Patterned non-determinism in communication complexity

(Results and applications)

Dmytro Gavinsky

Institute of Mathematics, Praha
Czech Academy of Sciences

In 2022 the speaker changed the English spelling of his first name from the previous russian-odoured form "Dmitry" to the Ukrainian "Dmytro".

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

- It is one of the strongest settings where we are able to prove "hardness" that is, to establish lower bounds (often tight).

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

- It is one of the strongest settings where we are able to prove "hardness" that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design arguably non-trivial algorithms - communication protocols.

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

- It is one of the strongest settings where we are able to prove "hardness" that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design arguably non-trivial algorithms - communication protocols. Therefore, the communication complexity setting is one of those few that are both "powerful" and "understandable" enough to be interesting.

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

- It is one of the strongest settings where we are able to prove "hardness" that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design arguably non-trivial algorithms - communication protocols.
Therefore, the communication complexity setting is one of those few that are both "powerful" and "understandable" enough to be interesting.
- We can often compare the "strength" of two communication regimes via presenting a problem with an efficient solution in one, but not in the other. This can lead to non-trivial unconditional structural separations - that is to statements that certain tasks are efficiently solvable in one regime of communication but not in the other.

Communication complexity

The setting of communication complexity is rather old: it was introduced by Abelson in 1977. To this day, it remains one of the most interesting computational models:

- It is one of the strongest settings where we are able to prove "hardness" that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design arguably non-trivial algorithms - communication protocols.
Therefore, the communication complexity setting is one of those few that are both "powerful" and "understandable" enough to be interesting.
- We can often compare the "strength" of two communication regimes via presenting a problem with an efficient solution in one, but not in the other. This can lead to non-trivial unconditional structural separations - that is to statements that certain tasks are efficiently solvable in one regime of communication but not in the other.
- During this talk we will define and investigate a new model of non-deterministic communication, which we will call patterned non-determinism (PNP).

Deterministic communication (Boolean case)

Deterministic communication (Boolean case)

- Alice receives X and Bob receives Y.

Deterministic communication (Boolean case)

- Alice receives X and Bob receives Y.
- They speak.

Deterministic communication (Boolean case)

- Alice receives X and Bob receives Y.
- They speak.
- Bob either accepts or rejects the input (X, Y).

Non-deterministic communication

Non-deterministic communication

- Alice receives X and Bob receives Y.

Non-deterministic communication

- Alice receives X and Bob receives Y.
- They both receive a non-deterministic advice.

Non-deterministic communication

- Alice receives X and Bob receives Y.
- They both receive a non-deterministic advice.
- They speak.

Non-deterministic communication

- Alice receives X and Bob receives Y.
- They both receive a non-deterministic advice.
- They speak.
- Bob either accepts or rejects the input (X, Y) (under the given advice).

Non-deterministic communication

- Alice receives X and Bob receives Y.
- They both receive a non-deterministic advice.
- They speak.
- Bob either accepts or rejects the input (X, Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice value leads to its acceptance.

Notions of efficiency

- A deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if the players exchange at most poly- $\log (n)$ bits.

Notions of efficiency

- A deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if the players exchange at most poly- $\log (n)$ bits.
- A non-deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if both the length of the advice and the number of exchanged bits are at most poly- $\log (n)$.

Notions of efficiency

- A deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if the players exchange at most poly- $\log (n)$ bits.
- A non-deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if both the length of the advice and the number of exchanged bits are at most poly- $\log (n)$.
Alternatively, $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{T, \perp\}$ has an efficient non-deterministic protocol if it admits a decomposition of the form

$$
f(x, y) \equiv \bigvee_{i=1}^{m} f_{i}(x, y)
$$

where m is at most quasi-polynomial in n and every f_{i} has an efficient deterministic protocol: In this case a legitimate advice for input (x, y) would be any index i_{0} such that $f_{i 0}(x, y)=T$.

Notions of efficiency

- A deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if the players exchange at most poly- $\log (n)$ bits.
- A non-deterministic protocol over $(X, Y) \in\{0,1\}^{n} \times\{0,1\}^{n}$ is considered efficient if both the length of the advice and the number of exchanged bits are at most poly- $\log (n)$.
Alternatively, $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{T, \perp\}$ has an efficient non-deterministic protocol if it admits a decomposition of the form

$$
f(x, y) \equiv \bigvee_{i=1}^{m} f_{i}(x, y)
$$

where m is at most quasi-polynomial in n and every f_{i} has an efficient deterministic protocol: In this case a legitimate advice for input (x, y) would be any index i_{0} such that $f_{i_{0}}(x, y)=T$.

- Clearly, non-deterministic protocols are at least as strong as deterministic ones; on the other hand, there are functions with very efficient non-deterministic protocols but with deterministic complexity in $\Omega(n)$.

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and $N P$ ":

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and $N P$ ":
- UP is the sub-class of $N P$, where every input has at most one advice value that leads to its acceptance; alternatively, $f \in U P$ if it has an $N P$-decomposition $f(x, y)=\vee_{i=1}^{m} f_{i}(x, y)$ is such that $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq 1$.

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and $N P$ ":
- UP is the sub-class of $N P$, where every input has at most one advice value that leads to its acceptance; alternatively, $f \in U P$ if it has an $N P$-decomposition $f(x, y)=\vee_{i=1}^{m} f_{i}(x, y)$ is such that $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq 1$.
- FewP is the sub-class of $N P$, where every input has at most poly- $\log (n)$ advice values leading to its acceptance; alternatively, $f \in$ Few P if $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=\top\right\}\right| \leq$ poly- $\log (n)$ in an $N P$-decomposition of $f(x, y)$.

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and NP":
- UP is the sub-class of $N P$, where every input has at most one advice value that leads to its acceptance; alternatively, $f \in U P$ if it has an $N P$-decomposition $f(x, y)=\vee_{i=1}^{m} f_{i}(x, y)$ is such that $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq 1$.
- FewP is the sub-class of $N P$, where every input has at most poly- $\log (n)$ advice values leading to its acceptance; alternatively, $f \in F$ ew P if $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq \operatorname{poly}-\log (n)$ in an $N P$-decomposition of $f(x, y)$.
- We define the model of patterned non-determinism, denoted PNP:

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and $N P$ ":
- UP is the sub-class of $N P$, where every input has at most one advice value that leads to its acceptance; alternatively, $f \in U P$ if it has an $N P$-decomposition $f(x, y)=\vee_{i=1}^{m} f_{i}(x, y)$ is such that $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq 1$.
- FewP is the sub-class of $N P$, where every input has at most poly- $\log (n)$ advice values leading to its acceptance; alternatively, $f \in$ Few P if $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq \operatorname{poly}-\log (n)$ in an $N P$-decomposition of $f(x, y)$.
- We define the model of patterned non-determinism, denoted PNP:
- For $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$ with an $N P$-decomposition

$$
f(x, y)=\vee_{i=1}^{m} f_{i}(x, y),
$$

let the corresponding family of accepting patterns be defined as

$$
\Gamma_{f} \stackrel{\text { def }}{=}\left\{\left\{i \mid f_{i}(x, y)=T\right\} \mid(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}\right\} .
$$

Restricted non-determinism, old and new models

N.b. We will use the same notation ($P, N P$, etc.) for both the communication models and the corresponding classes of problems with efficient protocols.

- Denote, respectively, by P and NP the models of deterministic and non-deterministic communication.
- Two classes of interest to us have been defined "between P and $N P$ ":
- UP is the sub-class of $N P$, where every input has at most one advice value that leads to its acceptance; alternatively, $f \in U P$ if it has an $N P$-decomposition $f(x, y)=\vee_{i=1}^{m} f_{i}(x, y)$ is such that $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq 1$.
- FewP is the sub-class of $N P$, where every input has at most poly- $\log (n)$ advice values leading to its acceptance; alternatively, $f \in F$ ew P if $\forall x, y$: $\left|\left\{i \mid f_{i}(x, y)=T\right\}\right| \leq \operatorname{poly}-\log (n)$ in an NP-decomposition of $f(x, y)$.
- We define the model of patterned non-determinism, denoted PNP:
- For $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$ with an $N P$-decomposition

$$
f(x, y)=\vee_{i=1}^{m} f_{i}(x, y),
$$

let the corresponding family of accepting patterns be defined as

$$
\Gamma_{f} \stackrel{\text { def }}{=}\left\{\left\{i \mid f_{i}(x, y)=T\right\} \mid(x, y) \in\{0,1\}^{n} \times\{0,1\}^{n}\right\} .
$$

- Then $f \in P N P$ if $\left|\Gamma_{f}\right|$ is at most quasi-polynomial in n.

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$:

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$:
- Yannakakis [Yan91] proved that $U P=P$.

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$:
- Yannakakis [Yan91] proved that $U P=P$.
- Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the above to Few $P=P$.

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$:
- Yannakakis [Yan91] proved that $U P=P$.
- Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the above to Few $P=P$.
- We show (the argument is omitted from this presentation) that $P N P=P$.

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{\top, \perp\}$:
- Yannakakis [Yan91] proved that $U P=P$.
- Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the above to Few $P=P$.
- We show (the argument is omitted from this presentation) that $P N P=P$.
- That is,

$$
P=U P=F e w P=P N P \subset N P
$$

Some relations among the defined models

- As mentioned earlier, $P \subset N P$: the proper containment is witnessed, in particular, by the equality function.
- From the definitions,

$$
P \subseteq U P \subseteq F e w P \subseteq P N P \subseteq N P .
$$

- For total functions - that is, any $f:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{T, \perp\}$:
- Yannakakis [Yan91] proved that $U P=P$.
- Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the above to Few $P=P$.
- We show (the argument is omitted from this presentation) that $P N P=P$.
- That is,

$$
P=U P=F e w P=P N P \subset N P
$$

- "Totality" is crucial for these model equivalences: for partial functions even $U P \neq P$.

The pattern search problem

- When "UP $=P$ " or "Few $P=P$ " or "PNP $=P$ " - that is, that the corresponding case of restricted non-determinism is not stronger than mere determinism - one can ask whether an advice value that witnesses $[f(x, y)=\top]$ can be found efficiently by a deterministic protocol for every $(x, y) \in f^{-1}(\top)$ for each f in $U P$, FewP or PNP, respectively.

The pattern search problem

- When " $U P=P$ " or "Few $P=P$ " or "PNP $=P$ " - that is, that the corresponding case of restricted non-determinism is not stronger than mere determinism - one can ask whether an advice value that witnesses $[f(x, y)=\top]$ can be found efficiently by a deterministic protocol for every $(x, y) \in f^{-1}(T)$ for each f in $U P$, FewP or PNP, respectively.
The answer is affirmative, as in each of these cases simple binary search efficiently produces a legitimate witness.

The pattern search problem

- When "UP $=P$ " or "FewP $=P$ " or "PNP $=P$ " - that is, that the corresponding case of restricted non-determinism is not stronger than mere determinism - one can ask whether an advice value that witnesses $[f(x, y)=T]$ can be found efficiently by a deterministic protocol for every $(x, y) \in f^{-1}(T)$ for each f in $U P$, Few P or $P N P$, respectively.
The answer is affirmative, as in each of these cases simple binary search efficiently produces a legitimate witness.
- Then one can ask whether the set of all convincing witnesses can be found efficiently: the answer is, trivially, affirmative for both UP and FewP, while in the case of PNP it may be somewhat less straightforward.

The pattern search problem

- When "UP $=P$ " or "Few $P=P$ " or "PNP $=P$ " - that is, that the corresponding case of restricted non-determinism is not stronger than mere determinism - one can ask whether an advice value that witnesses $[f(x, y)=\top]$ can be found efficiently by a deterministic protocol for every $(x, y) \in f^{-1}(T)$ for each f in $U P$, Few P or $P N P$, respectively.
The answer is affirmative, as in each of these cases simple binary search efficiently produces a legitimate witness.
- Then one can ask whether the set of all convincing witnesses can be found efficiently: the answer is, trivially, affirmative for both UP and FewP, while in the case of PNP it may be somewhat less straightforward. We show (the argument is omitted from this presentation) that the answer is affirmative - that is, the precise accepting pattern of every
$(x, y) \in f^{-1}(T)$ can be found efficiently by a deterministic protocol for each $f \in P N P$.

The pattern search problem

- When "UP $=P$ " or "Few $P=P$ " or "PNP $=P$ " - that is, that the corresponding case of restricted non-determinism is not stronger than mere determinism - one can ask whether an advice value that witnesses $[f(x, y)=T]$ can be found efficiently by a deterministic protocol for every $(x, y) \in f^{-1}(T)$ for each f in $U P$, Few P or $P N P$, respectively.
The answer is affirmative, as in each of these cases simple binary search efficiently produces a legitimate witness.
- Then one can ask whether the set of all convincing witnesses can be found efficiently: the answer is, trivially, affirmative for both UP and FewP, while in the case of PNP it may be somewhat less straightforward. We show (the argument is omitted from this presentation) that the answer is affirmative - that is, the precise accepting pattern of every $(x, y) \in f^{-1}(T)$ can be found efficiently by a deterministic protocol for each $f \in P N P$.
- We shall see next how the above statement leads to certain (possibly, surprising) model equivalence in multi-party communication complexity.

Three-party communication with listening Charlie

Consider the model
(Alice \leftrightarrow Bob) \rightarrow Charlie.

Three-party communication with listening Charlie

Consider the model

(Alice \leftrightarrow Bob) \rightarrow Charlie.

That is,

- Alice receives $X, B o b$ receives Y and Charlie receives Z;

Three-party communication with listening Charlie

Consider the model

(Alice \leftrightarrow Bob) \rightarrow Charlie.

That is,

- Alice receives $X, B o b$ receives Y and Charlie receives Z;
- Alice speaks with Bob in order to produce a single message for Charlie;

Three-party communication with listening Charlie

Consider the model

(Alice \leftrightarrow Bob) \rightarrow Charlie.

That is,

- Alice receives $X, B o b$ receives Y and Charlie receives Z;
- Alice speaks with Bob in order to produce a single message for Charlie;
- Charlie receives the message and outputs the answer with respect to the input (X, Y, Z).

Three-party communication with listening Charlie

Consider the model

$$
\text { (Alice } \leftrightarrow \text { Bob) } \rightarrow \text { Charlie. }
$$

That is,

- Alice receives X, Bob receives Y and Charlie receives Z;
- Alice speaks with Bob in order to produce a single message for Charlie;
- Charlie receives the message and outputs the answer with respect to the input (X, Y, Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of their conversation and produces the answer.

Three-party communication with listening Charlie

Alice speaks with Bob; Charlie hears them and produces the answer.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z$].

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Z) \leftrightarrow Y$] denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Z) \leftrightarrow Y$] denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$. Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Z) \leftrightarrow Y]$ denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$. Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Y) \rightarrow Z]$ denote the model where Player I receives (X, Y), Player II receives Z and Player I sends a single message to Player II to let him compute the value of $f(X, Y, Z)$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z$].
- Let $[(X, Z) \leftrightarrow Y]$ denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$. Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Y) \rightarrow Z]$ denote the model where Player I receives (X, Y), Player II receives Z and Player I sends a single message to Player II to let him compute the value of $f(X, Y, Z)$. Obviously, $[(X, Y) \rightarrow Z]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z$].
- Let $[(X, Z) \leftrightarrow Y]$ denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$. Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Y) \rightarrow Z]$ denote the model where Player I receives (X, Y), Player II receives Z and Player I sends a single message to Player II to let him compute the value of $f(X, Y, Z)$.
Obviously, $[(X, Y) \rightarrow Z]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- The bipartite models $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ are natural two-party reductions of the three-party model $[(X \leftrightarrow Y) \rightarrow Z]$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Z) \leftrightarrow Y]$ denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$.
Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Y) \rightarrow Z]$ denote the model where Player I receives (X, Y), Player II receives Z and Player I sends a single message to Player II to let him compute the value of $f(X, Y, Z)$.
Obviously, $[(X, Y) \rightarrow Z]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- The bipartite models $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ are natural two-party reductions of the three-party model $[(X \leftrightarrow Y) \rightarrow Z]$.
We show that the converse is also true - that is, for total functions the three-party model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker (with respect to the same function) of its two-party reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

Model equivalence

- For brevity, let us denote the model of three-party communication with listening Charlie by $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Z) \leftrightarrow Y]$ denote the model where Player I receives (X, Z), Player II receives Y and they interact in order to compute $f(X, Y, Z)$.
Obviously, $[(X, Z) \leftrightarrow Y]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- Let $[(X, Y) \rightarrow Z]$ denote the model where Player I receives (X, Y), Player II receives Z and Player I sends a single message to Player II to let him compute the value of $f(X, Y, Z)$.
Obviously, $[(X, Y) \rightarrow Z]$ is at least as strong as $[(X \leftrightarrow Y) \rightarrow Z]$.
- The bipartite models $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ are natural two-party reductions of the three-party model $[(X \leftrightarrow Y) \rightarrow Z]$.
We show that the converse is also true - that is, for total functions the three-party model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker (with respect to the same function) of its two-party reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.
The argument will be based on the possibility of efficient pattern searching in (bipartite) PNP.

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute for every $Z \in \mathcal{Z}$.

$$
f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute
for every $Z \in \mathcal{Z}$.

$$
f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{\top, \perp\}$ as
$g(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z} \\ \perp & \text { otherwise }\end{array}: f\left(x, y, z^{\prime}\right) \neq 0, \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute
for every $Z \in \mathcal{Z}$.

$$
f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{T, \perp\}$ as
$g(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z} \\ \perp & \text { otherwise }\end{array}: f\left(x, y, z^{\prime}\right) \neq 0, \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$
- Note that $g \in P N P:$

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute
for every $Z \in \mathcal{Z}$.

$$
f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{T, \perp\}$ as
$g(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z} \\ \perp & \text { otherwise }\end{array}: f\left(x, y, z^{\prime}\right) \neq 0, \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$
- Note that $g \in P N P:$
- let the advice for $(x, y) \in g^{-1}(\top)$ be any $z^{\prime} \in \mathcal{Z}$ such that $f\left(x, y, z^{\prime}\right) \neq 0$;

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute

$$
\text { for every } Z \in \mathcal{Z} . \quad f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{\top, \perp\}$ as
$g(x, y) \stackrel{\operatorname{def}}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z}: f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise }\end{array} \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$
- Note that $g \in P N P$:
- let the advice for $(x, y) \in g^{-1}(\top)$ be any $z^{\prime} \in \mathcal{Z}$ such that $f\left(x, y, z^{\prime}\right) \neq 0$; it can be verified efficiently via evaluating $f\left(x, y, z^{\prime}\right)$ in $[(X, Z) \leftrightarrow Y]$;

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute

$$
f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{T, \perp\}$ as
$g(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z}: \\ \perp & \text { otherwise }\end{array} \quad f\left(x, y, z^{\prime}\right) \neq 0, \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$
- Note that $g \in P N P$:
- let the advice for $(x, y) \in g^{-1}(\top)$ be any $z^{\prime} \in \mathcal{Z}$ such that $f\left(x, y, z^{\prime}\right) \neq 0$; it can be verified efficiently via evaluating $f\left(x, y, z^{\prime}\right)$ in $[(X, Z) \leftrightarrow Y]$;
- the number of patterns is the number of distinct $f_{x_{0}, y_{0}} \not \equiv 0$, that is, at most the number of distinct messages $\alpha_{x_{0}, y_{0}}$ in Π_{1} (efficient by assumption).

Proof idea

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- Assume that both $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$ can compute $f: \mathcal{X} \times \mathcal{Y} \times \mathcal{Z} \rightarrow\{0,1\}$ efficiently, where $\mathcal{X}, \mathcal{Y}, \mathcal{Z} \subseteq\{0,1\}^{n}$.
- Let Π_{1} be the corresponding protocol in $[(X, Y) \rightarrow Z]$ and denote by $\alpha_{x, y}$ the message send to Player II by Player I when his input is (x, y).
- That is, $\forall\left(x_{0}, y_{0}\right) \in \mathcal{X} \times \mathcal{Y}$ the message $\alpha_{x_{0}, y_{0}}$ allows to compute

$$
\text { for every } Z \in \mathcal{Z} . \quad f_{x_{0}, y_{0}}(Z) \stackrel{\text { def }}{=} f\left(x_{0}, y_{0}, Z\right)
$$

- Define $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{\top, \perp\}$ as
$g(x, y) \stackrel{\text { def }}{=}\left\{\begin{array}{ll}\top & \text { if } \exists z^{\prime} \in \mathcal{Z}: \\ \perp & \text { otherwise }\end{array} \quad f\left(x, y, z^{\prime}\right) \neq 0, \bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0, \\ \perp & \text { otherwise. }\end{cases}\right.$
- Note that $g \in P N P$:
- let the advice for $(x, y) \in g^{-1}(\top)$ be any $z^{\prime} \in \mathcal{Z}$ such that $f\left(x, y, z^{\prime}\right) \neq 0$; it can be verified efficiently via evaluating $f\left(x, y, z^{\prime}\right)$ in $[(X, Z) \leftrightarrow Y]$;
- the number of patterns is the number of distinct $f_{x_{0}, y_{0}} \not \equiv 0$, that is, at most the number of distinct messages $\alpha_{x_{0}, y_{0}}$ in Π_{1} (efficient by assumption).
Cheating alert: $|\mathcal{Z}|$ can be as large as 2^{n} (easy to fix).

Proof idea (continued)

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

Proof idea (continued)

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- That is, the function

$$
g(x, y)=\bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0 \\ \perp & \text { otherwise }\end{cases}
$$

is in PNP (with respect to this specific decomposition).

Proof idea (continued)

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- That is, the function

$$
g(x, y)=\bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0 \\ \perp & \text { otherwise }\end{cases}
$$

is in PNP (with respect to this specific decomposition).

- Accordingly, for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$ the corresponding accepting pattern - that is, the set

$$
\left\{z^{\prime} \mid f\left(x, y, z^{\prime}\right) \neq 0\right\}
$$

- can be found efficiently by a deterministic bipartite protocol where Alice holds x and Bob holds y.

Proof idea (continued)

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- That is, the function

$$
g(x, y)=\bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0 \\ \perp & \text { otherwise }\end{cases}
$$

is in PNP (with respect to this specific decomposition).

- Accordingly, for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$ the corresponding accepting pattern - that is, the set

$$
\left\{z^{\prime} \mid f\left(x, y, z^{\prime}\right) \neq 0\right\}
$$

- can be found efficiently by a deterministic bipartite protocol where Alice holds x and Bob holds y.
- The number of distinct patterns is at most the number of distinct messages in the the protocol Π_{1}, which is efficient by assumption - therefore the index of the found pattern can be signalled efficiently between the players.

Proof idea (continued)

For computing total functions the model $[(X \leftrightarrow Y) \rightarrow Z]$ is as strong as the weaker of its bipartite reductions $[(X, Z) \leftrightarrow Y]$ and $[(X, Y) \rightarrow Z]$.

- That is, the function

$$
g(x, y)=\bigvee_{z^{\prime}} \begin{cases}\top & \text { if } f\left(x, y, z^{\prime}\right) \neq 0 \\ \perp & \text { otherwise }\end{cases}
$$

is in PNP (with respect to this specific decomposition).

- Accordingly, for every $(x, y) \in \mathcal{X} \times \mathcal{Y}$ the corresponding accepting pattern - that is, the set

$$
\left\{z^{\prime} \mid f\left(x, y, z^{\prime}\right) \neq 0\right\}
$$

- can be found efficiently by a deterministic bipartite protocol where Alice holds x and Bob holds y.
- The number of distinct patterns is at most the number of distinct messages in the the protocol Π_{1}, which is efficient by assumption - therefore the index of the found pattern can be signalled efficiently between the players.
- The desired existence of an efficient protocol for $f(X, Y, Z)$ in the model $[(X \leftrightarrow Y) \rightarrow Z]$ follows.

Conclusions

- This work demonstrates several qualitative equivalences among communication complexity classes.

Conclusions

- This work demonstrates several qualitative equivalences among communication complexity classes.
- These results rely upon the limitations imposed by total functions as communicational problems (in particular, none of the equivalences hold in the case of partial functions).

Conclusions

- This work demonstrates several qualitative equivalences among communication complexity classes.
- These results rely upon the limitations imposed by total functions as communicational problems (in particular, none of the equivalences hold in the case of partial functions).
- What other structural implications does "totality" have?

Conclusions

- This work demonstrates several qualitative equivalences among communication complexity classes.
- These results rely upon the limitations imposed by total functions as communicational problems (in particular, none of the equivalences hold in the case of partial functions).
- What other structural implications does "totality" have?
- In particular, what are the "strengths of determinism" and the "limitations of non-determinism" that are specific for the case of total functions?

Conclusions

- This work demonstrates several qualitative equivalences among communication complexity classes.
- These results rely upon the limitations imposed by total functions as communicational problems (in particular, none of the equivalences hold in the case of partial functions).
- What other structural implications does "totality" have?
- In particular, what are the "strengths of determinism" and the "limitations of non-determinism" that are specific for the case of total functions?

$$
\mathscr{T} \mathscr{H} \mathscr{A} \mathscr{N} \mathscr{K} \text { Y OOU! }
$$

