Acta Mathematica Sinica, English Series Sep., 201x, Vol. x, No. x, pp. 1–16 Published online: August 15, 201x DOI: 000000000000000 Http://www.ActaMath.com

# Higher Laplace-Beltrami operators on bounded symmetric domains

Miroslav ENGLIŠ

Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic and Mathematics Institute, Na Rybníčku 1, 74601 Opava, Czech Republic E-mail: englis@math.cas.cz

## Hao XU

Center of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China E-mail: mathxuhao@gmail.com

**Abstract** It was conjectured by the first author and Peetre that the higher Laplace-Beltrami operators generate the whole ring of invariant operators on bounded symmetric domains. We give a proof of the conjecture for domains of rank  $\leq 6$  by using a graph manipulation of Kähler curvature tensor. We also compute higher order terms in the asymptotic expansions of the Bergman kernels and the Berezin transform on bounded symmetric domain.

Keywords higher Laplace-Beltrami operators, bounded symmetric domains, Bergman KernelMR(2010) Subject Classification 32M15, 32A25

#### 1 Introduction

Denote by  $\mathscr{D}(\Omega)$  the algebra of all (biholomorphically) invariant differential operators on a bounded symmetric domain  $\Omega$  of rank r. It is well known that  $\mathscr{D}(\Omega)$  is a commutative algebra freely generated by r algebraically independent elements. It is an interesting problem to construct a set of generators explicitly. A survey of basic facts of bounded symmetric domains can be found in [1].

The higher Laplace-Beltrami operators were first introduced and studied in [16] and [9].

$$\bar{L}_m f = g^{a_1\bar{b}_1}\cdots g^{a_m\bar{b}_m} f_{/\bar{b}_1\cdots\bar{b}_m a_1\cdots a_m},$$

where / in the subscript denotes covariant differentiation and  $g^{a_i \bar{b}_i}$  are contravariant metric tensors. Throughout the paper, we will use the Einstein summation convention that any variable appearing in both upper and lower indices will be summed automatically. Sometimes we may omit  $g^{a_1 \bar{b}_1} \cdots g^{a_m \bar{b}_m}$  when it causes no confusion. In fact, they considered more general covariant Cauchy-Riemann operators twisted by a nontrivial vector bundles.

The first author and Peetre [9] conjectured that

**Conjecture 1.1** (Engliš-Peetre [9]) On any Hermitian symmetric space  $\Omega$ , the operators  $L_m, m \geq 0$  generate  $\mathscr{D}(\Omega)$ .

Received x x, 201x, accepted x x, 201x

M.E. was supported by GA CR grant no. 201/12/G028 and by RVO funding for IC 67985840.

A stronger version is the following:

**Conjecture 1.2** (Engliš) On any Hermitian symmetric space  $\Omega$  of rank  $r \ge 1$ , the operators  $L_{2m-1}, 1 \le m \le r$  generate  $\mathscr{D}(\Omega)$ .

Conjecture 1.2 were proved by G. Zhang [25] for r = 2 and by the first author [7] for  $r \leq 3$ . For simple Hermitian symmetric spaces of any rank  $r \geq 2$ , Conjecture 1.2 has been proved by B. Schwarz [19]. In a recent work [17], Sahi and Zhang determined the eigenvalues of Shimura invariant differential operators. Since the higher Laplace-Beltrami operators  $L_m$  are sums of Shimura operators, it might be possible to prove Conjecture 1.2 using the Sahi-Zhang result.

The aim of this paper is to explore the algebraic relations of differential operators from the perspective of graph manipulations. As an application, we give a proof of Conjecture 1.2 for any bounded symmetric domains of rank  $r \leq 6$  in §2 and indicate a possible general proof by our method. The results of §2 were obtained in Nov. 2012.

In §3, we compute the weight four term of the asymptotic expansion of Bergman kernels and study algebraic relations of curvature tensors, some of these results will be used in §4, where we compute the weight four and five terms of the asymptotic expansion of the Berezin transform. These results extend the previous work of the first author in [7].

#### 2 Higher Laplace-Beltrami operators

First we fix notation and recall the work of [7, 9]. Let  $\mathscr{L}$  be the set of all contravariant tensor fields obtained through (partial) contractions of curvature tensors,

$$T^{\beta_1 \cdots \beta_p} = g^{**} \cdots g^{**} R_{****/*\cdots*} \cdots R_{****/*\cdots*}.$$

Here  $\beta_i$  represents either a barred or unbarred index. There is an associated covariant differential operator Op(T) given by

$$Op(T)f = T^{\beta_1 \cdots \beta_p} f_{\beta_1 \cdots \beta_p}.$$
(2.1)

At the center of normal coordinates, we do not distinguish between contravariant and covariant tensor fields. Denote by  $\mathcal{O}p$  the algebra of all  $\operatorname{Op}(T), T \in \mathscr{L}$ .

Let  $\Omega$  be an irreducible bounded symmetric domain in  $\mathbb{C}^N$  in its Harish-Chandra realization as a circular domain centered at the origin. The domain  $\Omega$  is classified up to isomorphism by the rank r and the multiplicities a and b. Note that the dimension N = r(1 + (r - 1)a/2 + b). It is an important open problem of Yau [24] to characterize those Kähler manifolds that are covered by symmetric domains. Bounded symmetric domains are also natural arenas for the Berezin quantization [3].

Any bounded domain has a natural Kähler metric, the Bergman metric, which is invariant under biholomorphic mappings. Its curvature tensor is defined by (following the sign convention of [7])

$$R_{i\bar{j}k\bar{l}} = g_{i\bar{j}k\bar{l}} - g^{m\bar{p}} g_{m\bar{j}\bar{l}} g_{i\bar{p}k}.$$
(2.2)

and satisfies (cf.  $[7, \S5]$ )

$$R_{i\bar{j}k\bar{l}/\alpha} = 0, \qquad R_{i\bar{j}} = g^{kl}R_{i\bar{j}k\bar{l}} = p \cdot g_{i\bar{j}}, \qquad (2.3)$$

Higher Laplace-Beltrami operators on bounded symmetric domains

where p = 2 + a(r-1) + b is the genus of  $\Omega$ .

Recall the Ricci formula for a covariant tensor field T,

$$T_{\beta_1\dots\beta_p/i\bar{j}} - T_{\beta_1\dots\beta_p/\bar{j}i} = \sum_{k=1}^p R^{\gamma}_{\beta_k i\bar{j}} T_{\beta_1\dots\beta_{k-1}\gamma\beta_{k+1}\dots\beta_p}, \qquad (2.4)$$

where  $R_{\bar{l}i\bar{j}}^{\bar{k}} = g^{m\bar{k}}R_{m\bar{l}i\bar{j}}$ ,  $R_{li\bar{j}}^{k} = -g^{k\bar{m}}R_{l\bar{m}i\bar{j}}$  and  $R_{\bar{l}i\bar{j}}^{k} = R_{li\bar{j}}^{\bar{k}} = 0$ . The Kähler potential  $\Phi(x)$  of the Bergman metric may be decomposed into a sum of ho-

mogeneous polynomials  $\Phi(x) = \sum_{m=1}^{\infty} \Phi_m(x)$  with  $\Phi_m(x)$  homogeneous of degree *m* in both *x* and  $\bar{x}$ .

**Theorem 2.1** ([7, Prop. 7]) On a bounded symmetric domain  $\Omega$  of rank r, the algebra of covariant differential operators  $\mathcal{O}p$  coincides with  $\mathscr{D}(\Omega)$ , which is freely generated by  $\operatorname{Op}(\Phi_1), \ldots, \operatorname{Op}(\Phi_r)$ .

Let  $\operatorname{Aut}_0(\Omega)$  be the identity component of the automorphism group of  $\Omega$  and  $K \subset \operatorname{Aut}_0(\Omega)$ the stabilizer subgroup of the origin. Under the action of K, the vector space  $\mathcal{P}$  of all polynomials in  $z \in \mathbb{C}^N$  equipped with the Fock inner product has a decomposition into irreducible subspaces  $\mathcal{P} = \bigoplus_{\mathbf{m}} \mathcal{P}_{\mathbf{m}}$ , where  $\mathbf{m}$  ranges over all *signatures*, i.e. r-tuples  $\mathbf{m} = (m_1, \ldots, m_r) \in \mathbb{Z}^r$ satisfying  $m_1 \ge m_2 \ge \cdots \ge m_r \ge 0$ . The reproducing kernel  $K_{\mathbf{m}}(x, y)$  of  $\mathcal{P}_{\mathbf{m}}$  are K-invariant polynomials of degree  $m_1 + \cdots + m_r$ , holomorphic in x and antiholomorphic in y and satisfy the Faraut-Koranyi formula [11]

$$h(x,y)^{-\nu} = \sum_{\mathbf{m}} (\nu)_{\mathbf{m}} K_{\mathbf{m}}(x,y), \quad \text{where } (\nu)_{\mathbf{m}} = \prod_{j=1}^{r} \frac{\Gamma\left(m_{j} + \nu - \frac{j-1}{2}a\right)}{\Gamma\left(\nu - \frac{j-1}{2}a\right)}, \tag{2.5}$$

for any  $\nu \in \mathbb{C}$ . Here h(x, y) is the Jordan triple determinant satisfying  $\Phi(x) = -\log h(x, x)$ . Note that (2.5) encodes many algebraic relations among  $K_{\mathbf{m}}(x, y)$ .

As discussed in [2],  $K_{\mathbf{m}}(x, y)$  defines an invariant differential operator

$$\Delta_{\mathbf{m}} f(x) := K_{\mathbf{m}}(\partial, \partial) (f \circ \phi_x)(0),$$

where  $\phi_x$  the geodesic symmetry interchanging x and the origin. A proof of the following fundamental result can be found in [2, Prop. 2].

**Theorem 2.2** The polynomials  $K_{\mathbf{m}}(x, y)$  form a basis of the space of all K-invariant sesquiholomorphic polynomials on  $\mathbb{C}^N \times \mathbb{C}^N$ . Consequently, the operators  $\Delta_{\mathbf{m}}$  form a basis for the vector space  $\mathscr{D}(\Omega)$ .

The following explicit formula relating  $L_m$  and  $L_1$  on the unit ball in  $\mathbb{C}^N$  was due to Engliš and Peetre [9].

**Theorem 2.3** ([9, Thm. 1.1]) When  $\Omega$  is the unit ball in  $\mathbb{C}^N$ , we have

$$L_m = \prod_{j=1}^m (L_1 - (j-1)(j+N-1)).$$
(2.6)

*Proof* By (2.3) and the Ricci formula (2.4), we have

$$L_m f - L_{m-1} L_1 f$$
  
=  $\sum_{j=2}^m (f_{/\bar{b}_1 \cdots \underline{\bar{b}_j a_1}} \overline{b}_{j+1} \cdots \overline{b}_m a_2 \cdots a_m - f_{/\bar{b}_1 \cdots \overline{\bar{b}_{j-1}} \underline{a_1 \overline{b}_j}} \cdots \overline{b}_m a_2 \cdots a_m)$ 

M. Engliš and H. Xu

$$= -\sum_{j=2}^{m} \left( R_{s\bar{b}_{1}a_{1}\bar{b}_{j}} f_{/\bar{s}\bar{b}_{2}\cdots\bar{b}_{j-1}\bar{b}_{j+1}\cdots\bar{b}_{m}a_{2}\cdots a_{m}} + \sum_{i=2}^{j-1} R_{s\bar{b}_{i}a_{1}\bar{b}_{j}} f_{/\bar{b}_{1}\cdots\bar{b}_{i-1}\bar{s}\bar{b}_{i+1}\cdots\bar{b}_{j-1}\bar{b}_{j+1}\cdots\bar{b}_{m}a_{2}\cdots a_{m}} \right)$$
$$= -\sum_{j=2}^{m} \left( (N+1)L_{m-1}f + 2(j-2)L_{m-1}f \right)$$
$$= -(m-1)(m+N-1)L_{m-1}f.$$

We get (2.6) immediately. Note that in the third equation, we used  $R_{s\bar{b}_i a_1\bar{b}_j} = g_{s\bar{b}_i}g_{a_1\bar{b}_j} + g_{s\bar{b}_i}g_{a_1\bar{b}_i}$ .

The rest of the section will be devoted to a proof of Englis' conjecture for rank  $r \leq 6$ .

**Theorem 2.4** Conjecture 1.2 holds for any bounded symmetric domains  $\Omega$  of rank  $r \leq 6$ .

First we introduce some terminology. An *admissible graph* G = (V, E) is defined to be a multidigraph (i.e. a directed graph with possible multidges and loops) such that for each vertex  $v \in V(G)$ , both the indegree and outdegrees of v are no greater than 2 (i.e.  $\deg^{-}(v) \leq$ 2,  $\deg^{+}(v) \leq 2$ ).

An admissible tree T is an admissible graph such that its underlying undirected graph is a simple tree (i.e. an oriented tree). Denote by  $\mathscr{T}_k$  the set of admissible trees with k vertices. Obviously the k-vertex directed path  $P_k \in \mathscr{T}_k$ .

An admissible graph G canonically defines a covariant differential operator on bounded symmetric domains. This can be seen as follows: The completion  $\overline{G}$  of G is a (unique) multidigraph with vertices  $V(G) \cup \{\bullet\}$  and edges  $E(G) \cup E'$ , where E' consists of edges between  $\bullet$  and V(G) such that  $\deg^{-}(v) = \deg^{+}(v) = 2$  for each  $v \in V(G)$  in  $\overline{G}$ . Let  $m = \deg^{-}(\bullet) = \deg^{+}(\bullet)$ . We define a covariant differential operator  $L_{G}$  of order 2m,

$$L_G f = \prod_{e = a_e b_e \in E(\overline{G})} g^{a_e \overline{b}_e} \prod_{v \in V(G)} R_{*\overline{*}*\overline{*}} f_{/b_1 \cdots \overline{b}_m a_1 \cdots a_m},$$
(2.7)

where \* \* \*\* denote the half-edges attached to v and  $b_1 \cdots \bar{b}_m a_1 \cdots a_m$  denote all half-edges attached to •. In particular, an admissible tree  $T \in \mathscr{T}_k$  defines a covariant differential operator  $L_T$  of order 2k + 2. For simplicity, we will also use the graph G to denote  $L_G$ .

**Lemma 2.5** Let  $k \ge 1$ . Then

$$L_{2k+1} - L_{2k}L_1 = \sum_{T \in \mathscr{T}_k} C_T L_T + Q_k,$$
(2.8)

where  $(-1)^k C_T \ge 0$ ,  $\forall T \in \mathscr{T}_k$  and  $C_{P_k} \ne 0$  for directed paths,  $Q_k$  is a polynomial of  $L_1, \ldots, L_{2k}$ and  $L_G$  of order < 2k + 2 defined by connected admissible graphs G.

We also have

$$L_{2k} - L_{2k-1}L_1 = S_k, (2.9)$$

where  $S_k$  is a polynomial of  $L_1, \ldots, L_{2k-1}$  and  $L_G$  of order < 2k+2 defined by connected admissible graphs G.

*Proof* From the proof of Theorem 2.3, we have

$$L_m f = L_{m-1} L_1 f - (m-1) p L_{m-1} f$$
(2.10)

Higher Laplace-Beltrami operators on bounded symmetric domains

$$-\sum_{j=3}^{m}\sum_{i=2}^{j-1}R_{s\bar{b}_{i}a_{1}\bar{b}_{j}}f_{/\bar{b}_{2}\cdots\bar{b}_{i-1}\bar{b}_{i+1}\cdots\bar{b}_{j-1}\bar{b}_{j+1}\cdots\bar{b}_{m}\underline{\bar{b}}_{1}\underline{\bar{s}}_{a}}\cdots a_{i-1}a_{i+1}\cdots a_{j-1}a_{j+1}\cdots a_{m}\underline{a}_{i}a_{j}}\cdot$$

Next we move  $a_2$  to the right adjacency of  $\bar{b}_2$  using the Ricci formula. Repeat the process and note that if G is a disjoint union of connected subgraphs  $G = G_1 \cup \cdots \cup G_n$ , then

 $L_G = L_{G_1} \cdots L_{G_n}$  + lower order operators,

we can write the summation in the right-hand side of (2.10) as a linear combination of  $L_G L_1^j f$ with G connected and  $j \ge 0$ .

Note that each  $L_T$  appearing in the computation of  $L_{2k+1} - L_{2k}L_1$  must have the same sign  $(-1)^k$ . We now check that in (2.8),  $C_{P_k} \neq 0$ .

$$L_{2k+1}f - L_{2k}L_{1}f = -R_{s\bar{b}_{2k}a_1\bar{b}_{2k+1}}f_{/\bar{b}_1\cdots\bar{b}_{2k-1}\bar{s}a_2\cdots a_{2k+1}} + \cdots \qquad (\text{switch } \bar{b}_{2k+1}, a_1)$$
$$= R_{s\bar{b}_{2k}a_1\bar{b}_{2k+1}}R_{t\bar{b}_{2k-1}a_2\bar{s}}f_{/\bar{b}_1\cdots\bar{b}_{2k-2}\bar{t}a_3\cdots a_{2k+1}} + \cdots \qquad (\text{switch } \bar{s}, a_2)$$
$$= \cdots = (-1)^k L_{P_k}f + \cdots .$$

The forms of (2.8) and (2.9) are not difficult to prove in view of the Ricci formula. We omit the details.

Remark 2.6 In [7], the first author computed

$$\begin{split} L_2 - L_1^2 &= -pL_1, \\ L_3 - L_2L_1 &= -L(\circ) - 2pL_1^2 + 2p^2L_1, \\ L_4 - L_3L_1 &= -3pL_3 - 3L(\circ)L_1 + 6pL(\circ) + 3L(\circ \xrightarrow{2} \circ), \\ L_5 - L_4L_1 &= 12L(\circ \xrightarrow{1} \circ) - 4pL_4 - 6L(\circ)L_1^2 + 30pL(\circ)L_1 + 12L(\circ \xrightarrow{2} \circ)L_1 \\ &- 36p^2L(\circ) - 30pL(\circ \xrightarrow{2} \circ) - 6L(\circ \xrightarrow{2} \circ 2 \circ), \end{split}$$

where  $L(\circ)f = R_{i\bar{j}k\bar{l}}f_{/\bar{j}\bar{l}ik} = 4 \operatorname{Op}(\Phi_2)f$ .

**Remark 2.7** There are three trees in  $\mathscr{T}_3$ ,

There are six trees in  $\mathscr{T}_4$ ,

By a tedious computation following the procedure as the proof of (2.8), we get

$$L_7 - L_6 L_1 = -180L(\text{III}_1) - 90L(\text{III}_2) - 180L(\text{III}_3) + Q_3,$$
  

$$L_9 - L_8 L_1 = 3360L(\text{IV}_1) + 5040L(\text{IV}_2) + 8400L(\text{IV}_3) + 12320L(\text{IV}_4) + 1680L(\text{IV}_5) + 2440L(\text{IV}_6) + Q_4.$$

Now we investigate relations among  $L_G$  for admissible graphs G. Let G be an arbitrary multidigraph. Consider the following two graphs,

$$G_1 = \bigwedge_{\substack{\circ \longrightarrow \circ}}^{G} G_2 = \bigwedge_{\substack{\circ \longleftarrow \circ}}^{G} G_2 = (2.11)$$

By  $R_{i\bar{j}k\bar{l}/\alpha} = 0$  and the Ricci formula, we have

$$0 = R_{i\bar{j}k\bar{l}/p\bar{q}} - R_{i\bar{j}k\bar{l}/\bar{q}p} = -R_{s\bar{j}k\bar{l}}R_{i\bar{s}p\bar{q}} + R_{i\bar{s}k\bar{l}}R_{s\bar{j}p\bar{q}} - R_{i\bar{j}s\bar{l}}R_{k\bar{s}p\bar{q}} + R_{i\bar{j}k\bar{s}}R_{s\bar{l}p\bar{q}},$$
(2.12)

which implies that  $L_{G_1} = L_{G_2}$  (abbr.  $G_1 = G_2$ ), or written graphically

$$\circ \longrightarrow \circ \xrightarrow{i} = \circ \longleftarrow \circ \xrightarrow{i} \tag{2.13}$$

Similarly, we have

$$\circ \longrightarrow \circ \stackrel{\overline{i}}{\longleftarrow} = \circ \longleftarrow \circ \stackrel{\overline{i}}{\longleftarrow}$$
(2.14)

More identities are collected in the following lemma.

Lemma 2.8 We have

$$\stackrel{\circ}{\underset{j}{\downarrow}} \stackrel{\circ}{\circ} \stackrel{i}{\underset{i}{\rightarrow}} = \stackrel{\circ}{\underset{j}{\downarrow}} \stackrel{\circ}{\underset{i}{\rightarrow}} = 2 \stackrel{\circ}{\underset{j}{\downarrow}} \stackrel{i}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} \stackrel{\circ}{\underset{j}{\rightarrow}} (2.15)$$

$$\bigvee_{i}^{\circ} \bigvee_{j}^{j} = \bigvee_{i}^{\circ} \bigvee_{i}^{j} = \bigvee_{i}^{\circ} \bigvee_{i}^{j} (2.17)$$

*Proof* The first equation of (2.15) follows from (2.12). The second equation of (2.15) follows from

$$0 = R_{i\bar{n}k\bar{l}/m\bar{j}} - R_{i\bar{n}k\bar{l}/\bar{j}m} = -R_{s\bar{n}k\bar{l}}R_{i\bar{s}m\bar{j}} + R_{i\bar{s}k\bar{l}}R_{s\bar{n}m\bar{j}} - R_{i\bar{n}s\bar{l}}R_{k\bar{s}m\bar{j}} + R_{i\bar{n}k\bar{s}}R_{s\bar{l}m\bar{j}}.$$

The remaining identities can be proved similarly.

**Lemma 2.9** Let  $1 \le k \le 5$  and  $T, T' \in \mathscr{T}_k$ . Then  $L_T = L_{T'}$ .

*Proof* It is trivial when k = 1 or 2. Under the notation of Remark 2.7,  $III_1 = III_2$  and  $III_1 = III_3$  follow from (2.13) and (2.14) respectively.

It is also not difficult to see that (2.13) and (2.14) imply  $IV_1 = IV_2$ ,  $IV_2 = IV_3$ ,  $IV_3 = IV_4$ , (2.15) implies  $IV_5 = IV_6$ , and (2.17) implies  $IV_2 = IV_5$ .

The proof when k = 5 can be found in the appendix.

**Remark 2.10** It would be very interesting to see whether the above lemma is true for higher k. Although it is probably too strong to be true, the validity of Lemma 2.9 for all k would imply Conjecture 1.2 and hence the Englis-Peetre conjecture.

Recall that a rooted tree is an oriented tree with a special vertex, called the root, such that there is a unique directed path from the root to any vertex v, i.e. all edges point away from the root. Given a rooted tree T with i vertices, an ordered decoration of T is to attach i + 1outward external legs  $a_1, \ldots, a_{i+1}$  and i + 1 inward external legs  $b_1, \ldots, b_{i+1}$  to vertices of T, such that (i) Each vertex of T has exactly two outward half-edges and two inward half-edges; (ii)  $b_1, b_2$  are attached to the root; (iii) If uv is a directed edge of T and  $b_{j_1} \in u$ ,  $b_{j_2} \in v$ , then  $j_1 < j_2$ .

**Lemma 2.11** Let  $j \ge 2$ . then

$$Op(\Phi_j) = \frac{1}{(2j)!} \sum_{T \in \mathscr{T}_{j-1}}^{rooted} C_T L_T, \qquad (2.18)$$

where T runs over all admissible rooted trees with j - 1 vertices and  $C_T > 0$  is equal to the number of ordered decorations of T.

*Proof* Since

$$\Phi_j(z) = \frac{1}{(2j)!} \sum_{a_i, b_i} g_{a_1 \bar{b}_1 \cdots a_j \bar{b}_j}(0) z_{a_1} \bar{z}_{b_1} \cdots z_{a_j} \bar{z}_{b_j},$$

(2.18) follows readily from [22, Thm. 4.4].

From Theorem 2.2 and Lemmas 2.5, 2.9 and 2.11, we can prove inductively that when  $0 \le k \le 5$ ,

$$L_{2k+1} = c_k \operatorname{Op}(\Phi_{k+1}) + a$$
 polynomial in  $\operatorname{Op}(\Phi_1), \ldots, \operatorname{Op}(\Phi_k)$ 

where  $c_k \neq 0$ . So  $L_1, L_3, \ldots, L_{2k+1}$  generate  $\mathscr{D}(\Omega)$  on domains of rank  $\leq k+1$ , which concludes the proof of Theorem 2.4.

## 3 Bergman kernel of bounded symmetric domains

Let  $\Phi(z)$  be the Kähler potential of the Bergman metric on a bounded symmetric domain  $\Omega$ . Consider the weighted Bergman space of all holomorphic function on  $\Omega$  square-integrable with respect to the measure  $e^{-\alpha \Phi} \frac{w_g^n}{n!}$ ,  $\alpha > 0$ . The reproducing kernel  $K_{\alpha}(x, y)$  has an asymptotic expansion [3, 7, 8]

$$K_{\alpha}(x,y) \sim e^{\alpha \Phi(x,y)} \sum_{k=0}^{\infty} B_k(x,y) \alpha^{n-k}, \quad \alpha \to \infty.$$
(3.1)

These asymptotic coefficients have useful geometric implications on Hermitian symmetric spaces [12, 15]. The connection between Bergman kernel and heat kernel was studied in [4].

The coefficients  $B_j$  of the asymptotic expansion of the Bergman kernel of  $\Omega$  satisfy  $\sum_{j\geq 0} B_j z^j = \exp(\sum_{j\geq 1} k_j z^j)$ , where  $k_j$  are given in terms of Bernoulli polynomials  $\beta_j(x)$ :

$$k_j = \frac{(-1)^{j+1}}{j(j+1)} \sum_{i=1}^r \left[ \beta_{j+1} \left( -\frac{a}{2}(i-1) \right) - \beta_{j+1} \left( -\frac{N}{r} - \frac{a}{2}(i-1) \right) \right].$$

See  $[7, \S5]$  for details. In particular,

$$B_4 = \frac{1}{24}k_1^4 + \frac{1}{2}k_1^2k_2 + \frac{1}{2}k_2^2 + k_1k_3 + k_4$$
(3.2)

is a polynomial in  $\mathbb{Q}[N, a, r, r^{-1}]$  and has 104 terms.

On the other hand,  $B_j$  can be computed by a recursive formalism developed by the first author [7] from the asymptotics of Laplace integrals, where  $B_j$ ,  $j \leq 3$  for  $\Omega$  were explicitly computed. By applying an improved recursive formula [14], the following explicit closed formula of  $B_k$  was obtained in [21].

$$B_k(x) = \sum_G z(G) \cdot G = \sum_G \frac{(-1)^n \det(A - I)}{|\operatorname{Aut}(G)|} G,$$
(3.3)

where  $G = G_1 \cup \cdots \cup G_n$  runs over stable (i.e. both the indegree and outdegree of each vertex are no less than 2) multidigraphs of weight k (i.e. |E(G)| - |V(G)| = k) such that each component  $G_i$  is strongly connected and A is the adjacency matrix of G. Note that vertices of G represent partial derivatives of metrics.

Below we derive an explicit formula of  $B_4$  by using (3.3). Since all covariant derivatives of  $R_{i\bar{j}k\bar{l}}$  vanish, we need only sum over balanced stable graphs. There are 82 weight 4 stable graphs, among which 48 are balanced (see [21, App. B]).

Table 1 in the appendix contains the 25 stable 4-vertex graphs of weight 4 (denoted by  $s_i$ ,  $1 \le i \le 25$ ), together with their coefficients  $z(s_i)$  in  $B_4$ . Note that some  $s_i$  may be simplified into the following Weyl invariants (in the notation of [7])

$$\sigma_7 = R_{i\bar{j}k\bar{l}}R_{j\bar{i}m\bar{n}}R_{l\bar{k}n\bar{m}}, \quad \sigma_{15} = R_{i\bar{j}k\bar{l}}R_{j\bar{m}l\bar{n}}R_{m\bar{i}n\bar{k}}, \quad q = R_{i\bar{j}k\bar{l}}R_{j\bar{i}l\bar{k}} \tag{3.4}$$

using the Kähler-Einstein condition  $R_{i\bar{i}} = p \cdot g_{i\bar{i}}$ , where p is the genus of  $\Omega$ .

Table 2 in the appendix contains the 23 stable balanced graphs of weight 4 and less than 4 vertices (denoted by  $t_i$ ,  $1 \le i \le 23$ ), together with their coefficients  $z(t_i)$  in  $B_4$ . Note that  $t_i$  represent Weyl invariants in partial derivatives, i.e. each vertex represents a partial derivative of  $g_{i\bar{j}}$  and each edge represents the contraction of a pair of indices.

For the one 1-vertex graph  $t_1$  and seven 2-vertex graphs  $t_i$ ,  $2 \le i \le 8$ , we may use [22, Thm. 4.4] to get their curvature tensor expressions

$$\begin{split} D(t_1) = & 6s_2 + s_3 + 10s_5 + 15s_6 + 11s_7 + 20s_{11} + 7s_{12} + 8s_{13} \\ & + 8s_{14} + 44s_{15} + 20s_{18} + 14s_{19} + 14s_{20} + 2s_{22}, \\ D(t_2) = & 2s_2 + s_3 + 2s_5 + 2s_6 + 5s_7 + 4s_{11} + 2s_{12}, \\ D(t_3) = & s_2 + 4s_{11} + 4s_{18}, \\ D(t_4) = & 2s_5 + s_6 + s_7 + s_{12} + s_{14} + 4s_{15} + 3s_{19} + 4s_{20} + s_{22}, \\ D(t_5) = & s_5 + s_7 + 2s_{11} + s_{12} + 4s_{15}, \\ D(t_6) = & 7s_9 + s_{10} + 4s_{16} + 4s_{17} + 2s_{24}, \\ D(t_7) = & s_2 + s_5 + 3s_6 + 2s_{14} + 2s_{20}, \\ D(t_8) = & s_1 + 4s_4 + 4s_{21}, \end{split}$$

For the fifteen 3-vertex graphs  $t_i$ ,  $9 \le i \le 23$ , we have

$$D(t_9) = 2s_6 + s_7, D(t_{10}) = 2s_9 + s_{10}, D(t_{11}) = s_1 + 2s_4, D(t_{12}) = s_2 + 2s_{11}, D(t_{13}) = s_5 + s_7 + s_{12}, D(t_{14}) = s_2 + 2s_6, D(t_{15}) = s_3 + 2s_7, D(t_{16}) = s_7 + 2s_{19}, D(t_{17}) = s_{11} + 2s_{15},$$

Higher Laplace-Beltrami operators on bounded symmetric domains

$$\begin{aligned} D(t_{18}) = s_6 + s_{14} + s_{20}, & D(t_{19}) = s_{12} + 2s_{20}, & D(t_{20}) = s_9 + s_{17} + s_{24}, \\ D(t_{21}) = s_4 + 2s_{21}, & D(t_{22}) = s_5 + s_{20} + s_{22}, & D(t_{23}) = s_8 + 2s_{23}, \end{aligned}$$

By (3.3), we get

$$B_{4} = \sum_{i=1}^{23} z(t_{i})D(t_{i}) + \sum_{i=1}^{25} z(s_{i})s_{i}$$
  
=  $\frac{1}{1152}q^{2} - \frac{167}{360}s_{2} - \frac{167}{960}s_{3} - \frac{23}{72}p^{2}Nq + \frac{23}{60}p^{2}q + \frac{7}{40}p\sigma_{15} + \frac{1}{192}p^{2}N^{2}q - \frac{7}{24}pN\sigma_{15}$   
-  $\frac{2}{9}s_{11} + \frac{13}{120}s_{13} - \frac{1}{20}p^{4}N - \frac{4}{5}p\sigma_{7} + \frac{7}{12}pN\sigma_{7} + \frac{37}{36}s_{18} + \frac{1}{18}p^{4}N^{2} - \frac{1}{48}p^{4}N^{3} + \frac{1}{384}p^{4}N^{4}.$   
(3.5)

For further simplification, we need the following lemma.

Lemma 3.1 Under the above notations, we have

$$2\sigma_7 - \sigma_{15} = pq, \qquad s_{11} = \frac{1}{2}(s_3 + p\sigma_{15}),$$
$$s_{13} = \frac{1}{4}s_3 - \frac{1}{2}s_2 + \frac{1}{4}p\sigma_{15} + p\sigma_7, \qquad s_{18} = \frac{1}{2}s_2 + \frac{1}{4}s_3 + \frac{1}{4}p\sigma_{15}.$$

*Proof*  $2\sigma_7 - \sigma_{15} = pq$  follows from [7, (5.8)]. Consider the following three graphs of weight 4, we will apply the Ricci formula (2.4) to the unique vertex with degree 6 in each of the following graphs:

From the first graph, we have

$$0 = R_{h\bar{j}i\bar{k}}R_{j\bar{l}k\bar{m}}(R_{l\bar{h}m\bar{n}/n\bar{i}} - R_{l\bar{h}m\bar{n}/\bar{i}n}) = 2s_{11} - s_3 - s_7 = 2s_{11} - s_3 - p\sigma_{15}.$$

From the second graph, we have

$$0 = R_{h\bar{j}i\bar{k}}R_{k\bar{m}l\bar{n}}(R_{j\bar{h}m\bar{i}/n\bar{l}} - R_{j\bar{h}m\bar{i}/\bar{l}n}) = -2s_{18} + s_{11} + s_2.$$

From the third graph, we have

$$0 = R_{i\bar{h}k\bar{j}}R_{j\bar{k}m\bar{l}}(R_{h\bar{l}l\bar{n}/n\bar{m}} - R_{h\bar{l}l\bar{n}/\bar{m}n}) = s_{18} + s_{13} - s_{11} - s_{15} = s_{18} + s_{13} - s_{11} - p\sigma_7.$$

They give the last three equations of the lemma.

By substituting equations of Lemma 3.1 into (3.5), we get an explicit formula of  $B_4$  which is summarized in the following theorem.

**Theorem 3.2** Let  $\Omega$  be an irreducible bounded symmetric domain in  $\mathbb{C}^N$ . Then

$$B_{4} = \left(\frac{1}{384}N^{4} - \frac{1}{48}N^{3} + \frac{1}{18}N^{2} - \frac{1}{20}N\right)p^{4} + \frac{1}{192}p^{2}N^{2}q - \frac{1}{36}p^{2}Nq \qquad (3.7)$$
$$+ \frac{3}{80}p^{2}q + \frac{1}{1152}q^{2} - \frac{1}{240}s_{2} - \frac{1}{960}s_{3} + \frac{1}{480}p\sigma_{15},$$

where p is the genus of  $\Omega$ , and  $q = R_{i\bar{j}k\bar{l}}R_{j\bar{i}l\bar{k}}$ ,  $\sigma_{15} = R_{i\bar{j}k\bar{l}}R_{j\bar{m}l\bar{n}}R_{m\bar{i}n\bar{k}}$ ,

$$s_2 = R_{i\bar{j}h\bar{k}}R_{j\bar{i}l\bar{h}}R_{n\bar{m}t\bar{l}}R_{k\bar{n}m\bar{t}}, \quad s_3 = R_{i\bar{n}h\bar{t}}R_{j\bar{i}k\bar{h}}R_{l\bar{j}m\bar{k}}R_{n\bar{l}t\bar{m}}$$

**Remark 3.3** In fact, from our proof, the formula (3.7) holds for any Kähler metric in an open subset of  $\mathbb{C}^N$  satisfying (2.3).

Let us check (3.7) when  $\Omega$  is the unit ball in  $\mathbb{C}^N$ . In this case, we have

 $r = 1, \quad a = 2, \quad b = N - 1, \quad p = N + 1.$ 

Since the Bergman metric of the unit ball has constant curvature, it is not difficult to get (cf. [7, 21])

$$q = 2N^2 + 2N, \quad \sigma_{15} = 4N^2 + 4N,$$
  
$$\sigma_{2} = 4N^3 + 8N^2 + 4N, \quad s_3 = 8N^2 + 8N$$

From (3.7), we get

$$B_4 = \frac{1}{384}N^8 - \frac{1}{96}N^7 - \frac{1}{576}N^6 + \frac{1}{30}N^5 - \frac{5}{1152}N^4 - \frac{1}{32}N^3 + \frac{1}{288}N^2 + \frac{1}{120}N,$$

which agrees with that computed by (3.2).

S

**Corollary 3.4** Let  $\Omega$  be an irreducible bounded symmetric domain in  $\mathbb{C}^N$ . Then

$$4s_{2} + s_{3} - 2p\sigma_{15} = \frac{N(r-1)(r-2)a^{4}}{2} - \frac{3N(r-1)^{2}(N+r)a^{3}}{r} + \frac{2N(r-1)(N+r)(2Nr-N+r^{2}-5r)a^{2}}{r^{2}} + \frac{12N(r-1)(N+r)^{2}a}{r^{2}} + \frac{8N(N+2r)(N+r)}{r^{2}}.$$
(3.8)

The genus  $p = 1 + \frac{N}{r} + \frac{(r-1)a}{2}$  and it was proved in [7, p.30] that Proof  $q = -\frac{(r-1)Na^2}{2} + \frac{(r-1)N(N+r)a}{r} + \frac{2N(N+r)}{r}.$ 

So (3.8) follows readily from (3.2) and (3.7).

#### Berezin transform of bounded symmetric domains 4

On a bounded symmetric domain  $\Omega$ , the *Berezin transform* is the integral operator

$$I_{\alpha}f(x) = \int_{\Omega} f(y) \frac{|K_{\alpha}(x,y)|^2}{K_{\alpha}(x,x)} e^{-\alpha \Phi(y)} \frac{w_g^n(y)}{n!}.$$
(4.1)

At any point for which  $K_{\alpha}(x,x)$  invertible, the integral converges for any bounded measurable function f on  $\Omega$ . Note that (3.1) implies that for any x,  $K_{\alpha}(x, x) \neq 0$  if  $\alpha$  is large enough.

The Berezin transform has an asymptotic expansion

$$I_{\alpha}f(x) = \sum_{k=0}^{\infty} Q_k f(x) \alpha^{-k}, \quad \alpha \to \infty,$$
(4.2)

where  $Q_k$  are linear differential operators and  $Q_0 = Id$ ,  $Q_1 = L_1$ . It first appeared in the work of Berezin [3] in the quantization of Kähler manifolds. The convergence in various contexts has been extensively studied [5, 10, 13, 20], as well as relations to the star products [13, 18].

For a bounded symmetric domain  $\Omega$  of rank r, is has been proved that  $\mathscr{D}(\Omega)$  is freely generated by  $Q_1, Q_3, \ldots, Q_{2r-1}$  [6, Thm. 1.1]. The first author [7] also proved a recursive formula of  $Q_k$  and computed  $Q_k, k \leq 3$ ,

$$Q_2 = \frac{1}{2}L_1^2 + \frac{p}{2}L_1, \qquad Q_3 = \frac{1}{6}L_1^3 + \frac{p}{2}L_1^2 + \frac{p^2}{3}L_1 + \frac{1}{12}L(\circ).$$
(4.3)

The following closed formula of  $Q_k$  was proved in [22],

$$Q_k = \sum_{\Gamma = (V \cup \{\bullet\}, E)}^{\text{strong}} \frac{\det(A(\Gamma_-) - I)}{|\operatorname{Aut}(\Gamma)|} \Gamma,$$
(4.4)

where  $\Gamma$  runs over all strongly connected graphs with a distinguished vertex • of weight k (i.e. |E| - |V| = k) and  $\Gamma_{-}$  is obtained from  $\Gamma$  by removing the distinguished vertex • from  $\Gamma$ . Note that vertices of  $\Gamma$  represent partial derivatives of metrics or the function. Effective methods of converting partial derivatives of metrics (functions) to covariant derivatives of curvature tensors (functions) on Kähler manifolds were developed in [22, 23], which made possible the computations of more terms of  $Q_k$ .

**Theorem 4.1** On a bounded symmetric domain  $\Omega$  of genus p, we have

$$Q_4 = -\frac{1}{12}L_3L_1 - \frac{1}{8}pL_3 + \frac{1}{8}L_1^4 + \frac{1}{8}pL_1^3 + \frac{1}{4}p^2L_1^2 + \frac{1}{2}p^3L_1,$$
(4.5)

$$Q_{5} = \frac{1}{720}L_{5} - \frac{1}{144}L_{4}L_{1} + \frac{1}{36}pL_{4} - \frac{1}{36}L_{3}L_{1}^{2} - \frac{19}{72}pL_{3}L_{1} + \frac{1}{24}L_{1}^{5}$$

$$+ \frac{5}{24}pL_{1}^{4} - \frac{1}{4}p^{2}L_{1}^{3} + \frac{2}{3}p^{3}L_{1}^{2} + \frac{1}{3}p^{4}L_{1} + \frac{1}{48}L(\circ \xrightarrow{2} \circ \xrightarrow{2} \circ).$$

$$(4.6)$$

*Proof* By a lengthy calculation using (4.4) and the algorithm described in the proof of Lemma 2.5, we get

$$Q_4 = \frac{1}{24}L_4 + \frac{1}{2}pL_3 + \frac{3}{2}p^2L_2 + p^3L_1 + \frac{1}{4}L(\circ)L_1 + \frac{1}{4}pL(\circ) - \frac{1}{8}L(\circ \xrightarrow{2} \circ) + W,$$
(4.7)

where W is the sum of four differential operators of order 2,

$$W = \frac{3}{2}L \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} - \frac{1}{12}L \begin{bmatrix} 0 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \end{bmatrix} - \frac{3}{4}\begin{bmatrix} 0 & 0 \\ 2 & 2 & 2 \\ 0 & 1 & 0 \end{bmatrix} - \frac{2}{3}pL \begin{bmatrix} 0 & 1 \\ 0 & 2 & 0 \end{bmatrix}.$$

Using the notation of (3.4) and Lemma 3.1, we get

$$W = \left(\frac{3}{2}\sigma_7 - \frac{1}{12}pq - \frac{3}{4}\sigma_{15} - \frac{2}{3}pq\right)L_1 = 0.$$

So (4.5) follows from the formulas of  $L_3$  and  $L_4$  in Remark 2.6.

The formula of  $Q_5$  needs more work. Besides Lemma 3.1, we also need the following Lemma 4.2. Drastic simplifications occur in the computation. We omit the details.

Lemma 4.2 We have the following equations among differential operators of order 4.

$$L(\circ \xrightarrow{2} \circ) = 2L\left[\circ \underbrace{1}_{1} \circ\right] - pL(\circ), \tag{4.8}$$

$$G_3 = G_4 = G_7 = \frac{1}{2}G_1 + \frac{1}{2}pL(\circ \xrightarrow{2} \circ),$$
(4.9)

M. Engliš and H. Xu

$$2G_2 = G_3 + G_5, (4.10)$$

$$G_2 + G_6 = G_3 + pL\left[\circ \underbrace{1}_1 \circ \right]. \tag{4.11}$$

where we use G to denote  $L_G$  and the corresponding graphs are

*Proof* Note that (2.12) may be written graphically as

Gluing the two external legs  $p\bar{j}$  in the above equation, we get (4.8).

Attaching a new vertex to the external leg i in (4.12), we get

$$\begin{array}{c} \overset{k}{\underset{j\bar{l}}{\sim}} \circ \longrightarrow \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{k}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow} \circ \overset{mn}{\underset{\bar{l}}{\rightarrow}} \circ \overset{mn}{\underset$$

Gluing  $m\bar{q}$  and  $n\bar{j}$  gives  $G_3 = G_4$ . Gluing  $m\bar{q}$  and  $k\bar{t}$  gives  $G_7 = G_3$ . Gluing  $k\bar{q}$  and  $p\bar{t}$  gives  $2G_7 = G_1 + pL(\circ \xrightarrow{2} \circ)$ . Then (4.9) follows from these three equations. Finally, (4.10) follows from gluing  $m\bar{j}$  and  $n\bar{l}$ . (4.11) follows from gluing  $m\bar{q}$  and  $p\bar{j}$ .

In fact, (4.8) is equivalent to  $L_3L_1 = L_1L_3$ . When  $\Omega$  is the unit ball in  $\mathbb{C}^N$ , (4.5) and (4.6) becomes

$$\begin{split} Q_4 &= \frac{1}{24} [L_1^4 + (6N+10)L_1^3 + (11N^2 + 24N + 13)L_1^2 + (6N^3 + 12N^2 + 6N)L_1], \\ Q_5 &= \frac{1}{120} [L_1^5 + (10N+20)L_1^4 + (35N^2 + 100N + 73)L_1^3 \\ &\quad + (50N^3 + 146N^2 + 130N + 30)L_1^2 + (24N^4 + 60N^3 + 40N^2 - 4)L_1], \end{split}$$

which agree with that computed in [9, p. 53].

## APPENDIX

#### 1 Admissible trees with five vertices

In this appendix, we prove the case k = 5 of Lemma 2.9. There are 19 admissible trees in  $\mathscr{T}_5$ .



It is not difficult to verify that (2.13) and (2.14) imply  $V_1 = V_2$ ,  $V_1 = V_8$ ,  $V_5 = V_{10}$ ,  $V_2 = V_7$ ,  $V_3 = V_4$ ,  $V_3 = V_9$ ,  $V_5 = V_6$ ,  $V_{11} = V_{15}$ ,  $V_{12} = V_{18}$ ,  $V_{14} = V_{16}$ ,  $V_{13} = V_{17}$ .

Moreover, (2.15) implies  $V_{12} = V_{13}$ ,  $V_{11} = V_{14}$ ; (2.16) implies  $V_{16} = V_7$ ,  $V_{16} = V_3$ ; (2.17) implies  $V_{12} = V_{10}$ ,  $V_{12} = V_8$ .

The above 17 equations imply that  $V_i$ ,  $1 \le i \le 18$  are all equal.

Lemma 1.3 Under the convention of Lemma 2.8, we have

*Proof* The equation comes from switching p and  $\bar{q}$  in  $R_{i\bar{j}k\bar{l}/p\bar{q}}$  using the Ricci formula. The argument is similar to that of Lemma 3.1.

It is easy to see that (A1) implies  $2V_{12} = V_{11} + V_{19}$ . So we get  $V_{19} = V_{11}$ , which concludes the proof of the case k = 5 of Lemma 2.9.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            | 1                                                                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $2\left( \begin{array}{c} \circ \\ 2 \\ \circ \\ \circ \end{array} \right) 2 \qquad 2\left( \begin{array}{c} \circ \\ 2 \\ \circ \\ \circ \end{array} \right) 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} \circ & 2 \\ 1 \\ 1 \\ \circ & 2 \\ 2 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{c} \circ \xrightarrow{2} \circ \\ 2 \\ \circ \xrightarrow{2} \circ \\ \circ \xrightarrow{2} \circ \end{array} \begin{array}{c} \circ \\ 2 \\ \circ \end{array} \begin{array}{c} 2 \\ \circ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} \circ & (1) \\ 2 \left( \begin{array}{c} 0 \\ 0 \end{array} \right) 2 & 1 \left( \begin{array}{c} 1 \\ 0 \end{array} \right) 1 \\ 0 & (1) \end{array} $ | 0 $1$ $0$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$                                                                                                                 |  |
| $s_1 = q^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $s_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $s_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $s_4 = p^2 N q$                                                                                                                                                            | $s_5 = p^2 q$                                                                                                                                                     |  |
| 9/128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15/64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/16                                                                                                                                                                       | 1                                                                                                                                                                 |  |
| $ \begin{array}{c} \circ & \overbrace{}^{1} \circ \\ 1 \\ \circ \\ \circ \\ 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} \circ \stackrel{2}{\leftarrow} \circ \\ 2 \\ \circ \stackrel{1}{\leftarrow} \stackrel{1}{\leftarrow} 1 \\ \circ \stackrel{1}{\leftarrow} 1 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{ccc} 2 & \circ \\ & & 2 \\ & & 2 \\ & & 0 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            | $ \begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$ |  |
| $s_6 = p^2 q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $s_7 = p\sigma_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $s_8 = p^2 N^2 q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $s_9 = p^2 N q$                                                                                                                                                            | $s_{10} = pN\sigma_{15}$                                                                                                                                          |  |
| -1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2                                                                                                                                                                        | 7/48                                                                                                                                                              |  |
| $ \begin{array}{c} \circ & 2 \\ \circ & 1 $ | $1 \rightarrow 0$<br>$1 \rightarrow $ | $1 \left( \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array} \right) \left( \begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0$ | $ \begin{array}{c}                                     $                                                                                                                   |                                                                                                                                                                   |  |
| s <sub>11</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $s_{12} = p^2 q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $s_{13}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $s_{14} = p^4 N$                                                                                                                                                           | $s_{15} = p\sigma_7$                                                                                                                                              |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -1/2                                                                                                                                                                       | 2                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                            |                                                                                                                                                                   |  |
| $s_{16} = pN\sigma_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $s_{17} = p^4 N^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $s_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $s_{19} = p^2 q$                                                                                                                                                           | $s_{20} = p^4 N$                                                                                                                                                  |  |
| 1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/2                                                                                                                                                                        | 0                                                                                                                                                                 |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{ccc} 2 & 1 \\ & & 1 \\ & & 1 \\ 2 & 1 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            | <ul><li>2</li><li>2</li><li>2</li><li>2</li></ul>                                                                                                                 |  |
| $s_{21} = p^4 N^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $s_{22} = p^4 N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $s_{23} = p^4 N^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $s_{24} = p^4 N^2$                                                                                                                                                         | $s_{25} = p^4 N^4$                                                                                                                                                |  |
| 1/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/6                                                                                                                                                                        | 1/384                                                                                                                                                             |  |

Table 1 Stable 4-vertex graphs of weight 4

|                           |                                                   | 0.1                             | 0        |                                                          |          |
|---------------------------|---------------------------------------------------|---------------------------------|----------|----------------------------------------------------------|----------|
| 5                         | $2 \sim 2 \circ$                                  | $\circ \overbrace{3}^{3} \circ$ |          |                                                          | 2 4      |
| $t_1$                     | $t_2$                                             | $t_3$                           | $t_4$    | $t_5$                                                    | $t_6$    |
| -1/30                     | 5/8                                               | 1/9                             | 1/6      | 1/2                                                      | 1/16     |
|                           | 3 3                                               |                                 | (2)      | $ \begin{array}{c}                                     $ |          |
| $t_7$                     | $t_8$                                             | $t_9$                           | $t_{10}$ | $t_{11}$                                                 | $t_{12}$ |
| 0                         | 1/18                                              | -1/4                            | -1/2     | -1/8                                                     | -7/4     |
| 1 $2$ $1$ $1$ $1$ $1$ $1$ | $ \begin{array}{c} 1 \\ 2 \\ 0 \\ 1 \end{array} $ | 2 / 2 / 2<br>(1) / 2 / 2        |          | $ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} $        |          |
| $t_{13}$                  | $t_{14}$                                          | $t_{15}$                        | $t_{16}$ | $t_{17}$                                                 | $t_{18}$ |
| -1                        | -1/4                                              | -1                              | -1       | -2                                                       | 1/2      |
|                           |                                                   |                                 |          | 3<br>2 2                                                 |          |
| $t_{19}$                  | $t_{20}$                                          | $t_{21}$                        | $t_{22}$ | $t_{23}$                                                 |          |
| 0                         | -1/4                                              | -1/6                            | -1/2     | -1/24                                                    |          |

Table 2 Stable balanced graphs of weight 4 and less than 4 vertices

**Acknowledgements** We thank the referees for very helpful comments and suggestions on the Conjecture 1.2.

#### References

- J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domainss, Multivariable operator theory (R.E. Curto, R.G. Douglas, J.D. Pincus, N. Salinas, eds.), Contemporary Mathematics, vol. 185, Amer. Math. Soc., Providence, 1995, pp. 7–65.
- [2] J. Arazy and M. Engliš, Q<sub>p</sub>-spaces on bounded symmetric domains, J. Funct. Spaces Appl. 6 (2008), no. 3, 205–240.
- [3] F. A. Berezin, Quantization, Math. USSR Izvest. 8 (1974), 1109–1163.
- [4] X. Dai, K. Liu and X. Ma, On the asymptotic expansion of Bergman kernel, J. Differential Geom. 72 (2006), no. 1, 1–41.
- [5] M. Engliš, Berezin quantization and reproducing kernels on complex domains, Trans. Amer. Math. Soc. 348 (1996), 411–479.
- [6] M. Engliš, Invariant operators and the Berezin transform on Cartan domains, Math. Nachr. 195 (1998), 61-75.
- M. Engliš, The asymptotics of a Laplace integral on a Kähler manifold, J. Reine Angew. Math. 528 (2000), 1–39.
- [8] M. Engliš, A Forelli-Rudin construction and asymptotics of weighted Bergman kernels, J. Funct. Anal. 177 (2000), 257–281.
- M. Englis and J. Peetre, Covariant Cauchy-Riemann operators and higher Laplacians on Kähler manifolds, J. Reine Angew. Math. 5478 (1996), 17–56.
- [10] M. Engliš and J. Peetre, On the correspondence principle for the quantized annulus, Math. Scand. 78 (1996), 183–206.
- [11] J. Faraut and A. Korányi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal. 88 (1990), 64–89.

- [12] Z. Feng and Z. Tu, Balanced metrics on some Hartogs type domains over bounded symmetric domains, Ann. Glob. Anal. Geom. 47 (2015), 305–333.
- [13] A. Karabegov and M. Schlichenmaier, Identification of Berezin-Toeplitz deformation quantization, J. reine angew. Math. 540 (2001), 49–76.
- [14] A. Loi, The Tian-Yau-Zelditch asymptotic expansion for real analytic Kähler metrics, Int. J. Geom. Methods in Modern Phys. 1 (2004), 253–263.
- [15] A. Loi and M. Zuddas, On the coefficients of TYZ expansion of locally Hermitian symmetric spaces, Manuscripta Math. 148 (2015), 303–315.
- [16] J. Peetre and. G. Zhang, Harmonic analysis on the quantized Riemann sphere, Internat. J. Math. Math. Sci. 16 (1993), no. 2, 225–243.
- [17] S. Sahi and G. Zhang, Positivity of Shimura operators, arXiv:1606.05276.
- [18] M. Schlichenmaier, Berezin-Toeplitz quantization and naturally defined star products for Khler manifolds, Anal. Math. Phys. (2018), 1–20.
- [19] B. Schwarz, Higher Laplacians on pseudo-Hermitian symmetric spaces, arXiv:1410.3807.
- [20] A. Unterberger and H. Upmeier, The Berezin transform and invariant differential operators, Comm. Math. Phys. 164 (1994), 563–597.
- [21] H. Xu, A closed formula for the asymptotic expansion of the Bergman kernel, Comm. Math. Phys. 314 (2012), 555–585.
- [22] H. Xu, Bergman kernel and Kähler tensor calculus, Pure Appl. Math. Q. (to appear).
- [23] H. Xu and S.-T. Yau, Trees and tensors on Kähler manifolds, Ann. Global Anal. Geom. (to appear).
- [24] S.-T. Yau, Uniformization of geometric structures, Proc. Symp. Pure Math. 48 (1988), 265–274.
- [25] G. Zhang, Invariant differential operators on Hermitian symmetric spaces and their eigenvalues, Israel J. Math. 119 (2000), 157–185.