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Abstract It was conjectured by the first author and Peetre that the higher Laplace-Beltrami opera-
tors generate the whole ring of invariant operators on bounded symmetric domains. We give a proof of
the conjecture for domains of rank < 6 by using a graph manipulation of K&hler curvature tensor. We
also compute higher order terms in the asymptotic expansions of the Bergman kernels and the Berezin
transform on bounded symmetric domain.
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1 Introduction

Denote by Z(Q2) the algebra of all (biholomorphically) invariant differential operators on a
bounded symmetric domain Q of rank 7. It is well known that () is a commutative algebra
freely generated by r algebraically independent elements. It is an interesting problem to con-
struct a set of generators explicitly. A survey of basic facts of bounded symmetric domains can

be found in [1].

The higher Laplace-Beltrami operators were first introduced and studied in [16] and [9].

T _ qaiby Ambm £
me*g g f/bl---bmal---ama

where / in the subscript denotes covariant differentiation and g% are contravariant metric
tensors. Throughout the paper, we will use the Einstein summation convention that any variable
appearing in both upper and lower indices will be summed automatically. Sometimes we may

aibi ... gambm when it causes no confusion. In fact, they considered more general covariant

omit g
Cauchy-Riemann operators twisted by a nontrivial vector bundles.

The first author and Peetre [9] conjectured that

Conjecture 1.1 (Englis-Peetre [9]) On any Hermitian symmetric space ), the operators
L,,, m >0 generate 2(Q).
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A stronger version is the following:

Conjecture 1.2 (Englis) On any Hermitian symmetric space Q2 of rank r > 1, the operators
Lom—1,1 < m <r generate 2(Q).

Conjecture 1.2 were proved by G. Zhang [25] for r = 2 and by the first author [7] for r < 3.
For simple Hermitian symmetric spaces of any rank r > 2, Conjecture 1.2 has been proved by
B. Schwarz [19]. In a recent work [17], Sahi and Zhang determined the eigenvalues of Shimura
invariant differential operators. Since the higher Laplace-Beltrami operators L,, are sums of
Shimura operators, it might be possible to prove Conjecture 1.2 using the Sahi-Zhang result.

The aim of this paper is to explore the algebraic relations of differential operators from the
perspective of graph manipulations. As an application, we give a proof of Conjecture 1.2 for
any bounded symmetric domains of rank r < 6 in §2 and indicate a possible general proof by
our method. The results of §2 were obtained in Nov. 2012.

In §3, we compute the weight four term of the asymptotic expansion of Bergman kernels and
study algebraic relations of curvature tensors, some of these results will be used in §4, where we
compute the weight four and five terms of the asymptotic expansion of the Berezin transform.

These results extend the previous work of the first author in [7].

2 Higher Laplace-Beltrami operators

First we fix notation and recall the work of [7, 9]. Let .Z be the set of all contravariant tensor
fields obtained through (partial) contractions of curvature tensors,

Here (3; represents either a barred or unbarred index. There is an associated covariant differential

operator Op(T) given by
Op(T)f =T f5,..3,. (21)

At the center of normal coordinates, we do not distinguish between contravariant and covariant
tensor fields. Denote by Op the algebra of all Op(T'), T € Z.

Let © be an irreducible bounded symmetric domain in CV in its Harish-Chandra, realization
as a circular domain centered at the origin. The domain 2 is classified up to isomorphism by
the rank r and the multiplicities @ and b. Note that the dimension N = r(1 + (r — 1)a/2 4+ b).
It is an important open problem of Yau [24] to characterize those K&hler manifolds that are
covered by symmetric domains. Bounded symmetric domains are also natural arenas for the
Berezin quantization [3].

Any bounded domain has a natural Kahler metric, the Bergman metric, which is invariant
under biholomorphic mappings. Its curvature tensor is defined by (following the sign convention
of [7])

Riiit = 9ijrt — 9" GmjiGipk- (2.2)
and satisfies (cf. [7, §5])

Rijiia =0,  Ri=g"Rsr=p-9; (2.3)
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where p =2+ a(r — 1) + b is the genus of Q.

Recall the Ricci formula for a covariant tensor field T,

p
_ - 2l
To..pii = Tprpylii = D Ry T8 BrsvBiin. B (2.4)
k=1
where Rz = ¢ R, 1;3, R}:- = —¢"" Ripmi; and Rjz = R}- = 0.

The Kéhler potential ®(x) of the Bergman metric may be decomposed into a sum of ho-
mogeneous polynomials ®(z) = > °_| ®,,(x) with ®,,(z) homogeneous of degree m in both z
and Z.

Theorem 2.1 ([7, Prop. 7]) On a bounded symmetric domain Q of rank r, the algebra of co-

variant differential operators Op coincides with 2(S2), which is freely generated by Op(®1), ..., Op(P,.).

Let Auto(2) be the identity component of the automorphism group of Q and K C Aut(Q)
the stabilizer subgroup of the origin. Under the action of K, the vector space P of all poly-
nomials in z € CV equipped with the Fock inner product has a decomposition into irreducible
subspaces P = @y Pm, where m ranges over all signatures, i.e. r-tuplesm = (mq,...,m,) € Z"
satisfying m; > mgo > -+ > m, > 0. The reproducing kernel Kp,(z,y) of Py, are K-invariant
polynomials of degree mq + - - - + m,., holomorphic in x and antiholomorphic in y and satisfy
the Faraut-Koranyi formula [11]

ST (my+v— Ea)
h(z,y)™" = V)mKm(z,y), where (V)m = J 2 , 2.5
(#0) ™ = S 0.0 wm =115 ) (2.5)
j=
for any v € C. Here h(x,y) is the Jordan triple determinant satisfying ®(x) = —log h(z, x).

Note that (2.5) encodes many algebraic relations among K, (z,y).

As discussed in [2], Ky (z,y) defines an invariant differential operator

Amf(z) = Km(9,0)(f © ¢2)(0),

where ¢, the geodesic symmetry interchanging x and the origin. A proof of the following
fundamental result can be found in [2, Prop. 2].

Theorem 2.2  The polynomials Km(x,y) form a basis of the space of all K-invariant sesqui-
holomorphic polynomials on CN x CN. Consequently, the operators Ay form a basis for the
vector space Z(Q).

The following explicit formula relating L,, and L; on the unit ball in CV was due to Engli§
and Peetre [9].
Theorem 2.3 ([9, Thm. 1.1]) When Q is the unit ball in CN, we have

m

L= [[(L1 =G =D +N 1) (2:6)
j=1

Proof By (2.3) and the Ricci formula (2.4), we have

me - melLlf

<f/51"'5ja16j+1 bmagam T f/51 "'ijlalgj"'Em,a?"'a'm)
=2
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3

n

j—1
=-> (Rsblalbjf/sbgmbj1bj+1mbma2~~am +) Rsb,;alb,-f/bynbilsbi+1~~~bj1bj+1~~bma2~~am>

j i=2

1

== ((N+ D)Lt f +2( = 2)Ln-1f)

U
N

=—(m—=1)(m+N—1)Ly,_1f.

We get (2.6) immediately. Note that in the third equation, we used Rg.4.5, = 9sb,9as5, +
gSEj quEi °
The rest of the section will be devoted to a proof of Engli§’ conjecture for rank r < 6.

Theorem 2.4 Conjecture 1.2 holds for any bounded symmetric domains 2 of rank r < 6.

First we introduce some terminology. An admissible graph G = (V, E) is defined to be
a multidigraph (i.e. a directed graph with possible multiedges and loops) such that for each
vertex v € V(G), both the indegree and outdegrees of v are no greater than 2 (i.e. deg™ (v) <
2, deg™t(v) <2).

An admissible tree T is an admissible graph such that its underlying undirected graph is a
simple tree (i.e. an oriented tree). Denote by J; the set of admissible trees with k vertices.
Obviously the k-vertex directed path Py, € .

An admissible graph G canonically defines a covariant differential operator on bounded sym-
metric domains. This can be seen as follows: The completion G of G is a (unique) multidigraph
with vertices V/(G) U {e} and edges F(G) U E’, where E’ consists of edges between e and V(G)
such that deg™ (v) = deg™ (v) = 2 for each v € V(G) in G. Let m = deg™ (o) = deg™(s). We

define a covariant differential operator L of order 2m,

LGf — H ga’eb'i H R*;*; f/bl---Bma1"‘am’ (27)
e=a.b.€E(G) veV(G)

where * * xx denote the half-edges attached to v and by ---b,,a1 - - - a,, denote all half-edges
attached to e. In particular, an admissible tree T' € .7}, defines a covariant differential operator

Ly of order 2k + 2. For simplicity, we will also use the graph G to denote Lg.
Lemma 2.5 Letk > 1. Then
Lopy1 — Lo Ly = Z CrLr + Qy, (2.8)
TeI,

where (—1)*Cr > 0, VT € F; and Cp, # 0 for directed paths, Qi is a polynomial of Ly, . .., Loy,
and Lg of order < 2k + 2 defined by connected admissible graphs G.

We also have

Loy — Log—1Ly = Sy, (2.9)

where S is a polynomial of Lq,...,Lox_1 and Lg of order < 2k + 2 defined by connected
admissible graphs G.

Proof  From the proof of Theorem 2.3, we have

me == Lm,1L1f - (m — 1)me,1f (210)
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m j—1

- 2 :z :ngialgjf/62"'Eiflgi#»l"‘gj—lgj#»l"'Em,Ea2"'ai—1ai+l"'aj—laj+1"'amaiaj'
Jj=3 i=2

Next we move as to the right adjacency of by using the Ricci formula. Repeat the process and

note that if G is a disjoint union of connected subgraphs G = G1 U --- U Gy, then
Lg = Lg, -+ Lg, + lower order operators,

we can write the summation in the right-hand side of (2.10) as a linear combination of Lo L7 f
with G connected and j > 0.

Note that each Lp appearing in the computation of Log41 — Lok L1 must have the same sign
(—1)%. We now check that in (2.8), Cp, # 0.

Logs1f = LokLn f = =Ry, a1b00 1 f /b1 bor—15a0--aspss T (switch bagt1,a1)
= ngzka152k+1Rt52k71a2§f/51"‘52k72t7a3“'112k+1 +e (SWitCh S, a’2)
k
:...:(_1) LPkf‘f"" .

The forms of (2.8) and (2.9) are not difficult to prove in view of the Ricci formula. We omit
the details.

Remark 2.6 In [7], the first author computed
Ly— L} = —pLy,
L3 — LyLy = —L(0) — 2pL? + 2p*L,
Ly — LsLy = —3pLs — 3L(0) Ly + 6pL(o) + 3L(o — o),
Ls — LyLy = 12L(0 = o) — dpLy — 6L(0)L? + 30pL(o)L; + 12L(0 -2 o)Ly
— 36p>L(0) — 30pL(o — 0) — 6L(0 —= 0 — o),

where L(o)f = Rﬁklff/ﬁik =40p(Py)f.
Remark 2.7 There are three trees in 93,

O —> 0 —>0 O=<— 0 —>0 O —>0=<—20

111, 111, 1115
There are six trees in 7,
O—>0—>0—>0 O=<— O —>0 —0 O—0=<—0—>0 O—>0 —>0=<—20
IV, 1V, V3 V4

o o

O—>0—>0 O —>0—>0
V5 Vg

By a tedious computation following the procedure as the proof of (2.8), we get
L7 — LgLy = —180L(I11;) — 90L(I1Ly) — 180L(I1L3) + Qs
Lo — LsLy = 3360L(IVy) + 5040L(IVy) + 8400L(IV3) + 12320L(IV,)
+ 1680L(IV5) + 2440L(IVe) + Q4.
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Now we investigate relations among L¢g for admissible graphs G. Let G be an arbitrary

multidigraph. Consider the following two graphs,

G G
Gy = ! Gy = e (2.11)
0—>o0 0<—o0

By R;jii/o = 0 and the Ricci formula, we have
0= Rijii/pg — Bijrijgp = —Rsjrilispa + RispiBsjpq — RijsiBrspq + Rijrs Raipgs (2.12)
which implies that Lg, = Lg, (abbr. G; = G3), or written graphically
6>0ts — 0<_ o0 s (2.13)

Similarly, we have

o—>0< = 0=—o0<— (2.14)

More identities are collected in the following lemma.

Lemma 2.8 We have

O O Oi% O’L% ( )
— =9 — 2.15
ES T Ey
(o] _ Oje _ an (216)
EAFEY B
o oi> o 2s
ij = i = ¢ (2.17)
-%O% <=— 0 eo

Proof The first equation of (2.15) follows from (2.12). The second equation of (2.15) follows

from

0= Rinri/mj — Binki/jim = —BeaniBismj + RisuiRsnmj — RinsiBrsmj T Rinks Ropmj-

The remaining identities can be proved similarly.

Lemma 2.9 Letl<k<5andT,T' € 9. Then LT = L.

Proof 1t is trivial when £ = 1 or 2. Under the notation of Remark 2.7, III; = III; and
III; = III; follow from (2.13) and (2.14) respectively.

It is also not difficult to see that (2.13) and (2.14) imply IV, = IV, IV, =1V3, IV =1V,
(2.15) implies IV5 = IVg, and (2.17) implies IV = IV5.

The proof when k =5 can be found in the appendix.
Remark 2.10 It would be very interesting to see whether the above lemma is true for higher
k. Although it is probably too strong to be true, the validity of Lemma 2.9 for all & would

imply Conjecture 1.2 and hence the Englis-Peetre conjecture.
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Recall that a rooted tree is an oriented tree with a special vertex, called the root, such that
there is a unique directed path from the root to any vertex v, i.e. all edges point away from
the root. Given a rooted tree T' with ¢ vertices, an ordered decoration of T is to attach ¢ + 1
outward external legs ay,...,a;11 and i + 1 inward external legs by, ...,b;11 to vertices of T,
such that (i) Each vertex of T" has exactly two outward half-edges and two inward half-edges;
(ii) by, by are attached to the root; (iii) If uv is a directed edge of T' and b;, € u, b;, € v, then
J1 < Jja-

Lemma 2.11 Let j > 2. then

rooted

Op(®;) = ﬁ ] ; CoLy, (2.18)

where T runs over all admissible rooted trees with j — 1 wvertices and Cp > 0 is equal to the

number of ordered decorations of T'.
Proof Since

1 = —
QJ(Z) = m Z gall;1~--aj5j (O)Zalzlh e Zaj ij7

aiybi
(2.18) follows readily from [22, Thm. 4.4].
From Theorem 2.2 and Lemmas 2.5, 2.9 and 2.11, we can prove inductively that when
0<k<5,
Logt+1 = ¢ Op(Py41) + a polynomial in Op(®y),...,0p(Pyk),
where ¢ #£ 0. So Ly, L, . .., Lagy1 generate 2(2) on domains of rank < k+ 1, which concludes
the proof of Theorem 2.4.

3 Bergman kernel of bounded symmetric domains

Let ®(z) be the Kahler potential of the Bergman metric on a bounded symmetric domain 2.

Consider the weighted Bergman space of all holomorphic function on 2 square-integrable with

respect to the measure e*“q’%’, a > 0. The reproducing kernel K, (z,y) has an asymptotic
expansion [3, 7, §]
o0
Ko(z,y) ~ e® (@) Z Bi(z,y)a" % o — oco. (3.1)
k=0

These asymptotic coefficients have useful geometric implications on Hermitian symmetric spaces
[12, 15]. The connection between Bergman kernel and heat kernel was studied in [4].

The coefficients B; of the asymptotic expansion of the Bergman kernel of Q2 satisfy > j>0Bj 2 =
exp(D_;>y kj27), where k; are given in terms of Bernoulli polynomials §;(z):

kj = g(_jl_):;i |:ﬁj+1 (—g(i - 1)) — Bi+1 (—]:j - g(i - 1))} :

i=1

See [7, §5] for details. In particular,

1 1 1
B, = ﬂlﬁl + ikfkg + §k§ + kyks + ky (3.2)
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is a polynomial in Q[N,a,r,r~!] and has 104 terms.

On the other hand, B; can be computed by a recursive formalism developed by the first
author [7] from the asymptotics of Laplace integrals, where B;, j < 3 for Q were explicitly
computed. By applying an improved recursive formula [14], the following explicit closed formula
of By, was obtained in [21].

(—1)" det(A — 1)
Bu(x) =S 2(G)- G = a, (3.3)
K0 =2 2 TAw(c)

where G = G1U- - -UG,, runs over stable (i.e. both the indegree and outdegree of each vertex are
no less than 2) multidigraphs of weight &k (i.e. |[E(G)|—|V(G)| = k) such that each component
G is strongly connected and A is the adjacency matrix of G. Note that vertices of G represent
partial derivatives of metrics.

Below we derive an explicit formula of By by using (3.3). Since all covariant derivatives
of R;5;; vanish, we need only sum over balanced stable graphs. There are 82 weight 4 stable
graphs, among which 48 are balanced (see [21, App. B]).

Table 1 in the appendix contains the 25 stable 4-vertex graphs of weight 4 (denoted by
s;, 1 <14 < 25), together with their coefficients z(s;) in By. Note that some s; may be simplified
into the following Weyl invariants (in the notation of [7])

07 = RipiRjimaignm, 015 = RigriRimin Ryinks 4 = Rigriljar (34)
using the Kahler-Einstein condition R;; = p - g;5, where p is the genus of (2.

Table 2 in the appendix contains the 23 stable balanced graphs of weight 4 and less than 4
vertices (denoted by ¢;, 1 < i < 23), together with their coefficients z(¢;) in By. Note that t;
represent Weyl invariants in partial derivatives, i.e. each vertex represents a partial derivative
of g;; and each edge represents the contraction of a pair of indices.

For the one 1-vertex graph ¢; and seven 2-vertex graphs t;, 2 < i < 8, we may use [22, Thm.

4.4] to get their curvature tensor expressions

D(tl) =659 + s3 + 10s5 + 15sg + 11s7 + 20511 + 7S12 + 8813
+ 8814 + 44515 + 20818 + 14519 + 14590 + 2522,

D(tz) =253 + s3 + 285 + 256 + bs7 + 4s11 + 2512,
D(t3) =s2 +4s11 + 4s1s,
D(ty) =2s5 + s¢ + s7 + s12 + S14 + 4515 + 3519 + 4520 + S22,
D(t5) =s5 + s7 + 2511 + s12 + 4515,
D(ts) =Tsg + s10 + 4s16 + 4s17 + 2524,
D(t7) =s2 + s5 + 356 + 2514 + 2520,
D(ts) =s1 + 484 + 4521,
For the fifteen 3-vertex graphs ¢;, 9 < ¢ < 23, we have
D(tg) =256 + s7, D(t19) =259 + s10, D(t11) =s1 + 254,
D(trz) =s2 + 2511, D(t13) =s5 + 57+ s12, D(t14) =82 + 256,

(
D(t15) =s3 + 257, D(tis) =s7 + 2519, D(t17) =s11 + 2s15,
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D(tig) =s¢ + s14 + 820, D(ti9) =s12 + 2520, D(ta0) =s9 + 517 + 524,
D(t91) =s4 + 2591, D(ta2) =s5 + s20 + S22, D(t23) =sg + 2523,

By (3.3), we get

23 25
By = Z (1) D(t;) + ZZ(Si)Si
=1 =1
1, 167 167 23, 23, 7 1,0, 7
R B L L o 3 N i — p?N%— LN
11507 736052 " 960" Tl VU ol 4T ggPots el N Td T PN oS
2 13 1, 4 7 37 U U TR
_z =2 e — —prN— 2 L Ny + 2L S pAN? AN 4 AN
9511 T 90518 T 5P P07 T PN OT F gesis gl 18P N T agg?

(3.5)
For further simplification, we need the following lemma.

Lemma 3.1 Under the above notations, we have

1
207 — 015 = pq, S11 = 5(53 +pois),
1 1 1 1 1

1
S13 = 183 - 582 + Zp015 + poz, S18 = 582 + 153 + ZP015~

Proof 207 — 015 = pq follows from [7, (5.8)]. Consider the following three graphs of weight 4,

we will apply the Ricci formula (2.4) to the unique vertex with degree 6 in each of the following

graphs:
2 ’ 2 1V/Zo\1 1/7101\\1 26
®/42‘>\O o ;%_;7 o %}o ( )

From the first graph, we have
0= Rp5ii B jtem (Rihmnni — Rihma/in) = 2511 — 83 — 87 = 2811 — 83 — pois.
From the second graph, we have
0 = Ryjix Bemin(Bjhmijni — Rihmijin) = —2818 + s11 + 2.
From the third graph, we have
0= RiﬁijjEmz‘(halﬁ/nm - R;ﬁm/ﬁm) = S18 + 813 — 811 — S15 = S18 + S13 — S11 — PO7.

They give the last three equations of the lemma.
By substituting equations of Lemma 3.1 into (3.5), we get an explicit formula of B, which

is summarized in the following theorem.
Theorem 3.2 Let Q be an irreducible bounded symmetric domain in C. Then

1 1 1 1 1 1
By=(-—N'— N4+ _N?>—- —_N|p'+ —p’N*q— —p°N 3.7
4 (384 B 18 20 )p TP Ve g Ve (37)
EICSIN RPN Lo
3 Ll 1 1
80”17 11527 T 240" 9607 T 480771
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where p is the genus of 1, and ¢ = R;5iR a5, 015 = R Rjmin Ronink
s2 = Rgnp R Bnmi Riame, 83 = Rinnt Bigin Bgme Rniem -

Remark 3.3 In fact, from our proof, the formula (3.7) holds for any Ké&hler metric in an open

subset of CV satisfying (2.3).

Let us check (3.7) when € is the unit ball in CV. In this case, we have
r=1, a=2, b=N-1, p=N+1.

Since the Bergman metric of the unit ball has constant curvature, it is not difficult to get (cf.
[7, 21])

g =2N?+2N, o015 =4N?+4N,
So =4N3 4+ 8N? + 4N, s3=8N?+8N.

From (3.7), we get

1 1 1 1 1 1
B4:—N8——N7——N6+—N5—L 1 N 4+ N2 +—N
384 96 576 30 1152 32 288 120

which agrees with that computed by (3.2).

Corollary 3.4 Let Q be an irreducible bounded symmetric domain in CV. Then

N(r—1)(r —2)a* _3N(r— 1)?(N +r)a3
2 r
N 2N(r —1)(N +7)(2Nr — N +r% — 5r)a? n 12N (r — 1)2(N+7")2a n 8N (N + 2;")(]\7—1—7")'

dsg + 83 — 2po1s =

r2 r r

(3.8)

Proof The genus p = 1 -|- 4+ (r=Da 1)“

(r— 1)Na*> (r—1)N(N+7)a 2N(N +7r)
+ + :
2 T r
So (3.8) follows readily from (3.2) and (3.7).

and it was proved in [7, p.30] that

4 Berezin transform of bounded symmetric domains

On a bounded symmetric domain €2, the Berezin transform is the integral operator
/ fly |K T Z/)| efaé(y)i(y)_ (4.1)
, ) n!
At any point for which K, (z,z) invertible, the 1ntegral converges for any bounded measurable
function f on . Note that (3.1) implies that for any =, K, (z,x) # 0 if « is large enough.
The Berezin transform has an asymptotic expansion

= E:Qkf(x)cfk7 o — 00, (42)
k=0

where @, are linear differential operators and Qg = Id, Q1 = L. It first appeared in the work
of Berezin [3] in the quantization of Kéhler manifolds. The convergence in various contexts has

been extensively studied [5, 10, 13, 20], as well as relations to the star products [13, 18].
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For a bounded symmetric domain Q of rank r, is has been proved that Z(Q) is freely
generated by Q1,Qs,...,Q2-—1 [6, Thm. 1.1]. The first author [7] also proved a recursive
formula of @ and computed Qy, k < 3,

1 p 1 P P 1
=-Li+:L =L} + L3+ %L1+ —L(o). 4.3
Q2 21+2 1, Qs 61+2 1+3 1+12 (o) (4.3)
The following closed formula of @y was proved in [22],
strong
det(A(T'-) — 1)
I=(VU{e},E)

where T runs over all strongly connected graphs with a distinguished vertex e of weight & (i.e.
|E| —|V] = k) and T'_ is obtained from I' by removing the distinguished vertex e from I'. Note
that vertices of I' represent partial derivatives of metrics or the function. Effective methods
of converting partial derivatives of metrics (functions) to covariant derivatives of curvature
tensors (functions) on Kéhler manifolds were developed in [22, 23], which made possible the

computations of more terms of Q.

Theorem 4.1 On a bounded symmetric domain Q of genus p, we have

1 1 1 1 1 1
=—— I3l — =pLy+ =L+ ZpL3 + Zp?L? + =p°L 4.
Q4 Tp ksl —gp 3+8 1+8p 1+4p 1+2p 1 (4.5)
1 1 1 1 19 1
=—— Ly — — L4014+ —pLy — —L3L? — —pLsl, + —L° 4.6
@s = o5 ls = qqglaln + 3gPla — g lali — mpplaln + 5 14 (4.6)
5 1 a2 . 1 1 2 2
+2*4PL%*ZP2L‘f+§P3L%+§P4L1+@L(O—>0—”’)-

Proof By a lengthy calculation using (4.4) and the algorithm described in the proof of Lemma
2.5, we get

1 1 3 1 1 1
Qu=gyLa+ 5pLs+ 507 Lo+ p° Lo+ { L)Ly + pL(o) = Lo = 0) + W, (47)

where W is the sum of four differential operators of order 2,

o © o
W:§L 1/,71 Nvl —iL 1/1\\1 _3 \3 —gpL o/i*o .
2 o—>o 12 O:Ejo 4 o'<ro 3 ~

Using the notation of (3.4) and Lemma 3.1, we get

3 1 3 2
= — —_ — —_ = —_ = L = .
W (207 1Pl — 401 3pq> 1=0

So (4.5) follows from the formulas of L3 and L, in Remark 2.6.
The formula of Q5 needs more work. Besides Lemma 3.1, we also need the following Lemma

4.2. Drastic simplifications occur in the computation. We omit the details.
Lemma 4.2 We have the following equations among differential operators of order 4.

1

L(oLo):ZL [omo — pL(o0), (4.8)

~—
1

1 1
Gy =Gy=Gr =G+ §pL(o 2.0, (4.9)
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2G2 = G5 + Gb, (4.10)
1

Gs + Gg = G3 + pL OCO]. (4.11)
1

o ¢} (¢} o o o
2 2 1 1 1 1 1 1 1 1 1 1 1
O/ \O oéo O/;\O OZ;E;\O oé_/o O/ﬁ R\O O@O
1 1 2 1
Gl Gz G3 G4 G5 GG G7

Proof Note that (2.12) may be written graphically as

AN N N N 7
j 0—=0_, + ; o —>0_ , = g o—=0 . + 4 o —o (4.12)
VR I NI AP TN AP TN
Gluing the two external legs pj in the above equation, we get (4.8).
Attaching a new vertex to the external leg 7 in (4.12), we get
= % mn
Ny iyt s N e N e T
O —> 0 —>0 O —>0—>20 _|_ O —> 0 —>20

SR N A NG AR S N AN N

J

Gluing mq and nj gives G3 = G4. Gluing mqg and kt gives G7 = G3. Gluing kg and pt gives
2G7 = Gy +pL(o 2, o). Then (4.9) follows from these three equations. Finally, (4.10) follows
from gluing mj and ni. (4.11) follows from gluing mq and pj.

In fact, (4.8) is equivalent to L3L; = Ly L3. When  is the unit ball in CV, (4.5) and (4.6)
becomes

1
Qs = ﬂ[L;1 + (6N +10)L3 + (11N? + 24N + 13)L} + (6N3 + 12N? + 6N)Ly],

Qs L3 + (10N +20)L7 + (35N% 4 100N + 73)L3

_ 1
120

+ (50N? + 146 N? + 130N + 30)L7 + (24N* + 60N> + 40N? — 4)L4],
which agree with that computed in [9, p. 53].

APPENDIX

1 Admissible trees with five vertices

In this appendix, we prove the case k = 5 of Lemma 2.9. There are 19 admissible trees in 5.

[b]
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O—>0—>0—>0—>0

i

O —0=<—0—>0—>0

Vs

0O0<—0—>0=<—0—0

Vo

O—>0—>0—>0

Vis

O—>0=<—0=<—0

iz

O—>0—> 0 —>0=<—0

Vs

O—0=<—0—>0=<—0

Vs

O<—0=<—0—>0—>>0

Vio

O—> 0 —>0 —>>2o0

Vig

0—>0=<—0=<—0

Vis

O—>0—>0=<—0—>0

Vs

O—0=<—0=<—0—0

\%4

O=<—O0—>0—>0

13

O—>0—>0<—0=<—0

Vi

O=<—0—0—>0—0

Vs

O—>0—>0—>0

Viz

O=<—O0—>0—>0o0

Vie

It is not difficult to verify that (2.13) and (2.14) imply Vi = Vo, Vi = Vg, V5 = Vig, Vo = V7,
Vi =Vy, V3 =Vy, V5 = Vg, Vi1 = Vis, Vig = Vig, Via = Vi, Viz = V7.
Moreover, (2.15) implies Via = Viz, Vi1 = Vig; (2.16) implies Vig = V7, Vig = V3; (2.17) implies

Viz = Vig, Vi2 = V4.

The above 17 equations imply that Vi, 1 < ¢ < 18 are all equal.

Lemma 1.3 Under the convention of Lemma 2.8, we have

b + ~ o s (A1)

N

Proof  The equation comes from switching p and g in R;j,;/,5 using the Ricci formula. The argument

is similar to that of Lemma 3.1.
It is easy to see that (Al) implies 2Vi2 = Vi1 + Vig. So we get Vig = Vi1, which concludes the
proof of the case k = 5 of Lemma 2.9.
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Table 1 Stable 4-vertex graphs of weight 4
2
o N OQO o—2+50 o @
/{\ 4\ 1 A\ Al
2;12 2\;2 1 1 9 9 2()2 A
\ 4 NN v Y
o o oo ° 2 ° o
2
s1 = q2 S2 S3 S4 = p2Nq
9/128 3/8 15/64 3/16 1
o<t o o> @ o
1\ 1\ o ! 1 21\‘2
1| ¢2 SARE! \j
Y
o °o— ® °
s6 = p’q 87 = pois sg = p>N?q
—1/2 1 3/64
1
171 'f 1
1| / N1 2 \ T
/ ) \ 1 1 1 ¢1 1\ 1
OQO o \OAO
1 1 i
S11 s12 = pq $13
2 0 3/8
@ o 1
1 @ o O=<——0
//1”1 s \ f\ 4
771 /ERIEH! 1(1:j 1( 1
Yo \r /AT N/
O<—° @ oéo
1 1
s16 = pNo s17 = ptN? s18
1/3 0 5/4
7ﬂ@ \ O-—0 | @ ©
1] ) 1 1/”/1 1 1 11)/1
4
5 1 o &
s21 = p*N? s22 = p*N s23 = p*N3 524 = p*N? s25 = ptN*
1/8 1/4 1/16 1/6 1/384
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Table 2 Stable balanced graphs of weight 4 and less than 4 vertices

2 3 1 2
® |G 2| 20 |0 0|00 ®@O®
2 3 1 2
11 to t3 ta ts te
~1/30 5/8 1/9 1/6 1/2 1/16
) AR ©) ® 1/40 )
e @ | N . | N
\1/@> N @;;;_:jo o?o Oéo
tr ts tg tio t11 t12
0 1/18 —~1/4 —7/4
o o
2 2 1 1
101
[}
2
t13 t14 t15 t18
—1 —1/4 -1 -1 -2 1/2
1/” \1 @ ® 1 1 ®
11 1 1
Q0| =0
- - - @ O
tig t20 ta1 tao to3
0 —1/4 -1/6 ~1/2 —1/24
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