Let T be a bounded linear operator on a separable Hilbert space H. A well-known result of Sz.-Nagy and Foias says that the following two assertions are equivalent:

(a) $I - TT^* \geq 0$ (i.e. T is a contraction) and $T^n \to 0$ in the strong operator topology;

(b) T^* is unitarily equivalent to the restriction of a backward shift of infinite multiplicity to an invariant subspace.

In this talk we describe a generalization of this result for commuting n-tuples $T = (T_1, \ldots, T_n)$ of operators on H.

Let Ω be a domain in \mathbb{C}^n and \mathcal{H} a Hilbert space of analytic functions on Ω which satisfies the following properties:

(1) \mathcal{H} is invariant under the operators Z_j of multiplications by the coordinate functions ($j = 1, \ldots, n$).

(2) The evaluation functionals are continuous on \mathcal{H}. Consequently, there exists a reproducing kernel $K(z, w)$ for \mathcal{H}.

(3) \mathcal{H} contains all polynomials and they are dense in it.

(4) The function $1/K(z, w)$ is a polynomial (in z and w).

It is well known that for any orthonormal basis $\{\psi_k\}$ of \mathcal{H}, the reproducing kernel is given by

$$K(z, w) = \sum_k \psi_k(z)\overline{\psi_k(w)}.$$

In view of (3), by applying the Gramm-Schmidt orthogonalization process, we may construct a basis such that all ψ_k are polynomials (and, conversely, any polynomial is a linear combination of a finite number of the ψ_k). We fix such a basis from now on. For each m, set

$$f_m(z, w) = \sum_{k \geq m} \frac{\psi_k(z)\overline{\psi_k(w)}}{K(z, w)}.$$

Then $f_0(z, w) \equiv 1$ on $\Omega \times \Omega$. By virtue of (4) and our choice of the basis, the difference $f_0 - f_m$ is a polynomial in z, w, for each m; thus f_m themselves are, in fact, polynomials.
For any polynomial \(p(z, w) \) of \(z, w \in \mathbb{C}^n \), define
\[
p(T, T^*) = \sum_{\alpha, \beta} p_{\alpha, \beta} T^\alpha T^{*\beta} \quad \text{if} \quad p(z, w) = \sum_{\alpha, \beta} z^\alpha w^\beta.
\]
(Up to the order of \(T \) and \(T^* \), this coincides with the “hereditary calculus” of Agler [A1].) Hence, in particular, \(f_m(T, T^*) \) are defined for any commuting operator tuple \(T \), and \(f_0(T, T^*) = I \). Our main result is the following.

Theorem. Let \(\mathcal{H}, \psi_k, f_m \) be as above and let \(T \) be a commuting \(n \)-tuple of operators on a separable Hilbert space \(H \). Denote by \(M_z \) the operator \(n \)-tuple of \(z \otimes I \) on the Hilbert space tensor product \(\mathcal{H} \otimes H \). Then the following are equivalent:

(a) \(\frac{1}{n} \langle T, T^* \rangle \geq 0 \) and \(\langle f_m(T, T^*)h, h \rangle \to 0 \ \forall h \in H \).

(b) \(T^* \) is unitarily equivalent to a restriction of \(M_z^* \) to an invariant subspace.

Example. Let \(n = 1, \Omega = \mathbb{D} \), the unit disc, and \(\mathcal{H} = H^2 \), the Hardy space. Then \(K(z, w) = 1/(1 - zw) \), so \(\frac{1}{n}(T, T^*) = I - TT^* \), and using the standard orthonormal basis \(\psi_k(z) = z^k \) we get \(f_m(T, T^*) = T^m T^* \). Further, the operator \(M_z \) on the tensor product \(H \otimes H \) is just the forward shift of infinite multiplicity (its wandering subspace is \(I \otimes H \)). Thus we recover the result of Nagy-Foias mentioned in the beginning. \(\square \)

Other results covered by the last Theorem include the regular dilations of commuting \(n \)-tuples of operators (for \(\mathcal{H} \) the Hardy space on the polydisc \(\mathbb{D}^n \)), the \(k \)-hypercontractions of Agler [A2] (for \(\mathcal{H} \) the Bergman space on \(\mathbb{D} \) with respect to the weight \((1 - |z|^2)^{k-2} \)), and the “spherical hypercontractions” of Müller and Vasilescu [MV] (for \(\mathcal{H} \) a certain weighted Bergman space on the unit ball of \(\mathbb{C}^n \)).

Sketch of the proof. (a) \(\implies \) (b). Denote \(D_T = \frac{1}{n}(T, T^*)^{1/2} \). Define an operator \(V : H \to \mathcal{H} \otimes H \) by
\[
Vh = \sum_k \psi_k(z) \otimes D_T \psi_k(T)^* h.
\]

We claim that \(V \) is well-defined (i.e. the sum converges) and is, in fact, an isometry satisfying \(VT^* = M_z^* V \). This clearly establishes (b).

To see that \(V \) is well-defined and an isometry, observe that for any \(j < m \) and \(h \in H \)
\[
\| \sum_{j \leq k < m} \psi_k(z) \otimes D_T \psi_k(T)^* h \|^2 = \sum_{j \leq k < m} \| D_T \psi_k(T)^* h \|^2
\]
\[
= \sum_{j \leq k < m} \langle \psi_k(T) D_T^2 \psi_k(T)^* h, h \rangle
\]
\[
= \langle (f_j - f_m)(T, T^*) h, h \rangle.
\]

As \(\langle f_m(T, T^*)h, h \rangle \to 0 \) by hypothesis, it follows that the partial sums of the right-hand side of (*) form a Cauchy sequence, and letting \(j = 0 \) and \(m \to \infty \) shows that \(\|Vh\|^2 = \langle f_0(T, T^*)h, h \rangle = \|h\|^2 \), i.e. \(V \) is an isometry.
To prove that $VT^* = M^*_z V$, observe that $\forall h, h' \in H$ and any k

$$\langle Vh, \psi_k \otimes h' \rangle = \langle D_T \psi_k(T)^* h, h' \rangle = \langle h, \psi_k(T) D_T h' \rangle,$$

so, by virtue of our choice of the basis ψ_k,

$$(Vh, f \otimes h') = \langle h, f(T) D_T h' \rangle$$

for any polynomial f. Thus

$$\langle VT^*_h, \psi_k \otimes h' \rangle = \langle T^*_j h, \psi_k(T) D_T h' \rangle = \langle T^*_j h, z_j \psi_k(T) D_T h' \rangle = \langle M^*_z Vh, \psi_k \otimes h' \rangle,$$

and the assertion follows.

(b) \Rightarrow (a). Let $U : H \to H \otimes H$ be an isometry such that $UT^* = M^*_z U$. Then a simple calculation shows that for any polynomial $p(z, w)$ in z and w,

$$p(T, T^*) = U^* p(M_z, M^*_z) U = U^* (p(Z, Z^*) \otimes I) U$$

(here, as before, Z stands for the operator tuple of multiplication by the coordinate functions on H). Thus it suffices to show that $\frac{1}{K} (Z, Z^*) \geq 0$ and $\langle f_m(Z, Z^*) h, h \rangle \to 0 \forall h \in H$.

To see the former, recall that for any $w \in \Omega$

$$Z^*_j K_w = \overline{w}_j K_w$$

where $K_w(z) := K(z, w)$. It follows that for any polynomial $p(z, \overline{w})$ and $x, y \in \Omega$,

$$\langle p(Z, Z^*) K_y, K_x \rangle = p(x, \overline{y}) \langle K_y, K_x \rangle = p(x, \overline{y}) K(x, y),$$

so, in particular, $\langle \frac{1}{K} (Z, Z^*) K_y, K_x \rangle = 1 \forall x, y \in \Omega$. As also $\langle K_y, 1 \rangle \langle 1, K_x \rangle = \overline{1(y)} 1(x) = 1 \forall x, y \in \Omega$, it follows that

$$\frac{1}{K} (Z, Z^*) = \langle \cdot, 1 \rangle 1$$

which is a positive operator.

For the latter assertion, observe that

$$(f_0 - f_m)(Z, Z^*) h = \sum_{0 \leq k < m} \psi_k(Z) \frac{1}{K} (Z, Z^*) \psi_k(Z)^* h$$

$$= \sum_{0 \leq k < m} \psi_k(Z) (\langle \cdot, 1 \rangle 1) \psi_k(Z)^* h \quad \text{by (**)}$$

$$= \sum_{0 \leq k < m} \langle \psi_k(Z)^* h, 1 \rangle \psi_k$$

$$= \sum_{0 \leq k < m} \langle h, \psi_k \rangle \psi_k,$$
and as ψ_k is an orthonormal basis and $f_0 \equiv 1$, it follows that
\[(f_0 - f_m)(Z, Z^*)h = h - f_m(Z, Z^*)h \to h \quad \text{as } m \to \infty,\]
i.e. even $f_m(Z, Z^*)h \to 0 \ \forall h \in H$. This completes the proof. \qed

We remark that in view of the boundedness of V, the formula (†) defines a (non-multiplicative) “functional calculus” $g \mapsto g(T)$ for functions g on Ω of the form $g(z) = K(z, z)^{-1/2}f(z)$, $f \in \mathcal{H}$ (defining $g(T)h (= “f(T)D_T h”) := V^*(f \otimes h)$ one has $\|g(T)\| \leq \|V\|||f||$).

An example of function spaces \mathcal{H} satisfying the axioms (1) – (4) are, for instance, various weighted Bergman and Hardy spaces on bounded symmetric domains in \mathbb{C}^n (matrix balls etc.).

Under the additional hypothesis that the Taylor spectrum $\sigma(T) \subset \Omega$, it turns out that the condition $\langle f_m(T, T^*)h, h \rangle \to 0$ can be omitted, and the axioms (3) and (4) for \mathcal{H} replaced by the weaker requirement that $K(z, w) \neq 0$ on $\Omega \times \Omega$. For this and further details we refer to the joint work [AEM].

References

