
∑

k+2a>0

tk

ck
=

∞∑

k=m+1

(k −m− δ)tk = tm+1
( 1

(1− t)2
− δ

1− t

)
.

By the balanced condition, this should be equal to πc/f2, where by (7)

(42)
1

f(t)2
=

4vtm+δ

(t
√

v − t−
√

v)2
.

If v < 0, say v = −s2 with s > 0, we have seen that this has poles at t = e−kπ/s,
k = 0, 1, 2, . . . , whereas (41) is holomorphic on all of D∗. For v → 0, (42) becomes

1
f(t)2 = tm+δ

(log t)2 , so F = πc
f2 means that πctδ−1

(log t)2 = 1
(1−t)2 − δ

1−t is holomorphic at
t = 0, which is clearly impossible. Finally for v > 0, say v = s2 with s > 0, (42) has
power series expansion

1
f2

=
4vtm+δ+2s

(1− t2s)2
= 4s2

∞∑

k=0

(k + 1)t2sk+m+δ+2s.

Comparing this with F =
∑∞

l=0(l + 1 − δ)tm+l+1 (by (41)), we see that F = πc
f2

is equivalent to, after pulling out a factor of tm+δ+1 from both sides,
∞∑

l=0

(l + 1− δ)tl−δ = 4s2πc

∞∑

k=0

(k + 1)t2sk+2s−1.

Since the powers of t increase by 1 on the left-hand side, necessarily s = 1
2 ; and

since the powers of t are then integers on the right-hand side, necessarily δ = 0;
and, finally, looking e.g. at the lowest order terms, c = 1

π . So we conclude that the
only radial balanced metrics on D∗ with f real-analytic at t = 1 arise from

f(t) = t−
m+1

2 (1− t), m ∈ Z,

and are given by

g(z) =
1

(1− t)2
, t = |z|2.

However, the last is just the ordinary Poincare metric on the disc, which is not com-
plete on D∗ (the origin is at finite distance from any point of D∗). This completes
the proof. ¤

The last corollary means that either there exists no complete radial balanced
metric on D∗, or if it exists, then its boundary behaviour at |z| = 1 must be more
complicated than in (8).
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4.2 The annulus. All that has been said in §4.1 applies mutatis mutandis also to
the case of the annulus

A ≡ AΛ := {z ∈ C : e−Λ < |z| < 1}, Λ > 0.

We thus obtain the following.

Theorem 8. Let u(z) = f(|z|2) be a radial function on A, with f ∈ C∞(e−2Λ, 1]
satisfying f(1) = 0, f ′(1) = −1, that gives rise to a metric almost-balanced at
|z| = 1, i.e. there exists a constant c 6= 0 such that u(z)2KJ[u](z, z) − c is smooth
up to |z| = 1 and vanishes to (at least) second order there. Then f is again of the
form (7) (and c = 1

π ).

Proof. The only difference is that the moments ck are now given by integrals over
(e−2Λ, 1) instead of (0, 1). However, it is well known that the behaviour of such
integrals as k → +∞ depends only on the behaviour of the weight function w at
t = 1: namely, for any 0 < δ1 < δ2 < 1,

∫ 1−δ1

1−δ2

tkw dt ≤ (δ2 − δ1) (1− δ1)k sup
[1−δ2,1−δ1]

w

is exponentially small as k → +∞, hence negligible compared to the negative powers
of k which were used in the proofs in Sections 2 and 3. Hence all our conclusions
from there remain in force, with the same proofs. ¤
Theorem 9. Assume u(z) = f(|z|2) is a smooth radial function on A, with as-
ymptotic expansion (8) satisfying (9) as |z| ↗ 1, that gives rise to a metric almost-
balanced at |z| = 1 as in the preceding theorem. Then f ∈ C∞(e−2Λ, 1] (and, hence,
the conclusion of the preceding theorem applies).

Again, we also have an analogue of Corollaries 2 and 7.

Corollary 10. There exists no complete radial balanced metric on A with u real-
analytic at |z| = 1.

Proof. As before, the real analyticity implies that

f(t) = ta
t−
√

v − t
√

v

2
√

v
, e−2Λ < t < 1,

and the metric is given by

g(z) =
4v

t(t
√

v − t−
√

v)2
, t = |z|2 ∈ (e−2Λ, 1).

If v ≥ 0 then, as we have already seen, g(z) actually extends smoothly to all
t ∈ (0, 1), hence is not complete at the interior boundary t = e−2Λ (the points on
the interior boundary circle of A have finite distance from any point of the annulus).
Thus v < 0, say v = −s2 with s > 0, and then the last formula becomes

g(z) =
s2eL

sin2(sL)
, L := log

1
|z|2 ∈ (0, 2Λ).



18 M. ENGLIŠ

In order for g to be (smooth and) complete on A, this expression has to (be smooth
on (0, 2Λ) and) blow up at L = 2Λ; thus necessarily 2Λs = π, or s = π/2Λ.
Furthermore,

1
f2

=
s2

t2a

( 2i

t−is − tis

)2

=
s2e−2aL

sin2(sL)
, L = log 1

t .

On the other hand, by the balanced condition πc
f2 = F , where F (t) =

∑
k∈Z

tk

ck
is

holomorphic on A2Λ; in terms of the variable L = log 1
t , this means that F (e−L) is

holomorphic in the strip 0 < ReL < 2Λ and has period 2πi. Hence

e−2aL

sin2(sL)
=

1
s2f2

=
1

πcs2
F (e−L)

should be holomorphic in the strip 0 < Re L < 2Λ, and have period 2πi. Now taking
L = Λ ± πi, the periodicity condition implies e−2πia = e2πia, or 2a =: m is an
integer. Thus

sin−2(sL) =
emL

πcs2
F (e−L)

should also have period 2πi; that is, sin2 should have period 2πi/s = 4Λi, Λ > 0,
which is absurd. The proof is complete. ¤

Using the flip z 7→ e−Λ/z, one can get also the analogous assertions concerning
the behaviour as |z| ↘ e−Λ (instead of |z| ↗ 1). We omit the details.

The last corollary again means that either there exists no complete radial bal-
anced metric on A, or if it exists, then its boundary behaviour at |z| = 1 must be
more complicated than in (8).

4.3 Examples of balanced metrics. Apart from the prime example of balanced
metric, namely g(z) = (1−|z|2)−2 on the disc, corresponding to u(z) = 1−|z|2 (with
the “balanced constant” c = 1

π ), we have already mentioned in the Introduction that
other examples are u(z) = (1− |z|2)α, α > 1

2 , on D, as well as u(z) = (1− ‖z‖2)α,
α > n

n+1 , on the unit ball Bn of Cn. For an irreducible bounded symmetric domain
Ω in Cn, one gets balanced metrics by taking u(z) = h(z, z)α, with h(x, y) the
Jordan triple determinant of Ω and α > p−1

n+1 , where p is the genus of Ω. In all these
cases, the metric is complete and the constant c can be expressed explicitly as a
ratio of products of certain Gamma functions. More generally, any invariant metric
on a bounded homogeneous domain in Cn is balanced as soon as L2

hol(Ω, w) 6= {0};
see Loi and Mossa [14]. Balanced metrics on so-called Cartan-Hartogs domains
were discussed by Loi and Zedda [15]. The Euclidean metric g(z) ≡ 1 on Cn

is balanced, with u(z) = e−‖z‖
2

(and likewise g(z) ≡ a, a > 0, with u(z) = e−a‖z‖2);
the corresponding spaces L2

hol are the familiar Segal-Bargmann-Fock spaces on Cn.
We have also seen in §4.1 that u(z) = |z|−m(1 − |z|2), m ∈ Z, give rise to non-
complete radial balanced metrics on the punctured disc D∗.

A somewhat less known example is given by the function

u(z) = e−a/|z|2 , a > 0,

on the punctured plane C∗ = C \ {0}. The corresponding metric is

g(z) =
a

|z|4 , a > 0, z ∈ C∗;
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this is complete at z = 0, however is not complete at z = ∞. The weight w =
J [u] = u2g equals a

t2 e−2a/t (t = |z|2), the moments are ck = ak2k−1Γ(1−k), k ≤ 0,
and

Kw(z, z) =
∑

k∈Z

|z|2k

πck
=

2
π

e2a/|z|2 =
2

πu(z)2
,

so the metric is balanced with constant c = 2/π. Of course, using the inversion
z 7→ 1/z, this example is just a disguised case of the ordinary Euclidean metric
g ≡ a on C, and the Segal-Bargmann-Fock spaces related to it.

4.4 Scalar curvature. Quite generally, for a bounded strictly pseudoconvex do-
main Ω in Cn with smooth boundary, denoting for a moment by ρ any smooth
function on Ω that is positive on Ω and comparable to dist(·, ∂Ω) near ∂Ω (i.e. a pos-
itively signed defining function for Ω), the condition that u ≈ ρα, α > 0, can be
seen to imply g ≈ αnρ−n−1J [ρ]; and recalling the definition of the Ricci tensor
Ric = ∂∂ log g and the scalar curvature S = gkj Ricjk (with [gkj(z)] the inverse
matrix of the metric tensor [gjk(z)]), it transpires that

S(z) → n(n + 1)
α

as z → ∂Ω;

see [8]. Thus the condition u ³ ρα, mentioned in the Introduction, bears on the
behaviour at ∂Ω of the scalar curvature S; in particular, the case α = n + 1
considered in this paper corresponds to S → n. The reformulation in terms of
scalar curvature has the advantage of making sense also when ∂Ω is no longer
assumed to be smooth (and, hence, neither will be dist(·, ∂Ω)); for instance, for the
case of an irreducible bounded symmetric domain Ω ⊂ Cn and u(z) = h(z, z)α

mentioned in §4.3, one can show that S = pn/α (p again denoting the genus of Ω).

4.5 Invariant balanced metrics on punctured plane. We conclude by one last
observation concerning balanced metrics on the punctured plane C∗ := C \ {0}:
namely, there exists no balanced metric on C∗ invariant under the homotheties
z 7→ δz, δ ∈ C∗. Indeed, if ρ(z) dz is such a metric, then from ρ(δz) d(δz) = ρ(z) dz

we obtain |δ|2ρ(δz) = ρ(z); taking z = 1 it follows that ρ(δ) = ρ(1)
|δ|2 . Thus the

metric is given by g(z) = 2a
|z|2 , with some a > 0; this admits φ(z) = a(log |z|2)2

as a potential, whence u(z) = e−a(log |z|2)2 . The balanced condition KJ[u](z, z) =
c/u(z)2 would thus mean that the reproducing kernel of L2

hol(C
∗, J [u]) is given by

KJ[u](z, z) = ce2a(log |z|2)2 , whence by the well-known uniqueness principle [3,
Proposition II.4.7]

KJ[u](x, y) = ce2a(log(xy))2 .

However, the right-hand side is not single-valued on C∗×C∗, a contradiction. Thus
there are no C∗-invariant balanced metrics on C∗, as asserted.
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