
On the randomised query complexity of composition

Dmitry Gavinsky∗† Troy Lee‡† Miklos Santha§†

January 7, 2018

Abstract

Let f ⊆ {0, 1}n×Ξ be a relation and g : {0, 1}m → {0, 1, ∗} be a promise function. This
work investigates the randomised query complexity of the relation f ◦ gn ⊆ {0, 1}m·n × Ξ,
which can be viewed as one of the most general cases of composition in the query model
(letting g be a relation seems to result in a rather unnatural definition of f ◦ gn).

We show that for every such f and g,

R(f ◦ gn) ∈ Ω
(
R(f) ·

√
R(g)

)
,

where R denotes the randomised query complexity. On the other hand, we demonstrate
a relation f0 and a promise function g0, such that R(f0) ∈ Θ(

√
n), R(g0) ∈ Θ(n) and

R(f0 ◦ gn0) ∈ Θ(n) – that is, our composition statement is tight.
To the best of our knowledge, there was no known composition theorem for the

randomised query complexity of relations or promise functions (and for the special case of
total functions our lower bound gives multiplicative improvement of

√
log n).

1 Introduction

Let f ⊆ {0, 1}n×Ξ be a relational problem over n-bit input strings, where Ξ is a finite set and
ξ ∈ Ξ is a correct answer to f(z) if and only if (z, ξ) ∈ f – in that case we write ξ ∈ f(z), thus
viewing f(z) as the set of correct answers. Let g : {0, 1}m → {0, 1, ∗} be a partial function
over m-bit input strings, where “∗” marks “forbidden” input strings – in other words, g is a
Boolean promise function. We will call x ∈ {0, 1}m a legal input value for g if g(x) ∈ {0, 1}.

Define f ◦gn ⊆ {0, 1}n·m×Ξ as a relational problem over n ·m-bit strings x = (x1, . . . , xn),
where {

f ◦ gn(x) = Ξ if ∗ ∈
{
g(xi)

∣∣i ∈ [n]
}
;

f ◦ gn(x) = f(g(x1), . . . , g(xn)) otherwise.

∗Institute of Mathematics, Czech Academy of Sciences, Žitna 25, Praha 1, Czech Republic. Partially
supported by the Grant No. P202/12/G061 of GA ČR and by RVO: 67985840. Part of this work was done
while visiting the Centre for Quantum Technologies at the National University of Singapore.
†Partially supported by the National Research Foundation, including under NRF RF Award No. NRF-

NRFF2013-13, the Prime Ministers Office, Singapore and the Ministry of Education, Singapore under the
Research Centres of Excellence programme and by Grant No. MOE2012-T3-1-009.
‡Division of Mathematical Sciences, Nanyang Technological University, Singapore and Centre for Quantum

Technologies, National University of Singapore, Singapore. mailto:troyjlee@gmail.com.
§IRIF, Université Paris Diderot, CNRS, 75205 Paris, France, and Centre for Quantum Technologies, National

University of Singapore, Singapore. mailto:santha@irif.fr.

mailto:troyjlee@gmail.com
mailto:santha@irif.fr

That is, if at least one of xi-s as input to g(·) violates the promise, then any ξ ∈ Ξ is a correct
answer to f ◦ gn(x); otherwise, f ◦ gn(x) is defined naturally.

We investigate the randomised query complexity (R) of the relation f ◦ gn. This setting
can be viewed as one of the most general cases of so-called composition questions in the
model of randomised query complexity: Arguably, the most general natural way of modelling
a computational problem in the query model is via a relation; on the other hand, letting
the “bottom” problem g be a relation seems to result in a rather awkward definition of the
composed problem f ◦ gn – so, we’ve chosen to restrict g by making it a promise function (the
“top” problem f may be a relation).1

We show that for every such f and g,

R(f ◦ gn) ∈ Ω
(
R(f) ·

√
R(g)

)
.

On the other hand, we demonstrate a relation f0 and a promise function g0, such that
R(f0) ∈ Θ(

√
n), R(g0) ∈ Θ(n) and R(f0 ◦ gn0) ∈ Θ(n) – that is, our composition statement is

tight.2

Previous work

To the best of our knowledge, prior to this work no general lower bound was known for the
randomised query complexity of composed promise functions or relations. For the special case
of g being a total function, Ben-David and Kothari [BDK16] have shown that

R(f ◦ gn) ∈ Ω

(
R(f) ·

√
R(g)

log (R(g))

)
.

Our approach

To argue that R(f ◦ gn) ∈ Ω
(
R(f) ·

√
R(g)

)
, we will assume that a protocol for computing

f ◦ gn is given and use it to construct a protocol for computing f . Our construction will be
such that the new protocol will be accurate (with respect to f) if the given protocol was
accurate (with respect to f ◦ gn), and the query complexity of the new protocol will be small
if that of the given protocol was small. As the query complexity of a protocol computing f
cannot be below R(f), a lower bound on the query complexity of the given protocol for f ◦ gn
will follow.

2 Polarised protocol trees

In this part we describe a tree-like primitive for representing query protocols. Some special
properties of this representation will be useful for our analysis.

Let f ⊆ {0, 1}n × Ξ, g : {0, 1}m → {0, 1, ∗} and f ◦ gn ⊆ {0, 1}n·m × Ξ be as described
above. Denote by X = (X1, . . . , Xn) the input to f ◦ gn, where every Xi ∈ {0, 1}m is input to

1 Our lower bound argument would probably generalise to the case of both f and g being relations, though
we haven’t verified that.

2 It may be worth noticing that the same example witnesses the possibility of R(f ◦ gn) ∈ O(R(g)) when
R(f) ∈ Ω(

√
n).

2

g (we will write Xi,j to address the j’th bit of Xi). Denote by Z ∈ {0, 1, ∗}n the input to f –
in other words, ∀i : Zi = g(Xi).

All protocol trees will have leaves, usually labelled with the answer returned by the protocol
upon reaching this leaf.

A protocol for f ◦gn queries the values of Xi,j , so it will be represented by a tree, containing
naturally defined nodes

Xi,j ?
0 1

Leaves and X-queries are the only types of nodes that will occur in a tree representing
a protocol for f ◦ gn(X1, . . . , Xn). Note that the actions corresponding to these nodes are
deterministic, and such will be our protocols for f ◦ gn.

Our protocols for f will use randomness, represented by randomised forks in a tree:

1− αα

Here the left son is selected with probability α and the right one with probability 1− α.
As we describe next, our protocol trees for f will use generic nodes, somewhat non-standard:

Usually a vertex in a tree corresponds to certain state of the protocol and fully determines
the “history” at that state – namely, which queries have been made so far and what answers
have been received from the oracle. For reasons that will become clear later, our trees will
have vertices corresponding to “randomised Z-queries”, where certain Zi is queried with some
probability between 0 and 1 – accordingly, a pointer to a vertex coming after such “uncertain
query” does not reveal whether Zi has actually been queried. To address this, we accompany
our trees for computing f(Z) with “memory” w ∈ {0, 1, ∗}n, such that wi = Zi if Zi has
already been queried by the protocol (in which case we will always assume Zi ∈ {0, 1}, as
explained next) and wi = ∗ otherwise.

Our trees will have two types of generic vertices, corresponding to certain complex protocol’s
actions. The reason why we prefer to treat these complex actions as single tree nodes is the
following: Recall that we will construct a protocol for f , based on a (given) protocol for f ◦ gn;
each generic vertex in the new protocol will correspond to a single Xi,j-query in the original
protocol; as a result, the tree of the constructed protocol for f will be isomorphic to the tree
of the given protocol for f ◦ gn. Allowing generic vertices and using the auxiliary registers
wi are the “price” of keeping this very convenient isomorphism between the original and the
constructed protocol trees.

The first generic type is a Z-node, described by (i, α, β) ∈ [n]× [0, 1]× [0, 1]:

3

Zi ? wi ?

Is wi = ∗?

0
1

0 1

wi ← Zi

yes no

1− α
α

β

1− β

“1”“0”

In words, this generic node corresponds to the following action:

• If wi = ∗, then with probability α a query is made to read the value of Zi and one of
the two outgoing edges is selected accordingly; otherwise (i.e., with probability 1− α),
the outgoing edge marked with “1” is selected with probability β and the edge marked
with “0” is selected otherwise (i.e., with probability 1− β).
• If wi 6= ∗, then the outgoing edge is selected according to the (already known) value
Zi = wi.
• If a query to Zi has been made (which only occurs with probability α when wi = ∗),

then the value of the register wi is updated to contain the value of Zi.

Observe that in the above description we have assumed that if a query to Zi has been made
(i.e., wi 6= ∗), then Zi ∈ {0, 1} – namely, Xi is a legal input value for g. We will be making
this convenient assumption (sometimes implicitly) throughout our lower-bound analysis, as
our target distributions are always supported on legal input values only.

The second generic type is a Z-mixer, described by (i, α, β) ∈ [n]× [0, 1]× [0, 1] and acting
as follows:

β

1− β

“1”“0”

α
1− α

Is wi = ∗?
noyes

In words, this generic node corresponds to the following action:

• If wi = ∗, then the outgoing edge marked with “1” is selected with probability β and the
edge marked with “0” is selected otherwise – i.e., with probability 1− β.
• If wi 6= ∗, then the outgoing edge marked with “1” is selected with probability α and the

edge marked with “0” is selected otherwise – i.e., with probability 1− α.

2.1 Some properties of our trees

When constructing a protocol for computing f , we will try to keep low the (expected) number
of actual Z-queries made by the protocol. Note that the only node type where Zi may be

4

queried are the Z-nodes. There a query to Zi can only take place if wi = ∗, and when that
happens the value of wi is updated – therefore, each Zi can be queried at most once.

The other property of interest to us is also related to “saving” Z-queries. We call it polarity,
it says that (for all i ∈ [n]) the set of computational paths3 leading to the same tree vertex
can either consist of paths that have not queried Zi and those where Zi = 0 or of paths that
have not queried Zi and of those where Zi = 1 – in other words, a path “knowing” that Zi = 0
and a path “knowing” that Zi = 1 cannot lead to the same vertex in our tree. That is why we
are calling our trees polarised.

To see that they are indeed polarised, note that only the two generic node types have
merging paths; Z-mixers never make queries, and therefore cannot affect the polarity; a Z-node
can only merge paths of the “same polarity” (if wi = 1, then the corresponding paths can only
mix with the 1-outcome of the Z-query, and vice versa), thus preserving the polarity.

Informally, the reason why polarity will be important for us is this. Suppose that a tree were
not polarised and let l0 be a leaf, such that exactly half of the paths leading to it “know” that
Zi = 0, while the other half “know” that Zi = 1. On the one hand, the “leaf-wise” knowledge
in l0 about the value of Zi is the lowest possible (the entropy of the bit Zi, conditioned on
reaching l0 is 1); on the other, the probability that Zi has actually been queried by the protocol
when l0 is reached is 1 – so, conditional on reaching l0, a query to Zi has been fully “wasted”
(as a leaf, l0 must correspond to an answer to f(Z1, . . . , Zn), and this answer must be fully
independent of Zi).

By having chosen carefully the set of allowed generic actions in a tree, we are guaranteeing
that it is “ontologically polarised” – thus avoiding the possibility of “wasted queries”, as
described above. On the other hand, having such “reduced instruction set” will demand from
us a somewhat bigger effort in order to “mimic” the behaviour of the given protocol for f ◦ gn
when constructing a protocol for f . We will see next how to achieve that; as a result, the
constructed protocol will compute f(Z) with exactly the same accuracy that the original
protocol achieves for f ◦ gn(X1, . . . , Xn).

3 Constructing a protocol for f , given a protocol for f ◦ gn

Recall that the argument of our lower bound is based on transforming a given protocol for
f ◦ gn into a protocol for f , as accurate as the original one and whose query complexity will
be low if that of the original protocol was low. In this part we describe the transformation and
notice some basic properties of the constructed protocol for f , as summarised by Lemma 1
and Corollary 1 (used in Section 4 to obtain the desired bound).

Let µg over {0, 1}m be a non-trivial4 input distribution for g that is supported on legal
input values only, and for a ∈ {0, 1} denote by µag the distribution of Y ∈ {0, 1}m when
Y ∼ µg, conditioned on g(Y) = a. For a binary string z of length k, denote by z ◦ µg the
distribution of (X1, . . . , Xk), where Xi ∼ µzig for every i ∈ [k]. For a distribution ν on {0, 1}k,
denote by

ν ◦ µg
3 When a tree contains generic nodes, by a computational path we mean not only the set of tree nodes that

have been “visited”, but also the information about the randomised decisions taken at each visited generic node.
Accordingly, a number of distinct computational paths can lead to the same tree leaf.

4 so that g is not constant on supp(µg)

5

the distribution of X ∈ {0, 1}k·m, corresponding to choosing Z ∼ ν followed by X ∼ Z ◦ µg.
Let µ over {0, 1}n·m be input distribution for f ◦ gn, so that µ = µf ◦ µg for some µf

over {0, 1}n – in other words, µf is the distribution of (g(X1), . . . , g(Xn)) when X = (X1,
. . . , Xn) ∼ µ.

Let P be a (deterministic) protocol that solves f ◦ gn with respect to µ with error ε. Next
we construct a protocol P ′ that solves f with respect to µf with the same error ε. We will
represent P ′ as a polarised protocol tree, which will be isomorphic to the tree of P.

3.1 Constructing P ′: the inductive step

Let Z be a random variable taking values in {0, 1}n: in the context of computing f ◦ gn(X1,
. . . , Xn) we let Zi = g(Xi), and in the context of computing f we let Zi be the i’th bit of
input (this convention should not confuse us, as Z will denote the input to f in both cases).

To build a protocol for f , we repeatedly apply the following “local” mechanism that
“translates” every node of the (given) tree for f ◦ gn into a node of a polarised tree for f .

Starting from the root and selecting at each step a new non-leaf vertex whose predecessor
in P ′ has already been constructed, we proceed as follows. Denote by v0 be the current node
in P and by v′0 the corresponding node in P ′. The action of v0 is an X-query – let it query
Xi0,j0 . Let

pin
def
= Pr

X∼µ

[
Zi0 = 1

∣∣v0],
where [v0] denotes the event that execution of P has reached the node v0. Also let

p<
def
= Pr

µ

[
Zi0 = 1

∣∣[v0], Xi0,j0 = a0
]

and p>
def
= Pr

µ

[
Zi0 = 1

∣∣[v0], Xi0,j0 = 1− a0
]
,

where a0 ∈ {0, 1} is such that p< ≤ p>, and

τ<
def
= Pr

µ

[
Xi0,j0 = a0

∣∣v0] and τ>
def
= Pr

µ

[
Xi0,j0 = 1− a0

∣∣v0] {= 1− τ<} .

The action of v′0 will be either a Z-node or a Z-mixer. We will associate the edge that
leaves v′0 and is marked by “0” with the “a0” edge of v0, and the edge that leaves v′0 and is
marked by “1” with the “1− a0” edge of v0.

Informally, we want the action of v′0 to “mimic” that of v0 with respect to the (conditional)
distribution of Z: if we do that for every node in P , then in the end we will obtain a protocol
that solves f(Z) with respect to µf with the same accuracy as P achieves for f ◦ gn(X1,
. . . , Xn) with respect to µ. In order to imitate the behaviour of P with respect to Z, the new
protocol must (at least) imitate it at every v0 with respect to the corresponding Zi0 .

Technically, our assignment of action to v′0 will be such that if

Pr
µf

[
Zi0 = 1

∣∣v′0] = pin, (1)

then

Pr
µf

[
Zi0 = 1

∣∣v′0, answer “0”] = p< and Pr
µf

[
Zi0 = 1

∣∣v′0, answer “1”] = p> (2)

6

and

Pr
µf

[
answer “0”

∣∣v′0] = τ< and Pr
µf

[
answer “1”

∣∣v′0] = τ>, (3)

where [answer “b”] is the event that the generic action assigned to v′0 returns the corresponding
answer.

Note that (1) and (2) implies

τ< · p< + (1− τ<) · p> = pin

= Pr
µf

[
answer “0”

∣∣v′0] · p< +

(
1−Pr

µf

[
answer “0”

∣∣v′0]) · p>,
and therefore (3) “almost always”: the only exception is the “degenerate” case [p< = p>] (which
we will handle soon). In all other cases it will be enough to guarantee (2), assuming (1), and
that will imply (3) as well.

Recall that all the predecessors of v′0 in P ′ have already been constructed, so the value

qin
def
= Pr

µf

[
wi0 6= ∗

∣∣v′0]
is well-defined. Observe that

p< ≤ pin ≤ p> ≤ 1,

as τ< · p< + τ> · p> = pin and τ< + τ> = 1.
For the same reason, if p< = pin or pin = p>, then p< = pin = p>, which is the degenerate

case mentioned above. To handle it, we let the action of v′0 be a Z-mixer (i0, τ>, τ>) – it is
easy to see that this choice satisfies both (2) and (3).

Now assume that

p< < pin < p>. (4)

As our tree is polarised, either Pr
[
wi0 = 0

∣∣v′0] = qin or Pr
[
wi0 = 1

∣∣v′0] = qin holds – without
loss of generality, let us assume the latter (the other case is symmetric and treated similarly).

Let

p∗in
def
= Pr

[
Zi0 = 1

∣∣[v′0], wi0 = ∗
]

and observe that

p∗in · (1− qin) + qin = pin = p< · τ< + p> · τ> = p< · τ< + p> · (1− τ<) (5)

– these equalities will play their crucial role soon.
Note that the first equality in (5) implies

p∗in =
pin − qin
1− qin

≤ pin, (6)

and so – by assumption (4) – either p∗in ≤ p< < p> or p< < p∗in < p> holds. Both possibilities
are valid and we will handle them differently: either with a Z-mixer or with a Z-node.

7

3.1.1 The case of p∗in ≤ p<: using a Z-mixer

Here we are assuming that

p∗in ≤ p< < p> ≤ 1. (7)

We will choose such α0, β0 ∈ [0, 1] that making a Z-mixer (i0, α0, β0) to be the action of v′0
will satisfy (2).

Let γ1 be such that

p1(γ1)
def
=
p∗in · (1− qin) + γ1

1− qin + γ1
= p<, (8)

which exists and satisfies

γ1 ∈ [0, qin], (9)

as p1(0) = p∗in ≤ p< by (7), p1(qin) = pin > p< by (5) and (4), and p1(·) is monotone on
[0, qin], obviously. Then

p< · (1− qin + γ1) + qin − γ1 = p∗in · (1− qin) + qin = pin

= p< · τ< + p> · (1− τ<),

where the first equality is (8) and the last two are (5). Since p> ≤ 1 and γ1 ≤ qin,

p< · (1− qin + γ1) + p> · (qin − γ1) ≤ p< · τ< + p> · (1− τ<)

and

p< · (1− qin + γ1 − τ<) ≤ p> · (1− qin + γ1 − τ<)

– that is,

1− qin + γ1 ≥ τ<. (10)

Let α0, β0 ∈ [0, 1] be such that

1− β0 =
τ<

1− qin + γ1

and

(1− α0) · qin = (1− β0) · γ1,

their existence follows from (10) and (9), respectively. We set the action of v′0 to be a Z-mixer
parametrised by (i0, α0, β0) and we claim that (2) is satisfied.

On the one hand,

Pr
µf

[
Zi0 = 1

∣∣v′0, answer “0”] =
(1− qin) · (1− β0) · p∗in + qin · (1− α0) · 1

(1− qin) · (1− β0) + qin · (1− α0)

=
(1− qin) · (1− β0) · p∗in + (1− β0) · γ1

(1− qin) · (1− β0) + (1− β0) · γ1

8

=
(1− qin) · p∗in + γ1

(1− qin) + γ1
= p<,

where the last equality is (8). On the other,

Pr
µf

[
answer “0”

∣∣v′0] = (1− qin) · (1− β0) + qin · (1− α0)

= (1− qin + γ1) · (1− β0) = τ<.

Therefore,

Pr
µf

[
answer “1”

∣∣v′0] = 1−Pr
µf

[
answer “0”

∣∣v′0] = 1− τ< = τ>

and

Pr
µf

[
Zi0 = 1

∣∣v′0, answer “1”] =
pin −Pr

[
Zi0 = 1

∣∣v′0, answer “0”] ·Pr
[
answer “0”

∣∣v′0]
Pr
[
answer “1”

∣∣v′0]
=
pin − p< · τ<

τ>
= p>,

as required.

3.1.2 The case of p< < p∗in: using a Z-node

Now assume that

p< < p∗in < p> ≤ 1.

We will choose such α0, β0 ∈ [0, 1] that making a Z-node (i0, α0, β0) to be the action of v′0 will
satisfy (2).

Let α′ ∈ [0, 1] be such that

(1− α′) · p∗in
1− p∗in

=
p<

1− p<
, (11)

and denote

γ2
def
= (1− α′p∗in)(1− qin) and γ3

def
=
τ<
γ2
.

From (11):

p< =
(1− α′) · p∗in

1− α′p∗in
, (12)

and so,

p< · γ2 + 1− γ2 =
(1− α′) · p∗in

1− α′p∗in
· γ2 + 1− γ2

= (1− α′) · p∗in · (1− qin) + 1− (1− α′p∗in)(1− qin)

= p∗in · (1− qin) + qin

9

= pin

= p< · τ< + p> · (1− τ<),

where the last two equalities follow, respectively, from (6) and (5). As p>, τ< ∈ [0, 1],

p< · γ2 + 1− γ2 ≤ p< · τ< + 1− τ<,

and it holds that γ2 ≥ τ< and

γ3 ∈ [0, 1]. (13)

Let

α0 = γ3 · α′ and β0 =
1− γ3

1− γ3 · α′
.

It follows from α′ ∈ [0, 1] and (13) that α0, β0 ∈ [0, 1]. We set the action of v′0 to be a Z-node
parametrised by (i0, α0, β0) and claim that (2) is satisfied.

On the one hand,

Pr
µf

[
answer “0”

∣∣v′0] = (1− qin) ·
(
(1− α0) · (1− β0) + α0 · (1− p∗in)

)
= (1− qin) ·

(
1− α0 · p∗in − β0 · (1− α0)

)
= (1− qin) · (γ3 − γ3 · α′ · p∗in)

= τ< ·
(1− qin) · (1− α′ · p∗in)

γ2
= τ<;

on the other,

Pr
µf

[
Zi0 = 1

∣∣v′0, answer “0”] =
(1− α0) · (1− β0) · p∗in

(1− α0) · (1− β0) + α0 · (1− p∗in)

=
(γ3 − α0) · p∗in
γ3 − α0 · p∗in

=
(1− α′) · p∗in
1− α′ · p∗in

= p<,

where the last equality is (12). As in the case of p∗in ≤ p<, from here it follows that (2) holds.

3.2 Constructing P ′: summing up

Thus far, we have assigned actions to the internal nodes in a polarised tree representing P ′,
such that for every pair of mutually-corresponding non-leaves v0 ∈ P and v′0 ∈ P ′ that satisfy
(1), both (2) and (3) must hold. Intuitively, it says that if the distribution of Zi0 was “correct”
upon reaching v′0, then it is stays “correct” also after the operation performed by v′0, where
“correct” means being the same as in P.

We would like to use this fact inductively in order to conclude that for every mutually-
corresponding pair of vertices v′0 ∈ P ′ and v0 ∈ P, the distribution of Z ∼ µf conditioned on
reaching v′0 is the same as the distribution of Z = gn(X) for X ∼ µ conditioned on reaching
v0. For that we need a somewhat stronger “step statement” than what we have above: namely,

10

we would like to say that if the distribution of the whole random vector Z is “correct” upon
reaching v′0, then it stays “correct” after leaving v′0 as well.

In other words, we want to argue that it is enough to imitate by the action of v′0 the
behaviour of v0 with respect to the “queried” coordinate Zi0 (as we have done) in order to
conclude that the behaviour with respect to full Z has been mimicked as well.

First we claim that the distribution of X, conditioned on reaching a certain node in P,
is always “reasonably localised” when X ∼ µ (which holds due to the fact that µ has the
“concatenated” structure of µf ◦ µg).

Claim 1. Let v be a vertex in P and i ∈ [n], then

I
X∼µ

[
Xi : X[n]\{i}

∣∣[v], Zi
]

= 0. 5

Note that in general I
[
Xi : X[n]\{i}

∣∣[v]
]
can be positive, as µf doesn’t need to be a

product distribution; however, in the above statement this possible dependence is “shielded”
by conditioning on Zi.

Proof. Let a ∈ {0, 1} and recall that µ = µf ◦ µg. By the nature of a query protocol, there
exist sets A and B such that the distribution of X ∼ µ, conditioned on reaching v, is the same
as the distribution of X ∼ µ, conditioned on Xi ∈ A and X[n]\{i} ∈ B. Accordingly,

I
X∼µ

[
Xi : X[n]\{i}

∣∣[v], Zi = a
]

= I
µ

[
Xi : X[n]\{i}

∣∣Zi = a,Xi ∈ A,X[n]\{i} ∈ B
]

= I
µ′

[
Xi : X[n]\{i}

∣∣Xi ∈ A,X[n]\{i} ∈ B
]
,

where µ′ = µ′f ◦ µg for Z ∼ µ′f defined as Z ∼ µf , subject to [Zi = a]. By our definition of
concatenated distributions, Iµ′

[
Xi : X[n]\{i}

]
= 0, and therefore

I
µ′

[
Xi : X[n]\{i}

∣∣Xi ∈ A,X[n]\{i} ∈ B
]

= 0

as well.
Finally, Iµ

[
Xi : X[n]\{i}

∣∣[v], Zi
]
is a convex combination of Iµ

[
Xi : X[n]\{i}

∣∣[v], Zi = 0
]

and Iµ
[
Xi : X[n]\{i}

∣∣[v], Zi = 1
]
, as µg is supported on legal input values for g. The result

follows. �Claim 1

Let v0 be a node in P that queries Xi0,j0 and let v′0 be the corresponding node in P ′.
Assume

∀z ∈ {0, 1}n : Pr
Z∼µf

[
Z = z

∣∣v′0] = Pr
X∼µ

[
Z = z

∣∣v0] (14)

– in particular, this means that (1) is satisfied, and therefore (2) and (3) hold with respect to
v0 and v′0.

5 Here “[v]” denotes the event that v is reached by the protocol and “Zi” stands for conditioning on the
value that the variable takes.

11

Let us see what happens at the vertices v0 ∈ P and v′0 ∈ P ′, conditioned upon [Zi0 = 1].
First of all, from (2) and (3) it follows that

Pr
µf

[
answer “0”

∣∣[v′0], Zi0 = 1
]

= Pr
µ

[
Xi0,j0 = a0

∣∣[v0], Zi0 = 1
]
.

Conditioned on [v0]∧ [Zi0 = 1]∧ [Xi0,j0 = a0], the distribution of Z is the same as conditioned
only on [v0] ∧ [Zi0 = 1], as follows from Claim 1 and the fact that Z[n]\{i0} is a function of
X[n]\{i0}. In other words,

∀z ∈ {0, 1}n : Pr
µ

[
Z = z

∣∣[v0], Zi0 = 1, Xi0,j0 = a0
]

= Pr
µ

[
Z = z

∣∣[v0], Zi0 = 1
]
. (15)

In the case of P ′ the following trivial analogue of Claim 1 holds:

I
Z∼µf

[
the answer of v′0 : Z[n]\{i0}

∣∣[v′0], Zi0] = 0;

accordingly,

∀z ∈ {0, 1}n : Pr
µf

[
Z = z

∣∣[v′0], Zi0 = 1, answer “0”
]

= Pr
µf

[
Z = z

∣∣[v′0], Zi0 = 1
]
.

By (14) and (15), this means that ∀z ∈ {0, 1}n:

Pr
µ

[
Z = z

∣∣[v0], Zi0 = 1, Xi0,j0 = a0
]

= Pr
µf

[
Z = z

∣∣[v′0], Zi0 = 1, answer “0”
]
.

By (2) and the symmetry with respect to the value of Zi0 and the answer,

∀z ∈ {0, 1}n : (16)

Pr
µ

[
Z = z

∣∣[v0], Xi0,j0 = a0
]

= Pr
µf

[
Z = z

∣∣[v′0], answer “0”]
and

Pr
µ

[
Z = z

∣∣[v0], Xi0,j0 = 1− a0
]

= Pr
µf

[
Z = z

∣∣[v′0], answer “1”].
So, for every pair of mutually-corresponding vertices v0 ∈ P and v′0 ∈ P ′ that satisfy (14),

both (16) and (3) must hold. This is precisely the statement that we want to use for our
inductive argument, as described in the beginning of this part.

Formally, the full argument goes like that: Let vroot ∈ P and v′root ∈ P ′ be the roots and
assume that the initial distribution of Z is the same – that is, (14) is satisfied at the roots.
Let v1 ∈ P and v′1 ∈ P ′ be mutually-corresponding sons of the roots; by the above statement,
both (16) and (3) hold at vroot and v′root. Note that (16) with respect to the roots implies that
(14) is satisfied with respect to v1 and v′1. Continuing inductively, we conclude that both (16)
and (3) hold (unconditionally) for all mutually-corresponding non-leaves of P and P ′.

Thus we have shown the following:

Lemma 1. Let g : {0, 1}m → {0, 1, ∗}. Let P be a deterministic protocol that queries bits of
X = (X1, . . . , Xn) ∈ {0, 1}n·m. Let µg be a distribution over {0, 1}m, supported on legal input
values for g, and µ = µf ◦ µg be a distribution over {0, 1}n·m, so that µf is the distribution of
(g(X1, . . . , g(Xn)) when X ∼ µ.

Then there exists a protocol P ′ that queries bits of Z ∈ {0, 1}n, such that an isomorphism
M maps the protocol tree of P to a polarised tree representing P ′. Moreover, it holds that

12

• for every vertex v in the tree of P, the probability of reaching it under X ∼ µ is the same
as the probability of reachingM(v) in P ′ under Z ∼ µf ;
• for every vertex v in the tree of P, the distribution of (g(X1), . . . , g(Xn) taken with
respect to X ∼ µ and conditioned upon reaching v is the same as the distribution of (Z1,
. . . , Zn) taken with respect to Z ∼ µf and conditioned upon reachingM(v) in P ′.

The protocol P ′ is, in the first place, a protocol for computing f(Z). From the above
lemma it follows that for every leaf l of P

Pr
Z∼µf

[
f(Z) = 1

∣∣M(l)
]

= Pr
X∼µ

[
f ◦ gn(X) = 1

∣∣l].
Therefore, if we label everyM(l) by the same answer as appears on l, we get a protocol that
computes f over µf as accurately as P computes f ◦ gn over µ.

Now let us assume for a moment that µf is supported on the whole {0, 1}n and revisit
Lemma 1. According to its statement, if X ∼ µ and Z ∼ µf , then for every leaf l of P the
distribution of (g(X1), . . . , g(Xn) conditioned upon reaching l is the same as the distribution
of Z conditioned upon reachingM(l) in P ′; moreover, the probabilities of reaching l and of
reachingM(l) are the same. Therefore, for every z0 ∈ {0, 1}n:

Pr
X∼z0◦µg

[l] = Pr
µf◦µg

[
l
∣∣Z = z0

]
= Pr

µf◦µg

[
Z = z0

∣∣l] · Prµf◦µg [l]

Prµf◦µg [Z = z0]

= Pr
Z∼µf

[
Z = z0

∣∣M(l)
]
·
Prµf [M(l)]

Prµf [Z = z0]
= Pr

[
M(l)

∣∣Z = z0
]

(note that the rightmost probability only depends on the “internal randomness” of P ′, and not
on the distribution of Z).

In other words, the distribution of the leaf that P ′(Z) reaches when Z = z0 is the same as
the distribution ofM(L), where L is the leaf reached by P(X) when X ∼ z0◦µg.6 Accordingly,
the protocols P and P ′ “perform identically” (in the sense of Lemma 1) even if conditioned
upon the value of Z, and therefore also with respect to any distribution Z ∼ ν (corresponding
to X ∼ ν ◦ µg). In other words, the construction of P ′ can be done independently of µf : it is
enough to know the protocol P, the function g and the distribution µg.

To conclude:

Corollary 1. Let f ⊆ {0, 1}n × Ξ and g : {0, 1}m → {0, 1, ∗}. Let P be a deterministic
protocol that queries bits of X = (X1, . . . , Xn) ∈ {0, 1}n·m. Let µg be a distribution over
{0, 1}m, supported on legal input values for g.

Then there exists a protocol P ′ that queries bits of Z ∈ {0, 1}n, such that an isomorphism
M maps the protocol tree of P to a polarised tree representing P ′. Moreover, for every
distribution ν over {0, 1}n it holds that

• the error of P ′ in computing f(Z) when Z ∼ ν is the same as that of P in computing
f ◦ gn(X) when X ∼ ν ◦ µg;

6 Recall that P ′ is randomised, and so the leaf reached by the protocol is not necessarily determined by
the input value. Note also that z0 ◦ µg is the distribution of X ∼ µf ◦ µg, conditioned upon Z = (g(X1),
. . . , g(Xn)) = z0.

13

• for every z0 in the support of ν, the distribution ofM(L), where L is the leaf reached by
P conditioned upon (g(X1), . . . , g(Xn)) = z0 is the same as the distribution of the leaf
reached by P ′ conditioned upon Z = z0;
• for every vertex v in the tree of P, the probability of reaching it under X ∼ ν ◦ µg is the
same as the probability of reachingM(v) in P ′ under Z ∼ ν;
• for every vertex v in the tree of P, the distribution of (g(X1), . . . , g(Xn)) taken with
respect to X ∼ ν ◦ µg and conditioned upon reaching v is the same as the distribution of
Z taken with respect to Z ∼ ν and conditioned upon reachingM(v) by P ′.

4 Comparing the complexities of the protocols

In Section 3 we were given a query protocol P for computing f ◦ gn and used it to construct
a protocol P ′ for computing f . Now let us analyse the properties of P ′ (as summarised in
Corollary 1) in order to argue that it has low query complexity if that of P was low.

Let µf be such input distribution for f that Rµf ,ε(f) ∈ Ω(R(f)) for some fixed ε > 0. We
will assume that µf is non-fixing in the following sense: for any i0 ∈ [n] and s0 ∈ {0, 1}n−1,
the distribution of Zi0 when Z ∼ µf and Z|[n]\{i0} = s0 has positive entropy.7 Let µg be input
distribution for g, supported on legal input values (to be chosen in Section 4.1.3; it will be
hard in a certain “error-independent” sense).

We apply Corollary 1 with respect to this µg and the given protocol P , letting P ′ andM
be as guaranteed by the statement.

4.1 Protocols as Zi-predictors

Informally, in our analysis we will look at the “knowledge” of a given leaf of a protocol tree
about Zi0 . To formalise this, we consider the behaviour of a protocol with respect to the
uniform distribution of Z, which corresponds to X ∼ µUg

def
= U{0,1}n ◦ µg in the case of P.

Let T denote the protocol tree of P. For every leaf l ∈ T , let λi0(l) ∈ {0, 1} be a most
likely value of Zi0 = g(Xi0) when X ∼ µUg , conditioned on reaching l.8 Let

δi0(l)
def
= Pr

X∼µUg

[
g(Xi0) = λi0(l)

∣∣l]− 1

2

{
∈
[
0,

1

2

]}
and

δi0(T)
def
= E

L
[δi0(L)],

where L is distributed as the leaf of T reached by P when X ∼ µf ◦ µg (note the “mixture
of distributions”: λi0(l) and δi0(l) are defined relative to X ∼ µUg , but L in the definition of
δi0(T) is sampled with respect to X ∼ µf ◦ µg).

7 If µf is fixing, we let ε′ def
= ε/2, µ′f

def
=

µf+ε′·U{0,1}n
1+ε′ and take (µ′f , ε

′) instead of (µf , ε): the resulting µ′f is
non-fixing and Rµ′

f
,ε′(f) ≥ Rµf ,ε(f) ∈ Ω(R(f)).

8 Recall that µg is supported only on legal input values for g, so Pr
[
g(Xi0) = 0

∣∣l]+ Pr
[
g(Xi0) = 1

∣∣l] = 1
always.

14

Let T ′ denote the protocol tree of P ′. For every leaf l′ ∈ T ′, let λi0(l′) ∈ {0, 1} be a most
likely value of Zi0 when Z ∼ U{0,1}n , conditioned on reaching l′. Let

δi0(l′)
def
= Pr

Z∼U{0,1}n

[
Zi0 = λi0(l′)

∣∣l′]− 1

2

{
∈
[
0,

1

2

]}
and

δi0(T ′) def
= E

L′

[
δi0(L′)

]
,

where L′ is the distributed as the leaf of T ′ reached by P ′ when Z ∼ µf (note the “mixture of
distributions”: λi0(l) and δi0(l) are defined relative to Z ∼ U{0,1}n , but L′ in the definition of
δi0(T ′) is sampled with respect to Z ∼ µf).

Note several important symmetries in the above definitions with respect to the isomorphism
M. First, for every leaf l of P

λi0(l) = λi0(M(l)) and δi0(l) = δi0(M(l)).

Second, the distribution ofM(L), where L is the leaf of T reached by P when X ∼ µf ◦ µg is
the same as the distribution of the leaf of T ′ reached by P ′ when Z ∼ µf . Accordingly,

δi0(T) = δi0(T ′). (17)

These symmetries hold due to the fact that the construction of Corollary 1 only depends on µg
– in particular, its guarantees hold both in the case of X ∼ µUg and in the case of X ∼ µf ◦ µg.

4.1.1 The case of P ′

First we take a closer look at T ′, the tree of P ′. It is polarised, so we “statically” define
wi0(l′) ∈ {0, 1} such that conditioned on reaching the leaf l′ ∈ T ′, if wi0 6= ∗, then wi0 = wi0(l′).
Let

qi0(l′)
def
= Pr

Z∼U{0,1}n

[
wi0 6= ∗

∣∣l′] = Pr
Z∼U{0,1}n

[
Zi0 has been queried by P ′(Z)

∣∣l′]. 9

Obviously, under Z ∼ U{0,1}n the best guess for the value of Zi0 conditioned on reaching l′

would be wi0(l′); therefore,

λi0(l′) = wi0(l′).

The bits of Z are both unbiased and mutually independent under U{0,1}n ; accordingly, if
protocol P ′ “knows something” about Zi0 , then wi0 6= ∗ and the protocol knows that value
with certainty:

δi0(l′) =
1

2
· (1− qi0(l′)) + qi0(l′)− 1

2
=
qi0(l′)

2

9 Note that if qi0(l′) = 0, then wi0(l′) ∈ {0, 1} can be defined arbitrarily – this is similar to the situation
when δi0(l) = 0 in the case of l ∈ P.

15

and

δi0(T ′) = E
L′

[
δi0(L′)

]
=

1

2
· E
L′

[
qi0(L′)

]
, (18)

where L′ is distributed as the leaf of T ′ reached by P ′ when Z ∼ µf .
Next we want to use δi0(T ′) as an upper bound on the number of queries made by P ′(Z)

to Zi0 under Z ∼ µf . The main obstacle here is the fact that qi0(l′) is defined with respect to
Z ∼ U{0,1}n .10

Claim 2. For every z ∈ {0, 1}n such that P ′(z) reaches l′ with positive probability, it holds
that

Pr
Z∼U{0,1}n

[
Zi0 is queried by P ′(Z)

∣∣[l′], Zi0 = zi0
]

= Pr
[
Zi0 is queried by P ′(z)

∣∣l′].
That is, the probability that Zi0 is queried doesn’t depend on Z[n]\{i0}. Note that the

right-hand side of the above equality only depends on the “internal randomness” of P ′ (and
not on the distribution of Z).

Proofof Claim 2. Note that

Pr
U{0,1}n

[
Zi0 is queried by P ′(Z)

∣∣[l′], Zi0 = zi0
]

= E
Z′∼U{0,1}n
Z′i0

=zi0

[
Pr
[
Zi0 is queried by P ′(Z ′)

∣∣l′]].
We claim that for every z′ ∈ {0, 1}n, the value of Pr

[
Zi0 is queried by P ′(z′)

∣∣l′] is a function of
z′i0 – in particular, this means that the expectation on the right-hand side of the above equality
is over a constant value equal to Pr

[
Zi0 is queried by P ′(z)

∣∣l′] (quod erat demonstrandum).
Let v1, . . . , vt be the Z-nodes on the path from the root of T ′ to l′ that may query Zi0 ,

listed in order of appearance. For j ∈ [t] let aj ∈ {0, 1} be the “answer” of vj on the path
to l′ and let ej denote the event that Zi0 is queried by P ′(z′) in vj . Let vj be a Z-node,
parametrised by (i0, α, β). Note that conditional on reaching vj , the events [∧j−1k=1(¬ek)] and
[wi0 = ∗] coincide.

If aj 6= z′i0 , then Pr [ej] = 0.
If aj = z′i0 = 0, then

Pr
[
aj is answered, ej

∣∣∣vj is reached, ∧j−1k=1(¬ek)
]

= α,

Pr
[
aj is answered, ¬ej

∣∣∣vj is reached, ∧j−1k=1(¬ek)
]

= (1− α) · (1− β)

=⇒ Pr
[
ej

∣∣∣vj is reached, aj is answered, ∧j−1k=1(¬ek)
]

=
α

α+ (1− α) · (1− β)
.

If aj = z′i0 = 1, then

Pr
[
aj is answered, ej

∣∣∣vj is reached, ∧j−1k=1(¬ek)
]

= α,

Pr
[
aj is answered, ¬ej

∣∣∣vj is reached, ∧j−1k=1(¬ek)
]

= (1− α) · β

=⇒ Pr
[
ej

∣∣∣vj is reached, aj is answered, ∧j−1k=1(¬ek)
]

=
α

α+ (1− α) · β
.

10 Note that the value of PrZ∼ν
[
Zi0 has been queried by P ′(Z)

∣∣l′] is, in general, not “ν-independent” – in
spite of the fact that the parameters of the generic nodes in T ′ are ν-independent, and therefore known.

16

As aj , α and β are constants,

Pr
[
ej

∣∣∣vj is reached, aj is answered, ∧j−1k=1(¬ek)
]

is a function of z′i0 , as well as

Pr
[
Zi0 is queried by P ′(z′)

∣∣l′] =
t∑

j=1

Pr
[
ej

∣∣∣vj is reached, aj is answered, ∧j−1k=1(¬ek)
]
,

and the result follows. �Claim 2

Let us decompose

qi0(l′) = Pr
Z∼U{0,1}n

[
Zi0 is queried by P ′(Z)

∣∣l′]
= E

a⊂∼{0,1}

[
Pr

Z∼U{0,1}n

[
Zi0 is queried by P ′(Z)

∣∣[l′], Zi0 = a
]]
.

For every z ∈ {0, 1}n such that P ′(z) reaches l′ with positive probability:

qi0(l′) ≥ 1

2
· Pr
Z∼U{0,1}n

[
Zi0 is queried by P ′(Z)

∣∣[l′], Zi0 = zi0
]

=
1

2
·Pr

[
Zi0 is queried by P ′(z)

∣∣l′],
where the equality follows from Claim 2. So, for every distribution ν it holds that

Pr
Z∼ν

[
Zi0 is queried by P ′(Z)

∣∣l′] = E
Z′∼ν

[
Pr
[
Zi0 is queried by P ′(Z ′)

∣∣l′]] ≤ 2 · qi0(l′).

By (18),

Pr
Z∼µf

[
Zi0 is queried by P ′(Z)

]
= E

L′

[
Pr
[
Zi0 is queried

∣∣L′]]
≤ 2 · E

L′

[
qi0(L′)

]
= 4 · δi0(T ′),

where L′ is distributed as the leaf of T ′ reached by P ′(Z) when Z ∼ µf . Then

E
Z∼µf

[
number of queries made by P ′(Z)

]
≤ 4 ·

n∑
i=1

δi(T ′).

So,

n∑
i=1

δi(T ′) ≥
1

4
· Rµf ,ε(f) ∈ Ω(R(f)). (19)

17

4.1.2 The case of P

From (19) and (17) we have:

n∑
i=1

δi(T) ∈ Ω(R(f)), (20)

where T is the tree of the given protocol P(X). Let us analyse P, trying to obtain a lower
bound on

∑
δi(T).

For x ∈ {0, 1}n·m, denote by l(x) the leaf of T that is reached by P(x).11 Let µ = µf ◦ µg,
then

δi0(T) = E
X∼µ

[δi0(l(X))] = E
X′∼µ

[
E
X∼µ

[
δi0(l(X))

∣∣∣X[n]\{i0} = X ′[n]\{i0}

]]
(note that X[n]\{i0} contains (n− 1) ·m bits). Let

δ
(x)
i0

(T)
def
= E

X∼µ

[
δi0(l(X))

∣∣X[n]\{i0} = x[n]\{i0}
]
,

then

δi0(T) = E
X′∼µ

[
δ
(X′)
i0

(T)
]
. (21)

Let dµ(T) denote the expected number of oracle queries that P(X) makes when X ∼ µ
(this is the “expected depth” of T). Let d(i0)µ (T) denote the expected (total) number of
queries to bits of Xi0 by T (X) when X ∼ µ, and let d(i0,x)µ (T) denote the same expectation,
conditioned upon [X[n]\{i0} = x[n]\{i0}].

Obviously,

dµ(T) =
n∑
i=1

d(i)µ (T) and d(i)µ (T) = E
X′∼µ

[
d(i,X

′)
µ (T)

]
.

Since we can assume that dµ(T) ∈ O(R(f ◦ gn)),

n∑
i=1

E
X′∼µ

[
d(i,X

′)
µ (T)

]
∈ O(R(f ◦ gn)). (22)

Restricting and trimming P Now we only miss an upper bound on δ(x)i0
(T) in terms of

d
(i0,x)
µ (T) in order to be able to put together (20), (21) and (22).

In this part we construct a “restriction” of protocol P , which will compute g(·) and whose
accuracy and complexity will be closely related to δ(x)i0

(T) and d(i0,x)µ (T), respectively. It will
remain to state that if its accuracy is “noticeable”, then the expected number of queries that
it makes cannot be “negligible” – that will be done in Section 4.1.3 via choosing a suitable
distribution µg.

11 Note that l(·) is well-defined, as P is deterministic.

18

Recall the definitions of µ0g and µ1g from Section 3.2. Our ultimate µg will be such that

µg =
µ0g + µ1g

2
(23)

– i.e., g will be unbiased with respect to it. For i0 ∈ [n] and x ∈ {0, 1}n·m, denote by µ(i0,x)g the
distribution of Xi0 ∈ {0, 1}

m when X ∼ µ = µf ◦ µg, conditioned upon [X[n]\{i0} = x[n]\{i0}].
Note that µ(i0,x)g is a convex combination of µ0g and µ1g.

We can easily turn T into a protocol for computing g(Xi0): Label each leave l of the new
protocol by λi0(l), as defined in the beginning of Section 4.1. When T queries a bit of Xi0 ,
the new protocol does the same, and whenever T queries a bit of X[n]\{i0}, the new protocol
“locally” substitutes the corresponding bit of some fixed x ∈ {0, 1}n·m (so, the value of x may
affect protocol’s behaviour). Denote this new (deterministic) protocol by P(i0,x), let us have a
closer look at some of its properties.

Assume that Xi0 ∼ µg. The protocol P(i0,x) queries (only) bits of Xi0 and computes g(Xi0)

with some accuracy. We would like to use δ(x)i0
(T) as a “measure of accuracy” of P(i0,x) and

d
(i0,x)
µ (T) as its “measure of complexity”.

Note that the value of δ(x)i0
(T) does not directly attest the accuracy of P(i0,x) under

Xi0 ∼ µg, as δ
(x)
i0

(T) has been defined relative to µ(i0,x)g . Nevertheless,

δ
(x)
i0

(T) = E
Xi0∼µ

(i0,x)
g

X[n]\{i0}=x[n]\{i0}

[δi0(l(X))]

=
∑

a∈{0,1}

Pr
Xi0∼µ

(i0,x)
g

[g(Xi0) = a] · E
Xi0∼µ

(i0,x)
g

X[n]\{i0}=x[n]\{i0}

[
δi0(l(X))

∣∣g(Xi0) = a
]

≤ 2 ·
∑

a∈{0,1}

1

2
· E

Xi0∼µ
(i0,x)
g

X[n]\{i0}=x[n]\{i0}

[
δi0(l(X))

∣∣g(Xi0) = a
]

= 2 · E
Xi0∼µg

X[n]\{i0}=x[n]\{i0}

[δi0(l(X))],

where the equality follows from (23) and the fact that δi0(l) ≥ 0 always. Therefore,

Pr
Xi0∼µg

[
P(i0,x)(Xi0) = g(Xi0)

]
≥ 1

2
+
δ
(x)
i0

(T)

2
. (24)

Relating the query complexity of P(i0,x) to the value of d(i0,x)µ (T) is more interesting, as
the latter can be much smaller than the expected number of queries made by the protocol
under µg.12 In order to use both δ(x)i0

(T) and d(i0,x)µ (T) as intended, we “trim” P(i0,x).
Define P(i0,x)

tr as the protocol obtained from (the tree of) P(i0,x), where every vertex v
such that Prµg

[
g(Xi0) = a

∣∣v] > 3/4 for some a ∈ {0, 1} is replaced by a leaf labelled with

12 E.g., if Pr [g(Xi0) = 0] = 1/m under Xi0 ∼ µ
(i0,x)
g , and P(i0,x) makes Ω(m) queries when g(Xi0) = 0 and

O(1) queries when g(Xi0) = 1, then d(i0,x)µ (T) ∈ O(1) but P(i0,x) makes Ω(m) expected queries under µg.

19

“a” (the sub-trees that were under these vertices are dropped). Like P and P(i0,x), P(i0,x)
tr is

deterministic.
First we analyse the accuracy of P(i0,x)

tr under Xi0 ∼ µg. Here the “worst case” would be
if we have trimmed sub-trees that correctly computed the value of g(Xi0), in which case the
accuracy in those vertices has reduced from 1/2 + 1/2 to 1/2 + 1/4. From (24),

Pr
Xi0∼µg

[
P(i0,x)
tr (Xi0) = g(Xi0)

]
≥ 1

2
+
δ
(x)
i0

(T)

4
. (25)

From the definitions, d(i0,x)µ (T) equals the expected number of queries made by P(i0,x)

when Xi0 ∼ µ
(i0,x)
g . Therefore, under the same input distribution the expected number of

queries made by P(i0,x)
tr is at most d(i0,x)µ (T).

Assume without loss of generality that Pr
µ
(i0,x)
g

[g(Xi0) = 1] ≥ 1
2 . Let v be a non-leaf

vertex of P(i0,x)
tr and Pr [v] be the probability that it is “visited” by P(i0,x)

tr on input Xi0 . From
(23) it follows that

Prµ0g [v]

Prµ1g [v]
=

Prµg [v and g(Xi0) = 0]

Prµg [v and g(Xi0) = 1]
=

Prµg
[
g(Xi0) = 0

∣∣v]
Prµg

[
g(Xi0) = 1

∣∣v] ≤ 3;

Pr
µg

[v] =
Prµ0g [v] + Prµ1g [v]

2
≤ 2 ·Pr

µ1g
[v];

Pr
µ
(i0,x)
g

[v] ≥ Pr
µ
(i0,x)
g

[g(Xi0) = 1] ·Pr
µ1g

[v] ≥ 1

2
·Pr
µ1g

[v];

Pr
µ
(i0,x)
g

[v] ≥ 1

4
·Pr
µg

[v].

The leaves of P(i0,x)
tr make no queries, so the expected number of queries made by the

protocol under Xi0 ∼ µg is at most 4 times that number under µ(i0,x)g . In other words,

E
Xi0∼µg

[
number of queries made by P(i0,x)

tr (Xi0)
]
≤ 4 · d(i0,x)µ (T). (26)

4.1.3 Choosing a suitable µg

We have seen so far that under our assumptions there existed a deterministic protocol that
made O

(
d
(i0,x)
µ (T)

)
expected queries and computed g(Xi0) with accuracy 1/2 + Ω

(
δ
(x)
i0

(T)
)

under Xi0 ∼ µg. It remains to choose µg that would make g(·) hard to compute with any
non-trivial advantage over randomly guessing the answer.

Lemma 2. Let g : {0, 1}m → {0, 1, ∗}. There exists a distribution µg, such that for any δ > 0,
any deterministic protocol computing g(Y) with accuracy 1/2 + δ under Y ∼ µg makes

Ω
(
δ2 · R(g)

)
expected queries.

20

For us the order of quantifiers in this lemma is crucial: the claim holds for the same µg
with respect to any δ. In particular, this means that g is balanced perfectly with respect to
µg.13 Accordingly, a non-trivial deterministic protocol cannot make less than 1 expected query
(otherwise it would never make a query and had accuracy 1/2). Therefore:

Corollary 2. Let g : {0, 1}m → {0, 1, ∗}. There is a distribution µg, such that for any δ > 0,
any deterministic protocol computing g(Y) with accuracy 1/2 + δ under Y ∼ µg makes

Ω
(
δ2 · R(g)

)
+ 1

expected queries. In particular, Pr [g(Y) = 0] = Pr [g(Y) = 1] = 1/2.

If we choose such µg to be the “g-part” of the input distribution X ∼ µf ◦ µg, then from
(25) and (26):

d(i0,x)µ (T) ∈ Ω

((
δ
(x)
i0

(T)
)2
· R(g) + 1

)
⊆ Ω

(
δ
(x)
i0

(T) ·
√
R(g)

)
. (27)

Proofof Lemma 2. Let α be such that for every distribution ν, such that g is balanced with
respect to it, there exists δν > 0 and a (deterministic) query protocol ρν that makes at most
α · δ2ν · R(g) expected queries and computes g(Y) with accuracy at least 1/2 + δν when Y ∼ ν.
We need to show that α ∈ Ω(1). Assume α ≤ 1.

Let dν denote the expected number of queries that ρν makes when Y ∼ ν. Obviously,
we can assume that dν ∈ O(R(g)). If g is balanced with respect to ν, then any protocol
computing it with accuracy 1/2 + δν must make at least δν expected queries; accordingly,

α · δ2ν · R(g) ≥ dν ≥ δν =⇒ dν , δν ≥
1

α · R(g)
≥ 1

R(g)
. (28)

Let µ′g be such that Rµ′g , 13 (g) ∈ Ω(R(g)) and assume without loss of generality that g is
balanced with respect to µ′g. We will use our assumptions to build a (deterministic) protocol
tree Tg for computing g(Y) with high accuracy under Y ∼ µ′g. Every non-leaf vertex v ∈ Tg
will correspond to running a “weak protocol” that computes g(Y) with accuracy 1/2 + δv with
respect to certain distribution νv (the outgoing edges will be labelled by the answer returned
by that protocol). Every leaf will be labelled by the answer that Tg returns upon reaching it.

The tree is constructed inductively, where at every step we handle one vertex – that is, we
decide whether it will corresponds to a leaf in Tg, and if not, then we assign a weak protocol to
this vertex. A non-handled vertex can only appear as a son of a vertex that has already been
handled (and therefore all his predecessors starting from the root have been handled too).

Let T (i)
g denote the partial protocol tree constructed at step i (T (0)

g contains only the root
vroot). Here is the i’th step of our construction:

(a) Let v ∈ T (i−1)
g be a closest to the root non-handled vertex. Let ν ′v be the distribution

of Y ∼ µ′g, conditioned on reaching v by the protocol described by T (i−1)
g (this is

well-defined, as the actions of the v’s predecessors are known).
If the entropy of g(Y) when Y ∼ ν ′v is at most 1/2, let v be a leaf in T (i)

g and label it by
the more likely value of g(Y).

13 Which, in turn, means that µg is supported only on legal input values for g.

21

Otherwise, let νv be the “balanced version” of ν ′v, defined as ν
(0)
v +ν

(1)
v

2 where ν(a)v is the
distribution of Y ∼ ν ′v, conditioned on [g(Y) = a]. Let ρv be a protocol that makes dv
expected queries and computes g(Y) with accuracy at least 1/2 +

√
dv

α·R(g) when Y ∼ νv:

its existence follows from (28). Let the action of v in T (i)
g be ρv, and add to T (i)

g two
(non-handled) sons of v, corresponding to the possible answers given by ρv.

(b) If there is no non-handled vertices in T (i)
g , stop the construction and let Tg

def
= T (i)

g .
(c) Let T̃ (i)

g be a modification of T (i)
g , where each non-handled vertex becomes a leaf labelled

by a most likely value of g(Y) conditioned on reaching that vertex when Y ∼ µ′g. If

Pr
Y∼µ′g

[
T̃ (i)
g (Y) 6= g(Y)

]
≤ 1

3
, (29)

stop the construction and let Tg
def
= T̃ (i)

g .

First we claim that if this construction halts, then

Pr
Y∼µ′g

[Tg(Y) 6= g(Y)] ≤ 1

3
. (30)

It is obviously the case if condition (29) has been satisfied; if not, then the construction has
aborted at (b), which means that all the leaves of Tg have been created at (a). Then the entropy
at every leaf of Tg is at most 1/2 and Pr [Tg(Y) 6= g(Y)] < 1/9 (as h2 (x) ≤ 1/2⇒ x 6∈ [1/9, 8/9],
where h2 (·) denotes the binary entropy function).

Let us argue that the construction halts and analyse the query complexity of Tg(Y) under
Y ∼ µ′g. For a (deterministic) protocol tree T that queries bits of Y , let

Hg(T)
def
= E

Y∼µ′g

[
H

Y ′∼µ′g

(
g(Y ′)

∣∣Y ′ ∈ lT (Y)
)]
,

where H (·) denotes the entropy and lT (y) is the set of all y′ ∈ {0, 1}m that reach the same
leaf of T as y does. For i ≥ 1, let vi be the vertex handled at step i and “[vi]” denote the
event [vi is reached by T̃ (i)

g (Y)]. Assume that vi is not a leaf in Tg, then 14

Hg(T̃ (i−1)
g)−Hg(T̃ (i)

g) = Pr
µ′g

[vi] ·

(
H
µ′g

(
g(Y)

∣∣[vi])−H
µ′g

(
g(Y)

∣∣[vi], ρvi(Y)
))

(31)

= Pr
µ′g

[vi] ·

(
H
ν′vi

(g(Y))− H
ν′vi

(
g(Y)

∣∣ρvi(Y)
))

︸ ︷︷ ︸
(∗)

.

Let us estimate (∗). Let 1/2 + δvi be the accuracy of ρvi(Y) in computing g(Y) over νvi .
Denote αa = Pr

ν
(a)
vi

[ρvi(Y) = 1] for a ∈ {0, 1}, then

(1− α0) + α1

2
=

1

2
+ δvi =⇒ α1 − α0 = 2 · δvi .

14 Let T̃ (0)
g consist of a single root-leaf vertex vroot labelled by “1”.

22

Note that

H
ν′vi

(g(Y)) = h2

(
E
A

[αA]

)
and H

ν′vi

(
g(Y)

∣∣ρvi(Y)
)

= E
A

[h2 (αA)],

where A is a Boolean random variable distributed like g(Y) under Y ∼ ν ′vi .
Let us use Hölder’s simple yet useful “defect estimation” for Jensen’s inequality, as given

in [Bec12]:

Fact 1 (Hölder’s estimation). If f : [a, b]→ R is twice continuously differentiable and X is a
(discrete) random variable taking values on [a, b], then

E [f(X)]− f
(
E [X]

)
=
f ′′(x0)

2
·

(
E
[
X2
]
−
(
E [X]

)2
) {

=
f ′′(x0)

2
·Var [X]

}
for some x0 ∈ [a, b].

Applying it with h2 (·) and αA, we get:15

H
ν′vi

(g(Y))− H
ν′vi

(
g(Y)

∣∣ρvi(Y)
)
≥

infx∈(0,1) {−h′′2 (x)}
2

·Var [αA] > 2 ·Var [αA].

As vi is not a leaf in Tg,

H
ν′vi

(g(Y)) >
1

2
=⇒ 1

10
< Pr

ν′vi

[g(Y) = 1] <
9

10

and

Var [αA] = (α0 − α1)
2 · (1−Pr

ν′vi

[g(Y) = 1]) ·Pr
ν′vi

[g(Y) = 1] >
δ2vi
3
.

So, (31) leads to

Hg(T̃ (i−1)
g)−Hg(T̃ (i)

g) >
Prµ′g [vi] · δ2vi

2
≥

Prµ′g [vi] · dvi
2 · α · R(g)

≥
Prµ′g [vi]

2 · (R(g))2
, (32)

where the last two inequalities follow from (28).
Next we apply (31) to see that our construction of Tg always halts. Note that at (a)

we always choose a non-handled vertex closest to the root, so at step i there are at most
two “layers” of T (i)

g that contain non-handled vertices. For k ∈ N, define the k’th stage of
construction as the collection of all steps that handle a vertex at depth k (observe that the
steps of a stage always form an uninterrupted sequence).

Let i0 and i1 be the first and the last steps of stage k′, assume that k′ was not the last
stage of the construction (recall that now we are proving halting). Let V1 ⊆ T (i1)

g be the set of
vertices (at depth k′) where our construction has assigned a protocol during one of the steps of

15 Formally speaking, h′′2 (·) is continuous only on (0, 1); if α0 = 0 or α1 = 1, this violates the condition of
Hölder’s estimation, as stated above. However, the requirements of Fact 1 can, obviously, be relaxed by letting
f be twice continuously differentiable on (a, b) only and continuous on [a, b].

23

stage k′, and let L1 be the leaves of T (i1)
g at depth k′ (i.e., these are vertices with conditional

entropy of g(Y) at most 1/2). Observe that V1 ·∪ L1 ⊆ T (i1)
g is the set of vertices at depth k′.

Then

Hg(T̃ (i0−1)
g)−Hg(T̃ (i1)

g) =
∑
v∈V1

Pr
µ′g

[v] ·
(
H
ν′v

(g(Y))−H
ν′v

(
g(Y)

∣∣ρvi(Y)
))

(33)

≥
Prµ′g [computation of Tg(Y) goes through V1]

2 · (R(g))2
,

where the inequality is (32).
On the other hand, from the assumption that k′ was not the last stage of the construction

it follows that

Pr
Y∼µ′g

[
T̃ (i1)
g (Y) 6= g(Y)

]
>

1

3
.

Since for every l ∈ L1 it holds that Pr
[
T̃ (i1)
g (Y) 6= g(Y)

∣∣∣l] < 1/9 (as h2 (x) ≤ 1/2 ⇒ x 6∈
[1/9, 8/9]),

Pr
Y∼µ′g

[
T̃ (i1)
g (Y) 6= g(Y)

]
≤ Pr

µ′g
[computation of Tg(Y) goes through V1] ·

1

2

+ Pr
µ′g

[computation of Tg(Y) goes through L1] ·
1

9

=
1

9
+ Pr

µ′g
[computation of Tg(Y) goes through V1] ·

7

18
,

and therefore,

Pr
µ′g

[computation of Tg(Y) goes through V1] >
4

7
.

From (33),

Hg(T̃ (i0−1)
g)−Hg(T̃ (i1)

g) >
2

7 · (R(g))2

and our construction halts after finitely-many steps (as every stage is obviously finite).
It remains to analyse the query complexity of Tg under µ′g. Let V ⊂ Tg be the set of

non-leaves and S ⊂ N be the steps of the construction where the elements of V were handled
(|V | = |S|). Then

Hg(T̃) = Hg(T̃ (0)
g)−

∑
i∈S

(
Hg(T̃ (i−1)

g)−Hg(T̃ (i)
g)
)
≤ 1− 1

2 · α · R(g)
·
∑
v∈V

Pr
µ′g

[v] · dv,

where the inequality is (32), and∑
v∈V

Pr
µ′g

[v] · dv ≤ 2 · α · R(g).

The left-hand side of this inequality is the expected number of queries that Tg(Y) makes when
Y ∼ µ′g. The result follows from (30) and the assumption thatRµ′g , 13 (g) ∈ Ω(R(g)). �Lemma 2

24

4.2 Summing up: the complexities

From (20) and (21),

n∑
i=1

E
X∼µ

[
δ
(X)
i (T)

]
∈ Ω(R(f)).

From (27), for all i ∈ [n] and x ∈ {0, 1}n·m:

d(i,x)µ (T) ∈ Ω
(
δ
(x)
i (T) ·

√
R(g)

)
.

Accordingly,

n∑
i=1

E
X∼µ

[
d(i,X)
µ (T)

]
∈ Ω

(√
R(g)

)
·
n∑
i=1

E
X∼µ

[
δ
(X)
i (T)

]
⊆ Ω

(
R(f) ·

√
R(g)

)
.

By (22), this implies that

Ω
(
R(f) ·

√
R(g)

)
∩O(R(f ◦ gn)) 6= ∅.

To conclude:

Theorem 1. Let f ⊆ {0, 1}n × Ξ and g : {0, 1}m → {0, 1, ∗}. Then

R(f ◦ gn) ∈ Ω
(
R(f) ·

√
R(g)

)
.

5 Tightness: R(f ◦ gn) ∈ O
(
R(f) ·

√
R(g)

)
is possible

We construct a relation f0 ⊆ {0, 1}n × {0, 1}n (i.e., Ξ = {0, 1}n) and a promise function
g0 : {0, 1}n → {0, 1, ∗} (i.e.,m = n), such thatR(f0) ∈ Θ(

√
n), R(g0) ∈ Θ(n) andR(f0◦gn0) ∈

Θ(n).
Let

f0(z)
def
=
{
a
∣∣∣ |a+ z| ≤ n

2
−
√
n
}

and

g0(x)
def
=

0 if |x| ≤ n/2−

√
n;

1 if |x| ≥ n/2 +
√
n;

∗ otherwise.

Claim 3. R(f0) ∈ Ω(
√
n).

Proof. Assume that a deterministic protocol of cost k solves f0 with respect to the uniform
input distribution with error at most 1/4. Such protocol partitions {0, 1}n into (at most) 2k

sub-cubes, each marked by some “answer” (an element from {0, 1}n). In particular, more
than 2n−1 points belong to sub-cubes of size at least 2n−k−1 – in other words, to sub-cubes of

25

co-dimension at most k + 1. As more than half of all points belong to such sub-cubes and the
total protocol error is at most 1/4, there exists at least one sub-cube of co-dimension at most
k + 1, on which the protocol errs with probability less than 1/2.

The symmetry in the definition of f0 allows us to assume without loss of generality that
the sub-cube is the set τ def

= 0k+1 ◦ {0, 1}n−k−1, where “◦” denotes string concatenation. It is
easy to see that the “answer” that would minimise the error probability with respect to this
sub-cube can be any binary string starting with “0k+1”, so let us assume that the actual label
is 0n. Then

Pr
[
error

∣∣Z ∈ τ] = Pr
Z′⊂∼{0,1}n−k−1

[∣∣Z ′∣∣ ≤ n

2
−
√
n
]
<

1

2
,

which implies that k + 1 ≥ 2
√
n, as a uniformly-random binary string of length more than

n− 2
√
n would have more than n/2−

√
n “ones” with probability at least 1/2. �Claim 3

Claim 4. R(g0) ∈ Ω(n).

Proof. A randomised query protocol of cost k for g0 would trivially imply existence of a
randomised communication protocol of cost at most 2k for the bipartite problem Gap-Hamming-
Distance:

GHD(X,Y)
def
=

0 if |X ⊕ Y | ≤ n/2−

√
n;

1 if |X ⊕ Y | ≥ n/2 +
√
n;

∗ otherwise,

and it has been demonstrated by Chakrabarti and Regev [CR11] that the complexity of this
problem is Ω(n). �Claim 4

Claim 5. Rε(f0 ◦ gn0) ∈ O
(
n ·
√

log(1/ε)
)
.

Proof. Consider the following protocol for computing f0 (g0(x1), . . . , g0(xn)), where xi ∈
{0, 1}n: For every i ∈ [n], let ai = xi(ji), where ji ⊂∼ [n] – that is, ai is a uniformly-random
bit of xi. Then

∣∣ {i|ai = g0(xi)}
∣∣ – the expected number of “correctly guessed” ai-s is at least

n/2 +
√
n; intuitively, this means that the probability that a1, . . . , an is a right answer to

f0 (g0(x1), . . . , g0(xn)) is “non-trivially high” – to “boost” this probability, we will use several
“probes” from every xi and take their majority vote.
Protocol: For an odd integer tε as defined next, independently choose ji,k ⊂∼ [n] for i ∈ [n]

and k ∈ [tε]. Let ai
def
= maj (xi(ji,1), . . . , xi(ji,tε)) and output “a1, . . . , an”.

To analyse it, we consider for every i ∈ [n]:

Pr [ai = g0(xi)]−Pr [ai 6= g0(xi)]

≥

tε−1
2∑
i=0

(
tε
i

)
·

((
1

2
− 1√

n

)i(1

2
+

1√
n

)tε−i
−
(

1

2
− 1√

n

) tε+1
2

+i(1

2
+

1√
n

) tε−1
2
−i
)

=

(
1−

(
1− 2/

√
n

1 + 2/
√
n

) tε+1
2

)
·

tε−1
2∑
i=0

(
tε
i

)
·
(

1

2
− 1√

n

)i(1

2
+

1√
n

)tε−i
,

26

where the equality occurs when |xi| − n/2 = ±
√
n. As

tε−1
2∑
i=0

(
tε
i

)
·
(

1

2
− 1√

n

)i(1

2
+

1√
n

)tε−i
= Pr

[
ai = g0(xi)

∣∣∣|xi| − n

2
= ±
√
n
]
>

1

2
,

we get

Pr [ai = g0(xi)]−Pr [ai 6= g0(xi)]

>
1

2
·

(
1−

(
1− 2/

√
n

1 + 2/
√
n

) tε+1
2

)
>

1

2
·

(
1−

(
1− 2√

n

)tε/2)
≥ min

{
tε

4
√
n
,
1

4

}
.

Our tε will be small enough to guarantee that tε
4
√
n
≤ 1

4 , so we can write

Pr [ai = g0(xi)] >
1

2
+

tε
8
√
n
. (34)

Now let us estimate the probability that a1, . . . , an is a wrong answer to f0 (g0(x1), . . . , g0(xn)):
This occurs only if

∣∣ {i|ai = g0(xi)}
∣∣ < n/2 +

√
n, so by the Chernoff bound (in a form given

in [DM05]),

Pr [the protocol errs] < exp

(
−1

2
·
(
tε
8
− 1

)2
)
,

so that choosing tε ∈ Θ
(√

log(1/ε)
)
would suffice for our needs and the result follows. �Claim 5

From Theorem 1 and Claims 3, 4 and 5:

Theorem 2. For f0 and g0 as defined above,

R(f0) ∈ Θ
(√
n
)
, R(g0) ∈ Θ(n) and R(f0 ◦ gn0) ∈ Θ(n).

6 Conclusions

We have seen that R(f ◦ gn) ∈ Ω
(
R(f) ·

√
R(g)

)
for every relation f and promise function

g, and this can be tight.
One may attempt to prove a more general lower bound by allowing g to be a relation as well

(although the corresponding definition of the composed problem looks somewhat artificial).
On the other hand, it may be interesting to analyse the tightness of this lower bound in

the following two more restricted cases:

• when both f and g are promise functions;
• when both f and g are total functions.

Depending on the answer, addressing this question may require either proving a stronger lower
bound on the complexity of the composed problem or finding a tightness-witnessing example
that would use more restricted type of computational problems than what we have seen in
Section 5 (or – somewhat less likely – both).

27

References

[BDK16] S. Ben-David and R. Kothari. Randomized Query Complexity of Sabotaged and
Composed Functions. Proceedings of the 43rd International Colloquium on Automata,
Languages and Programming, pages 60:1–60:14, 2016.

[Bec12] R. Beckner. The Variance Drain and Jensen’s Inequality. CAEPR Working Paper,
2012.

[CR11] A. Chakrabarti and O. Regev. An Optimal Lower Bound on the Communication
Complexity of Gap-Hamming-Distance. Proceedings of the 43rd Symposium on
Theory of Computing, pages 51–60, 2011.

[DM05] E. Drukh and Y. Mansour. Concentration Bounds for Unigram Language Models.
Journal of Machine Learning Research 6, pages 1231–1264, 2005.

28

	Introduction
	Polarised protocol trees
	Some properties of our trees

	Constructing a protocol for f, given a protocol for fgn
	Constructing P': the inductive step
	The case of pin*p<: using a Z-mixer
	The case of p<<pin*: using a Z-node

	Constructing P': summing up

	Comparing the complexities of the protocols
	Protocols as Zi-predictors
	The case of P'
	The case of P
	Choosing a suitable g

	Summing up: the complexities

	Tightness: (fgn)(f)(g) is possible
	Conclusions

