
Acta Mathematica Sinica, English Series

Sep., 201x, Vol. x, No. x, pp. 1–16

Published online: August 15, 201x

DOI: 0000000000000000

Http://www.ActaMath.com

Higher Laplace-Beltrami operators on bounded symmetric domains

Miroslav ENGLIŠ
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Abstract It was conjectured by the first author and Peetre that the higher Laplace-Beltrami opera-

tors generate the whole ring of invariant operators on bounded symmetric domains. We give a proof of

the conjecture for domains of rank ≤ 6 by using a graph manipulation of Kähler curvature tensor. We

also compute higher order terms in the asymptotic expansions of the Bergman kernels and the Berezin

transform on bounded symmetric domain.
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1 Introduction

Denote by D(Ω) the algebra of all (biholomorphically) invariant differential operators on a
bounded symmetric domain Ω of rank r. It is well known that D(Ω) is a commutative algebra
freely generated by r algebraically independent elements. It is an interesting problem to con-
struct a set of generators explicitly. A survey of basic facts of bounded symmetric domains can
be found in [1].

The higher Laplace-Beltrami operators were first introduced and studied in [16] and [9].

L̄mf = ga1b̄1 · · · gamb̄mf/b̄1···b̄ma1···am
,

where / in the subscript denotes covariant differentiation and gaib̄i are contravariant metric
tensors. Throughout the paper, we will use the Einstein summation convention that any variable
appearing in both upper and lower indices will be summed automatically. Sometimes we may
omit ga1b̄1 · · · gamb̄m when it causes no confusion. In fact, they considered more general covariant
Cauchy-Riemann operators twisted by a nontrivial vector bundles.

The first author and Peetre [9] conjectured that

Conjecture 1.1 (Englǐs-Peetre [9]) On any Hermitian symmetric space Ω, the operators
Lm, m ≥ 0 generate D(Ω).
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A stronger version is the following:

Conjecture 1.2 (Englǐs) On any Hermitian symmetric space Ω of rank r ≥ 1, the operators
L2m−1, 1 ≤ m ≤ r generate D(Ω).

Conjecture 1.2 were proved by G. Zhang [25] for r = 2 and by the first author [7] for r ≤ 3.
For simple Hermitian symmetric spaces of any rank r ≥ 2, Conjecture 1.2 has been proved by
B. Schwarz [19]. In a recent work [17], Sahi and Zhang determined the eigenvalues of Shimura
invariant differential operators. Since the higher Laplace-Beltrami operators Lm are sums of
Shimura operators, it might be possible to prove Conjecture 1.2 using the Sahi-Zhang result.

The aim of this paper is to explore the algebraic relations of differential operators from the
perspective of graph manipulations. As an application, we give a proof of Conjecture 1.2 for
any bounded symmetric domains of rank r ≤ 6 in §2 and indicate a possible general proof by
our method. The results of §2 were obtained in Nov. 2012.

In §3, we compute the weight four term of the asymptotic expansion of Bergman kernels and
study algebraic relations of curvature tensors, some of these results will be used in §4, where we
compute the weight four and five terms of the asymptotic expansion of the Berezin transform.
These results extend the previous work of the first author in [7].

2 Higher Laplace-Beltrami operators

First we fix notation and recall the work of [7, 9]. Let L be the set of all contravariant tensor
fields obtained through (partial) contractions of curvature tensors,

T β1···βp = g∗∗ · · · g∗∗R∗∗∗∗/∗···∗ · · ·R∗∗∗∗/∗···∗.

Here βi represents either a barred or unbarred index. There is an associated covariant differential
operator Op(T ) given by

Op(T )f = T β1···βpfβ1···βp
. (2.1)

At the center of normal coordinates, we do not distinguish between contravariant and covariant
tensor fields. Denote by Op the algebra of all Op(T ), T ∈ L .

Let Ω be an irreducible bounded symmetric domain in CN in its Harish-Chandra realization
as a circular domain centered at the origin. The domain Ω is classified up to isomorphism by
the rank r and the multiplicities a and b. Note that the dimension N = r(1 + (r − 1)a/2 + b).
It is an important open problem of Yau [24] to characterize those Kähler manifolds that are
covered by symmetric domains. Bounded symmetric domains are also natural arenas for the
Berezin quantization [3].

Any bounded domain has a natural Kähler metric, the Bergman metric, which is invariant
under biholomorphic mappings. Its curvature tensor is defined by (following the sign convention
of [7])

Rij̄kl̄ = gij̄kl̄ − gmp̄gmj̄l̄gip̄k. (2.2)

and satisfies (cf. [7, §5])

Rij̄kl̄/α = 0, Rij̄ = gkl̄Rij̄kl̄ = p · gij̄ , (2.3)
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where p = 2 + a(r − 1) + b is the genus of Ω.
Recall the Ricci formula for a covariant tensor field T ,

Tβ1...βp/ij̄ − Tβ1...βp/j̄i =
p∑

k=1

Rγ
βkij̄

Tβ1...βk−1γβk+1...βp
, (2.4)

where Rk̄
l̄ij̄

= gmk̄Rml̄ij̄ , Rk
lij̄

= −gkm̄Rlm̄ij̄ and Rk
l̄ij̄

= Rk̄
lij̄

= 0.
The Kähler potential Φ(x) of the Bergman metric may be decomposed into a sum of ho-

mogeneous polynomials Φ(x) =
∑∞

m=1 Φm(x) with Φm(x) homogeneous of degree m in both x

and x̄.

Theorem 2.1 ([7, Prop. 7]) On a bounded symmetric domain Ω of rank r, the algebra of co-
variant differential operators Op coincides with D(Ω), which is freely generated by Op(Φ1), . . . ,Op(Φr).

Let Aut0(Ω) be the identity component of the automorphism group of Ω and K ⊂ Aut0(Ω)
the stabilizer subgroup of the origin. Under the action of K, the vector space P of all poly-
nomials in z ∈ CN equipped with the Fock inner product has a decomposition into irreducible
subspaces P = ⊕mPm, where m ranges over all signatures, i.e. r-tuples m = (m1, . . . , mr) ∈ Zr

satisfying m1 ≥ m2 ≥ · · · ≥ mr ≥ 0. The reproducing kernel Km(x, y) of Pm are K-invariant
polynomials of degree m1 + · · · + mr, holomorphic in x and antiholomorphic in y and satisfy
the Faraut-Koranyi formula [11]

h(x, y)−ν =
∑
m

(ν)mKm(x, y), where (ν)m =
r∏

j=1

Γ
(
mj + ν − j−1

2 a
)

Γ
(
ν − j−1

2 a
) , (2.5)

for any ν ∈ C. Here h(x, y) is the Jordan triple determinant satisfying Φ(x) = − log h(x, x).
Note that (2.5) encodes many algebraic relations among Km(x, y).

As discussed in [2], Km(x, y) defines an invariant differential operator

∆mf(x) := Km(∂, ∂)(f ◦ φx)(0),

where φx the geodesic symmetry interchanging x and the origin. A proof of the following
fundamental result can be found in [2, Prop. 2].

Theorem 2.2 The polynomials Km(x, y) form a basis of the space of all K-invariant sesqui-
holomorphic polynomials on CN × CN . Consequently, the operators ∆m form a basis for the
vector space D(Ω).

The following explicit formula relating Lm and L1 on the unit ball in CN was due to Englǐs
and Peetre [9].

Theorem 2.3 ([9, Thm. 1.1]) When Ω is the unit ball in CN , we have

Lm =
m∏

j=1

(L1 − (j − 1)(j + N − 1)). (2.6)

Proof By (2.3) and the Ricci formula (2.4), we have

Lmf − Lm−1L1f

=
m∑

j=2

(f/b̄1···b̄ja1b̄j+1···b̄ma2···am
− f/b̄1···b̄j−1a1b̄j ···b̄ma2···am

)
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=−
m∑

j=2

(
Rsb̄1a1b̄j

f/s̄b̄2···b̄j−1b̄j+1···b̄ma2···am
+

j−1∑

i=2

Rsb̄ia1b̄j
f/b̄1···b̄i−1s̄b̄i+1···b̄j−1b̄j+1···b̄ma2···am

)

=−
m∑

j=2

(
(N + 1)Lm−1f + 2(j − 2)Lm−1f

)

=− (m− 1)(m + N − 1)Lm−1f.

We get (2.6) immediately. Note that in the third equation, we used Rsb̄ia1b̄j
= gsb̄i

ga1b̄j
+

gsb̄j
ga1b̄i

.
The rest of the section will be devoted to a proof of Englǐs’ conjecture for rank r ≤ 6.

Theorem 2.4 Conjecture 1.2 holds for any bounded symmetric domains Ω of rank r ≤ 6.

First we introduce some terminology. An admissible graph G = (V, E) is defined to be
a multidigraph (i.e. a directed graph with possible multiedges and loops) such that for each
vertex v ∈ V (G), both the indegree and outdegrees of v are no greater than 2 (i.e. deg−(v) ≤
2, deg+(v) ≤ 2).

An admissible tree T is an admissible graph such that its underlying undirected graph is a
simple tree (i.e. an oriented tree). Denote by Tk the set of admissible trees with k vertices.
Obviously the k-vertex directed path Pk ∈ Tk.

An admissible graph G canonically defines a covariant differential operator on bounded sym-
metric domains. This can be seen as follows: The completion G of G is a (unique) multidigraph
with vertices V (G)∪{•} and edges E(G)∪E′, where E′ consists of edges between • and V (G)
such that deg−(v) = deg+(v) = 2 for each v ∈ V (G) in G. Let m = deg−(•) = deg+(•). We
define a covariant differential operator LG of order 2m,

LGf =
∏

e =aebe∈E(G)

gaeb̄e

∏

v∈V (G)

R∗∗̄∗∗̄ f/b1···b̄ma1···am
, (2.7)

where ∗ ∗ ∗∗ denote the half-edges attached to v and b1 · · · b̄ma1 · · · am denote all half-edges
attached to •. In particular, an admissible tree T ∈ Tk defines a covariant differential operator
LT of order 2k + 2. For simplicity, we will also use the graph G to denote LG.

Lemma 2.5 Let k ≥ 1. Then

L2k+1 − L2kL1 =
∑

T∈Tk

CT LT + Qk, (2.8)

where (−1)kCT ≥ 0, ∀T ∈ Tk and CPk
6= 0 for directed paths, Qk is a polynomial of L1, . . . , L2k

and LG of order < 2k + 2 defined by connected admissible graphs G.
We also have

L2k − L2k−1L1 = Sk, (2.9)

where Sk is a polynomial of L1, . . . , L2k−1 and LG of order < 2k + 2 defined by connected
admissible graphs G.

Proof From the proof of Theorem 2.3, we have

Lmf = Lm−1L1f − (m− 1)pLm−1f (2.10)
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−
m∑

j=3

j−1∑

i=2

Rsb̄ia1b̄j
f/b̄2···b̄i−1b̄i+1···b̄j−1b̄j+1···b̄mb̄1s̄a2···ai−1ai+1···aj−1aj+1···amaiaj

.

Next we move a2 to the right adjacency of b̄2 using the Ricci formula. Repeat the process and
note that if G is a disjoint union of connected subgraphs G = G1 ∪ · · · ∪Gn, then

LG = LG1 · · ·LGn + lower order operators,

we can write the summation in the right-hand side of (2.10) as a linear combination of LGLj
1f

with G connected and j ≥ 0.
Note that each LT appearing in the computation of L2k+1−L2kL1 must have the same sign

(−1)k. We now check that in (2.8), CPk
6= 0.

L2k+1f − L2kL1f = −Rsb̄2ka1b̄2k+1
f/b̄1···b̄2k−1s̄a2···a2k+1

+ · · · (switch b̄2k+1, a1)

= Rsb̄2ka1b̄2k+1
Rtb̄2k−1a2s̄f/b̄1···b̄2k−2 t̄a3···a2k+1

+ · · · (switch s̄, a2)

= · · · = (−1)kLPk
f + · · · .

The forms of (2.8) and (2.9) are not difficult to prove in view of the Ricci formula. We omit
the details.

Remark 2.6 In [7], the first author computed

L2 − L2
1 = −pL1,

L3 − L2L1 = −L(◦)− 2pL2
1 + 2p2L1,

L4 − L3L1 = −3pL3 − 3L(◦)L1 + 6pL(◦) + 3L(◦ 2−→ ◦),
L5 − L4L1 = 12L(◦ 1−→ ◦)− 4pL4 − 6L(◦)L2

1 + 30pL(◦)L1 + 12L(◦ 2−→ ◦)L1

− 36p2L(◦)− 30pL(◦ 2−→ ◦)− 6L(◦ 2−→ ◦ 2−→ ◦),
where L(◦)f = Rij̄kl̄f/j̄l̄ik = 4 Op(Φ2)f .

Remark 2.7 There are three trees in T3,

◦ // ◦ // ◦
III1

◦ ◦oo // ◦
III2

◦ // ◦ ◦oo

III3
There are six trees in T4,

◦ // ◦ // ◦ // ◦
IV1

◦ ◦oo // ◦ // ◦
IV2

◦ // ◦ ◦oo // ◦
IV3

◦ // ◦ // ◦ ◦oo

IV4

◦

◦ // ◦ //

OO

◦
IV5

◦
²²◦ // ◦ // ◦

IV6

By a tedious computation following the procedure as the proof of (2.8), we get

L7 − L6L1 = −180L(III1)− 90L(III2)− 180L(III3) + Q3,

L9 − L8L1 = 3360L(IV1) + 5040L(IV2) + 8400L(IV3) + 12320L(IV4)

+ 1680L(IV5) + 2440L(IV6) + Q4.
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Now we investigate relations among LG for admissible graphs G. Let G be an arbitrary
multidigraph. Consider the following two graphs,

G1 =
G

◦ // ◦
i

OO
G2 =

G

◦ ◦oo
i

OO (2.11)

By Rij̄kl̄/α = 0 and the Ricci formula, we have

0 = Rij̄kl̄/pq̄ −Rij̄kl̄/q̄p = −Rsj̄kl̄Ris̄pq̄ + Ris̄kl̄Rsj̄pq̄ −Rij̄sl̄Rks̄pq̄ + Rij̄ks̄Rsl̄pq̄, (2.12)

which implies that LG1 = LG2 (abbr. G1 = G2), or written graphically

◦ // ◦ i // = ◦ ◦oo i // (2.13)

Similarly, we have

◦ // ◦ īoo = ◦ ◦oo īoo (2.14)

More identities are collected in the following lemma.

Lemma 2.8 We have

◦
j̄ // ◦ i //

OO
=

◦
²²j̄ // ◦ i //

= 2
◦ i //

j̄ // ◦

OO −
◦ i //

²²j̄ // ◦
(2.15)

◦
ī // ◦

OO

j̄oo
=

◦ j̄oo

ī // ◦

OO =
◦
²²

j̄oo

ī // ◦
(2.16)

◦
²²◦

i
oo j //

=
◦ j //

◦
i

oo

OO
=

◦
²²

j //

◦
i

oo
(2.17)

Proof The first equation of (2.15) follows from (2.12). The second equation of (2.15) follows
from

0 = Rin̄kl̄/mj̄ −Rin̄kl̄/j̄m = −Rsn̄kl̄Ris̄mj̄ + Ris̄kl̄Rsn̄mj̄ −Rin̄sl̄Rks̄mj̄ + Rin̄ks̄Rsl̄mj̄ .

The remaining identities can be proved similarly.

Lemma 2.9 Let 1 ≤ k ≤ 5 and T, T ′ ∈ Tk. Then LT = LT ′ .

Proof It is trivial when k = 1 or 2. Under the notation of Remark 2.7, III1 = III2 and
III1 = III3 follow from (2.13) and (2.14) respectively.

It is also not difficult to see that (2.13) and (2.14) imply IV1 = IV2, IV2 = IV3, IV3 = IV4,
(2.15) implies IV5 = IV6, and (2.17) implies IV2 = IV5.

The proof when k = 5 can be found in the appendix.

Remark 2.10 It would be very interesting to see whether the above lemma is true for higher
k. Although it is probably too strong to be true, the validity of Lemma 2.9 for all k would
imply Conjecture 1.2 and hence the Englǐs-Peetre conjecture.
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Recall that a rooted tree is an oriented tree with a special vertex, called the root, such that
there is a unique directed path from the root to any vertex v, i.e. all edges point away from
the root. Given a rooted tree T with i vertices, an ordered decoration of T is to attach i + 1
outward external legs a1, . . . , ai+1 and i + 1 inward external legs b1, . . . , bi+1 to vertices of T ,
such that (i) Each vertex of T has exactly two outward half-edges and two inward half-edges;
(ii) b1, b2 are attached to the root; (iii) If uv is a directed edge of T and bj1 ∈ u, bj2 ∈ v, then
j1 < j2.

Lemma 2.11 Let j ≥ 2. then

Op(Φj) =
1

(2j)!

rooted∑

T∈Tj−1

CT LT , (2.18)

where T runs over all admissible rooted trees with j − 1 vertices and CT > 0 is equal to the
number of ordered decorations of T .

Proof Since

Φj(z) =
1

(2j)!

∑

ai,bi

ga1b̄1···aj b̄j
(0)za1 z̄b1 · · · zaj

z̄bj
,

(2.18) follows readily from [22, Thm. 4.4].
From Theorem 2.2 and Lemmas 2.5, 2.9 and 2.11, we can prove inductively that when

0 ≤ k ≤ 5,
L2k+1 = ck Op(Φk+1) + a polynomial in Op(Φ1), . . . ,Op(Φk),

where ck 6= 0. So L1, L3, . . . , L2k+1 generate D(Ω) on domains of rank ≤ k+1, which concludes
the proof of Theorem 2.4.

3 Bergman kernel of bounded symmetric domains

Let Φ(z) be the Kähler potential of the Bergman metric on a bounded symmetric domain Ω.
Consider the weighted Bergman space of all holomorphic function on Ω square-integrable with
respect to the measure e−αΦ wn

g

n! , α > 0. The reproducing kernel Kα(x, y) has an asymptotic
expansion [3, 7, 8]

Kα(x, y) ∼ eαΦ(x,y)
∞∑

k=0

Bk(x, y)αn−k, α →∞. (3.1)

These asymptotic coefficients have useful geometric implications on Hermitian symmetric spaces
[12, 15]. The connection between Bergman kernel and heat kernel was studied in [4].

The coefficients Bj of the asymptotic expansion of the Bergman kernel of Ω satisfy
∑

j≥0 Bjz
j =

exp(
∑

j≥1 kjz
j), where kj are given in terms of Bernoulli polynomials βj(x):

kj =
(−1)j+1

j(j + 1)

r∑

i=1

[
βj+1

(
−a

2
(i− 1)

)
− βj+1

(
−N

r
− a

2
(i− 1)

)]
.

See [7, §5] for details. In particular,

B4 =
1
24

k4
1 +

1
2
k2
1k2 +

1
2
k2
2 + k1k3 + k4 (3.2)
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is a polynomial in Q[N, a, r, r−1] and has 104 terms.
On the other hand, Bj can be computed by a recursive formalism developed by the first

author [7] from the asymptotics of Laplace integrals, where Bj , j ≤ 3 for Ω were explicitly
computed. By applying an improved recursive formula [14], the following explicit closed formula
of Bk was obtained in [21].

Bk(x) =
∑

G

z(G) ·G =
∑

G

(−1)n det(A− I)
|Aut(G)| G, (3.3)

where G = G1∪· · ·∪Gn runs over stable (i.e. both the indegree and outdegree of each vertex are
no less than 2) multidigraphs of weight k (i.e. |E(G)| − |V (G)| = k) such that each component
Gi is strongly connected and A is the adjacency matrix of G. Note that vertices of G represent
partial derivatives of metrics.

Below we derive an explicit formula of B4 by using (3.3). Since all covariant derivatives
of Rij̄kl̄ vanish, we need only sum over balanced stable graphs. There are 82 weight 4 stable
graphs, among which 48 are balanced (see [21, App. B]).

Table 1 in the appendix contains the 25 stable 4-vertex graphs of weight 4 (denoted by
si, 1 ≤ i ≤ 25), together with their coefficients z(si) in B4. Note that some si may be simplified
into the following Weyl invariants (in the notation of [7])

σ7 = Rij̄kl̄Rjīmn̄Rlk̄nm̄, σ15 = Rij̄kl̄Rjm̄ln̄Rmīnk̄, q = Rij̄kl̄Rjīlk̄ (3.4)

using the Kähler-Einstein condition Rij̄ = p · gij̄ , where p is the genus of Ω.
Table 2 in the appendix contains the 23 stable balanced graphs of weight 4 and less than 4

vertices (denoted by ti, 1 ≤ i ≤ 23), together with their coefficients z(ti) in B4. Note that ti

represent Weyl invariants in partial derivatives, i.e. each vertex represents a partial derivative
of gij̄ and each edge represents the contraction of a pair of indices.

For the one 1-vertex graph t1 and seven 2-vertex graphs ti, 2 ≤ i ≤ 8, we may use [22, Thm.
4.4] to get their curvature tensor expressions

D(t1) =6s2 + s3 + 10s5 + 15s6 + 11s7 + 20s11 + 7s12 + 8s13

+ 8s14 + 44s15 + 20s18 + 14s19 + 14s20 + 2s22,

D(t2) =2s2 + s3 + 2s5 + 2s6 + 5s7 + 4s11 + 2s12,

D(t3) =s2 + 4s11 + 4s18,

D(t4) =2s5 + s6 + s7 + s12 + s14 + 4s15 + 3s19 + 4s20 + s22,

D(t5) =s5 + s7 + 2s11 + s12 + 4s15,

D(t6) =7s9 + s10 + 4s16 + 4s17 + 2s24,

D(t7) =s2 + s5 + 3s6 + 2s14 + 2s20,

D(t8) =s1 + 4s4 + 4s21,

For the fifteen 3-vertex graphs ti, 9 ≤ i ≤ 23, we have

D(t9) =2s6 + s7, D(t10) =2s9 + s10, D(t11) =s1 + 2s4,

D(t12) =s2 + 2s11, D(t13) =s5 + s7 + s12, D(t14) =s2 + 2s6,

D(t15) =s3 + 2s7, D(t16) =s7 + 2s19, D(t17) =s11 + 2s15,
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D(t18) =s6 + s14 + s20, D(t19) =s12 + 2s20, D(t20) =s9 + s17 + s24,

D(t21) =s4 + 2s21, D(t22) =s5 + s20 + s22, D(t23) =s8 + 2s23,

By (3.3), we get

B4 =
23∑

i=1

z(ti)D(ti) +
25∑

i=1

z(si)si

=
1

1152
q2 − 167

360
s2 − 167

960
s3 − 23

72
p2Nq +

23
60

p2q +
7
40

pσ15 +
1

192
p2N2q − 7

24
pNσ15

− 2
9
s11 +

13
120

s13 − 1
20

p4N − 4
5
pσ7 +

7
12

pNσ7 +
37
36

s18 +
1
18

p4N2 − 1
48

p4N3 +
1

384
p4N4.

(3.5)

For further simplification, we need the following lemma.

Lemma 3.1 Under the above notations, we have

2σ7 − σ15 = pq, s11 =
1
2
(s3 + pσ15),

s13 =
1
4
s3 − 1

2
s2 +

1
4
pσ15 + pσ7, s18 =

1
2
s2 +

1
4
s3 +

1
4
pσ15.

Proof 2σ7 − σ15 = pq follows from [7, (5.8)]. Consider the following three graphs of weight 4,
we will apply the Ricci formula (2.4) to the unique vertex with degree 6 in each of the following
graphs:

◦
2

¦¦­­
­­

'&%$Ã!"#1
2

// ◦
2

YY4444

◦
2®®◦

1
<<

2 44 ◦
1

jj

1
ZZ5555

◦
1­­

1

¶¶'&%$Ã!"#1
1

==

1 44 ◦
1

jj

1

aa
(3.6)

From the first graph, we have

0 = Rhj̄ik̄Rjl̄km̄(Rlh̄mn̄/nī −Rlh̄mn̄/īn) = 2s11 − s3 − s7 = 2s11 − s3 − pσ15.

From the second graph, we have

0 = Rhj̄ik̄Rkm̄ln̄(Rjh̄mī/nl̄ −Rjh̄mī/l̄n) = −2s18 + s11 + s2.

From the third graph, we have

0 = Rih̄kj̄Rjk̄ml̄(Rhīln̄/nm̄ −Rhīln̄/m̄n) = s18 + s13 − s11 − s15 = s18 + s13 − s11 − pσ7.

They give the last three equations of the lemma.
By substituting equations of Lemma 3.1 into (3.5), we get an explicit formula of B4 which

is summarized in the following theorem.

Theorem 3.2 Let Ω be an irreducible bounded symmetric domain in CN . Then

B4 =
(

1
384

N4 − 1
48

N3 +
1
18

N2 − 1
20

N

)
p4 +

1
192

p2N2q − 1
36

p2Nq (3.7)

+
3
80

p2q +
1

1152
q2 − 1

240
s2 − 1

960
s3 +

1
480

pσ15,
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where p is the genus of Ω, and q = Rij̄kl̄Rjīlk̄, σ15 = Rij̄kl̄Rjm̄ln̄Rmīnk̄,

s2 = Rij̄hk̄Rjīlh̄Rnm̄tl̄Rkn̄mt̄, s3 = Rin̄ht̄Rjīkh̄Rlj̄mk̄Rnl̄tm̄.

Remark 3.3 In fact, from our proof, the formula (3.7) holds for any Kähler metric in an open
subset of CN satisfying (2.3).

Let us check (3.7) when Ω is the unit ball in CN . In this case, we have

r = 1, a = 2, b = N − 1, p = N + 1.

Since the Bergman metric of the unit ball has constant curvature, it is not difficult to get (cf.
[7, 21])

q = 2N2 + 2N, σ15 = 4N2 + 4N,

s2 = 4N3 + 8N2 + 4N, s3 = 8N2 + 8N.

From (3.7), we get

B4 =
1

384
N8 − 1

96
N7 − 1

576
N6 +

1
30

N5 − 5
1152

N4 − 1
32

N3 +
1

288
N2 +

1
120

N,

which agrees with that computed by (3.2).

Corollary 3.4 Let Ω be an irreducible bounded symmetric domain in CN . Then

4s2 + s3 − 2pσ15 =
N(r − 1)(r − 2)a4

2
− 3N(r − 1)2(N + r)a3

r

+
2N(r − 1)(N + r)(2Nr −N + r2 − 5r)a2

r2
+

12N(r − 1)(N + r)2a
r2

+
8N(N + 2r)(N + r)

r2
.

(3.8)

Proof The genus p = 1 + N
r + (r−1)a

2 and it was proved in [7, p.30] that

q = − (r − 1)Na2

2
+

(r − 1)N(N + r)a
r

+
2N(N + r)

r
.

So (3.8) follows readily from (3.2) and (3.7).

4 Berezin transform of bounded symmetric domains

On a bounded symmetric domain Ω, the Berezin transform is the integral operator

Iαf(x) =
∫

Ω

f(y)
|Kα(x, y)|2
Kα(x, x)

e−αΦ(y)
wn

g (y)
n!

. (4.1)

At any point for which Kα(x, x) invertible, the integral converges for any bounded measurable
function f on Ω. Note that (3.1) implies that for any x, Kα(x, x) 6= 0 if α is large enough.

The Berezin transform has an asymptotic expansion

Iαf(x) =
∞∑

k=0

Qkf(x)α−k, α →∞, (4.2)

where Qk are linear differential operators and Q0 = Id, Q1 = L1. It first appeared in the work
of Berezin [3] in the quantization of Kähler manifolds. The convergence in various contexts has
been extensively studied [5, 10, 13, 20], as well as relations to the star products [13, 18].
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For a bounded symmetric domain Ω of rank r, is has been proved that D(Ω) is freely
generated by Q1, Q3, . . . , Q2r−1 [6, Thm. 1.1]. The first author [7] also proved a recursive
formula of Qk and computed Qk, k ≤ 3,

Q2 =
1
2
L2

1 +
p

2
L1, Q3 =

1
6
L3

1 +
p

2
L2

1 +
p2

3
L1 +

1
12

L(◦). (4.3)

The following closed formula of Qk was proved in [22],

Qk =
strong∑

Γ=(V ∪{•},E)

det(A(Γ−)− I)
|Aut(Γ)| Γ, (4.4)

where Γ runs over all strongly connected graphs with a distinguished vertex • of weight k (i.e.
|E| − |V | = k) and Γ− is obtained from Γ by removing the distinguished vertex • from Γ. Note
that vertices of Γ represent partial derivatives of metrics or the function. Effective methods
of converting partial derivatives of metrics (functions) to covariant derivatives of curvature
tensors (functions) on Kähler manifolds were developed in [22, 23], which made possible the
computations of more terms of Qk.

Theorem 4.1 On a bounded symmetric domain Ω of genus p, we have

Q4 = − 1
12

L3L1 − 1
8
pL3 +

1
8
L4

1 +
1
8
pL3

1 +
1
4
p2L2

1 +
1
2
p3L1, (4.5)

Q5 =
1

720
L5 − 1

144
L4L1 +

1
36

pL4 − 1
36

L3L
2
1 −

19
72

pL3L1 +
1
24

L5
1 (4.6)

+
5
24

pL4
1 −

1
4
p2L3

1 +
2
3
p3L2

1 +
1
3
p4L1 +

1
48

L(◦ 2−→ ◦ 2−→ ◦).

Proof By a lengthy calculation using (4.4) and the algorithm described in the proof of Lemma
2.5, we get

Q4 =
1
24

L4 +
1
2
pL3 +

3
2
p2L2 + p3L1 +

1
4
L(◦)L1 +

1
4
pL(◦)− 1

8
L(◦ 2−→ ◦) + W, (4.7)

where W is the sum of four differential operators of order 2,

W =
3
2
L




◦
1®®

1

¶¶
◦
1

<<

1
// ◦

1

bb

− 1

12
L




◦
1
½½5

55
5

◦
1

DDªªªª 1 ** ◦
2

jj


− 3

4




◦
2
½½5

55
5

◦
2

DDªªªª ◦
1

oo


− 2

3
pL

[
◦

1 )) ◦
2

ii

]
.

Using the notation of (3.4) and Lemma 3.1, we get

W =
(

3
2
σ7 − 1

12
pq − 3

4
σ15 − 2

3
pq

)
L1 = 0.

So (4.5) follows from the formulas of L3 and L4 in Remark 2.6.
The formula of Q5 needs more work. Besides Lemma 3.1, we also need the following Lemma

4.2. Drastic simplifications occur in the computation. We omit the details.

Lemma 4.2 We have the following equations among differential operators of order 4.

L(◦ 2−→ ◦) = 2L

[
◦

1 )) ◦
1

ii

]
− pL(◦), (4.8)

G3 = G4 = G7 =
1
2
G1 +

1
2
pL(◦ 2−→ ◦), (4.9)
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2G2 = G3 + G5, (4.10)

G2 + G6 = G3 + pL

[
◦

1 )) ◦
1

ii

]
. (4.11)

where we use G to denote LG and the corresponding graphs are

◦
2

½½5
55

5

◦
2

DD­­­­ ◦

◦
1

½½5
55

5

◦
1

DD­­­­ 1 ** ◦
1

jj

◦
1

½½5
55

5

◦
1

DD­­­­ ◦
2

oo

◦

◦
1

DD­­­­ 1 ** ◦
1

ZZ5555

1

jj

◦

◦
1

DD­­­­ 1 ** ◦
2

jj

◦
1®®

1

¶¶
◦
1

<<

◦
1

bb ◦
1

½½5
55

5
1

¥¥­­
­­

◦
1 ** ◦
1

jj

G1 G2 G3 G4 G5 G6 G7

Proof Note that (2.12) may be written graphically as

j̄
##GGG

G

◦ //
k²²

◦
i ;;wwww

p

##GGG
Gl̄ ;;wwww q̄

OO +
j̄
##GGG

G

◦ //
i²²

◦
k ;;wwww

p

##GGG
Gl̄ ;;wwww q̄

OO =
j̄
##GGG

G

◦ //
p²²

◦
i ;;wwww

k

##GGG
Gq̄ ;;wwww l̄

OO +
l̄
##GGG

G

◦ //
p²²

◦
i ;;wwww

k

##GGG
Gq̄ ;;wwww j̄

OO (4.12)

Gluing the two external legs pj̄ in the above equation, we get (4.8).

Attaching a new vertex to the external leg i in (4.12), we get

◦
kccGGGG

// ◦ //
p

OO

◦
mn ;;wwww

j̄l̄

;;wwww q̄
OO

t̄

ccGGGG
+

t̄
// ◦

mn
//

◦
OO

// ◦ kp

<<zzzz

j̄l̄

;;wwww q̄

ccGGGG
= ◦

pccGGGG
// ◦ //

k
OO

◦
mn ;;wwww

j̄q̄

;;wwww l̄
OO

t̄

ccGGGG
+ ◦

pccGGGG
// ◦ //

k
OO

◦
mn ;;wwww

l̄q̄

;;wwww j̄
OO

t̄

ccGGGG

Gluing mq̄ and nj̄ gives G3 = G4. Gluing mq̄ and kt̄ gives G7 = G3. Gluing kq̄ and pt̄ gives
2G7 = G1 + pL(◦ 2−→ ◦). Then (4.9) follows from these three equations. Finally, (4.10) follows
from gluing mj̄ and nl̄. (4.11) follows from gluing mq̄ and pj̄.

In fact, (4.8) is equivalent to L3L1 = L1L3. When Ω is the unit ball in CN , (4.5) and (4.6)
becomes

Q4 =
1
24

[L4
1 + (6N + 10)L3

1 + (11N2 + 24N + 13)L2
1 + (6N3 + 12N2 + 6N)L1],

Q5 =
1

120
[L5

1 + (10N + 20)L4
1 + (35N2 + 100N + 73)L3

1

+ (50N3 + 146N2 + 130N + 30)L2
1 + (24N4 + 60N3 + 40N2 − 4)L1],

which agree with that computed in [9, p. 53].

APPENDIX

1 Admissible trees with five vertices

In this appendix, we prove the case k = 5 of Lemma 2.9. There are 19 admissible trees in T5.

[h]
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◦ // ◦ // ◦ // ◦ // ◦ ◦ // ◦ // ◦ // ◦ ◦oo ◦ // ◦ // ◦ ◦oo // ◦ ◦ // ◦ // ◦ ◦oo ◦oo

V1 V2 V3 V4

◦ // ◦ ◦oo // ◦ // ◦ ◦ // ◦ ◦oo // ◦ ◦oo ◦ // ◦ ◦oo ◦oo // ◦ ◦ ◦oo // ◦ // ◦ // ◦
V5 V6 V7 V8

◦ ◦oo // ◦ ◦oo // ◦ ◦ ◦oo ◦oo // ◦ // ◦

◦

◦ // ◦ // ◦ //

OO

◦

◦

◦ // ◦ //

OO

◦ // ◦
V9 V10 V11 V12

◦ // ◦ // ◦ // ◦

◦

OO ◦ // ◦ // ◦ // ◦

◦

OO ◦

◦ ◦oo // ◦ //

OO

◦

◦ ◦oo // ◦ // ◦

◦

OO

V13 V14 V15 V16

◦ // ◦ ◦oo ◦oo

◦

OO ◦

◦ // ◦ ◦oo

OO

◦oo

◦

◦ // ◦

OO

²²

◦oo

◦
V17 V18 V19

It is not difficult to verify that (2.13) and (2.14) imply V1 = V2, V1 = V8, V5 = V10, V2 = V7,

V3 = V4, V3 = V9, V5 = V6, V11 = V15, V12 = V18, V14 = V16, V13 = V17.

Moreover, (2.15) implies V12 = V13, V11 = V14; (2.16) implies V16 = V7, V16 = V3; (2.17) implies

V12 = V10, V12 = V8.

The above 17 equations imply that Vi, 1 ≤ i ≤ 18 are all equal.

Lemma 1.3 Under the convention of Lemma 2.8, we have

j̄ // ◦ //
i

OO

◦ k //
+

◦ i //

j̄ // ◦

OO

k //
=

j̄ // ◦ // ◦
i

OO

k
//

+

j̄

&&MMMM

◦
i 99rrrr

k

$$III
I

◦
99ssss

(A1)

Proof The equation comes from switching p and q̄ in Rij̄kl̄/pq̄ using the Ricci formula. The argument

is similar to that of Lemma 3.1.

It is easy to see that (A1) implies 2V12 = V11 + V19. So we get V19 = V11, which concludes the

proof of the case k = 5 of Lemma 2.9.
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Table 1 Stable 4-vertex graphs of weight 4

◦
2

­­

◦
2

­­◦
2

JJ

◦
2

JJ ◦
2 ** ◦
1

jj

1

²²◦
1 **

1

OO

◦
2

jj

◦ 2 // ◦
2

²²◦
2

OO

◦2oo

◦

2

­­

'&%$Ã!"#1
1

®®
◦

2

JJ

'&%$Ã!"#1
1

KK ◦

1

²²

1 ** ◦
2

jj

'&%$Ã!"#1
1

//'&%$Ã!"#1
1

OO

s1 = q2 s2 s3 s4 = p2Nq s5 = p2q

9/128 3/8 15/64 3/16 1

◦

2

­­

◦1oo

1

®®
◦

1

JJ

1

??ÄÄÄÄÄÄÄÄ '&%$Ã!"#1
1

JJ ◦

2

²²

◦2oo

◦

1

??ÄÄÄÄÄÄÄÄ
1

//'&%$Ã!"#1
1

OO '&%$Ã!"#2 ◦

2

­­'&%$Ã!"#1 ◦

2

JJ
'&%$Ã!"#2 ◦

2yy◦

1

99

1
//'&%$Ã!"#1

1

OO '&%$Ã!"#2 ◦
2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

◦
2

// ◦

2

OO

s6 = p2q s7 = pσ15 s8 = p2N2q s9 = p2Nq s10 = pNσ15

−1/2 1 3/64 1/2 7/48

◦
1

²²

1

¸¸

◦2oo

◦

1

44

1 ** ◦
1

jj

1

OO '&%$Ã!"#1 1 // ◦
2

ÄÄ¡¡
¡¡

¡¡
¡¡

◦
1

//

1

OO

'&%$Ã!"#1
1

OO ◦
1 **

1

­­

◦
1

jj

1

­­◦
1 **

1

JJ

◦
1

jj

1

JJ ◦
1 **

1

®®

◦
1

jj

1

®®'&%$Ã!"#1
1

JJ

'&%$Ã!"#1
1

JJ ◦

1

­­

1 ** ◦

1

²²

1

jj

◦
1

EE

1

JJ

'&%$Ã!"#1
1

oo

s11 s12 = p2q s13 s14 = p4N s15 = pσ7

2 0 3/8 −1/2 2

'&%$Ã!"#2 ◦

1

¨¨
1

­­◦
1 **

1

88

◦
1

jj

1

JJ '&%$Ã!"#2 ◦

1

¨¨
1

®®'&%$Ã!"#1

1

88

'&%$Ã!"#1
1

JJ ◦
1

·· 1

**

◦1oo

1

­­◦

1

44

1

JJ

◦
1

JJ

1
oo

'&%$Ã!"#1
1

²²

◦1oo

1yy◦

1

99

1
//'&%$Ã!"#1

1

OO ◦

1

®®

1

ÂÂ>
>>

>>
>>

> '&%$Ã!"#11oo

'&%$Ã!"#1
1

JJ

'&%$Ã!"#1
1

OO

s16 = pNσ7 s17 = p4N2 s18 s19 = p2q s20 = p4N

1/3 0 5/4 1/2 0

'&%$Ã!"#1
1

®®

'&%$Ã!"#1
1

®®'&%$Ã!"#1
1

KK

'&%$Ã!"#1
1

KK
'&%$Ã!"#1
1

²²

'&%$Ã!"#11oo

'&%$Ã!"#1
1

//'&%$Ã!"#1
1

OO
'&%$Ã!"#2 '&%$Ã!"#1

1

®®'&%$Ã!"#2 '&%$Ã!"#1
1

KK
'&%$Ã!"#2 '&%$Ã!"#1

1

ÄÄ¡¡
¡¡

¡¡
¡¡

'&%$Ã!"#1
1

//'&%$Ã!"#1
1

OO '&%$Ã!"#2 '&%$Ã!"#2

'&%$Ã!"#2 '&%$Ã!"#2
s21 = p4N2 s22 = p4N s23 = p4N3 s24 = p4N2 s25 = p4N4

1/8 1/4 1/16 1/6 1/384
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Table 2 Stable balanced graphs of weight 4 and less than 4 vertices

'&%$Ã!"#5 '&%$Ã!"#2
2

'' ◦
2

gg ◦
3

'' ◦
3

gg '&%$Ã!"#1
1

'''&%$Ã!"#3
1

gg '&%$Ã!"#1
2

'''&%$Ã!"#1
2

gg '&%$Ã!"#2 '&%$Ã!"#4

t1 t2 t3 t4 t5 t6

−1/30 5/8 1/9 1/6 1/2 1/16

'&%$Ã!"#2
1

'''&%$Ã!"#2
1

gg '&%$Ã!"#3 '&%$Ã!"#3
◦

1­­
2

··'&%$Ã!"#1
1

==

◦
2

bb
'&%$Ã!"#2

'&%$Ã!"#1
2 ** ◦
2

jj

'&%$Ã!"#3
◦

2 ** ◦
2

jj

◦
2­­◦

1
<<

2 44 ◦
1

jj

1
ZZ66666

t7 t8 t9 t10 t11 t12

0 1/18 −1/4 −1/2 −1/8 −7/4

◦
2­­'&%$Ã!"#1

1
==

1
//'&%$Ã!"#1
1

ZZ55555

◦
2

­­◦

1
==

1
//'&%$Ã!"#2
1

ZZ55555

◦
2

¥¥ªª
ªª
ª

'&%$Ã!"#1
2

// ◦

2
ZZ55555

◦
1­­

1

½½5
55

55

'&%$Ã!"#1
2

==

'&%$Ã!"#1
1

oo

◦
1­­

1

··'&%$Ã!"#1
1

==

1 44 ◦
1

jj

1

bb ◦
1­­

1

··'&%$Ã!"#2
1

==

'&%$Ã!"#1
1

bb

t13 t14 t15 t16 t17 t18

−1 −1/4 −1 −1 −2 1/2

'&%$Ã!"#1
1­­

1

··'&%$Ã!"#1

1
==

'&%$Ã!"#1
1

aa
'&%$Ã!"#2

'&%$Ã!"#2
1 **'&%$Ã!"#1
1

jj

'&%$Ã!"#3
'&%$Ã!"#1

1 **'&%$Ã!"#1
1

jj

'&%$Ã!"#1
1

¥¥­­
­­

­

'&%$Ã!"#2
1

//'&%$Ã!"#1
1

ZZ44444
'&%$Ã!"#3

'&%$Ã!"#2 '&%$Ã!"#2
t19 t20 t21 t22 t23

0 −1/4 −1/6 −1/2 −1/24
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