
SMOOTH NONCOMPACT OPERATORS FROM C(K), K SCATTEREDR. Deville and P. H�ajekOtober 2003Abstrat. Let X be a Banah spae, K be a sattered ompat and T : BC(K) ! X be aFr�ehet smooth operator whose derivative is uniformly ontinuous. We introdue the smoothbionjugate T �� : BC(K)�� ! X�� and prove that if T is nonompat, then the derivativeof T �� at some point is a nonompat linear operator. Using this we onlude, among otherthings, that either T (B0 ) is ompat or else `1 is a omplemented subspae of X�. We alsogive some relevant examples of smooth funtions and operators, in partiular a C1;u-smoothnonompat operator from B0 whih does not �x any (aÆne) basi sequene.Introdution.The theory of linear operators from C(K) spaes is a vast and important part of Banahspae theory. One of the approahes to this subjet is through the redution (or �xing)properties of a given T 2 L(C(K); X). Let us reall the following lassial result ofPelzynski, and refer to Rosenthal's artile in [JL, Chapter 36℄ and [DU, Chapter VI℄ forthe history, many more results of this type and referenes.Theorem 0.1Let X be a Banah spae, K be ompat, and T : C(K)! X be a non-weakly ompatlinear operator. Then there exists 0 �= Y ,! C(K) suh that T �Y ats as an isomorphism.Moreover, if K is sattered, the same result holds for T a nonompat linear operator.In his work on the Dunford-Pettis property, Pelzynski [P1, 2℄ relying on the use ofvetor measures, indution by the degree of the polynomial and the use of bionjugatesP �� to polynomials (whih he is able to de�ne for weakly ompat polynomials or in asewhen 0 is not ontained in X) obtained the following nonlinear extension of Theorem 0.1.
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Theorem 0.2Let X be a Banah spae, K be a sattered ompat, and P : C(K) ! X be anonompat polynomial operator. Then 0 ,! X.In the same paper Pelzynski observed that in general the assumption of satterednessannot be removed, onstruting a homogeneous polynomial P : C[0; 1℄ ! `1 for whihP (BC[0;1℄) ontains B`1 . Let us remark that from [H3℄ and the fat that every Banah spaeontaining `1 (a ondition haraterizing preisely all C(K), where K is a non-satteredompat) has an `2 quotient, it follows that for every C(K), K nonsattered and everyseparable Banah spae X, there exists a homogeneous polynomial P : C(K) ! X ofdegree 2, suh that P (BC(K)) ontains BX . This of ourse means that a strutural theoryfor polynomials from C(K), K nonsattered ompat, along the lassial lines of Theorem0.1 is not possible.Our aim in the present paper is to investigate Pelzynski's-type result for general C1;u-smooth operators. Note again that C1-smoothness alone leads only to a trivial theory (dueto nontrivial work of Bates [B℄, [BL, p. 261℄), stating that arbitrary separable Banah spaeis C1-smooth range of every separable Banah spae. In our paper we treat the loalizedversion (whih is equivalent to the original one for polynomials) when T : BC(K) ! X isFr�ehet di�erentiable, and T 0 is uniformly ontinuous. The following question (suggestedby our previous work in [H1℄, [H2℄, and expliitly asked also in Godefroy's artile in theHandbook [JL, p. 799℄) is the soure of this note.Question 0.3Let X be a Banah spae, K be a sattered ompat, and T : BC(K) ! X be a C1;u-smooth nonompat operator. Is then 0 ,! X?Keeping in mind the redution and �xing properties of linear operators, we an proposethe following variants of the question.Question 0.4 (redution)Let X be a Banah spae, K be a sattered ompat, and T : BC(K) ! X be a C1;u-smooth nonompat operator. Does there exists 0 �= Y ,! C(K) suh that T �Y isnonompat?or evenQuestion 0.5 (�xing)Let X be a Banah spae, K be a sattered ompat, and T : BC(K) ! X be a C1;u-smooth nonompat operator. Does there exists a sequene fung1n=1 in BC(K), suh thatboth fung1n=1 and fT (un)g1n=1 are equivalent to the anonial basis of 0?It is obvious that the ondition in Q 0.5 is the strongest and implies the other two, whosemutual relation is not quite lear. In the linear ase, the questions are equivalent due toTheorem 0.1, and for polynomial operators Q 0.3 has a positive answer due to Theorem0.2. In our paper, we develop some basi theory of smooth nonlinear operators, in orderto deal with Q 0.3-5. The theory is formulated for C(K), K ountable, (or just 0) spaes,2



but due to the general redution results (Theorem 1.5), the statements remain valid (withobvious modi�ations) for all C(K), K sattered. Let us pass to a brief disussion ofour results. In setion 1 we show that every C1;u-smooth operator T : BC(K) ! X, Kountable, has a anonial C1;u-smooth extension T �� : BC(K)�� ! X�� (in the generalC(K), K sattered, situation, the bionjugates T �� an also be introdued, but theirdomain will be ontained in Y ,! C(K)��, where Y is the w�-sequential losure of C(K)in (C(K)��; w�)). We prove that Q 0.4 has an aÆrmative answer, provided we onsider aredution to an aÆne subspae Y �= 0 of C(K) (i.e. a subspae not neessarily ontainingthe origin). For a linear subspae Y �= 0 the answer to Q 0.4 is trivially negative evenfor polynomial operators. In setion 2, we fous on operators from B0 . The main generalresult (using the redution) is that if T : BC(K) ! X, K ountable, is a C1;u-smoothnonompat operator, then there exists a point x�� 2 BC(K)�� at whih (T ��)0(x��) �C(K)is a nonompat linear operator. This implies (for all K sattered) in partiular that`1 ,! X��, a weak answer to Q 0.3 (it also implies that Q 0.5 is true for T ��). For speiallasses of X, suh as duals, weakly sequentially omplete spaes, Banah latties or spaeswith PCP (in partiular RNP) property the statement in Q 0.3 is indeed true. In setion3 we investigate the summability properties of smooth funtions on 0, whih are loselyonneted with Q 0.5. By a result of Aron and Globevnik ([AG℄, see also an earlier relatedresult [Bo℄), 1Pi=1 jf(ei)j <1, for every polynomial f on 0. This type of result imply thatthe answer to (aÆne version of) Q 0.5 is aÆrmative for polynomial operators, improvingTheorem 0.2.As we will show, for C1;1-smooth funtions this property fails, and this allows us toonstrut in setion 4 a C1;1-smooth ounterexample to the general statement in Question0.5. Unfortunately, our results are not strong enough to solve the original Question 0.3. Soin fat our paper ontains indiations going in both diretions. It seems, however, that ouronditions on X basially exlude all the known examples of X whih ome in mind whileseeking a ounterexample to Q 0.3. In partiular the Bourgain-Delbaen L1 spaes [B℄without 0, Gowers' spae [G℄ without 0 or boundedly omplete basi sequene, spaes ofJT type (Ghoussoub-Maurey [GM℄) all satisfy Q 0.3. Moreover, relying on Bourgain-Pisierresults [BP℄ we know that if there exists X violating Q 0.3, then there also exists suh L1spae.Let us now establish the terminology and notation. Let X;Y be Banah spaes. Let!(t) : IR+ ! IR+, !(0) = 0 be a nondereasing funtion. We say that a funtion f : S !X, S � Y has modulus of ontinuity !(t), whenever x; y 2 S, kx � yk < " implies thatkf(x)� f(y)k < !(") (the de�nition of ourse makes sense for mappings between generalmetri spaes). A ontinuous (nonlinear, in general) operator T : S ! X, where S � Yis alled a C1;u-smooth operator if T is Fr�ehet di�erentiable on int(S) and there exists amodulus !(t) suh that both T and T 0 have modulus of ontinuity !(t). By C1;1-smoothoperator we mean an operator for whih T and T 0 are Lipshitz. An operator T : S ! X isalled weakly sequentially ontinuous (ws) if it maps weakly Cauhy sequenes fxng1n=1 �S � Y into norm onvergent sequenes fT (xng1n=1 � X. An operator T : S ! X is alled3



ompat if T (S) � X is a norm ompat set. By results of [H2℄, a C1;u-smooth operatorT : BC(K) ! X, K sattered, is ws i� it is ompat. For subsets M;N � IN we usethe notation M < N if max(M) < min(N). If one of these sets is a singleton, we mayabbreviate this notation by replaing the set with its element. The symbolX �= Y indiatesthat the Banah spaes X;Y are isomorphi. Given a sattered ompat K, and a pointp 2 K, we will use the notation C0(K) = ff : f 2 C(K); f(p) = 0g. In the statementsregarding C0(K) below, it is understood that p is �xed but arbitrary. We also use thesimple fat that C0(K) �= C(K) for all in�nite sattered ompats. Reall that a Banahspae X has the point of ontinuity property (PCP), if every weakly losed bounded subsetof X ontains a point of weak-to-norm ontinuity for the identity mapping.1. Smooth operators from C(K) spaes.Reall the basi fat that given two Banah spaes E;F , for any T 2 L(E;F ) thereanonially exists a onjugate T � 2 L(F �; E�), and thus also a bionjugate operatorT �� 2 L(E��; F ��). Pelzynski [P2℄ observed in the proof of Theorem 0.2 that notwith-standing the lak of duality, bionjugate operators an be anonially de�ned also forweakly ompat polynomial operators from P(C(K); X) spaes. In this setion we aregoing to generalize this de�nition further for all C1;u-smooth operators T : BC(K) ! X,K ountable and arbitrary separable Banah spae X. For a general C(K) , K sattered,a bionjugate an be de�ned along the same lines, exept that its domain will be thew�-sequential losure of BC(K) in (B��C(K); w�). Sine our later results rely on a separableredution argument, we do not treat the general ase here. Let us mention in passingthat similar generalization is in fat possible for operators ating from spaes of lass C,introdued in [H2℄. The next lemma is a variation on Lemma 5 from [H2℄. We sketh aproof for readers onveniene.Lemma 1.1Let K be a sattered ompat, X = C(K) or C0(K), f : BX ! IR be C1;u-smooth,fxng1n=1 be weakly Cauhy in BX . Then ff 0(xn)g1n=1 is norm onvergent in X�.Proof. By Lemma 5 and the proof of Theorem 10 of [H2℄, f 0(xn) is norm relativelyompat. By a standard argument, it is enough to prove the result under the additionalassumption that supfkxnk : n 2 INg = r < 1. If we assume that � = limn!1 f 0(x2n), = limn!1 f 0(x2n+1), and 0 6= h 2 (1� r)BX , we have the following:f(xn + h) = f(xn) + khkZ0 f 0(xn + � hkhk )( hkhk )d� = f(xn) + f 0(xn)(h) + Rn;where jRnj � !(khk)khk. So 0 = limn!1 f(x2n+ h)� limn!1 f(x2n+1+ h) = limn!1 f(x2n)�limn!1 f(x2n+1)+(�� )(h)+ limn!1(R2n�R2n+1) = (�� )(h)+R, where jRj � 2!(khk)khk.Letting khk ! 0 we see that (��  )(h) = o(khk) and so � =  .4



Proposition 1.2Let K be a ountable ompat, X = C(K) or C0(K), f : BX ! IR be C1;u-smooth.Then there exists a anonial C1;u-smooth and w�-sequentially ontinuous extension f�� :BX�� ! IR, f�� �BX= f . Moreover, (f��)0(x��) 2 X� ,! X���, for all x�� 2 BX�� i.e. thederivatives are w�-ontinuous funtionals.Proof. Sine X is 0 saturated ([PS℄, for lass C we have to invoke [H2℄ Proposition 6instead), `1 6,! X. For 0 < � � 1 we have by Odell-Rosenthal's theorem ([LT1, p. 101℄)that every x�� 2 �BX�� is a w�-limit of a sequene fxng1n=1 � �BX . (In fat, as the refereeof this note has pointed out, a simpler argument using Alaoglu's theorem and C(K)� = `1an be employed here). We know that limn!1 f(xn) exists, so we set f��(x��) = limn!1 f(xn).We need to hek that this de�nition is independent of the hoie of fxng1n=1. However, thisis immediate sine if x�� = w�� limn!1 x2n = w�� limn!1 x2n+1, then x�� = w�� limn!1 xn andthe result follows due to ws property of f again ([H2℄). Next, we have to verify that f�� isC1;u-smooth. Let us hek �rst that for x�� 2 �BX�� , (f��)0(x��) = limn!1 f 0(xn) = � 2 X�(the limit exists due to Lemma 4 of [H2℄). For h�� 2 (1 � �)BX�� , h = w� � limn!1 hn,hn 2 (1� �)BX we havef��(x�� + h��)� f��(x��) = limn!1(f(xn + hn)� f(xn)) = limn!1 f 0(xn)(hn) +Rnwhere jRnj � !(khk)khk. Thusjf��(x��+h��)�f��(x��)� limn!1 �(hn)j = jf��(x��+h��)�f��(x��)��(h)j � !(khk)khk;and the onlusion follows. Let us now indiate why f�� and (f��)0 have the modulusof ontinuity !(�). This learly follows from the following fat. For x��; y�� 2 �BX wean �nd sequenes fxng1n=1; fyng1n=1 2 �BX suh that kxn � ynk � kx�� � y��k for everyn 2 IN , and moreover x�� = w� � limn!1xn, y�� = w� � limn!1 yn. Indeed, by the Odell-Rosenthal's theorem [LT1, p. 101℄, hoose �rst fxng1n=1 2 �BX w�-onvergent to x��,and fzng1n=1 2 kx�� � y��kBX , w�-onvergent to y�� � x��. At this point we surely havethat ~yn = xn + zn is w�-onvergent to y��, but we still need the norm estimate on ~yn.Using the fat that we are working in X = C(K) or C0(K), it suÆes to trunate settingyn(t) = minf�;maxf��; ~yn(t)gg. Let us remark that in ase C, one needs to shrink thedomain to get the same modulus. The problem is to generalize Odell-Rosenthal for a pairof sequenes as used here.Proposition 1.3Let K be a ountable ompat, Y be a Banah spae, X = C(K) or C0(K), T : BX !Y , T be C1;u-smooth operator. Then there exists a C1;u-smooth and w�-sequentially on-tinuous anonial extension T �� : BX�� ! Y ��. Moreover, (T ��)0(x��) 2 L��(X;Y ��) �L(X��; Y ��), for every x�� 2 BX�� , i.e. (T ��)0(x��) are w� � w� ontinuous.5



Proof. Given y� 2 BY � , we set fy� = y� Æ T : BX ! IR. As fy� is C1;u-smooth,and modulus of ontinuity of f 0y� is !(�), it is ws and by Proposition 1.2 there existsf��y� : BX�� ! IR extending fy� , suh that f��y� (x��) = limn!1 fy�(xn). In partiular, T mapsweakly Cauhy sequenes into weakly Cauhy sequenes. We an therefore de�ne theextension T �� : BX�� ! Y �� as follows. Let x�� 2 �BX�� , x�� = w� � limxn, xn 2 �BX .We set T ��(x��) = w� � limn!1 T (xn) 2 Y ��:This formula is independent of the sequene fxng1n=1, and the existene and uniquenessof T ��(x��) is lear. We ontinue by proving that T �� is Fr�ehet di�erentiable in its domain.We have for every y� 2 BY � , x�� = w�� limn!1 xn and z�� = w�� limn!1 zn from the domainy�(T ��(x�� + z��)� T ��(x��)) = limn!1 y�(T (xn + zn)� T (xn)):Also y�(T (xn + zn)) = y�(T (xn)) + f 0y�(xn)(zn) +Rn; where jRnj � !(kznk)kznk:Reall that by Proposition 1.2 and Lemma 1.1limn!1 f 0y�(xn) = (f��y� )0(x��) in norm:So jy�(T ��(x�� + z��)� T ��(x��))� (f��y� )0(x��)(z��)j � !(kznk)kznk:In partiular,y�(T ��(x�� + �z��)� T ��(x��)� � T ��(x�� + %z��)� T ��(x��)% ) � !(�) + !(%);independently of y� 2 BY � and z�� 2 BX�� , whih implies that T ��(x��) has uniformdiretional derivatives. Similarly, we an prove the linear relations between the diretionalderivatives in order to see that (T ��)0(x��) exists in the Fr�ehet sense.One we have established the di�erentiability of T ��, we ontinue by proving that that(T ��)0(x��) = limn!1(T 0(xn))�� in the weak operator topology (note that (T 0(xn))�� is justthe ordinary linear bionjugate operator to T 0(xn)). That is to say we laim thaty�((T ��)0(x��)(z��)) = limn!1 y�((T 0(xn))��(z��) for all y� 2 BY � and z�� 2 BX�� :6



Using the notation from above, this follows using standard arithmeti from the followingrelations. ((T 0(xn))��(z��) = w� � limk!1 T 0(xn)(zk):y�(T ��(x�� + z��)� T ��(x��)) = limn!1 limk!1 y�(T (xn + zk)� T (xn)):The weak operator topology onvergene, together with the trik used in the proofof Proposition 1.2 in order to preserve modulus !(�) for the extension, yield the sameonlusion here, namely (T ��)0(x��) has modulus of ontinuity !(�) as a funtion of x��.The w� � w� ontinuity of (T ��)0(x��) follows using similar arguments.The previous extension results will be used for a study of smooth operators on C(K)spaes. As one of our orollaries below we prove that if T is nonompat, then thereexists x�� 2 BX�� suh that (T ��)0(x��) is a nonompat linear operator. This impliesin partiular that there exists a nonompat linear operator from X to Y ��, so that byTheorem 0.1 0 is ontained in Y ��. However, we �rst need to prove the redution lemmabelow, whih transfers the problem to the simplest spae 0 and gives more information.Lemma 1.4Given a ountable ordinal �, let T : BC([0;�℄) ! X be a nonompat C1;u-smoothoperator. Then there exists F 2 BC([0;�℄) and a sequene fungn2IN of disjointly supportedelements from C[0; �℄, with F + un 2 BC([0;�℄) for all n 2 IN , and suh that T (F + un) isa nonompat sequene in X.Proof. We may and will assume that X is separable. Suppose that fyngn2IN is asequene in BC[0;�℄ suh that T (yn) is nonompat. We will WLOG assume that ouroriginal sequene has the following additional properties. The sequene yn, and so alsoT (yn), are weakly Cauhy. Using the standard argument from the proof of Lemma 12 in[H2℄, there exists some " > 0, a sequene ffigi2IN 2 BX� so that fi(T (yn)) = 0 for n < iand fi(T (yi)) > ". Moreover, as (BX� ; w�) is metrizable, fi is w�-onvergent, and (byreplaing fi by f2i+1 � f2i and passing to subsequenes) we may assume that in fat fi isw�-null. Fix a system f"�g��� of positive numbers suh that P��� "� < "2 .Using an (neessarily �nite) indutive argument in j, we are going to onstrut a systemonsisting of the following objets:(i) a dereasing sequene �j of ordinals � = �1 > �2 > � � � > �m = 0,(ii) a dereasing system Mj+1 �Mj of subsets of M1 = IN , 1 � j � m,(iii) a funtion F 2 BC([0;�℄), F �[�j+1;�j+1℄= F (�j+1) is onstant,(iv) a system of sequenes fyjngn2Mj ;1�j�m in BC[0;�℄, fy1ngn2IN = fyngn2IN , and forevery j < m, and n 2Mj+1 we have yjn(�) = yj+1n (�) for all � 2 [0; �j+1℄ [ [�j + 1; �℄. Fora �xed j, the system fsupp(yj+1n � F ) \ [�j+1 + 1; �℄gn2Mj+1 is pairwise disjoint.7



jfn(yj+1n )� fn(yjn)j < "�j for all n 2Mj+1.We present only the indutive step from j to j+1, as the �rst step requires only minorhanges. Suppose we have so far onstruted: �i, Mi and the sequenes fyingn2Mi fori � j, and F is partially de�ned on [�j + 1; �℄.If �j is nonlimit, the step to a smaller ordinal �j+1 = �j � 1 is really trivial, settingF (�j+1 + 1) = F (�j) = limn2Mj yn(�j), and using some standard perturbation argumentstogether with the indutive assumption we hoose appropriate Mj+1 and fyj+1n gn2Mj+1 .In this ase we will have yj+1n (�j+1 + 1) = F (�j+1 + 1).So we may assume that �j is a limit ordinal. Put r = limn!1 yn(�j).For % < � < �j , we de�ne a ontinuous operator on C[0; �℄ by P �% (x) = x� �[%+1;�℄x+r�[%+1;�℄ for x 2 C[0; �℄. Similarly, for % < � < � < �j we de�ne P �;�% (x) = x� �[%+1;�℄x+r�[%+1;�℄ � �[�+1;�j ℄x+ r�[�+1;�j ℄ for x 2 C[0; �℄.For a �xed % < �j , we have the following alternative. Either for every % < � < �j thereexists an in�nite set fn 2Mj : jfn(P �% (yjn))�fn(yjn)j < "�jg. In this ase we say that % is oftype I. Or else there exists % < � < �j suh that fn 2Mj : jfn(P �% (yjn))�fn(yjn)j < "�jg is�nite, and we say that % is of type II. Given yjn is of type (%; �) if jfn(P �% (yjn))� fn(yjn)j �"�j . We laim that there exists % < �j of type I. Assuming, by ontradition, that all% < �j are of type II, using the fat that �j is a limit ordinal we obtain for every N 2 INa sequene %1 < �1 < %2 < �2 < � � � < %N < �N < �j and some yjn, n 2 Mj whih is oftype (%i; �i) for all 1 � i � N . This is a ontradition with Lemma 5 of [H1℄. This allowsus to hoose �j+1 = % < �j of type I, and extend the de�nition of F on [�j+1 + 1; �j℄ bythe onstant value r. We ontinue now by de�ning Mj+1 and fyj+1n gn2Mj+1 by indution.Let n1 2Mj, and using that lim�!�j yjn1(�) = r, �nd � < �1 < �j suh thatyj+1n1 (�) = yjn1(�) for � =2 [�1 + 1; �j℄;yj+1n1 (�) = r for � 2 [�1 + 1; �j℄:satis�es jfn1(yj+1n1 ) � fn1(yjn1)j < "�j . Having found n1; : : : ; ni and the orresponding�1 < � � � < �i < �j and yj+1n1 ; : : : yj+1ni we proeed as follows. Pik ni+1 2 Mj, ni+1 > nisuh that jfni+1(P �i� (yjni+1))� fni+1(yjni+1)j < "�j ;and set yj+1ni+1 = P �i;�i+1� (yjni+1) for a large enough �i < �i+1 < �j , so that jfni+1(yj+1ni+1)�fni+1(yjni+1)j < "�j remains valid. We have thus desribedMj+1 = fnigi2IN and fyj+1n gn2Mj+1 .The above desribed indutive proedure ends in �nitely many m steps, due to thewell-ordering of �. The last step provides us with a desired sequene fymn gn2Mm and afuntion F . To onlude, it remains to put un = ymn � F .Theorem 1.5 8



Given a sattered ompat K and a Banah spae X, let T : BC(K) ! X be a non-ompat C1;u-smooth operator. Then there exists an aÆne subspae 0 �= Y � C(K) suhthat T �Y\BC(K) is nonompat. Moreover every C1;u-smooth real funtion on Y \BC(K)is ws.Proof. Let fyngn2IN 2 BC(K) be suh that fT (yn)gn2IN is not relatively ompat. Bya standard argument of passing to suitable separable subalgebra of C(K) generated byfyngn2IN , it suÆes to prove the statement for every ountable ompat. By the lassialresult of Mazurkiewiz and Sierpinski in [MS℄ this is equivalent to the ase K = [0; �℄, �a ountable ordinal, and X is a separable subspae ontaining the range of T (C(K)). Theredution result now follows from the previous Lemma 1.4. The last fat on ws propertyfollows from the expliit desription of the spae Y , whih satis�es the onditions used inthe proof of Theorem 10 of [H2℄.Theorem 1.5 gives a general positive answer to an aÆne version of Q 0.4. In the nextsetion we will investigate nonompat operators from B0 , in the anonial norm. Itis standard to hek (relying on the mentioned proof of Theorem 10 in [H2℄), that allour statements remain valid when the domain is a onvex and lattie bounded set withnonempty interior, as is the ase in the redution theorem. So the results of the nextsetion apply to the redued operators from a general sattered C(K). We have hosenthe anonial version for the obvious reason of notational simpliity and larity.2. Smooth operators from 0In this setion we establish general strutural properties of T and X, assuming thatthere exists a nonompat C1;u-smooth operator T : B0 ! X. Our results ome lose toX having a 0 a subspae, but we did not manage to prove this ondition in full generality.Our main strutural result is that (T ��)0(x��) 2 L��(0; X��) is a nonompat linearoperator for some point x�� 2 B0 , whih implies that X�� ontains a opy of `1, X�ontains a omplemented opy of `1 and X has a 0 quotient. When applied to somelasses of X, suh as Banah latties, duals et., our results allow to onlude that Xindeed ontains 0, as onjetured. For spaes with PCP property we show that all C1;u-smooth operators are in fat ompat. In fat, most known examples of Banah spaesseem to be overed by our riterions. On the other hand, by the result of Bourgainand Pisier [BP℄, every separable spae X not ontaining 0 is ontained in a L1 spaenot ontaining 0. This seems to suggest a anonial way to a ounterexample, namelyonstruting a onrete L1 spae. However this appears to be a deliate problem, sinethe lassial L1 spaes of Bourgain and Delbaen ([B℄) have PCP and annot help (as wassuggested by Haydon in [Hay℄). Let us �nally reall the fat that due to the redutionTheorem 1.5, all results in this setion remain valid (upon obvious modi�ations) for C1;u-smooth operators T : BC(K) ! X, where K is ountable (or even sattered, if we use theappropriate bionjugate).Lemma 2.1 9



Let X be a Banah spae, T : B0 ! X be a C1;u-smooth operator suh that T (B0)is not ompat. Then there exist sequenes ffng1n=1 2 BX� and fTng1n=1 2 L(0; X),sup kTnk < 1 suh that hTnei; fii � 1 whenever i < n, where feig1i=1 is the anonialbasis of 0.Proof. We know that T maps weakly Cauhy sequenes from B0 to weakly Cauhysequenes from X. The assumption that T (B0) is non-ompat together with Lemma 12and Proposition 7 of [H2℄ imply that there exist u; fvng1n=1 2 B0 (fvng � feng) suh thatlimn!1 T (u+ vn) = T (u) does not hold and therefore fT (u+ vn)g1n=1 annot be onvergent.By passing to a subsequene we may assume that for some Æ > 0kT (u+ vn)� T (u+ vm)k > 2Æ if n 6= m:For the rest of the proof, we may WLOG assume that u = 0, vn = en, T (0) = 0 andT 0(0) = 0. Indeed, these onditions are easily ahieved by replaing T with~T : B0 ! X : ~T � 1Xi=1 aiei� = T �u+ 1Xi=1 aivi�� T (u)� T 0(u)� 1Xi=1 aivi�:In the above formula T 0(u) may be assumed to be a ompat linear operator, sineotherwise by Theorem 0.1 0 ,! X and the onlusion of the lemma follows easily. Asevery ompat operator from 0 an be approximated by �nite dimensional operators (l1has the approximation property - see [LT1, p. 33℄), ompat perturbations annot violatethe onlusion of the lemma. We have kT (ei)k > Æ, and fT (ei)gi=11 � X is weaklynull. By passing to a subsequene of feig1i=1, relabelled as feig1i=1 again, yi = T (ei)is a seminormalized basi sequene in X ([LT1, p. 5℄ or [FHHMPZ, p. 173℄), with itsbiorthogonal funtionals 'i 2 1ÆBX� satisfying'n(ym) = � 1 if n = m0 otherwise.In ase X is a dual spae, using standard perturbation arguments together with Gold-stine's theorem these funtionals an be assumed to be from the predual X�.Claim 2.2For every � > 0, there exists a subsequene fenig1i=1 of feig1i=1 suh that N � k implies�����'nk Æ T � NXi=1 �ieni�� 'nk Æ T � kXi=1 �ieni������ � � for allj�ij � 1:Proof of Claim. By indution. Set n1 = 1, �x a �nite setS = f�1;� l � 1l ;� l � 2l ; : : : ; l � 1l ; 1g � [�1; 1℄ suh that !(1l ) < �4 :10



By Corollary 10 of [H1℄ there exists m1 2 IN suh that N � m1 implies�����'n1 Æ T ��en1 + NXi=m1 �iei�� 'n1 Æ T (�en1)����� < �4for every � 2 S, j�ij � 1. We hoose n2 = m1 and ontinue by �nding m2 2 IN ,m2 > m1, suh that N � m2 implies�����'n2 Æ T ��en1 + �en2 + NXi=m2 �iei�� 'n2 Æ T (�en1 + �en2 )����� < �4for every �; � 2 S, j�ij � 1.We set n3 = m2 and ontinue in an obvious manner.Using this indutive proedure, we obtain a sequene fenig1i=1 suh that N � k implies�����'nk Æ T � NXi=1 �ieni�� 'nk Æ T � kXi=1 �ieni������ < �4for every �i 2 S. In order to pass to arbitrary values of �i 2 [�1; 1℄ it suÆes to reallthat !�1l � < �4 .Before we proeed, we reindex fenig1i=1 as feig1i=1 again.Claim 2.3For every � > 0 there exists a subsequene fenig1i=1 of feig1i=1 suh that�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk )����� � � for all j�ij � 1:Proof of Claim. Relies again on Lemma 5 from [H1℄. It gives us that for k largeenough (and depending only on the modulus of ontinuity of T 0), l > k and �l 2 S �xed,there exists i < k suh thatj'nl Æ T (�iei + �lel)� 'nl Æ T (�lel)j < �4 for j�ij � 1:In fat, Lemma 5 of [H1℄ gives an upper bound on the number of i for whih the aboveestimate is not valid. Sine S is a �nite set, Repeating this argument for eah �l 2 S, weget that for k large enough but �xed and any l > k there exists some il < kj'nl Æ T (�ileil + �lel)� 'nl Æ T (�lel)j < �4for �l 2 S, j�il j � 1. 11



Clearly, there exists an in�nite subsequene k < M1 � IN suh that n1 := il = im forevery l;m 2 M1. Next, hoose a large enough initial segment I � M1, so that for everyI < l 2M1, there exists some il, il 6= n1, suh that for every �n1 ; �l 2 S, and j�il j � 1j'nl Æ T (�n1en1 + �ileil + �lel)� 'nl Æ T (�n1en1 + �lel)j < �8 :Again, there exists an in�nite subsequene I < M2 � M1 suh that n2 := il = im forevery l;m 2 M2. We ontinue in an obvious way by indution; after having onstrutedn1; : : : ; nk 2 IN and in�nite sequenesMk �Mk�1 � � � � �M1 � IN ,Mi�1 3 ni < Mi, theindutive step onsists of hoosing a long enough initial sequene I � Mk so that 8l > I,l 2Mk, 9il 2 I, il =2 fn1; : : : ; nkg, suh that 8j�il j � 1 8�n1 ; : : : ; �nk 2 S, �l 2 S�����'nl Æ T � kXi=1 �nieni + �ileil + �lel�� 'nl Æ T � kXi=1 �nieni + �lel������ < �2k+2 :We then �nd an in�nite subsequene I < Mk+1 � Mk suh that I 3 nk+1 := il = imfor every l;m 2Mk+1. The sequene fenig1i=1 obtained in this way satis�es�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk)����� ������'nk Æ T �k�2Xi=1 �ieni + �kenk�� 'nk Æ T (�kenk)�����++ �����'nk Æ T � kXi=1 �ieni�� 'nk Æ T �k�2Xi=1 �ieni + �kenk������ ������'nk Æ T �k�3Xi=1 �ieni + �kenk�� 'nk Æ T (�kenk)�����++ �����'nk Æ T �k�2Xi=1 �ieni + �kenk�� 'nk Æ T �k�3Xi=1 �iei + �kenk������+ �2k+2� � � � � j'nk Æ T (�1en1 + �kenk)� 'nk Æ T (�kenk)j+ �� 123 + 124 + � � �+ 12k+2 � �� �� 122 + � � �+ 12k+2 � � �2whenever �i 2 S. Passing to arbitrary �i 2 [�1; 1℄, at the expense of adding �2 on theright hand side, is possible due to !�1l � < 14� .12



Combining Claim 2 and Claim 3 we obtain that given � > 0 we may WLOG assumethat T satis�es (assuming n � k):�����'k Æ T � nXi=1 �iei�� 'k Æ T (�kek)����� � 2�:Reall that 'k Æ T (0) = 0, 'k Æ T (ek) = 1, k'kk � 1Æ . Sine1 = 'k Æ T (ek) = Z 10 'k�hT 0(tek); eki� dtthere exists t0 2 [0; 1℄ where 'k�hT 0(t0ek); eki� � 1. Fix � > 0 satisfying !(�) < Æ8 . Thenfor t 2 [t0 ��; t0 +�℄ we have kT 0(tek)� T 0(t0ek)k � Æ8 and thus'k�hT 0(tek); eki� �'k�hT 0(t0ek); eki�� 1Æ kT 0(t0ek)� T 0(tek)k � 78 :Consequently, 'k Æ T �(t0 + �2 )ek�� 'k Æ T (t0ek) � 78 �2 :If, on the other hand, we have for some r 2 [0; 1℄'k Æ T �(r + �2 )ek�� 'k Æ T (rek) � 68 �2 ;then there exists s 2 [r; r + �2 ℄ for whih 'k (hT 0(sek); eki) � 68 and thus for every t 2[r; r+ �2 ℄ we have kT 0(tek)�T 0(sek)k � Æ8 and in partiular 'k (hT 0(tek); eki) � 68� 18 = 58 .We now set the value of � = �64 , and we suppose that feng1n=1 satis�es both Claim 2 and3. For every k 2 IN there exists an interval Jk � [0; 1℄ of length � suh that'k (hT 0(tek); eki) � 78 for t 2 Jk:There exists an in�nite subsequene fnig1i=1 of IN suh that [a; b℄ = J � 1Ti=1 Jni is aninterval of length �2 . We may again WLOG assume that ni = i. We have'k Æ T (bek)� 'k Æ T (aek) � 7�24 :13



Moreover we have for any j�ij � 1'k Æ T �k�1Xi=1 �iei + bek + nXi=k+1�iei�� 'k Æ T �k�1Xi=1 �iei + aek + nXi=k+1�iei� �'k Æ T (bek)� 'k Æ T (aek)� 4� � 7�24 � �24 = 6�24 :Thus, for every  2 [a; b℄, j�ij � 1'k�hT 0�k�1Xi=1 �iei + ek + nXi=1 �iei�; eki� � 58 :To �nish the proof of Lemma 1 we set for n 2 IN :Tn : 0 ! X to be Tn = 85Æ T 0� nXi=1 aei�;fn = Æ'n:Our main strutural result on nonompat smooth operators is the following.Theorem 2.4Let X be a Banah spae, T : B0 ! X be a C1;u-smooth operator suh that T (B0) isnot ompat. Then there exists a point x�� 2 B��0 , suh that (T ��)0(x��) 2 L��(0; X��)is a nonompat linear operator. Moreover, if X is a dual spae, we an get in addition(T ��)0(x��)(0) � X, and (T ��)0(x��) �0 is nonompat.Proof. In the proof of Lemma 2.1, we have established the existene of u; fvng1n=1 2B0 , suh that vn are disjointly supported vetors (fvng � feng), and orrespondingbiorthogonal funtionals ffng1n=1 2 BX� (or BX� , if X is a dual spae) to fT (vn) �T (u)g1n=1 in X, so thathT 0� nXi=1 avi�(vk); fki � � > 0 for every n � k:It suÆes to put x�� = w�� limn!1 1Pi=1 avi, sine (T ��)0(x��) being a weak operator limitof the sequene fT 0� nPi=1 avi�g1n=1 is, due to the above inequality, learly a nonompatlinear operator. The ase when X is a dual spae follows by standard w�-ompatnessargument using the additional information that fi 2 X�.14



The following are immediate onsequenes.Corollary 2.5Let X be a Banah spae, T : B0 ! X be a C1;u-smooth operator suh that T (B0) isnot ompat. Then X has the following properties.(i) `1 ,! X��, `1 is a omplemented subspae of X� and X has a 0 quotient.(ii) X does not have nontrivial otype.(iii) X is not weakly sequentially omplete.Proof of (i). (T ��)0(x��) �0 is a nonompat operator, so by Theorem 0.1, 0 ,! X��.The rest are general onsequenes of this fat, to be found in [LT1℄ or [FHHMPZ℄.Proof of (ii). By the priniple of loal reexivity [FHHMPZ, p. 292℄ n0 embeds uniformlyto X, whih is equivalent to X laking nontrivial otype [DJT, p. 283℄.Proof of (iii). The weak sequential ompleteness ofX, together with the w�-to-weak oper-ator topology ontinuity of the mapping x�� ! (T ��)0(x��) implies that (T ��)0(x��)(0) �X, so by (i) we get 0 ,! X whih is however a ontradition with the weak sequentialompleteness of X.Corollary 2.6Let X be a Banah spae with any of the following properties:(i) X is a dual spae,(ii) X is a omplemented subspae of a Banah lattie,(iii) X is a subspae of a spae with an unonditional basis,(iv) X has property (u) of Pelzynski.Suppose that there exists a C1;u-smooth operator T : B0 ! X, suh that T (B0) is notompat. Then 0 ,! X.Proof. (i) follows along the same lines as (iii) of Corollary 2.5, using the funtionalsfrom predual. (ii)-(iv) follow from (iii) of Corollary 2.5 and the lassial results in [LT1,2℄,aording to whih any Banah spae from one of these lasses is weakly sequentiallyomplete unless it ontains 0.Reall that a Banah spae X has the point of ontinuity property (PCP), if every weaklylosed bounded subset of X ontains a point of weak-to-norm ontinuity for the identitymapping. Spaes with the PCP property have been extensively studied by many authors.In partiular it is known that all RNP spaes belong to this lass, and in the followingtheorem we will use the fundamental desription of separable PCP spaes as those admit-ting a boundedly omplete skipped bloking �nite dimensional deomposition. The lastnotion is due to Bourgain and Rosenthal, and its equivalene to the PCP was establishedby Ghoussoub and Maurey in [GM℄. We refer to this paper for the result and furtherreferenes in this area.Theorem 2.7 15



Let X be a Banah spae with the PCP property. Then every C1;u-smooth operatorT : B0 ! X is ompat.Proof. Sine PCP is a hereditary property, we may WLOG assume that X is separable.We proeed by ontradition, assuming that there exists a C1;u-smooth nonompat op-erator T : B0 ! X, and X has a boundedly omplete skipped bloking �nite dimensionaldeomposition. That is to say, there exists a sequene Gi of �nite dimensional subspaesof X satisfying(1) X = span 1Si=1Gi(2) Gk \ span Si6=kGi = f0g(3) if fmkg1k=1, fnkg1k=1 are sequenes from IN , mk < nk + 1 < mk+1 then settingHk = span nkSi=mk, fHkg1k�1 is a boundedly omplete FDD for span 1Sk=1Hk.In our proof we will use the notation from the proof of Lemma 2.1. The starting pointof our proof are the results obtained there, in partiular, we assume that feig1i=1 2 B0is a seminormalized basi sequene equivalent to the anonial basis, yi = T (ei) is aseminormalized basi sequene in X with its biorthogonal funtionals 'i 2 1ÆBX� satisfying'n(ym) = � 1 if n = m0 otherwise.Moreover, the following relations hold for some � > 0.�����'nk Æ T � kXi=1 �ieni�� 'nk Æ T (�kenk )����� � � for all j�ij � 1:�����'k Æ T � nXi=1 �iei�� 'k Æ T (�kek)����� � 2� for all n � k; j�ij � 1:We now proeed by onstruting sequenes of integers fmkg1k=1, fnkg1k=1, flkg1k=1 as fol-lows:Fix a sequene "n & 0, 1Pn=1 "n < 1, put m1 = 1, l1 = 1. Set n1 > m1 suh thatdist�T (e1); span n1[i=1Gi� < "1:Next, put m2 = n1 + 2 and hoose l2 whih satis�es for j�ij � 1dist�T (e1 + NXi=l2 �iei)� T (e1); span 1[i=m2Gi� < "2:16



The existene of suh l2 follows sine T (e1 + x)� T (e1) maps weakly null sequenes fxngfrom B0 to weakly null sequenes in X, and spanm2�1Si=1 Gi is �nite dimensional. Nexthoose n2 suh that dist�T (el1 + el2)� T (el1); span n2[i=m2Gi� < "2:Put m3 = n2 + 2, and ontinue by indution as follows. Having onstruted fnigki=1,fmigki=1, fligki=1, we set mk+1 = nk + 2. We then �nd lk+1 > lk for whih if j�ij � 1 thendist�T ( kXi=1 eli + NXi=lk+1 �iei)� T ( kXi=1 eli); span 1[i=mk+1Gi� < "k:Finally, �nd nk+1 > mk+1 for whihdist�T (k+1Xi=1 eli)� T ( kXi=1 eli); span nk+1[i=mk+1Gi� < "k:Denote y0 = 0, yk = T ( kPi=1 eli), Hk = span nk+1Si=mk+1Gi. With this notation, it is lear thatfor some zk, kzkk < "k uk := yk+1 � yk + zk 2 Hk:Sine NPk=1uk = yN+1 + NPk=1 zk is a norm bounded sequene, it is norm onvergent. Thusy = limn!1 yn = limn!1 T ( nXi=1 eli)exists in norm. However, 'ln(yn) � 'ln�T (eln)�� � = 1� �'ln(yn�1) � 'ln�T (0)�+ � = �:Thus kyn � yn�1k � (1� 2�) 1k'lnk � (1� 2�)Æ, a ontradition.In partiular, and answering a question of Haydon from [Hay℄ in the negative, we have thefollowing.Corollary 2.8 17



Let X be a Bourgain-Delbaen L1 spae (f. [B℄), T : B0 ! X be C1;u-smooth. ThenT (B0) is ompat.Proof. Combining the results in [B℄ and [GM℄, these spaes have the PCP property.3. Summability properties of smooth funtions on 0Given a funtion f : B0 ! IR, we are interested in the value V = 1Pn=1 jf(en)j. Thereare numerous results whih give the onvergene of the last summation. In the omplexsalar ase (when 0 is over the omplex �eld and f is omplex), Aron and Globevnik [AG℄(generalizing K. John's earlier work [J℄) showed that if f is a homogeneous polynomial,then V � supx2B0 jf(x)j. This estimate is independent of the degree of the polynomial.Aron, Beauzamy and Eno [ABE℄ treated the orresponding real ase. The result isthat for a general k-homogeneous polynomial V � 4k2supx2B0 jf(x)j, but there exists k-homogeneous polynomials for whih V � ksupx2B0 jf(x)j. Thus an upper estimate usingthe supremum of f , independent on the degree, does not exists even for homogeneouspolynomials. However, in [H2℄, we prove the following degree free estimate for everyhomogeneous polynomial: V � 16supx2B0 kf 00(x)k. The main result of this setion is aonstrution of nonhomogeneous real polynomials for whih V annot be estimated fromabove using f 00 independently of the degree.It turns out that these results are losely onneted with the behaviour of smooth operators,in partiular the Question 0.5 (in fat, after heking Setions 3,4 of this note, the readerwill realize that the validity of the estimate from [H2℄ is essentially equivalent to the validityof Q 0.5). We reover a sharper form of Pelzynski Theorem 0.2 from this and Theorem1.5 (answering Q 0.5 in the positive for polynomial operators). In the subsequent setionwe onstrut a C1;1-smooth nonompat operator whih fails this desription (and Q 0.5)and seems to be a half-way ounterexample to Question 0.3.Theorem 3.1Let X be a Banah spae, K be a sattered ompat, P : C(K) ! X be a nonom-pat polynomial operator (not neessarily homogeneous). Then there exists a sequenefvng1n=0 2 BC(K), suh that both fvn� v0g1n=1 and fP (vn)�P (v0)g1n=1 are equivalent tothe anonial basis of 0.Proof. By the redution theorem we may replae C(K) by the spae 0. Let k = deg(P ).As P (B0) is not relatively ompat, by [H2℄, Lemma 12, there exists vn 2 B0 , n =0; 1; : : : , suh that fvng1n=1 is equivalent to the unit basis of 0 and k � k� limn!1P (v0+ vn)does not exist. Put y0 = P (v0), yn = P (v0+ vn), zn = yn� y0. As was shown in the proofof Lemma 2.1, by passing to a subsequene WLOG fzng1n=1 is a C-seminormalized weaklynull Shauder basi sequene (C�1 � kznk � C for some C). We laim that fzng1n=1 isequivalent to the anonial basis of 0. To this end, it suÆes to show that there existsK 2 IR suh that 18



supj�nj�1 k 1Xn=1�nznk � K:whih is equivalent to 1Pn=1 j�(zn)j � K for every � 2 BX� .Assume ~P (x) = P (v0 + x)� P (v0) = kPl=1Pl(x), where Pl are homogeneous polynomials.Fixing l, there exists Kl 2 IR, suh that for every � 2 BX� , �ÆPl : 0 ! IR is a real valuedk-homogeneous polynomial satisfying k(� Æ Pl)00(x)k � Kl for all x 2 B0 .By ([H2℄, Lemma 15) 1Xn=1 j� Æ Pl(vn)j � 16CkKl:Consequently,1Xn=1 j� Æ ( kXl=1 Pl(vn))j = 1Xn=1 j( kXl=1 � Æ Pl(vn))j � kXl=1 16CkKl = K <1:This estimate is true for every � 2 BX� .The improvement of Theorem 3.1 over Theorem 0.2 onsists of showing that P atuallyarries a translate of the anonial basis of 0 into the range spae X, in the spirit ofTheorem 0.1. The next simple example shows that Theorem 3.1 is optimal in the sensethat the shifting of the 0 basis by y0 is neessary, so the result is neessarily of aÆnerather than linear nature.Example 3.2Put P (x) : 0 ! 0, P ((xi)1i=1) = (x41; x21x22; x21x23; : : : ). Then P is nonompat, butlimn!1P (un) = 0 for every weakly null sequene in 0. Choosing vi = ei+1, i = 1; 2; : : :gives P (v0) = e1, P (v0+ vi) = e1+ ei+1. Sine the image of P is ontained in the positiveone of 0, we also see that we annot hope for B0 � P (B0).We ontinue with the main result of this setion, a onstrution of a speial sequene ofC1;1-smooth funtions failing the good summability properties. These funtions will beused later to onstrut a C1;1-smooth nonompat operator whih fails the statement ofTheorem 3.1 (and also Q 0.5).Theorem 3.3Let �n : Bn0 ! IR be de�ned as�n(xi) = 1pn nYi=1(1� x4i ):19



Then 9C independent of n suh that �00n : Bn0 ! L(n0 ; `n1 ),�00n(x) = ��2�n(x)�xi�xj �ni;j=1 satis�es k�00nkL(n0 ;`n1 ) � C:Proof. First note that for (aij)ni;j=1 = L 2 L(n0 ; `n1 ), we have kLkL(n0 ;`n1 ) = max"j=�1 nPi=1 j nPj=1aij"j j �nPi=1 nPj=1 jaij j. Now we have�2�n(x)�xi�xj = 8>>>>><>>>>>: �12pn x2i nQk=1k 6=i(1� x4k) if i = j;16pnx3ix3j nQk=1k 6=i;j(1� x4k) if i 6= j:We wish to estimate for x 2 Bn0 the quantitiesA = supx2Bn0 nXi=1 �����2�n(x)�x2i ���� ;B = supx2Bn0 nXi=1 nXj=1i6=j �����2�n(x)�xi�xj ���� :WLOG assume that 0 � x1 � x2 � � � � xn � 1, so that (1� x4k) � (1� x4n) and putF �(xi)n�1i=1 � := 12pn + 12pn�n�1Xi=1 x2i n�1Yk=1(1� x4k)� �12pn� nXi=1 x2i n�1Yk=1(1� x4k)� � 12pn nXi=1 x2i nYk=1k 6=i (1� x4k):The reason for introduing F instead of estimating diretly the original term is the usefulsymmetry of rF , as we will see below. There exists z = (zi)n�1i=1 2 Bn�10 suh thatF (z) = maxx2Bn�10 F (x) � A. Clearly, either z 2 �Bn�10 or else rF (z) = 0. In the �rst ase,zi = 1 for some i � n� 1 and thus F (z) = 12pn . Suppose z =2 �Bn�10 .rF (z) = 12pn�2zi n�1Yk=1(1� z4k)� 4z3i (n�1Xj=1 z2j ) n�1Yk=1k 6=i(1� z4k)�n�1i=1 = 0:20



Put  = n�1Pj=1 z2j . Unless zi = 0, we have (1� z4i )� 2z2i = 0. Solving this equation for z2igives z2i = � �p2 + 1. However, sine z2i > 0, we have z2i = p2 + 1 �  = z2j forevery i; j � n � 1, for whih zi; zj 6= 0. Suppose that m = ardfi : zi 6= 0g � n � 1 andjzij = � whenever zi 6= 0. Thus � = 14p1+2m , andF (z) = 12pn�1 +m�2(1� �4)m� = 12pn�1 + mp1 + 2m (1� 11 + 2m )m� �� 12pn + 12pmpn (1� 11 + 2m )m � K;whereK is a onstant independent of n andm < n. Indeed, reall that limm!1(1� 11+2m)m =1pe . In order to estimate B, suppose WLOG 0 � x1 � x2 � � � � � xn. Then16pn nXi=1 nXj=1j 6=i x3ix3j nYk=1k 6=i;j(1� x4k) � 16pn�n�2Xi=1 n�2Xj=1 x3ix3j n�2Yk=1(1� x4k) + S0 + S1 + 1�where S� = x3n�� n�2Pj=1 x3j n�2Qk=1(1 � x4k). By omparing this expression with the formula forF (x), and keeping in mind that x2j � x3j we get 16pn (S0+S1+1) � 4K. In order to estimateB, set (again for reasons of symmetry of rG whih makes the alulations easier)G(x) = 16pn�n�2Xi=1 n�2Xj=1j 6=i x3ix3j n�2Yk=1(1� x4k) + n�2Xi=1 12x6i n�2Yk=1(1� x4k)�;and note that learlymaxx2Bn�20 G(x) + 4K � maxx2Bn�20 G(x) + 16pn (S0 + S1 + 1) � B:Suppose z 2 Bn�20 , G(x) = maxx2Bn�20 G(x) (and WLOG zi � 0). In ase z 2 �Bn�20 , wehave zi = 1 for some i and G(z) = 0. Thus z =2 �Bn�20 and so rG(z) = 0. A straitforwardalulation gives �G�xi (z) = 16pn�3z2i n�2Yk=1(1� z4k)�� 4z3i n�2Yk=1k 6=i (1� z4k)�� = 021



where � = n�2Pj=1 z3j and � = n�2Pl=1 n�2Pj=1 z3l z3j + n�2Pj=1 12z6j . Therefore, whenever zi 6= 0, we have3(1 � z4i )� � 4zi� = 0. Thus zi; zj 6= 0 implies 1zi � z3i = 1zj � z3j . As the real funtion�(t) = 1t � t3 is dereasing on IR+, this gives zi = zj = �. Denote by m = ardfi : zi 6= 0g.We have G(z) = 16pn�m2�6(1� �4)m + 12m�6(1� �4)m� � 2 16pnm2�6(1� �4)m:In order to estimate the last expression, �xm and de�ne a funtion �(�) = �6(1��4)m. Onthe interval [0; 1℄ � has only one ritial (and learly a loal maximum) point � = 4q 33+2m .So G(z) = 2�16pnm2� 11+ 23m� 32 �1� 11+ 23m�m. Sine m � n� 2 and limm!1�1� 11+ 23m�m = e� 32 ,there exists a onstant L, independent of the values n;m < n, for whih G(z) � L. Finally,setting C = L+ 5K � A+ B satis�es the requirements.4. Range of C1;1 smooth operator.Using the funtions onstruted above, we are now going to onstrut an C1;1-smoothnonompat operator suh that the set T (B0) does not ontain a translate of the anonialbasis of 0 (and onsequently fails Question 0.5). This phenomenon annot our withpolynomials, or real analyti operators. In fat we are able to ontrol the "positive" spanof T (B0) as well. However, using negative oeÆients generates the opy of 0 in therange. Changing the onstrution somewhat, we are able to eliminate 0 basis from spansontaining a limited number of negative oordinates. We do not present these modi�ationshere (as they are tehnial and do not suÆe for a general ounterexample), but they mayshed some light on the deliay of the problem.Let T : 0 ! `1 be an operator, T (x) = (fn(x))1n=1.Lemma 4.1Let T : B0 ! `1 be a C1-smooth operator. Then T 0 : B0 ! L(0; `1) is uniformlyontinuous with modulus of ontinuity !(t) i� every f 0n : B0 ! `1 is uniformly ontinuouswith modulus of ontinuity !(t).Proof. Consider an in�nite matrix (aij)1i;j=1, whih represents L 2 L(0; `1). Morepreisely, L(ek) = (aik)1i=1 2 `1:Sine L is bounded, we have supi2IN 1Xk=1 jaikj = kLkL(0;`1):22



Put gi = (aik)1k=1 2 `1. We an write L = (gi)1i=1, kLkL(0;`1) = supi2IN kgik`1 . Now givenx; y 2 B0 , kx � yk = t, �f 0n(x)�1n=1 = T 0(x) = L = (gi)1i=1, �f 0n(y)�1n=1 = T 0(y) = S =(hi)1i=1 we have kL� SkL(0;`1) = supi2IN kgi � hik`1 :Clearly, kL� SkL(0;`1) � !(t) i� for every i 2 IN kgi � hik`1 � !(t).In the rest of the note we will onstrut simultaneously a Banah spae X ,! `1 and aC1;1-smooth and nonompat operator T : B0 ! X, suh that T (B0) does not "ontain"a anonial basis of 0.First, let C be from Theorem 3.3, �x a sequene ni = 24i, and put  ni : IRni ! IR, ni(x) = 12iC � 1pni � �ni(x)�:Clearly,  ni(0) = 0,  0ni(0) = 0,  ni is symmetri and k 00nik � 2�i on Bni0 . Sine  ni isa symmetri funtion, given A � IN , jAj = ni, we may put  Ani : B0 ! IR to be Ani�(xj)1j=1� =  ni�(xj)j2A�:The system of tuples of setsSk = f(A1; A2; : : : ; Al) : Ai � IN; jA1j < jA2j < � � � < jAlj; jAij 2 fnig1i=1; jAlj = nkgis ountable, and so is S = 1Sk=1Sk. For (A1; : : : ; Al) 2 S put  (A1;:::;Al) : B0 ! IR, (A1;:::;Al)(x) = lPi=1 AijAij(x). Fix a bijetion ! : S ! IN . We de�ne �n : B0 ! IR by�n(x) =  !�1(n)(x), and T : B0 ! `1 by T (x) = (�1(x); �2(x); : : : ). By Lemma 4.1, T isC1;1-smooth. We de�ne X = spanT (B0) ,! `1.Theorem 4.2T : B0 ! X is a nonompat, C1;1-smooth operator, with the property that there is nosequene fyng1n=0 in T (B0) suh that fyn� y0g1n=1 is equivalent to the anonial basis of0.Proof. It remains to prove the statement about fyn � y0g1n=1. We proeed by ontra-dition, assuming yn = T (un), where un 2 00. Clearly, by passing to a subsequene offung1n=1 WLOG there exists some m 2 IN , Æ > 0 and a sequene m < j1 < j2 < : : : , suhthat supp(u0) � [1;m℄, unjn > Æ. Take a set A � fjkg1k=1, jAj = np = 24p. We have23



 Anp(un) = 12pC 1pnp �1�Yi2A(1� uni 4)� � 12pCpnp � Æ4 for n 2 A; Anp(u0) = 0:Thus �!((A))(u0) = 0, yi!(A) = �!((A))(uj) � 12pC 1pnp Æ4. So k Pj2A(yj � y0)k � Pj2A yj!(A) �12pC � pnpÆ4, whih is a ontradition, sine the last expression an be made arbitrarilylarge (by the hoie of p).In fat, our onstrution enables us to prove a somewhat more general statement. LetNn 2 IN , ani 2 IR where 1 � i � Nn, yn;i = T (xn;i). The main onjeture on ontainmentof 0 in X would be disproved if for eah suh system, fNnPi=1 ani yn;ig1n=1 is not equivalentto the anonial basis of 0. We are able to prove this statement under assumption thatani � 0. This is not suÆient to ensure that 0 6,! X, and in fat in our onstrution thesequene fT (k+1Pi=1 ei)� T ( kPi=1 ei)g1k=1 is equivalent to fekg1k=1 and thus 0 ,! X. However,further modi�ations of our onstrution may lead to the full ounterexample. Sine thefollowing result is not entral in this work, we present only a sketh of the argument.Proposition 4.3In the notation above, assume that ani � 0. Then fNnPi=1 ani yn;ig1n=1 is not equivalent to theanonial basis of 0.Sketh of Proof. Assume, By ontradition, that fNnPi=1 ani yn;ig1n=1 is equivalent to theanonial basis of 0. Let fmng1n=1 be a sequene form IN suh that 9� > 0NnXi=1 ani yn;imn � �:We will distinguish two ases (whih involve passing to subsequenes).Case I.9fmng1n=1 as above and suh that!�1(mn) = (An1 ; : : : ; Anln) where limn!1 jAn1 j =1:Case II.limn!1k!1 supjA1j=nk NnPi=1 ani yn;i!(A1;:::;Al) = 0In Case I, we may learly assume, by passing to a subsequene, that ~n > n impliesjAnln j < jA~n1 j. Thus 24
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