# Smooth functions on $\mathbf{c}_{\mathbf{0}}$ 

Petr Hájek

The space $c_{0}$ lies at the heart of many constructions of higher order smooth functions on Banach spaces. To name a few, recall Torunczyk's proof of the existence of $C^{k}$-smooth partitions of unity on WCG spaces ([12]) or Haydon's recent constructions of $C^{\infty}$-bump functions on certain $C(K)$ spaces ([7]).
The crucial property of $c_{0}$ that allows for those constructions is a rich supply of $C^{\infty}$-smooth functions that depend locally on finitely many coordinates.
The main result of the present note (Theorem 6) implies that every $C^{2}$-smooth function on $c_{0}$ has a locally compact derivative.
This, in turn, means that every $C^{2}$-smooth function on $c_{0}$ "almost" depends locally on finitely many coordinates, and confirms our intuition of $c_{0}$ as being a very "flat" space.
Our work was originally motivated by the question of Jaramillo (that we answer in the negative-see also [4]) whether there exists a $C^{\infty}$-smooth function on $c_{0}(\Gamma)$ which attains its minimum at exactly one point.
However, our Corollaries (8-11) generalize to the case of $C^{2}$-smooth functions on $c_{0}$ some results that Pelczynski [11] and Aron [1] obtained for polynomials and analytic functions on $C(K)$ spaces, and some work of the author [6] on convex functions on $c_{0}$. In particular, we show that every $C^{2}$-smooth (nonlinear) operator from $c_{0}$ into a superreflexive space is locally compact. This implies that there exists no $C^{2}$-smooth operator from $c_{0}$ onto $\ell_{2}$, answering a question of S. Bates.
The main idea of our work is contained in Lemma 2. Roughly speaking, it claims that a symmetric function with uniformly continuous derivative defined on $c_{0}^{n}$, with zero derivative at the origin, is almost constant along the basic vectors if $n$ is large enough.
Repeated applications of this principle lead to the proof of Theorem 6.
Our notation and terminology is mostly standard, as in [4]. By $c_{0}^{n}$ we denote the space of finite sequences of length $n$ with the supremum norm $\|\cdot\|_{\infty}$. Its dual space $\ell_{1}^{n}$ is equipped with the canonical norm $\|\cdot\|_{1} . B_{c_{0}^{n}}$ stands for the closed unit ball of $c_{0}^{n}$.
The canonical basic vectors in $c_{0}^{n}$ (resp. $\ell_{1}^{n}$ ) are denoted by $e_{i}$ (resp. $f_{i}$ ).
To simplify the notation, we put $u \cdot v=\sum_{i=1}^{n} u_{i} v_{i}$ for $u, v \in c_{0}^{n}$.
By $\Pi_{n}$ we denote the group of all permutations of $\{1, \ldots, n\}$.
We say that a function $f$ defined on a subset of $c_{0}^{n}$ is symmetric provided

$$
f\left(\sum_{i=1}^{n} a_{i} e_{\pi(i)}\right)=f\left(\sum_{i=1}^{n} a_{i} e_{i}\right)
$$

for every $\pi \in \Pi_{n}$ and every $a_{i} \in \mathbb{R}$ such that $\sum_{i=1}^{n} a_{i} e_{\pi(i)}, \sum_{i=1}^{n} a_{i} e_{i} \in \operatorname{Dom}(f)$.
The modification of this definition to the case of $c_{0}$ should be clear.

We will also use a modulus of continuity for a given uniformly continuous function $f$ from a metric space $\left(X_{1}, \mathrm{~d}_{1}\right)$ into a metric space $\left(X_{2}, \mathrm{~d}_{2}\right)$. It is an increasing real function $\omega(\delta)$, $\delta \geq 0, \lim _{\delta \rightarrow 0} \omega(\delta)=0$, such that

$$
\mathrm{d}_{1}\left(x_{1}, x_{2}\right) \leq \delta \quad \text { implies } \quad \mathrm{d}_{2}\left(f\left(x_{1}\right), f\left(x_{2}\right)\right) \leq \omega(\delta) .
$$

In order to simplify the terminology, we use the term function with uniformly continuous derivative on $B_{X}$ assuming implicitly that the derivative of the function is in fact uniformly continuous in some open neighbourhood of $B_{X}$. The uniform continuity of the derivative is used in the following way: If $\|x-y\|_{\infty}<\delta$, then

$$
\begin{equation*}
f(x)-f(y)=\left\langle f^{\prime}(y), x-y\right\rangle+\xi, \quad \text { where }|\xi|<\delta \cdot \omega(\delta) \tag{1}
\end{equation*}
$$

Indeed,

$$
\left|f(x)-f(y)-\left\langle f^{\prime}(y), x-y\right\rangle\right| \leq \int_{0}^{1}\left|\left\langle f^{\prime}(y+t(x-y))-f^{\prime}(y), x-y\right\rangle\right| \mathrm{d} t \leq \omega(\delta) \cdot \delta
$$

We start with a simple auxiliary lemma. Its elegant proof (originally due to Lindenstrauss) has been suggested to us by the referee.

Lemma 1. Let $\xi>0$ and $m \in \mathbb{N}$. Given two vectors $u, v \in c_{0}^{m}$ such that $\|u\|_{\infty},\|v\|_{\infty} \leq \xi$, there exists $A \subset\{1, \ldots, m\}$ such that

$$
\left|\sum_{i \in A} u_{i}-\sum_{\substack{1 \leq i \leq m \\ i \notin A}} u_{i}\right| \leq 2 \xi
$$

and

$$
\left|\sum_{i \in A} v_{i}-\sum_{\substack{1 \leq i \leq m \\ i \notin A}} v_{i}\right| \leq 2 \xi
$$

Proof: Let $T: c_{0}^{m} \rightarrow \mathbb{R}^{2}$ be the operator given by $T(x)=(x \cdot u, x \cdot v)$, and let $y=\sum_{i=1}^{m} y_{i} e_{i}$ be an extreme point in the unit ball of $\operatorname{Ker}(T)$. There are at most two coordinates $y_{i}$ for which $\left|y_{i}\right|<1$. Indeed, assume $\left|y_{1}\right|,\left|y_{2}\right|,\left|y_{3}\right|<1$. Since $T$ has rank two, there is a $z \neq 0$ in $\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$ so that $T(z)=0$. If $\|z\|_{\infty}$ is small enough, $y \pm z$ is in the unit ball of $\operatorname{Ker}(T)$, contradicting the fact that $y$ is extreme. Replacing the coordinates where $\left|y_{i}\right|<1$ by the sign of $y_{i}$ (in case $y_{i}=0$ we use 1 ) changes $y \cdot u$ and $y \cdot v$ at most $2 \xi$. By putting $A=\left\{i, \operatorname{sign}\left(y_{i}\right)=1\right\}$ the Lemma is proved.

The following Lemma contains the main idea of the proof of Theorem 6. Given a symmetric real function $f$ with uniformly continuous derivative (with modulus of continuity $\omega(\delta)$ ), $f(0)=0, f^{\prime}(0)=0$, defined on $B_{c_{0}^{n}}$, it provides us with an estimate on the growth of $f$ along the basic vectors $e_{i}$, which depends only on $\omega$ and $n$ (not on $f$ ).
It turns out that (while keeping $\omega$ fixed) letting $n \rightarrow \infty$ implies $\left|f\left(e_{1}\right)\right| \rightarrow 0$.
Later we will find a suitable generalization for the case of nonsymmetric $f$.
A statement like Lemma 2 is obviously useful for investigation of finite dimensional restrictions of a given $f$ with uniformly continuous derivative on $B_{c_{0}}$.

Lemma 2. Let $\varepsilon>0$, $f$ be a real symmetric function on $B_{c_{0}^{n}}$ with uniformly continuous derivative. Suppose $f(0)=0, f^{\prime}(0)=0$ and let $w(\delta)$ be the modulus of continuity of $f^{\prime}$. If $n \geq n(\omega, \varepsilon)$, where $n(\omega, \varepsilon) \in \mathbb{R}$ depends only on the function $\omega(\cdot)$ and $\varepsilon$, then $\left|f\left(e_{1}\right)\right|<\varepsilon$.

## Proof:

Let $\xi=\frac{\varepsilon}{10}$ and fix $k$ so that $\omega(1 / k)<\xi$. We put $n(\omega, \varepsilon)>\frac{3}{2}\left(2 \cdot \frac{\omega(2)}{\xi}+3\right) \cdot 3^{k-1}$. Starting with $y_{0}=e_{1}$, and $x_{0}=0$, define inductively two sequences, $x_{j}$ and $y_{j}$, for $1 \leq j \leq k-1$, satisfying:
(a) $x_{j}=y_{j}$ except in their first coordinate which is 0 for the $x_{j}$ 's and 1 for the $y_{j}$ 's;
(b) for each $1 \leq i \leq j$ there is a coordinate where both $x_{j}$ and $y_{j}$ have the value $i / k$;
(c) $\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|,\left|f\left(y_{j}\right)-f\left(y_{j-1}\right)\right| \leq 3 \xi / k$.

Assume, for the moment, that such a construction is possible. Put now $x=x_{k-1}$ and $y=y_{k-1}$, and estimate

$$
\left|f\left(e_{1}\right)-f(0)\right| \leq \sum_{j=1}^{k-1}\left|f\left(y_{j}\right)-f\left(y_{j-1}\right)\right|+|f(y)-f(x)|+\sum_{j=1}^{k-1}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|
$$

The terms in the two sums are less than $3 \xi / k$ each by (c).
To estimate the middle term, we use the symmetry of $f$ : Let $A$ be the set of cardinality $k-1$ where $x$ and $y$ attain the values $1 / k, 2 / k, \ldots,(k-1) / k$ and let $B=A \cup\{1\}$. By (a) the coordinates of $x+(1 / k) \chi_{B}$ are just a rearrangement of those of $y$. The symmetry of $f$ implies that $f(y)=f\left(x+(1 / k) \chi_{B}\right)$, and thus by (1)

$$
|f(x)-f(y)|=\left|f(x)-f\left(x+(1 / k) \chi_{B}\right)\right| \leq \omega(1 / k)<\xi
$$

Summing all the inequalities the result follows.
The vectors $x_{j}$ and $y_{j}$ are constructed by induction. This is done in such a way that they also satisfy the additional condition
(d) there is a subset $A_{j}$ of coordinates, whose cardinality is at least $n / 3^{j}$, so that $x_{j}$ and $y_{j}$ have the constant value $j / k$ on $A_{j}$.
Assume that $x_{j-1}$ and $y_{j-1}$ have been chosen. Let

$$
B=\left\{p \in A_{j-1}: \max \left(\left|f^{\prime}\left(x_{j-1}\right)_{p}\right|,\left|f^{\prime}\left(y_{j-1}\right)_{p}\right|\right) \leq \xi\right\} .
$$

Since $\left\|f^{\prime}\left(x_{j-1}\right)\right\|_{1},\left\|f^{\prime}\left(y_{j-1}\right)\right\|_{1} \leq \omega(2)$, it follows (since $n$ is large enough) that $|B| \geq$ $\frac{(2 / 3) n}{3^{j-1}}$. Moreover, this estimate remains true even if we add the restrictions that $1 \notin B$, and that there are $j-2$ coordinates outside $B$ where the values $i / k$ for $i \leq j-2$ (as in condition (b)) are attained by $x_{j-1}$ and $y_{j-1}$.
By Lemma 1 there is a subset $C$ of $B$ so that if we put $z=\chi_{C}-\chi_{B \backslash C}$, then $\max \left(\left|\left\langle f^{\prime}\left(x_{j-1}\right), z\right\rangle\right|,\left|\left\langle f^{\prime}\left(y_{j-1}\right), z\right\rangle\right|\right) \leq 2 \xi$. Assuming (as we may) that $|C| \geq|B \backslash C|$, we take $A_{j}=C, x_{j}=x_{j-1}+\frac{z}{k}$ and $y_{j}=y_{j-1}+\frac{z}{k}$.
With this choice (a), (b) and (d) are clearly satisfied. To check (c), we set

$$
f\left(x_{j}\right)-f\left(x_{j-1}\right)=\left\langle f^{\prime}\left(x_{j-1}\right), x_{j}-x_{j-1}\right\rangle+E
$$

where, by the choice of $C,\left|\left\langle f^{\prime}\left(x_{j-1}\right), x_{j}-x_{j-1}\right\rangle\right| \leq \frac{2 \xi}{k}$, and where $|E| \leq \omega\left(\left\|x_{j}-x_{j-1}\right\|\right) \| x_{j}-$ $x_{j-1} \| \leq \omega\left(\frac{1}{k}\right) \cdot\left(\frac{1}{k}\right)<\frac{\xi}{k}$. Similar estimate works for $f\left(y_{j}\right)-f\left(y_{j-1}\right)$. The proof is finished.

A brief examination of the proof of Lemma 2 shows that throughout we worked only with points in $B_{C_{0}^{n}}$ which have all coordinates larger than or equal to $-1 / k$. Given a real symmetric function $f$ on $B_{c_{0}^{n}}^{+}=B_{c_{0}^{n}} \cap\left\{x, x_{i} \geq 0,1 \leq i \leq n\right\}$, with uniformly continuous derivative (with modulus $\omega(\delta)$ ), $f(0)=0, f^{\prime}(0)=0$, we may pass to a symmetric function $\tilde{f}(x)=f\left(\frac{1}{k} \sum_{i=1}^{n} e_{i}+x\right)-\left\langle f^{\prime}\left(\frac{1}{k} \sum_{i=1}^{n} e_{i}\right), x\right\rangle-f\left(\frac{1}{k} \sum_{i=1}^{n} e_{i}\right)$ defined on $\frac{k-1}{k} B_{c_{0}^{n}}^{+}$. Clearly, $\tilde{f}(0)=0$, $\tilde{f}^{\prime}(0)=0$, so the method of the proof of Lemma 2 applies and we obtain that if $n \geq n(\omega, \varepsilon)$ then $\left|\tilde{f}\left(\frac{k-1}{k} e_{1}\right)\right|<\varepsilon$. Consequently, using (1) we get

$$
\begin{aligned}
f\left(e_{1}\right) & =f\left(e_{1}+\frac{1}{k} \sum_{i=2}^{n} e_{i}\right)+\xi, \quad|\xi|<\frac{1}{k} \omega\left(\frac{1}{k}\right) \\
\left|f\left(e_{1}\right)\right| & \leq\left|\tilde{f}\left(\frac{k-1}{k} e_{1}\right)\right|+\omega\left(\frac{1}{k}\right)+\frac{2}{k} \omega\left(\frac{1}{k}\right) \leq \varepsilon+3 \omega\left(\frac{1}{k}\right) .
\end{aligned}
$$

Since we can choose $k$ to be arbitrary small, we have the following slight improvement of Lemma 2:

Lemma 3. Let $\varepsilon>0, f$ be a real symmetric function defined on $B_{c_{0}^{n}}^{+}$with uniformly continuous derivative with modulus $\omega$. Suppose $f(0)=0$, $f^{\prime}(0)=0$. If $n \geq \tilde{n}(\omega, \varepsilon)$, then $\left|f\left(e_{1}\right)\right|<\varepsilon$.

Although Lemma 3 follows immediately from Lemma 2, we do state it explicitly because its application leads to a somewhat more elegant formulation of the result below.

Proposition 4. Let $f$ be a real symmetric Fréchet differentiable function on $B_{c_{0}}$ with uniformly continuous derivative. Then $f$ is constant on $B_{c_{0}}$.

Proof: By contradiction. Suppose $f$ is not constant on $B_{c_{0}}$. We may assume, without loss of generality, that $f(0)=0, f^{\prime}(0)=0$ and $f(x)=\varepsilon>0$ for $x=\sum_{i=1}^{n} x_{i} e_{i}$.
Put $x^{k}=\sum_{i=1}^{n} x_{i} e_{k n+i}$. The sequence $\left\{x^{k}\right\}_{k=1}^{\infty}$ forms a block basis in $c_{0}$ (equivalent to the original basis), and from the symmetry of $f$ we obtain $f\left(x^{k}\right)=f(x)=\varepsilon$ for every $k \in \mathbb{N}$. This is a contradiction with Lemma 2.

Lemma 5. Let $\varepsilon>0, f$ be a real function on $B_{c_{0}^{m}}$ with uniformly continuous derivative (with modulus of continuity $\omega(\delta)$ ) and such that $\sup _{B_{c_{0}^{m}}}\left\|f^{\prime}\right\|_{1} \leq \omega(2)$. Let $v \in B_{c_{0}^{m}}$ and $\left\{u_{i}\right\}_{i=1}^{n}$ be a block sequence such that $v+u_{i} \in B_{c_{0}^{m}}$. If $n$ is large enough, then $\min _{1 \leq i \leq n} \mid f(v+$ $\left.u_{i}\right)-f(v) \mid<\varepsilon$.

Proof: We proceed by contradiction. We define a bounded affine operator $\phi: c_{0}^{n} \rightarrow c_{0}^{m}$ by $\phi\left(\sum_{i=1}^{n} a_{i} e_{i}\right)=v+\sum_{i=1}^{n} a_{i} u_{i}$. Since $\phi$ is 2-Lipschitz, the real function $\tilde{f}=f \circ \phi$ defined on $B_{c_{0}^{n}}^{+}$ has a uniformly continuous derivative with modulus $2 \omega(\delta)$. We may assume without loss of generality that $\tilde{f}(0)=0$, and also $\left\|\tilde{f}^{\prime}(0)\right\|_{1}<\frac{\varepsilon}{2}, \tilde{f}\left(e_{i}\right) \geq \varepsilon$ for $1 \leq i \leq n$. Indeed, given $\left\{u_{i}\right\}_{i=1}^{n}$, where $n$ is large enough, there exists a set $A \subset\{1, \ldots, n\}, \operatorname{card}(A)>\frac{\varepsilon}{10} \cdot \frac{n}{\omega(2)}$ such that $\sum_{i \in A}\left|\tilde{f}^{\prime}(0)_{i}\right|<\frac{\varepsilon}{2}$ and either $\tilde{f}\left(e_{i}\right) \geq \varepsilon, i \in A$ or $\tilde{f}\left(e_{i}\right) \leq-\varepsilon, i \in A$. Thus, it is sufficient to replace $\{1, \ldots, n\}$ by $A$. Replacing $\tilde{f}(x)$ by $\operatorname{sign} \tilde{f}\left(e_{1}\right) \cdot\left(\tilde{f}(x)-\left\langle\tilde{f}^{\prime}(0), x\right\rangle\right)$ and keeping the notations, we may assume using (1) that

$$
\tilde{f}^{\prime}(0)=0, \quad \tilde{f}\left(e_{i}\right) \geq \frac{\varepsilon}{2}, \quad 1 \leq i \leq n .
$$

We introduce a real symmetric function $f_{s}$ on $B_{c_{0}^{n}}^{+}$by

$$
f_{s}\left(\sum_{i=1}^{n} a_{i} e_{i}\right)=\frac{1}{n!} \sum_{\pi \in \Pi_{n}} \tilde{f}\left(\sum_{i=1}^{n} a_{\pi(i)} e_{i}\right)
$$

It is standard to verify that $f_{s}$ has a uniformly continuous derivative with modulus $2 \omega(\delta)$, $f_{s}(0)=0, f_{s}^{\prime}(0)=0, f_{s}\left(e_{i}\right) \geq \frac{\varepsilon}{2}$ for $1 \leq i \leq n$ and $\sup _{B_{c_{0}^{n}}}\left\|f_{s}^{\prime}\right\|_{1} \leq 2 \omega(2)$. (In fact, $f_{s}$ is a convex combination of functions which satisfy the above set of conditions). By Lemma 3, we are done.

Theorem 6. Let $f$ be a real Fréchet-differentiable function on $B_{c_{0}}$ with uniformly continuous derivative (with modulus of continuity $\omega(\delta)$ ). Then $f^{\prime}\left(B_{c_{0}}\right)$ is relatively compact in $\ell_{1}$.

Proof: By contradiction. We may assume that $f(0)=0$ and $f^{\prime}(0)=0$. Therefore $\sup \left\|f^{\prime}\right\|_{1} \leq \omega(1)$ and we assume $u_{n} \in B_{c_{0}}$ satisfy $\left\|f^{\prime}\left(u_{n}\right)-f^{\prime}\left(u_{m}\right)\right\|_{1}>4 \rho$ for all $n \neq m$. $B_{c_{0}}$
Let $\varepsilon>0$. By passing to a subsequence, and a standard "gliding hump" argument, we can assume that there are disjoint finite sets $\left(A_{n}\right)$ so that $\left\|\left.f^{\prime}\left(u_{n}\right)\right|_{A_{n}}\right\|>2 \rho$. Let $v_{n} \in B_{c_{0}}$ be supported in $A_{n}$ such that $\left|\left\langle f^{\prime}\left(u_{n}\right), v_{n}\right\rangle\right| \geq \rho$, and in addition $v_{n}+u_{n} \in B_{c_{0}}$. Then, for every $t>0, f\left(u_{n}+t v_{n}\right)-f\left(u_{n}\right)=\left\langle f^{\prime}\left(u_{n}\right), t v_{n}\right\rangle+E$ where $|E| \leq t \omega(t)$. As the first term is in absolute value bounded below by $t \rho$, and $\omega(t) \rightarrow 0$, it follows that we can choose a $t \leq 1$ so that for some fixed $\theta>0,\left|f\left(u_{n}+t v_{n}\right)-f\left(u_{n}\right)\right|>\theta$ for all $n$.

We now set the notation for the next step.
By passing to a subsequence, we can assume that the limits of $f\left(u_{n}\right)$ and $f\left(u_{n}+t v_{n}\right)$ exist. Adding a constant to $f$, passing to subsequences, changing notation, and disregarding quantities that can be made arbitrary small, we can assume that there are sequences $\left\{u_{n}\right\}_{n=1}^{\infty}$ and $\left\{w_{n}\right\}_{n=1}^{\infty}$ in $B_{c_{0}}$ so that
(i) $f\left(u_{n}\right)=0$ for all $n, f\left(w_{n}\right)=2 \beta>0$ for all $n$;
(ii) the sequences are supported in an increasing sequence of finite intervals $I_{n}=\left[1, m_{n}\right]$;
(iii) $u_{n}$ and $w_{n}$ are equal on $I_{n-1}$;
(iv) all the $u_{j}$ for $j>n$ are equal on $I_{n}$.

Claim 7. There is an integer $k$, so that for some infinite subset $M$ of $\mathbb{I N}$, and every vector $v$ with $w_{n}+v \in B_{c_{0}}$ and having a finite support, starting after $k$, the set $\{n \in M$ : $\left.\left|f\left(w_{n}+v\right)-2 \beta\right|>\beta\right\}$ is finite.

Proof: If this is not the case, define inductively decreasing sequence of infinite subsets $\left\{M_{j}\right\}_{j=1}^{\infty}$ of $M$, and disjoint finitely supported vectors $\left\{v_{j}\right\}_{j=1}^{\infty}$ so that for each $j$ the set $M_{j+1}=\left\{n \in M_{j}\left|f\left(w_{n}+v_{j}\right)-2 \beta\right|>\beta\right\}$ is infinite. Given $N$, we can thus find disjoint blocks $v_{1}, \ldots, v_{N}$ and an $n$, so that $\left|f\left(w_{n}+v_{j}\right)-2 \beta\right|>\beta$ for $j \leq N$. Since $f\left(w_{n}\right)=2 \beta$ and $N$ is arbitrary, this contradicts Lemma 5.

By passing to a subsequence of $w_{n}$ indexed by $M$ and discarding a few first $w_{n}$ 's, assume that $k \in I_{1}$. It follows from the claim that for every $v$, supported by $\left[m_{1}+1, \infty\right), f\left(v+w_{n}\right)>$ $\beta$ for all but a finite number of $n$ 's (provided also $v+w_{n} \in B$ ). Note also that all the $w_{n}$ 's, as well as $u_{2}$ have the same values on $I_{1}$.
To finish the proof, we now pass to a subsequence of $\left(w_{n}\right)$ and perturb them to be "disjointly supported except for a common $u_{2}$ part" using the Claim 7 as follows:
All the $w_{n}$ 's for $n \geq 3$ agree on $I_{2}$, let $v_{2}$ be this common value. Since $u_{2}$ and $v_{2}$ agree on $I_{1}, w_{n}-v_{2}+u_{2}$ is different from $w_{n}$ only on $I_{2} \backslash I_{1}$, and it has the form $u_{2}+x_{n} \in B_{c_{0}}$, where $x_{n}$ is supported in $I_{n}$ by $\left[m_{2}+1, m_{n}\right]$. By Claim 7 there is an $n_{1} \geq 3$, so that $f\left(u_{2}+x_{n_{1}}\right) \geq \beta$.
Inductively, having chosen $n_{j}$ and $x_{n_{j}}$, supported in $I_{n_{j}}$, all the $w_{n}$ 's for $n>n_{j}$ agree on $I_{n_{j}}$, and take $v_{j}$ to be this common value. Since $u_{2}$ and $v_{j}$ agree on $I_{1}, w_{n}-v_{j}+u_{2} \in B_{c_{0}}$ is different from $w_{n}$ only on $I_{n} \backslash I_{1}$, and it has the form $u_{2}+x_{n} \in B_{c_{0}}$, where $x_{n}$ is supported in $I_{n}$ by $\left[m_{n_{j}}+1, m_{n}\right]$. By Claim 7 there is an $n_{j+1}>n_{j}$, so that $f\left(u_{2}+x_{n_{j+1}}\right) \geq \beta$. Since the $x_{n_{j}}$ 's are disjoint blocks, and $f\left(u_{2}\right)=0$, this contradicts Lemma 5 .

Corollary 8. Let $f$ be a real Fréchet differentiable function on $c_{0}(\Gamma)$ with locally uniform continuous derivative. Then $f$ depends locally on countably many coordinates.

Proof: To prove Corollary 8, it is enough (by the usual shifting and scaling arguments) to show that if $f^{\prime}$ is uniformly continuous in $B_{c_{0}(\Gamma)}$, then $f$ depends on countably many coordinates in $B_{c_{0}(\Gamma)}$.
By Theorem 6, $f^{\prime}\left(B_{c_{0}(\Gamma)}\right)$ is a relatively norm compact set in $\ell_{1}(\Gamma)$. Thus, there exists a countable set $A \subset \Gamma$ such that $\operatorname{supp} f^{\prime}(x) \subset A$ for every $x \in B_{c_{0}(\Gamma)}$.
It is now easy to observe that whenever $x, y \in B_{c_{0}(\Gamma)}, x=\sum_{\gamma \in \Gamma} x_{\gamma} e_{\gamma}, y=\sum_{\gamma \in \Gamma} y_{\gamma} e_{\gamma}$ are such that $x_{\gamma}=y_{\gamma}$ for every $\gamma \in A$, then $f(x)=f(y)$. Indeed,

$$
\begin{aligned}
f(y) & =f(x)+\int_{0}^{1}\left\langle f^{\prime}(x+t(y-x)), y-x\right\rangle d t \\
& =f(x)+\int_{0}^{1} \sum_{\gamma \in \Gamma} f^{\prime}(x+t(y-x))_{\gamma} \cdot(y-x)_{\gamma} d t .
\end{aligned}
$$

The last integral is clearly equal to zero because for every $\gamma \in \Gamma$ either $f^{\prime}(x+t(y-x))_{\gamma}=0$ or $(y-x)_{\gamma}=0$. This finishes the proof.

As an immediate consequence, we obtain a negative answer to a question posed by J. Jaramillo (see e.g. [4, p.90]): Does there exist a $C^{\infty}$-Fréchet smooth function on $c_{0}(\Gamma)$ that attains its minimum at exactly one point?

Corollary 9. There exists no $C^{2}$-Fréchet smooth function on $c_{0}(\Gamma)$ that attains its minimum at exactly one point.

For the purpose of this note we will say that a real function $f$ defined on $B_{c_{0}}$ is weakly sequentially continuous if $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists for every weakly Cauchy sequence $\{x\}_{n \in N}$ in $B_{c_{0}}$.

Corollary 10. Let $f$ be a Fréchet differentiable real function with uniformly continuous derivative defined on $B_{c_{0}}$. Then $f$ is weakly sequentially continuous on $B_{c_{0}}$.

Proof: Since $K=\overline{f^{\prime}\left(B_{c_{0}}\right)}$ is norm compact by Theorem 6 , given a weakly Cauchy sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ we have:

$$
\lim _{n, m \rightarrow \infty}\left\langle\phi, x_{n}-x_{m}\right\rangle=0 \text { uniformly in } \phi \in K .
$$

By the mean value theorem, for some point $x$ in the interval joining $x_{n}$ and $x_{m}$, we have:

$$
\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|=\left|\left\langle f^{\prime}(x), x_{n}-x_{m}\right\rangle\right| \leq \sup _{\phi \in K}\left|\left\langle\phi, x_{n}-x_{m}\right\rangle\right| \rightarrow 0 \text { as } n, m \rightarrow \infty
$$

Using the Bessaga-Pelczynski theorem, it is an easy exercise to show that every linear operator $T: c_{0} \rightarrow X, X$ not containing a copy of $c_{0}$, is necessarily compact. We suspect that this statement holds (locally) for general operators with uniformly continuous derivative. However, we are able to prove this only for certain Banach spaces.
Let us recall that a (in general nonlinear) continuous operator $T: X \rightarrow Y$ where $X, Y$ are Banach spaces is called locally compact if for every $x \in X$ there exists a neighbourhood $O$, $x \in O$ such that $T(O)$ is relatively compact in $Y$.

Corollary 11. Let $T$ be a (nonlinear, in general) Fréchet differentiable operator from $c_{0}$ into a Banach space $X$ with nontrivial type. Suppose that $T^{\prime}$ is locally uniformly continuous. Then $T$ is locally compact.

Proof: We may assume, by contradiction, that $T^{\prime}$ is uniformly continuous in $B_{c_{0}}$, $\left\{x_{n}\right\}_{n=1}^{\infty} \subset B_{c_{0}}$ is weakly Cauchy and, by Rosenthal's theorem (as $\ell_{1}$ does not imbed into $X),\left\{T\left(x_{n}\right)\right\}_{n \in \mathbb{N}}$ is weakly Cauchy, $\left\|T x_{n}\right\|>\gamma>0$.
Define $\tilde{T}: c_{0}=c_{0} \oplus c_{0} \rightarrow X$ by $\tilde{T}((x, y))=T(x)-T(y)$. A weakly Cauchy sequence $\tilde{x}_{n}=\left(x_{2 n}, x_{2 n+1}\right)$ maps into a weakly null sequence $\tilde{y}_{n}=T\left(x_{2 n}\right)-T\left(x_{2 n+1}\right)$. By the proof of Theorem 3.3 and Corollary 3.6 in [5], passing to a subsequence of $\left\{\tilde{y}_{n}\right\}$, there exists $p>1, p \in \mathbb{N}$ and a linear operator $L: X \rightarrow \ell_{p}, L \tilde{y}_{n}=e_{n}$. Put $\phi(v)=\sum_{i=1}^{\infty}(-1)^{i} v_{i}^{p}$ for $v=\sum_{i=1}^{\infty} v_{i} e_{i} \in \ell_{p}$. The real function $\phi \circ \tilde{T}$ is not weakly sequentially continuous, a contradiction with Corollary 10.

Let us remark that in particular every superreflexive Banach space satisfies the assumptions of Corollary 11. An easy modification of the proof yields the same conclusion for $\ell_{1}$.
S. Bates ([2]) has recently shown that given $\ell_{p}, 1<p<\infty$, and a separable Banach space $X$, there exists a $C^{\infty}$-Fréchet smooth and onto operator $T: \ell_{p} \rightarrow X$. He also showed that given any separable Banach spaces $X, Y$ there exists a $C^{1}$-Fréchet smooth, Lipschitz and onto operator $T: X \rightarrow Y$. He asked whether the former statement holds true for $c_{0}$ instead of $\ell_{p}$. Using the Baire category principle, it is immediate from Corollary 11 that there exists no $C^{2}$-Fréchet smooth and onto operator $T: c_{0} \rightarrow \ell_{p}, 1 \leq p<\infty$.

A natural question arises as to which Banach spaces satisfy an analogue of Theorem 6. Obviously, this property is preserved by taking a quotient. Although our arguments seem to be mostly finite dimensional, they do involve in a crucial way also the infinite-dimensional structure of the space. Without going into much details, let us point out that $C[0,1]$ is a $\pi_{1}^{\infty}$ space (a space built up from isometric copies of $c_{0}^{n}$ - for details see [10]) and yet it does not satisfy Theorem 6 (since $\ell_{2}$ is a quotient of $C[0,1]$ ).

On the other hand, spaces $C(K)$ where $K$ is scattered seem to be natural candidates for generalizations of Theorem 6. In the case when $K^{\left(\omega_{0}\right)}=\emptyset$ this follows readily from our above results.

Corollary 12. Let $K$ be a scattered compact, $K^{\left(\omega_{0}\right)}=\emptyset$. Let $f$ be a Fréchet differentiable function on $C(K)$ with locally uniformly continuous derivative. Then $f^{\prime}$ is locally compact.

Proof. By contradiction, we may assume that $f^{\prime}\left(\lambda B_{X}\right)$ is not relatively compact, where $X$ is a separable subspace of $C(K)$ and $\lambda>0$ is arbitrary. By classical results (using StoneWeierstrass theorem, for details see e.g. [4] and [9]), there exists a separable subspace $Y$ of $C(K)$ such that $X \subseteq Y$ and $Y$ is isometric to some $C(L)$, where $L$ is scattered, and it is a continuous image of $K$. Thus, $L^{\left(\omega_{0}\right)}=\emptyset, L$ is countable and $Y$ is isomorphic to $c_{0}$ by [3]. Consequently, $f^{\prime}\left(\lambda B_{Y}\right)$ is not relatively compact for any $\lambda>0$, which is a contradiction with Theorem 6.

In connection with Corollary 9, it should be noted that in [7] there are examples of nonseparable Banach spaces $C(K)$ (where $K^{\left(\omega_{0}\right)}=\emptyset$ ) that admit $C^{\infty}$-Fréchet smooth convex functions which attain their minimum at exactly one point.

Acknowledgment. The author would like to thank the referee for several improvements that he suggested. He shortened most of the arguments and supplied an elegant proof of Lemma 1.

## References

[1] R. Aron, Compact polynomials and compact differentiable mappings between Banach spaces in "Seminaire Pierre Lelong, 1974-1975", Springer-Verlag Lecture Notes in Math. No. 524 (1976).
[2] S.M. Bates, On smooth, nonlinear surjections of Banach space, to appear.
[3] C. Bessaga and A. Pelczynski, Spaces of continuous functions (IV), Studia Math. 19 (1960), 53-62.
[4] R. Deville, G. Godefroy and V. Zizler, Smoothness and renormings in Banach spaces, Monograph Surveys Pure Appl. Maths. 64 (Pitman, 1993).
[5] J. Farmer and W.B. Johnson, Polynomial Schur and polynomial Dunford-Pettis properties, Contemp. Math. 144, (1993), 95-105.
[6] P. Hájek, On $C^{2}$-smooth norms on $c_{0}$, to appear in Mathematica.
[7] P. Hájek, Analytic renormings of $C(K)$ spaces, Serdica Math. J. 22, (1996), 25-28.
[8] R.G. Haydon, Normes et partitions de l'unite indefiniment differentiables sur certains espaces de Banach, C. R. Acad. Sci. Paris, 315 (1992), 1175-1178.
[9] E. Lacey, The isometric theory of classical Banach spaces, Springer-Verlag, (1974).
[10] E. Michael and A. Pelczynski, Separable Banach spaces which admit $\ell_{n}^{\infty}$ approximations, Israel J. Math. 4, (1966), 189-198.
[11] A. Pelczynski, A Theorem of Dunford-Pettis Type for Polynomial Operators, Bull. Pol. Acad. Sci. XI (1963), 379-386.
[12] H. Torunczyk, Smooth partitions of unity on some nonseparable Banach spaces, Studia Math. 46 (1973), 43-51.

Department of Mathematics, University of Alberta, Edmonton, T6G 2G1, Canada. E-mail address: phajek@vega.math.ualberta.ca

