
Smooth functions on c0

Petr Hájek

The space c0 lies at the heart of many constructions of higher order smooth functions on
Banach spaces. To name a few, recall Torunczyk’s proof of the existence of Ck-smooth
partitions of unity on WCG spaces ([12]) or Haydon’s recent constructions of C∞-bump
functions on certain C(K) spaces ([7]).

The crucial property of c0 that allows for those constructions is a rich supply of C∞-smooth
functions that depend locally on finitely many coordinates.

The main result of the present note (Theorem 6) implies that every C2-smooth function
on c0 has a locally compact derivative.

This, in turn, means that every C2-smooth function on c0 “almost” depends locally on
finitely many coordinates, and confirms our intuition of c0 as being a very “flat” space.

Our work was originally motivated by the question of Jaramillo (that we answer in the
negative-see also [4]) whether there exists a C∞-smooth function on c0(Γ) which attains
its minimum at exactly one point.

However, our Corollaries (8-11) generalize to the case of C2-smooth functions on c0 some
results that Pelczynski [11] and Aron [1] obtained for polynomials and analytic functions
on C(K) spaces, and some work of the author [6] on convex functions on c0. In particular,
we show that every C2-smooth (nonlinear) operator from c0 into a superreflexive space is
locally compact. This implies that there exists no C2-smooth operator from c0 onto ℓ2,
answering a question of S. Bates.

The main idea of our work is contained in Lemma 2. Roughly speaking, it claims that a
symmetric function with uniformly continuous derivative defined on cn

0 , with zero derivative
at the origin, is almost constant along the basic vectors if n is large enough.

Repeated applications of this principle lead to the proof of Theorem 6.

Our notation and terminology is mostly standard, as in [4]. By cn
0 we denote the space of

finite sequences of length n with the supremum norm ‖ · ‖∞. Its dual space ℓn
1 is equipped

with the canonical norm ‖ · ‖1. Bcn
0

stands for the closed unit ball of cn
0 .

The canonical basic vectors in cn
0 (resp. ℓn

1 ) are denoted by ei (resp. fi).

To simplify the notation, we put u · v =
n
∑

i=1

uivi for u, v ∈ cn
0 .

By Πn we denote the group of all permutations of {1, . . . , n}.
We say that a function f defined on a subset of cn

0 is symmetric provided

f
(

n
∑

i=1

aieπ(i)

)

= f
(

n
∑

i=1

aiei

)

for every π ∈ Πn and every ai ∈ IR such that
n
∑

i=1

aieπ(i),
n
∑

i=1

aiei ∈ Dom(f).

The modification of this definition to the case of c0 should be clear.
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We will also use a modulus of continuity for a given uniformly continuous function f from
a metric space

(

X1,d1

)

into a metric space
(

X2,d2

)

. It is an increasing real function ω(δ),
δ ≥ 0, lim

δ→0
ω(δ) = 0, such that

d1(x1, x2) ≤ δ implies d2(f(x1), f(x2)) ≤ ω(δ).

In order to simplify the terminology, we use the term function with uniformly continuous
derivative on BX assuming implicitly that the derivative of the function is in fact uniformly
continuous in some open neighbourhood of BX . The uniform continuity of the derivative
is used in the following way: If ‖x − y‖∞ < δ, then

(1) f(x) − f(y) = 〈f ′(y), x − y〉 + ξ, where |ξ| < δ · ω(δ).

Indeed,

|f(x) − f(y) − 〈f ′(y), x − y〉| ≤

∫ 1

0

|〈f ′(y + t(x − y)) − f ′(y), x − y〉|dt ≤ ω(δ) · δ.

We start with a simple auxiliary lemma. Its elegant proof (originally due to Lindenstrauss)
has been suggested to us by the referee.

Lemma 1. Let ξ > 0 and m ∈ IN . Given two vectors u, v ∈ cm
0 such that ‖u‖∞, ‖v‖∞ ≤ ξ,

there exists A ⊂ {1, . . . ,m} such that

∣

∣

∣

∣

∑

i∈A

ui −
∑

1≤i≤m
i/∈A

ui

∣

∣

∣

∣

≤ 2ξ

and
∣

∣

∣

∣

∑

i∈A

vi −
∑

1≤i≤m
i/∈A

vi

∣

∣

∣

∣

≤ 2ξ.

Proof: Let T : cm
0 → IR2 be the operator given by T (x) = (x ·u, x ·v), and let y =

m
∑

i=1

yiei

be an extreme point in the unit ball of Ker(T ). There are at most two coordinates yi for
which |yi| < 1. Indeed, assume |y1|, |y2|, |y3| < 1. Since T has rank two, there is a z 6= 0
in span{e1, e2, e3} so that T (z) = 0. If ‖z‖∞ is small enough, y ± z is in the unit ball of
Ker(T ), contradicting the fact that y is extreme. Replacing the coordinates where |yi| < 1
by the sign of yi (in case yi = 0 we use 1) changes y · u and y · v at most 2ξ. By putting
A = {i, sign(yi) = 1} the Lemma is proved.

♦
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The following Lemma contains the main idea of the proof of Theorem 6. Given a symmetric
real function f with uniformly continuous derivative (with modulus of continuity ω(δ)),
f(0) = 0, f ′(0) = 0, defined on Bcn

0
, it provides us with an estimate on the growth of f

along the basic vectors ei, which depends only on ω and n (not on f).
It turns out that (while keeping ω fixed) letting n → ∞ implies |f(e1)| → 0.
Later we will find a suitable generalization for the case of nonsymmetric f .
A statement like Lemma 2 is obviously useful for investigation of finite dimensional re-
strictions of a given f with uniformly continuous derivative on Bc0

.

Lemma 2. Let ε > 0, f be a real symmetric function on Bcn
0

with uniformly continuous
derivative. Suppose f(0) = 0, f ′(0) = 0 and let w(δ) be the modulus of continuity of f ′. If
n ≥ n(ω, ε), where n(ω, ε) ∈ IR depends only on the function ω(·) and ε, then |f(e1)| < ε.

Proof:

Let ξ = ε
10 and fix k so that ω(1/k) < ξ. We put n(ω, ε) > 3

2

(

2 · ω(2)
ξ + 3

)

· 3k−1. Starting
with y0 = e1, and x0 = 0, define inductively two sequences, xj and yj , for 1 ≤ j ≤ k − 1,
satisfying:

(a) xj = yj except in their first coordinate which is 0 for the xj ’s and 1 for the yj ’s;
(b) for each 1 ≤ i ≤ j there is a coordinate where both xj and yj have the value i/k;
(c) |f(xj) − f(xj−1)|, |f(yj) − f(yj−1)| ≤ 3ξ/k.

Assume, for the moment, that such a construction is possible. Put now x = xk−1 and
y = yk−1, and estimate

|f(e1) − f(0)| ≤
k−1
∑

j=1

|f(yj) − f(yj−1)| + |f(y) − f(x)| +
k−1
∑

j=1

|f(xj) − f(xj−1)|.

The terms in the two sums are less than 3ξ/k each by (c).
To estimate the middle term, we use the symmetry of f : Let A be the set of cardinality
k − 1 where x and y attain the values 1/k, 2/k, . . . , (k − 1)/k and let B = A∪ {1}. By (a)
the coordinates of x + (1/k)χB are just a rearrangement of those of y. The symmetry of
f implies that f(y) = f(x + (1/k)χB), and thus by (1)

|f(x) − f(y)| = |f(x) − f(x + (1/k)χB)| ≤ ω(1/k) < ξ.

Summing all the inequalities the result follows.

The vectors xj and yj are constructed by induction. This is done in such a way that they
also satisfy the additional condition

(d) there is a subset Aj of coordinates, whose cardinality is at least n/3j , so that xj and
yj have the constant value j/k on Aj .

Assume that xj−1 and yj−1 have been chosen. Let

B = {p ∈ Aj−1 : max
(

|f ′(xj−1)p|, |f
′(yj−1)p|

)

≤ ξ}.
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Since ‖f ′(xj−1)‖1, ‖f ′(yj−1)‖1 ≤ ω(2), it follows (since n is large enough) that |B| ≥
(2/3)n
3j−1 . Moreover, this estimate remains true even if we add the restrictions that 1 /∈ B,

and that there are j − 2 coordinates outside B where the values i/k for i ≤ j − 2 (as in
condition (b)) are attained by xj−1 and yj−1.
By Lemma 1 there is a subset C of B so that if we put z = χC − χB\C , then

max
(

|〈f ′(xj−1), z〉|, |〈f
′(yj−1), z〉|

)

≤ 2ξ. Assuming (as we may) that |C| ≥ |B \ C|, we
take Aj = C, xj = xj−1 + z

k and yj = yj−1 + z
k .

With this choice (a), (b) and (d) are clearly satisfied. To check (c), we set

f(xj) − f(xj−1) = 〈f ′(xj−1), xj − xj−1〉 + E

where, by the choice of C, |〈f ′(xj−1), xj−xj−1〉| ≤
2ξ
k , and where |E| ≤ ω(‖xj−xj−1‖)‖xj−

xj−1‖ ≤ ω( 1
k ) · ( 1

k ) < ξ
k . Similar estimate works for f(yj) − f(yj−1).

The proof is finished.
♦

A brief examination of the proof of Lemma 2 shows that throughout we worked only
with points in Bcn

0
which have all coordinates larger than or equal to −1/k. Given a real

symmetric function f on B+
cn
0

= Bcn
0
∩ {x, xi ≥ 0, 1 ≤ i ≤ n}, with uniformly continuous

derivative (with modulus ω(δ)), f(0) = 0, f ′(0) = 0, we may pass to a symmetric function

f̃(x) = f( 1
k

n
∑

i=1

ei +x)−〈f ′( 1
k

n
∑

i=1

ei), x〉−f( 1
k

n
∑

i=1

ei) defined on k−1
k B+

cn
0
. Clearly, f̃(0) = 0,

f̃ ′(0) = 0, so the method of the proof of Lemma 2 applies and we obtain that if n ≥ n(ω, ε)
then |f̃(k−1

k e1)| < ε. Consequently, using (1) we get

f(e1) =f(e1 +
1

k

n
∑

i=2

ei) + ξ, |ξ| <
1

k
ω(

1

k
),

|f(e1)| ≤|f̃(
k − 1

k
e1)| + ω(

1

k
) +

2

k
ω(

1

k
) ≤ ε + 3ω(

1

k
).

Since we can choose k to be arbitrary small, we have the following slight improvement of
Lemma 2:

Lemma 3. Let ε > 0, f be a real symmetric function defined on B+
cn
0

with uniformly

continuous derivative with modulus ω. Suppose f(0) = 0, f ′(0) = 0. If n ≥ ñ(ω, ε), then
|f(e1)| < ε.

Although Lemma 3 follows immediately from Lemma 2, we do state it explicitly because
its application leads to a somewhat more elegant formulation of the result below.

Proposition 4. Let f be a real symmetric Fréchet differentiable function on Bc0
with

uniformly continuous derivative. Then f is constant on Bc0
.
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Proof: By contradiction. Suppose f is not constant on Bc0
. We may assume, without

loss of generality, that f(0) = 0, f ′(0) = 0 and f(x) = ε > 0 for x =
n
∑

i=1

xiei.

Put xk =
n
∑

i=1

xiekn+i. The sequence {xk}∞k=1 forms a block basis in c0 (equivalent to the

original basis), and from the symmetry of f we obtain f(xk) = f(x) = ε for every k ∈ IN .
This is a contradiction with Lemma 2.

♦

Lemma 5. Let ε > 0, f be a real function on Bcm
0

with uniformly continuous derivative
(with modulus of continuity ω(δ)) and such that sup

Bcm
0

‖f ′‖1 ≤ ω(2). Let v ∈ Bcm
0

and

{ui}
n
i=1 be a block sequence such that v +ui ∈ Bcm

0
. If n is large enough, then min

1≤i≤n
|f(v +

ui) − f(v)| < ε.

Proof: We proceed by contradiction. We define a bounded affine operator φ : cn
0 → cm

0 by

φ
(

n
∑

i=1

aiei

)

= v+
n
∑

i=1

aiui. Since φ is 2-Lipschitz, the real function f̃ = f ◦φ defined on B+
cn
0

has a uniformly continuous derivative with modulus 2ω(δ). We may assume without loss
of generality that f̃(0) = 0, and also ‖f̃ ′(0)‖1 < ε

2 , f̃(ei) ≥ ε for 1 ≤ i ≤ n. Indeed, given
{ui}

n
i=1, where n is large enough, there exists a set A ⊂ {1, . . . , n}, card(A) > ε

10 · n
ω(2)

such that
∑

i∈A

|f̃ ′(0)i| < ε
2 and either f̃(ei) ≥ ε, i ∈ A or f̃(ei) ≤ −ε, i ∈ A. Thus, it is

sufficient to replace {1, . . . , n} by A. Replacing f̃(x) by sign f̃(e1) · (f̃(x)− 〈f̃ ′(0), x〉) and
keeping the notations, we may assume using (1) that

f̃ ′(0) = 0, f̃(ei) ≥
ε

2
, 1 ≤ i ≤ n.

We introduce a real symmetric function fs on B+
cn
0

by

fs

(

n
∑

i=1

aiei

)

=
1

n!

∑

π∈Πn

f̃
(

n
∑

i=1

aπ(i)ei

)

.

It is standard to verify that fs has a uniformly continuous derivative with modulus 2ω(δ),
fs(0) = 0, f ′

s(0) = 0, fs(ei) ≥ ε
2 for 1 ≤ i ≤ n and sup

Bcn
0

‖f ′
s‖1 ≤ 2ω(2). (In fact, fs is a

convex combination of functions which satisfy the above set of conditions).
By Lemma 3, we are done.

♦

Theorem 6. Let f be a real Fréchet-differentiable function on Bc0
with uniformly contin-

uous derivative (with modulus of continuity ω(δ)). Then f ′(Bc0
) is relatively compact in

ℓ1.
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Proof: By contradiction. We may assume that f(0) = 0 and f ′(0) = 0. Therefore
sup
Bc0

‖f ′‖1 ≤ ω(1) and we assume un ∈ Bc0
satisfy ‖f ′(un) − f ′(um)‖1 > 4ρ for all n 6= m.

Let ε > 0. By passing to a subsequence, and a standard “gliding hump” argument, we can
assume that there are disjoint finite sets (An) so that ‖f ′(un)|An

‖ > 2ρ. Let vn ∈ Bc0
be

supported in An such that |〈f ′(un), vn〉| ≥ ρ, and in addition vn + un ∈ Bc0
. Then, for

every t > 0, f(un + tvn) − f(un) = 〈f ′(un), tvn〉 + E where |E| ≤ tω(t). As the first term
is in absolute value bounded below by tρ, and ω(t) → 0, it follows that we can choose a
t ≤ 1 so that for some fixed θ > 0, |f(un + tvn) − f(un)| > θ for all n.

We now set the notation for the next step.

By passing to a subsequence, we can assume that the limits of f(un) and f(un + tvn) exist.
Adding a constant to f , passing to subsequences, changing notation, and disregarding
quantities that can be made arbitrary small, we can assume that there are sequences
{un}

∞
n=1 and {wn}

∞
n=1 in Bc0

so that

(i) f(un) = 0 for all n, f(wn) = 2β > 0 for all n;

(ii) the sequences are supported in an increasing sequence of finite intervals In = [1,mn];

(iii) un and wn are equal on In−1;

(iv) all the uj for j > n are equal on In.

Claim 7. There is an integer k, so that for some infinite subset M of IN , and every
vector v with wn + v ∈ Bc0

and having a finite support, starting after k, the set {n ∈ M :
|f(wn + v) − 2β| > β} is finite.

Proof: If this is not the case, define inductively decreasing sequence of infinite subsets
{Mj}

∞
j=1 of M , and disjoint finitely supported vectors {vj}

∞
j=1 so that for each j the set

Mj+1 = {n ∈ Mj |f(wn + vj) − 2β| > β} is infinite. Given N , we can thus find disjoint
blocks v1, . . . , vN and an n, so that |f(wn + vj) − 2β| > β for j ≤ N . Since f(wn) = 2β
and N is arbitrary, this contradicts Lemma 5.

By passing to a subsequence of wn indexed by M and discarding a few first wn’s, assume
that k ∈ I1. It follows from the claim that for every v, supported by [m1+1,∞), f(v+wn) >
β for all but a finite number of n’s (provided also v +wn ∈ B). Note also that all the wn’s,
as well as u2 have the same values on I1.

To finish the proof, we now pass to a subsequence of (wn) and perturb them to be “disjointly
supported except for a common u2 part” using the Claim 7 as follows:

All the wn’s for n ≥ 3 agree on I2, let v2 be this common value. Since u2 and v2 agree on
I1, wn − v2 + u2 is different from wn only on I2 \ I1, and it has the form u2 + xn ∈ Bc0

,
where xn is supported in In by [m2 + 1,mn]. By Claim 7 there is an n1 ≥ 3, so that
f(u2 + xn1

) ≥ β.

Inductively, having chosen nj and xnj
, supported in Inj

, all the wn’s for n > nj agree on
Inj

, and take vj to be this common value. Since u2 and vj agree on I1, wn−vj +u2 ∈ Bc0
is

different from wn only on In \I1, and it has the form u2 +xn ∈ Bc0
, where xn is supported

in In by [mnj
+ 1,mn]. By Claim 7 there is an nj+1 > nj , so that f(u2 + xnj+1

) ≥ β.

Since the xnj
’s are disjoint blocks, and f(u2) = 0, this contradicts Lemma 5.

♦
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Corollary 8. Let f be a real Fréchet differentiable function on c0(Γ) with locally uniform
continuous derivative. Then f depends locally on countably many coordinates.

Proof: To prove Corollary 8, it is enough (by the usual shifting and scaling arguments)
to show that if f ′ is uniformly continuous in Bc0(Γ), then f depends on countably many
coordinates in Bc0(Γ).
By Theorem 6, f ′(Bc0(Γ)) is a relatively norm compact set in ℓ1(Γ). Thus, there exists a
countable set A ⊂ Γ such that supp f ′(x) ⊂ A for every x ∈ Bc0(Γ).
It is now easy to observe that whenever x, y ∈ Bc0(Γ), x =

∑

γ∈Γ

xγeγ , y =
∑

γ∈Γ

yγeγ are such

that xγ = yγ for every γ ∈ A, then f(x) = f(y). Indeed,

f(y) = f(x) +

1
∫

0

〈f ′(x + t(y − x)), y − x〉 dt

= f(x) +

1
∫

0

∑

γ∈Γ

f ′(x + t(y − x))γ · (y − x)γ dt.

The last integral is clearly equal to zero because for every γ ∈ Γ either f ′(x+t(y−x))γ = 0
or (y − x)γ = 0. This finishes the proof.

♦

As an immediate consequence, we obtain a negative answer to a question posed by J. Jara-
millo (see e.g. [4, p.90]): Does there exist a C∞-Fréchet smooth function on c0(Γ) that
attains its minimum at exactly one point?

Corollary 9. There exists no C2-Fréchet smooth function on c0(Γ) that attains its mini-
mum at exactly one point.

For the purpose of this note we will say that a real function f defined on Bc0
is weakly

sequentially continuous if lim
n→∞

f(xn) exists for every weakly Cauchy sequence {x}n∈IN in

Bc0
.

Corollary 10. Let f be a Fréchet differentiable real function with uniformly continuous
derivative defined on Bc0

. Then f is weakly sequentially continuous on Bc0
.

Proof: Since K = f ′(Bc0
) is norm compact by Theorem 6, given a weakly Cauchy

sequence {xn}n∈IN we have:

lim
n,m→∞

〈φ, xn − xm〉 = 0 uniformly in φ ∈ K.

By the mean value theorem, for some point x in the interval joining xn and xm, we have:

|f(xn) − f(xm)| = |〈f ′(x), xn − xm〉| ≤ sup
φ∈K

|〈φ, xn − xm〉| → 0 as n,m → ∞.
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♦

Using the Bessaga-Pelczynski theorem, it is an easy exercise to show that every linear op-
erator T : c0 → X, X not containing a copy of c0, is necessarily compact. We suspect that
this statement holds (locally) for general operators with uniformly continuous derivative.
However, we are able to prove this only for certain Banach spaces.

Let us recall that a (in general nonlinear) continuous operator T : X → Y where X, Y are
Banach spaces is called locally compact if for every x ∈ X there exists a neighbourhood O,
x ∈ O such that T (O) is relatively compact in Y .

Corollary 11. Let T be a (nonlinear, in general) Fréchet differentiable operator from c0

into a Banach space X with nontrivial type. Suppose that T ′ is locally uniformly continu-
ous. Then T is locally compact.

Proof: We may assume, by contradiction, that T ′ is uniformly continuous in Bc0
,

{xn}
∞
n=1 ⊂ Bc0

is weakly Cauchy and, by Rosenthal’s theorem (as ℓ1 does not imbed
into X), {T (xn)}n∈IN is weakly Cauchy, ‖Txn‖ > γ > 0.

Define T̃ : c0 = c0 ⊕ c0 → X by T̃
(

(x, y)
)

= T (x) − T (y). A weakly Cauchy sequence
x̃n = (x2n, x2n+1) maps into a weakly null sequence ỹn = T (x2n) − T (x2n+1). By the
proof of Theorem 3.3 and Corollary 3.6 in [5], passing to a subsequence of {ỹn}, there

exists p > 1, p ∈ IN and a linear operator L : X → ℓp, Lỹn = en. Put φ(v) =
∞
∑

i=1

(−1)ivp
i

for v =
∞
∑

i=1

viei ∈ ℓp. The real function φ ◦ T̃ is not weakly sequentially continuous, a

contradiction with Corollary 10.

♦

Let us remark that in particular every superreflexive Banach space satisfies the assumptions
of Corollary 11. An easy modification of the proof yields the same conclusion for ℓ1.

S. Bates ([2]) has recently shown that given ℓp, 1 < p < ∞, and a separable Banach space
X, there exists a C∞-Fréchet smooth and onto operator T : ℓp → X. He also showed
that given any separable Banach spaces X, Y there exists a C1-Fréchet smooth, Lipschitz
and onto operator T : X → Y . He asked whether the former statement holds true for c0

instead of ℓp. Using the Baire category principle, it is immediate from Corollary 11 that
there exists no C2-Fréchet smooth and onto operator T : c0 → ℓp, 1 ≤ p < ∞.

A natural question arises as to which Banach spaces satisfy an analogue of Theorem 6.
Obviously, this property is preserved by taking a quotient. Although our arguments seem to
be mostly finite dimensional, they do involve in a crucial way also the infinite-dimensional
structure of the space. Without going into much details, let us point out that C[0, 1] is a
π∞

1 space (a space built up from isometric copies of cn
0 - for details see [10]) and yet it does

not satisfy Theorem 6 (since ℓ2 is a quotient of C[0, 1]).
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On the other hand, spaces C(K) where K is scattered seem to be natural candidates for
generalizations of Theorem 6. In the case when K(ω0) = ∅ this follows readily from our
above results.

Corollary 12. Let K be a scattered compact, K(ω0) = ∅. Let f be a Fréchet differentiable
function on C(K) with locally uniformly continuous derivative. Then f ′ is locally compact.

Proof. By contradiction, we may assume that f ′(λBX) is not relatively compact, where
X is a separable subspace of C(K) and λ > 0 is arbitrary. By classical results (using Stone-
Weierstrass theorem, for details see e.g. [4] and [9]), there exists a separable subspace Y of
C(K) such that X ⊆ Y and Y is isometric to some C(L), where L is scattered, and it is a
continuous image of K. Thus, L(ω0) = ∅, L is countable and Y is isomorphic to c0 by [3].
Consequently, f ′(λBY ) is not relatively compact for any λ > 0, which is a contradiction
with Theorem 6.

♦

In connection with Corollary 9, it should be noted that in [7] there are examples of non-
separable Banach spaces C(K) (where K(ω0) = ∅) that admit C∞-Fréchet smooth convex
functions which attain their minimum at exactly one point.

Acknowledgment. The author would like to thank the referee for several improvements
that he suggested. He shortened most of the arguments and supplied an elegant proof of
Lemma 1.
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