
Patterned non-determinism
in communication complexity

(Results and applications)

Dmytro Gavinsky

Institute of Mathematics, Praha
Czech Academy of Sciences

In 2022 the speaker changed the English spelling of his first name from the previous russian-odoured
form “Dmitry” to the Ukrainian “Dmytro”.

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.
Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.
We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.
During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).

On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.
Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.
We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.
During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.

Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.
We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.
During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.
Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.

We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.
During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.
Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.
We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.

During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Communication complexity
The setting of communication complexity is rather old: it was introduced by
Abelson in 1977. To this day, it remains one of the most interesting
computational models:

It is one of the strongest settings where we are able to prove “hardness” –
that is, to establish lower bounds (often tight).
On the other hand, it is one of the weakest settings where we can design
arguably non-trivial algorithms – communication protocols.
Therefore, the communication complexity setting is one of those few that
are both “powerful” and “understandable” enough to be interesting.
We can often compare the “strength” of two communication regimes via
presenting a problem with an efficient solution in one, but not in the other.
This can lead to non-trivial unconditional structural separations – that is
to statements that certain tasks are efficiently solvable in one regime of
communication but not in the other.
During this talk we will define and investigate a new model of
non-deterministic communication, which we will call patterned
non-determinism (PNP).

Two parties

Deterministic communication (Boolean case)

Alice receives X and Bob receives Y .
They speak.
Bob either accepts or rejects the input (X; Y).

Two parties

Deterministic communication (Boolean case)

Alice receives X and Bob receives Y .

They speak.
Bob either accepts or rejects the input (X; Y).

Two parties

Deterministic communication (Boolean case)

Alice receives X and Bob receives Y .
They speak.

Bob either accepts or rejects the input (X; Y).

Two parties

Deterministic communication (Boolean case)

Alice receives X and Bob receives Y .
They speak.
Bob either accepts or rejects the input (X; Y).

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .
They both receive a non-deterministic advice.
They speak.
Bob either accepts or rejects the input (X; Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .

They both receive a non-deterministic advice.
They speak.
Bob either accepts or rejects the input (X; Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .
They both receive a non-deterministic advice.

They speak.
Bob either accepts or rejects the input (X; Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .
They both receive a non-deterministic advice.
They speak.

Bob either accepts or rejects the input (X; Y) (under the given advice).
The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .
They both receive a non-deterministic advice.
They speak.
Bob either accepts or rejects the input (X; Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Non-deterministic communication

Alice receives X and Bob receives Y .
They both receive a non-deterministic advice.
They speak.
Bob either accepts or rejects the input (X; Y) (under the given advice).

The input pair is accepted by a non-deterministic protocol if at least one advice
value leads to its acceptance.

Two parties

Notions of efficiency

A deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is considered
efficient if the players exchange at most poly-log(n) bits.

A non-deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is
considered efficient if both the length of the advice and the number of
exchanged bits are at most poly-log(n).
Alternatively, f : {0; 1}n × {0; 1}n → {>;⊥} has an efficient
non-deterministic protocol if it admits a decomposition of the form

f (x; y) ≡
Wm

i=1 fi (x; y),
where m is at most quasi-polynomial in n and every fi has an efficient
deterministic protocol: In this case a legitimate advice for input (x; y)
would be any index i0 such that fi0(x; y) = >.
Clearly, non-deterministic protocols are at least as strong as deterministic
ones; on the other hand, there are functions with very efficient
non-deterministic protocols but with deterministic complexity in Ω(n).

Two parties

Notions of efficiency

A deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is considered
efficient if the players exchange at most poly-log(n) bits.
A non-deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is
considered efficient if both the length of the advice and the number of
exchanged bits are at most poly-log(n).

Alternatively, f : {0; 1}n × {0; 1}n → {>;⊥} has an efficient
non-deterministic protocol if it admits a decomposition of the form

f (x; y) ≡
Wm

i=1 fi (x; y),
where m is at most quasi-polynomial in n and every fi has an efficient
deterministic protocol: In this case a legitimate advice for input (x; y)
would be any index i0 such that fi0(x; y) = >.
Clearly, non-deterministic protocols are at least as strong as deterministic
ones; on the other hand, there are functions with very efficient
non-deterministic protocols but with deterministic complexity in Ω(n).

Two parties

Notions of efficiency

A deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is considered
efficient if the players exchange at most poly-log(n) bits.
A non-deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is
considered efficient if both the length of the advice and the number of
exchanged bits are at most poly-log(n).
Alternatively, f : {0; 1}n × {0; 1}n → {>;⊥} has an efficient
non-deterministic protocol if it admits a decomposition of the form

f (x; y) ≡
Wm

i=1 fi (x; y),
where m is at most quasi-polynomial in n and every fi has an efficient
deterministic protocol: In this case a legitimate advice for input (x; y)
would be any index i0 such that fi0(x; y) = >.

Clearly, non-deterministic protocols are at least as strong as deterministic
ones; on the other hand, there are functions with very efficient
non-deterministic protocols but with deterministic complexity in Ω(n).

Two parties

Notions of efficiency

A deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is considered
efficient if the players exchange at most poly-log(n) bits.
A non-deterministic protocol over (X; Y) ∈ {0; 1}n × {0; 1}n is
considered efficient if both the length of the advice and the number of
exchanged bits are at most poly-log(n).
Alternatively, f : {0; 1}n × {0; 1}n → {>;⊥} has an efficient
non-deterministic protocol if it admits a decomposition of the form

f (x; y) ≡
Wm

i=1 fi (x; y),
where m is at most quasi-polynomial in n and every fi has an efficient
deterministic protocol: In this case a legitimate advice for input (x; y)
would be any index i0 such that fi0(x; y) = >.
Clearly, non-deterministic protocols are at least as strong as deterministic
ones; on the other hand, there are functions with very efficient
non-deterministic protocols but with deterministic complexity in Ω(n).

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.

Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:

I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition
f (x; y) = ∨mi=1fi (x; y),

let the corresponding family of accepting patterns be defined as
ΓfΓfΓf

def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:
I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition

f (x; y) = ∨mi=1fi (x; y),
let the corresponding family of accepting patterns be defined as

ΓfΓfΓf
def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Restricted non-determinism, old and new models
N.b. We will use the same notation (P, NP, etc.) for both the communication
models and the corresponding classes of problems with efficient protocols.

Denote, respectively, by PPP and NPNPNP the models of deterministic and
non-deterministic communication.
Two classes of interest to us have been defined “between P and NP”:

I UPUPUP is the sub-class of NP, where every input has at most one advice value
that leads to its acceptance; alternatively, f ∈ UP if it has an
NP-decomposition f (x; y) = ∨mi=1fi (x; y) is such that ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ 1.

I FewPFewPFewP is the sub-class of NP, where every input has at most poly-log(n)
advice values leading to its acceptance; alternatively, f ∈ FewP if ∀ x; y :˛̨˘
i
˛̨
fi (x; y) = >

¯˛̨
≤ poly-log(n) in an NP-decomposition of f (x; y).

We define the model of patterned non-determinism, denoted PNPPNPPNP:
I For f : {0; 1}n × {0; 1}n → {>;⊥} with an NP-decomposition

f (x; y) = ∨mi=1fi (x; y),
let the corresponding family of accepting patterns be defined as

ΓfΓfΓf
def
=
˘˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˘
i
˛̨
fi (x; y) = >

¯˛̨
(x; y) ∈ {0; 1}n × {0; 1}n

¯
.

I Then f ∈ PNP if |Γf | is at most quasi-polynomial in n.

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.

From the definitions,
P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:

I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:

I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:

I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:
I Yannakakis [Yan91] proved that UP = P .

I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the
above to FewP = P .

I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:
I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .

I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:
I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .

I That is,
P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:
I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

Some relations among the defined models

As mentioned earlier, P ⊂ NP: the proper containment is witnessed, in
particular, by the equality function.
From the definitions,

P ⊆ UP ⊆ FewP ⊆ PNP ⊆ NP:

For total functions – that is, any f : {0; 1}n × {0; 1}n → {>;⊥}:
I Yannakakis [Yan91] proved that UP = P .
I Karchmer, Newman, Saks and Wigderson [KNSW94] strengthened the

above to FewP = P .
I We show (the argument is omitted from this presentation) that PNP = P .
I That is,

P = UP = FewP = PNP ⊂ NP:

I “Totality” is crucial for these model equivalences: for partial functions even
UP 6= P .

Two parties

The pattern search problem
When “UP = P” or “FewP = P” or “PNP = P” – that is, that the
corresponding case of restricted non-determinism is not stronger than
mere determinism – one can ask whether an advice value that witnesses
[f (x; y) = >] can be found efficiently by a deterministic protocol for every
(x; y) ∈ f −1(>) for each f in UP, FewP or PNP , respectively.

The answer is affirmative, as in each of these cases simple binary search
efficiently produces a legitimate witness.
Then one can ask whether the set of all convincing witnesses can be
found efficiently: the answer is, trivially, affirmative for both UP and
FewP , while in the case of PNP it may be somewhat less straightforward.
We show (the argument is omitted from this presentation) that the answer
is affirmative – that is, the precise accepting pattern of every
(x; y) ∈ f −1(>) can be found efficiently by a deterministic protocol for
each f ∈ PNP .
We shall see next how the above statement leads to certain (possibly,
surprising) model equivalence in multi-party communication complexity.

Two parties

The pattern search problem
When “UP = P” or “FewP = P” or “PNP = P” – that is, that the
corresponding case of restricted non-determinism is not stronger than
mere determinism – one can ask whether an advice value that witnesses
[f (x; y) = >] can be found efficiently by a deterministic protocol for every
(x; y) ∈ f −1(>) for each f in UP, FewP or PNP , respectively.
The answer is affirmative, as in each of these cases simple binary search
efficiently produces a legitimate witness.

Then one can ask whether the set of all convincing witnesses can be
found efficiently: the answer is, trivially, affirmative for both UP and
FewP , while in the case of PNP it may be somewhat less straightforward.
We show (the argument is omitted from this presentation) that the answer
is affirmative – that is, the precise accepting pattern of every
(x; y) ∈ f −1(>) can be found efficiently by a deterministic protocol for
each f ∈ PNP .
We shall see next how the above statement leads to certain (possibly,
surprising) model equivalence in multi-party communication complexity.

Two parties

The pattern search problem
When “UP = P” or “FewP = P” or “PNP = P” – that is, that the
corresponding case of restricted non-determinism is not stronger than
mere determinism – one can ask whether an advice value that witnesses
[f (x; y) = >] can be found efficiently by a deterministic protocol for every
(x; y) ∈ f −1(>) for each f in UP, FewP or PNP , respectively.
The answer is affirmative, as in each of these cases simple binary search
efficiently produces a legitimate witness.
Then one can ask whether the set of all convincing witnesses can be
found efficiently: the answer is, trivially, affirmative for both UP and
FewP , while in the case of PNP it may be somewhat less straightforward.

We show (the argument is omitted from this presentation) that the answer
is affirmative – that is, the precise accepting pattern of every
(x; y) ∈ f −1(>) can be found efficiently by a deterministic protocol for
each f ∈ PNP .
We shall see next how the above statement leads to certain (possibly,
surprising) model equivalence in multi-party communication complexity.

Two parties

The pattern search problem
When “UP = P” or “FewP = P” or “PNP = P” – that is, that the
corresponding case of restricted non-determinism is not stronger than
mere determinism – one can ask whether an advice value that witnesses
[f (x; y) = >] can be found efficiently by a deterministic protocol for every
(x; y) ∈ f −1(>) for each f in UP, FewP or PNP , respectively.
The answer is affirmative, as in each of these cases simple binary search
efficiently produces a legitimate witness.
Then one can ask whether the set of all convincing witnesses can be
found efficiently: the answer is, trivially, affirmative for both UP and
FewP , while in the case of PNP it may be somewhat less straightforward.
We show (the argument is omitted from this presentation) that the answer
is affirmative – that is, the precise accepting pattern of every
(x; y) ∈ f −1(>) can be found efficiently by a deterministic protocol for
each f ∈ PNP .

We shall see next how the above statement leads to certain (possibly,
surprising) model equivalence in multi-party communication complexity.

Two parties

The pattern search problem
When “UP = P” or “FewP = P” or “PNP = P” – that is, that the
corresponding case of restricted non-determinism is not stronger than
mere determinism – one can ask whether an advice value that witnesses
[f (x; y) = >] can be found efficiently by a deterministic protocol for every
(x; y) ∈ f −1(>) for each f in UP, FewP or PNP , respectively.
The answer is affirmative, as in each of these cases simple binary search
efficiently produces a legitimate witness.
Then one can ask whether the set of all convincing witnesses can be
found efficiently: the answer is, trivially, affirmative for both UP and
FewP , while in the case of PNP it may be somewhat less straightforward.
We show (the argument is omitted from this presentation) that the answer
is affirmative – that is, the precise accepting pattern of every
(x; y) ∈ f −1(>) can be found efficiently by a deterministic protocol for
each f ∈ PNP .
We shall see next how the above statement leads to certain (possibly,
surprising) model equivalence in multi-party communication complexity.

Three parties

Three-party communication with listening Charlie

Consider the model
(Alice ↔ Bob) → Charlie:

That is,

Alice receives X, Bob receives Y and Charlie receives Z;
Alice speaks with Bob in order to produce a single message for Charlie;
Charlie receives the message and outputs the answer with respect to the
input (X; Y; Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of
their conversation and produces the answer.

Three parties

Three-party communication with listening Charlie

Consider the model
(Alice ↔ Bob) → Charlie:

That is,
Alice receives X, Bob receives Y and Charlie receives Z;

Alice speaks with Bob in order to produce a single message for Charlie;
Charlie receives the message and outputs the answer with respect to the
input (X; Y; Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of
their conversation and produces the answer.

Three parties

Three-party communication with listening Charlie

Consider the model
(Alice ↔ Bob) → Charlie:

That is,
Alice receives X, Bob receives Y and Charlie receives Z;
Alice speaks with Bob in order to produce a single message for Charlie;

Charlie receives the message and outputs the answer with respect to the
input (X; Y; Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of
their conversation and produces the answer.

Three parties

Three-party communication with listening Charlie

Consider the model
(Alice ↔ Bob) → Charlie:

That is,
Alice receives X, Bob receives Y and Charlie receives Z;
Alice speaks with Bob in order to produce a single message for Charlie;
Charlie receives the message and outputs the answer with respect to the
input (X; Y; Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of
their conversation and produces the answer.

Three parties

Three-party communication with listening Charlie

Consider the model
(Alice ↔ Bob) → Charlie:

That is,
Alice receives X, Bob receives Y and Charlie receives Z;
Alice speaks with Bob in order to produce a single message for Charlie;
Charlie receives the message and outputs the answer with respect to the
input (X; Y; Z).

Alternatively, Alice interacts with Bob; Charlie sees the full transcript of
their conversation and produces the answer.

Three parties

Three-party communication with listening Charlie

Alice speaks with Bob; Charlie hears them and produces the answer.

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].

Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).

Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].

Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).

Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].

The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].

The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Model equivalence
For brevity, let us denote the model of three-party communication with
listening Charlie by [(X ↔ Y) → Z].
Let [(X;Z) ↔ Y] denote the model where Player I receives (X;Z),
Player II receives Y and they interact in order to compute f (X; Y; Z).
Obviously, [(X;Z) ↔ Y] is at least as strong as [(X ↔ Y) → Z].
Let [(X; Y) → Z] denote the model where Player I receives (X; Y),
Player II receives Z and Player I sends a single message to Player II to let
him compute the value of f (X; Y; Z).
Obviously, [(X; Y) → Z] is at least as strong as [(X ↔ Y) → Z].
The bipartite models [(X;Z) ↔ Y] and [(X; Y) → Z] are natural
two-party reductions of the three-party model [(X ↔ Y) → Z].

We show that the converse is also true – that is, for total functions the
three-party model [(X ↔ Y) → Z] is as strong as the weaker (with respect
to the same function) of its two-party reductions [(X;Z) ↔ Y] and
[(X; Y) → Z].
The argument will be based on the possibility of efficient pattern searching in
(bipartite) PNP .

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.

Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).

That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute
fx0;y0(Z)

def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.

Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:

I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;
it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:
I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;

it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];
I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most

the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).
Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:
I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;

it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];

I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most
the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:
I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;

it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];
I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most

the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).

Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

Assume that both [(X;Z) ↔ Y] and [(X; Y) → Z] can compute
f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1}f : X × Y × Z → {0; 1} efficiently, where X ; Y; Z ⊆ {0; 1}n.
Let Π1 be the corresponding protocol in [(X; Y) → Z] and denote by
¸x;y the message send to Player II by Player I when his input is (x; y).
That is, ∀ (x0; y0) ∈ X × Y the message ¸x0;y0 allows to compute

fx0;y0(Z)
def
= f (x0; y0; Z)

for every Z ∈ Z.
Define g : X × Y → {>;⊥} as

g(x; y)
def
=


> if ∃ z ′ ∈ Z : f (x; y ; z ′) 6= 0;
⊥ otherwise =

_
z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise.

Note that g ∈ PNP:
I let the advice for (x; y) ∈ g−1(>) be any z ′ ∈ Z such that f (x; y ; z ′) 6= 0;

it can be verified efficiently via evaluating f (x; y ; z ′) in [(X;Z)↔ Y];
I the number of patterns is the number of distinct fx0;y0 6≡ 0, that is, at most

the number of distinct messages ¸x0;y0 in Π1 (efficient by assumption).
Cheating alert: |Z| can be as large as 2n (easy to fix).

Three parties

Proof idea (continued)
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

That is, the function

g(x; y) =
W

z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise

is in PNP (with respect to this specific decomposition).
Accordingly, for every (x; y) ∈ X × Y the corresponding accepting
pattern – that is, the set ˘

z ′
˛̨
f (x; y ; z ′) 6= 0

¯
– can be found efficiently by a deterministic bipartite protocol where Alice
holds x and Bob holds y .
The number of distinct patterns is at most the number of distinct messages
in the the protocol Π1, which is efficient by assumption – therefore the
index of the found pattern can be signalled efficiently between the players.
The desired existence of an efficient protocol for f (X; Y; Z) in the model
[(X ↔ Y)→ Z] follows.

Three parties

Proof idea (continued)
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

That is, the function

g(x; y) =
W

z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise

is in PNP (with respect to this specific decomposition).

Accordingly, for every (x; y) ∈ X × Y the corresponding accepting
pattern – that is, the set ˘

z ′
˛̨
f (x; y ; z ′) 6= 0

¯
– can be found efficiently by a deterministic bipartite protocol where Alice
holds x and Bob holds y .
The number of distinct patterns is at most the number of distinct messages
in the the protocol Π1, which is efficient by assumption – therefore the
index of the found pattern can be signalled efficiently between the players.
The desired existence of an efficient protocol for f (X; Y; Z) in the model
[(X ↔ Y)→ Z] follows.

Three parties

Proof idea (continued)
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

That is, the function

g(x; y) =
W

z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise

is in PNP (with respect to this specific decomposition).
Accordingly, for every (x; y) ∈ X × Y the corresponding accepting
pattern – that is, the set ˘

z ′
˛̨
f (x; y ; z ′) 6= 0

¯
– can be found efficiently by a deterministic bipartite protocol where Alice
holds x and Bob holds y .

The number of distinct patterns is at most the number of distinct messages
in the the protocol Π1, which is efficient by assumption – therefore the
index of the found pattern can be signalled efficiently between the players.
The desired existence of an efficient protocol for f (X; Y; Z) in the model
[(X ↔ Y)→ Z] follows.

Three parties

Proof idea (continued)
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

That is, the function

g(x; y) =
W

z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise

is in PNP (with respect to this specific decomposition).
Accordingly, for every (x; y) ∈ X × Y the corresponding accepting
pattern – that is, the set ˘

z ′
˛̨
f (x; y ; z ′) 6= 0

¯
– can be found efficiently by a deterministic bipartite protocol where Alice
holds x and Bob holds y .
The number of distinct patterns is at most the number of distinct messages
in the the protocol Π1, which is efficient by assumption – therefore the
index of the found pattern can be signalled efficiently between the players.

The desired existence of an efficient protocol for f (X; Y; Z) in the model
[(X ↔ Y)→ Z] follows.

Three parties

Proof idea (continued)
For computing total functions the model [(X ↔ Y) → Z] is as strong as
the weaker of its bipartite reductions [(X;Z) ↔ Y] and [(X; Y) → Z].

That is, the function

g(x; y) =
W

z ′


> if f (x; y ; z ′) 6= 0;
⊥ otherwise

is in PNP (with respect to this specific decomposition).
Accordingly, for every (x; y) ∈ X × Y the corresponding accepting
pattern – that is, the set ˘

z ′
˛̨
f (x; y ; z ′) 6= 0

¯
– can be found efficiently by a deterministic bipartite protocol where Alice
holds x and Bob holds y .
The number of distinct patterns is at most the number of distinct messages
in the the protocol Π1, which is efficient by assumption – therefore the
index of the found pattern can be signalled efficiently between the players.
The desired existence of an efficient protocol for f (X; Y; Z) in the model
[(X ↔ Y)→ Z] follows.

Closing remarks

Conclusions

This work demonstrates several qualitative equivalences among
communication complexity classes.

These results rely upon the limitations imposed by total functions as
communicational problems (in particular, none of the equivalences hold in
the case of partial functions).

I What other structural implications does “totality” have?
I In particular, what are the “strengths of determinism” and the “limitations of

non-determinism” that are specific for the case of total functions?

T H A N K Y OU !

Closing remarks

Conclusions

This work demonstrates several qualitative equivalences among
communication complexity classes.
These results rely upon the limitations imposed by total functions as
communicational problems (in particular, none of the equivalences hold in
the case of partial functions).

I What other structural implications does “totality” have?
I In particular, what are the “strengths of determinism” and the “limitations of

non-determinism” that are specific for the case of total functions?

T H A N K Y OU !

Closing remarks

Conclusions

This work demonstrates several qualitative equivalences among
communication complexity classes.
These results rely upon the limitations imposed by total functions as
communicational problems (in particular, none of the equivalences hold in
the case of partial functions).

I What other structural implications does “totality” have?

I In particular, what are the “strengths of determinism” and the “limitations of
non-determinism” that are specific for the case of total functions?

T H A N K Y OU !

Closing remarks

Conclusions

This work demonstrates several qualitative equivalences among
communication complexity classes.
These results rely upon the limitations imposed by total functions as
communicational problems (in particular, none of the equivalences hold in
the case of partial functions).

I What other structural implications does “totality” have?
I In particular, what are the “strengths of determinism” and the “limitations of

non-determinism” that are specific for the case of total functions?

T H A N K Y OU !

Closing remarks

Conclusions

This work demonstrates several qualitative equivalences among
communication complexity classes.
These results rely upon the limitations imposed by total functions as
communicational problems (in particular, none of the equivalences hold in
the case of partial functions).

I What other structural implications does “totality” have?
I In particular, what are the “strengths of determinism” and the “limitations of

non-determinism” that are specific for the case of total functions?

T H A N K Y OU !

	Two parties
	Deterministic communication (Boolean case)
	Non-deterministic communication
	Notions of efficiency
	Restricted non-determinism, old and new models
	Some relations among the defined models
	The pattern search problem

	Three parties
	Three-party communication with listening Charlie
	Model equivalence
	Proof idea

	Closing remarks

